电压互感器的工作原理

电压互感器的工作原理

电压互感器的工作原理与一般的变压器相同,仅在结构型式、所用材料、容量、误差范围等方面有所差别。

一、电压互感器:

电压互感器是一种电压变换装置。它将高电压变换为低电压,以便用低压量值反映高压量值的变化。因此,通过电压互感器可以直接用普通电气仪表进行电压测量。

1、电压互感器又称仪用变压器,是一种电压变换装置;

2、电压互感器的容量很小,通常只有几十到几百伏安;

3、电压互感器一次侧电压即电网电压,不受二次负荷影响,并且大多数情况下其负荷是恒定的;

4、二次侧负荷主要是仪表、继电器线圈,它们的阻抗很大,通过的电流很少。如果无限期增加二次负荷,二次电压会降低,造成测量误错增大;

5、用电压互感器来间接测量电压,能准确反映高压侧的量值,保证测量精度;

6、不管电压互感器初级电压有多高,其次级额定电压一般都是100V,使得测量仪表和继电器电压线圈制造上得以标准化。而且保证了仪表测量和继电保护工作的安全,也解决了高压测量的绝缘、制造工艺等困难;

7、电压互感器常用于变配电仪表测量和继电保护等回路。

二、变压器:

变压器是变换交流电压、电流和阻抗的器件,当初级线圈中通有交流电流时,铁芯(或磁芯)中便产生交流磁通,使次级线圈中感应出电压(或电流),用于改变电压等级,负载较大电流。

1、变压器种类很多,按冷却方式、防潮方式、铁芯或线圈结构、电源相数、用途等分若干个类;

2、变压器的容量由小到大,从几十伏安大到几十兆伏安;

3、变压器的一次侧电压受二次负荷影响较大,负荷大时系统电压会受到影响;

4、变压器二次侧负荷就是各种用电设备,通过的电流较大,具有较强的带负载能力;

5、变压器一次侧电压不论多高,均可根据需要升高或降低二次电压;

6、变压器的外形与体积因容量的不同有时很大;

7、变压器常用于多种场合。

电流互感器和变压器原理差不多,在构造上也基本一样,都是两个绕组:一个匝数多、线径细,另外一个匝数少、线径粗。

若匝数多、线径细的绕组是作为一次绕组与被测量的电路并联连接,而匝数少、线径粗的绕组接测量仪表(电压表),则该互感器就是一个电压互感器。电压互感器实际上就是一台工作在空载状态下的降压变压器(因为电压表是高阻表,电流很小,所以是空载。又因为一次绕组匝数多、二次绕组匝数少,所以是降压)

若匝数少、线径粗的绕组是作为一次绕组与被测量的电路串联连接,而匝数多、线径细的绕组接测量仪表(电流表),则该互感器就是一个电流互感器。电流互感器实际上就是一台工作在短路状态下的升压变压器(因为电流表是低阻表,电流很大,所以相当于短路。又因为一次绕组匝数少、二次绕组匝数多,所以是升压,而之所以实际电流互感器的二次绕组电压没有升压,是因为它工作在短路状态)。电流互感器工作时二次绕组绝对不能开路,否则会感应高电压危及设备或人身安全,并因失去二次绕组的去磁磁势,会使铁心严重饱和而失去测量的准确性。

互感器按原理分为电磁感应式和电容分压式两类。电磁感应式多用于220kV及以下各种电压等级。电容分压式一般用于110kV以上的电力系统,330~765kV超高压电力系统应用较多。电压互感器按用途又分为测量用和保护用两类。对前者的主要技术要求是保证必要的准确度;对后者可能有某些特殊要求,如要求有第三个绕组,铁心中有零序磁通等。

电磁感应式电压互感器其工作原理与变压器相同,基本结构也是铁心和原、副绕组。特点是容量很小且比较恒定,正常运行时接近于空载状态。电压互感器本身的阻抗很小,一旦副边发生短路,电流将急剧增长而烧毁线圈。为此,电压互感器的原边接有熔断器,副边可靠接地,以免原、副边绝缘损毁时,副边出现对地高电位而造成人身和设备事故。测量用电压互感器一般都做成单相双线圈结构,其原边电压为被测电压(如电力系统的线电压),可以单相使用,也可以用两台接成V-V形作三相使用。实验室用的电压互感器往往是原边多抽头的,以适应测量不同电压的需要。供保护接地用电压互感器还带有一个第三线圈,称三线圈电压互感器。三相的第三线圈接成开口三角形(图1)

开口三角形的两引出端与接地保护继电器的电压线圈联接。正常运行时,电力系统的三相电压对称,第三线圈上的三相感应电动势之和为零。一旦发生单相接地时,中性点出现位移,开口三角的端子间就会出现零序电压使继电器动作,从而对电力系统起保护作用。线圈出现零序电压则相应的铁心中就会出现零序磁通。为此,这种三相电压互感器采用旁轭式铁心(10kV及以下时)或采用三台单相电压互感器。对于这种互感器,第三线圈的准确度要求不高,但要求有一定的过励磁特性(即当原边电压增加时,铁心中的磁通密度也增加相应倍数而不会损坏)。

电磁感应式电压互感器的等值电路与变压器的等值电路相同。

电容分压式电压互感器在电容分压器的基础上制成。其原理接线见图2。

电容C1和C2串联,U1为原边电压,Uc2为C2上的电压。空载时,电容C2上的电压Uc2为

由于C1和C2均为常数,因此Uc2正比于原边电压。但实际上,当负载并联于电容C2两端时,Uc2将大大减小,以致误差增大而无法作电压互感器使用。为了克服这个缺点,在电容C2两端并联一带电抗的电磁式电压互感器YH,组成电容分压式电压互感器(图3)。

电抗可补偿电容器的内阻抗。YH有两个副绕组,第一副绕组可接补偿电容C k供测量仪表使用;第二副绕组可接阻尼电阻R d,用以防止谐振引起的过电压。

电容式电压互感器多与电力系统载波通信的耦合电容器合用,以简化系统,降低造价。此时,它还需满足通信运行上的要求。

注意:电压互感器二次回路不能短路,否则会引起烧坏线圈,为了防止二次端的短路引起主电路干扰,加空气开关K1。K1是常闭,K1跳闸时,保护装置将显示PT断线报警。

三相五柱式电压互感器的工作原理

[摘要] 系统分析三相五柱式电压感器二次工作绕组、辅助绕组的工作特性,以便对三相五柱式电压互感器进行更好地维护。

[关键词] 三相五柱式电压感器工作绕组辅助绕组

电压互感器是将电力系统的一次电压按一定变比缩小为要求的二次电压,向测量表计和继电器供电,其工作原理与变压器基本相同。电压互感器通常有单相、三相三柱式、三相五柱式电压互感器等几种,由于使用方法不同,各有优、缺点。三相五柱式电压互感器,是磁系统具有五个磁柱的三相三绕组电压互感器,广泛采用于大中型企业,具有低电压、过电压保护、低电压启动等各种保护功能;备自投等所有电压继电器电压值均来自电压互感器二次。

1 三相五柱式电压互感器的接地方式

电压互感器二次绕组接地方式与保护、测量表计及同步电压回路有关,有b相接地和中性点接地两种方式,其接线方式见图1、2。

图1 电压互感器二次通过b相及JB接地原理图

图2 电压互感器二次不接地原理图

1.1 电压互感器二次绕组两种接地方式的比较

1.1.1 在同步回路中在b相接地系统中,对中性点非直接接地系统,单相接地时,中性点位移,不能用相电压同步,必须用线电压同步。如同步点两侧均为b相接地,其中一相公用,同步开关档数减少(如采用综保,则接线更为简单),同步接线简单。对中性点直接接地系统,可用辅助二次绕组的相电压同步。

1.1.2 在保护回路中

在b相接地系统中,①在零线上串接的隔离开关辅助触点G,如不可靠而断开时,会使10kV以上电压距离保护断线闭锁装置失去作用,这时若再发生一相或两相断线,将导致保护误动作。②因为辅助

绕组的一端与b相接地点相连,由于基本二次侧绕组上有负荷电流流过,在电缆芯出上产生电压降,使正常开口三角形有电压3U0,对零序方向元件不利。若单独从接地点引接零序方向继电器回路,则接线

较为复杂。

在中性点接地系统中,由于中性点无任何断开触点,可靠性高。因中性点没有电流通过,无电压降,对保护无影响。

1.1.3 在测量表计回路中

在b相接地系统中,①因大多数表计均接线电压,其中b相接地公用,引线方便。②对只需接线电压的回路,可用V-V接线电压互感器。

在中性点接地系统中,表计均需三相分别接入,引线较为复杂。

1.1.4 在电压互感器二次接线上

在b相接地系统中,①中性点需装设击穿保险器,增加了部件,正常时如击穿保险器击穿接地,将使b相绕组短路。②当A、C两相中任一相发生接地时,即构成二次绕组两相短路,两相熔断器熔断。

在中性点接地系统中,无b相接地的相应问题,接线较简单。

据上分析,对于中性点非直接接地系统,因一般不装设距离和零序方向保护,b相接地对保护影响极小,而对同步回路有利,故电压互感器二次侧采用b相接地方式较为理想。而对于中性点直接接地系统,保护要求严格,中性点接地有利于提高保护的可靠性,同步回路可用辅助绕组的相电压,故电压互感器二次绕组采用中性点接地方式较为优越[1]。

1.2 接地原因

1.2.1 电压互感器二次侧须接地的原因

在运行中,电压互感器的一次侧线圈处在高压系统之中,而其二次侧线圈则为一固定的低电压(如电压互感器一次线圈电压为10KV时,则其二次侧固定为100 V)。二次侧线圈所接入的各种仪表和继电器的绝缘等级低,并且经常与人员接触,如果电压互感器的一、二次线圈之间的绝缘被击穿,一次侧的高压将直接加到二次侧线圈上,极易危及人身和设备安全。故为了提高安全性,电压互感器二次侧必须接地。

1.2.2 JB接地

图1中,当电压互感器通过b相接地时,其中性点处还需要通过JB接地的原因分析如下。

由于电压互感器二次侧通过b相接地,其只是为各种表计和继电器提供所需电压,不能保证当一次电压串入二次回路时的安全,所以其二次侧线圈的中性点也必须接地。但是,其中性点如果直接接地,b相线圈将通过大地短接,这样会烧坏线圈,这是不允许的。所以电压互感器二次侧中性点通过一个JB(放电间隙)接地。正常运行时JB不导通;当有高压进入二次侧时,JB击穿使电压互感器二次通过中性点接地,达到保护人身和设备安全的目的。(因b相接地点在保险之后,故即使b相和中性点形成接地短路,也只会使保险熔断,不会烧坏线圈)。

2 电压互感器二次侧保险的工作原理

2.1 二次侧无保险工作分析

①在图1中,如果JB在工作状态下因其它原因击穿,则电压互感器b相绕组将被短接,b相绕组将被烧坏。

②当A、C两相任一相有过载时,将造成电压互感器绕组烧坏。当A、B、C三相绕组内部有故障时,将引起保护误动作。

③在图2中,当电压互感器二次侧A、B、C三相中的任一相出口处有接地发生时,均会造成电压互感器绕组短路运行而烧坏。

④当电压互感器二次侧A、B、C三相中的任一相发生过载时,也有可能烧坏绕组,引起保护误动作。

在上述工作状态下,电压互感器二次侧A、B、C三相出口处,都需加装二次侧保险。

2.2 不加保险(熔断器)的情况

①在二次侧开口三角的出线上一般不装熔断器。因为在正常运行时开口端无电压,无法监视熔断器的接触情况。一旦熔断器接触不良,则系统接地时不能发出接地信号。但是,供零序过电压保护用的开口三角出线例外。

②中性线上不装熔断器,目的是因为一旦保险丝熔断或接触不良,就会使绝缘监察电压表失去指示故障的作用。

③接自动电压调整器的电压互感器二次侧不装熔断器,目的是为了防止熔断器接触不良或熔丝熔断时电压互感器误动作。

3 三相五柱式电压互感器工作绕组的工作状态分析

3.1 正常时工作绕组的工作状态

如图3所示,由于三相五柱式电压互感器为配合计量及保护装置,其二次线电压为恒定的100V。为配合绝缘监察,其二次侧对地电压为100/ V;100V/ V、0V。所以根据图3可得出,Ua、Ub、Uc三相相电压为Ua=l00/ V=Ub=Uc,线电压为Uab=Uac=Ucb=100 V。正常运行时,Ua0=Ub0=Uc0电压表指示相电压(10kV系统为5.8kV)。

图3 正常工作时电压互感器二次接线原理图

3.2 故障时工作绕组的工作状态

①当系统发生单相金属性接地时(如A相),则该相对地电压为O,即电压瓦感器的A相一次线圈对地无电压。接在二次和接地相对应的绝缘监察电压表Ua=0,而其它两相Ub、Uc的电压升高到倍,即上升到线电压(10KV系统为10KV)。此时工作线圈二次侧对地电压为Ua=0、Ub=0、Uc=100V。

②当A相经电弧或高电阻接地时,则Ua电压指示低于相电压,但未达到0。Uc、Ub指示高于相电压,但未

达到线电压(当b相接地时,Ub=O)。

4 辅助绕组的工作状态分析

辅助绕组,即开口三角形。在系统正常运行时,由于系统三相电压UA、UB、UC是对称的,互感器二次线圈中的三个电压Ua、Ub、Uc也对称。故反应在开口三角两端的零序电压为Ua+Ub+Uc=0,所以开口三角两端的电压为零。

当系统发生单相接地故障时,如C相接地(见图4),显然C相对地电压Uc,加上中性点对C相端头电压-Uc,即UAd=UA+(-Uc)。同理,B

图4 系统发生单相接地时开口三角形绕组电压向量图

相对地电压UBd=UB+(-Uc),由于C相接地,电压互感器一次侧的C相线圈上无电压。则UAd和UBd就是互感器一次侧A相和B相的电压。从向量图中看出,加在互感器一次侧的三相电压出现了零序电压,即

UAd+UBd=3U0。此时UAd和UBd的大小都是相电压的3倍,即数值上等于线电压,其合成电压即为3倍的零序电压。故在开口三角两端也

同时出现了3倍的零序电压。在开口三角两端接上绝缘监察继电器,一旦系统有单相接地发生,此绝缘监察继电器即报灯光、音响信号,告诉值班人员处理(一般此继电器整定值为l5V或18V)。

电压互感器使用指南..

电压互感器使用指南 1.电压互感器在投入运行前要按照规程规定的项目进行试验检查。例如,测极性、连接组别、摇绝缘、核相序等。 2.电压互感器的接线应保证其正确性,一次绕组和被测电路并联,二次绕组应和所接的测量仪表、继电压互感器电保护装置或自动装置的电压线圈并联,同时要注意极性的正确性。 3.接在电压互感器二次侧负荷的容量应合适,接在电压互感器二次侧的负荷不应超过其额定容量,否则,会使互感器的误差增大,难以达到测量的正确性。 4.电压互感器二次侧不允许短路。由于电压互感器内阻抗很小,若二次回路短路时,会出现很大的电流,将损坏二次设备甚至危及人身安全。电压互感器可以在二次侧装设熔断器以保护其自身不因二次侧短路而损坏。在可能的情况下,一次侧也应装设熔断器以保护高压电网不因互感器高压绕组或引线故障危及一次系统的安全。 5.为了确保人在接触测量仪表和继电器时的安全,电压互感器二次绕组必须有一点接地。因为接地后,当一次和二次绕组间的绝缘损坏时,可以防止仪表和继电器出现高电压危及人身安全。 电流互感器和电压互感器的正确使用指南 电流互感器的正确使用 (1)根据被测电流的大小选择电流互感器的额定电流比,也就是要使电流互感器的初级额定电流大于被测电流。这是在选择电流互感器中最需要注意的一点。此外要注意电流互感器的

额定电压大小,选择时要与使用它的线路电压相适应。 (2)与电流互感器配套使用的交流电流表应选5安的量程。通常与电流互感器配套用的此式电流表的刻度是按电流互感器的初级线圈额定电流标度的。这样的电流表标明了应该配用的电流互感器的额定变流比,在选用这种电流表时,就一定要和相应的电流互感器配套使用。 (3)注意使测量仪表所消耗的功率不要超过电流互感器的额定容量。 (4)电流互感器的初级串联接入被测电路,而它的次级则与测旦仪表连接。 (5)电流互感器次级和铁芯都要可靠地接地。 (6)电流互感器次级绝对不容许开路。 电压互感器的正确使用 (1)在选择互感器时,主要根据被测电压的高低选择电压互感器的额定变压比,也就是应该使所选用的电压互感器初级线圈的额定电压大于被测电压。 (2)与电压互感器配套使用的测量仪表一殷应选100 伏的交流电压表。为了读数方便起见,通常盘式电压表是按所选用电压互感器的初级线圈额定电压刻度的,而在此仪表上标明了所需配用的电压互感器规格。因此我们选用这种电压表时就一定要选用相应的电压互感器来配套使用。 (3)测量仪表所消耗的功率不要超过电压互感器的额定容量,否则将使互感器误差加大。 (4)电压互感器的初级线圈与被测电压的电路并联,而它的次级线圈则与测量仪表联接。 (5)电压互感器的初级线圈和次级线圈都要按保险丝,以防止意外的短路事故。电压互感器的次级线圈是不容许短路的,否则互感器将因过热而烧坏。 (6)电压互感器的次级线圈、铁芯和外壳都要可靠地接地,这样,即使在绕组绝缘损纠;时,次级线圈一方对地的电压也不会升高,以前保人身和设备安全。 深入浅出单相及三相四线电能表互感器接线(1)

电压互感器介绍及工作原理 (图文) 民熔

电压互感器(Potential Transformer 简称PT,Voltage Transformer简称VT)和变压器类似,是用来变换电压的仪器。但变压器变换电压的目的是方便输送电能,因此容量很大,一般都是以千伏安或兆伏安为计算单位;而电压互感器变换电压的目的,主要是用来给测量仪表和继电保护装置供电,用来测量线路的电压、功率和电能,或者用来在线路发生故障时保护线路中的贵重设备、电机和变压器,因此电压互感器的容量很小,一般都只有几伏安、几十伏安,最大也不超过一千伏安。 民熔电压互感器产品介绍 JDZ-10高压电压互感器 10kv半封闭式电压互感器0.5级羊角型 JDZX10-10电压互感器 10KV户内高压柜保护用REL10-10互感器

JDZ9-10电压互感器

电压互感器和变压器的基本结构非常相似,它也有两个绕组,一个称为一次绕组,另一个称为二次绕组。两个绕组都安装或缠绕在铁芯上。两个绕组之间以及绕组和铁芯之间有绝缘,因此两个绕组之间以及绕组和铁芯之间存在电隔离。 电压互感器运行时,一次绕组N1与线路回路连接,二次绕组N2与仪表或继电器连接。因此,在测量高压线上的电压时,虽然一次电压很高,但二次电压很低,可以保证操作人员和仪器的安全。 其工作原理与变压器相同,基本结构为铁芯、一次绕组和二次绕组。其特点是容量很小且相对恒定,在正常运行时接近空载状态。 电压互感器本身的阻抗很小。一旦二次侧短路,电流会迅速增加并烧坏线圈。因此,电压互感器的一次侧用熔断器连接,二次侧可靠接地,以避免一次侧和二次侧绝缘损坏时,二次侧对地高电位造成人身和设备事故 测量用电压互感器一般都做成单相双线圈结构,其原边电压为被测电压(如电力系统的线电压),可以单相使用,也可以用两台接成V-V形作三相使用。实验室用的电压互感器往往是原边多抽头的,以适应测量不同电压的需要。供保护接地用电压互感器还带有一个第三线圈,称三线圈电压互感器。

电流、电压互感器额定二次容量计算方法

附录C 电流互感器额定二次容量计算方法 电流互感器实际二次负荷(计算负荷)按公式(1)计算: 2222()I n jx l jx m k S I K R K Z R =+∑+ (1) 2nI S =K ×2I S 电流互感器二次回路导线截面A 与电阻值的关系如式(2)所示。 l L R A ρ= (2) 式中: 2I S ——电流互感器实际二次负荷(计算负荷),VA 2nI S ——设计选择的电流互感器二次额定负荷,VA K ——系数,一般选择~3 A ——二次回路导线截面, 2mm ρ——铜导电率,257m /mm )ρ=Ω,(? L ——二次回路导线单根长度,m l R ——二次回路导线电阻,Ω jx K ——二次回路导线接触系数,分相接法为2,,星形接法为1; 2 jx K ——串联线圈总阻抗接线系数,不完全星形接法时如存在V 相串联线圈(如接入 90,其余为1。 2n I ——电流互感器二次额定电流,A ,一般为5A 或1A 。 m Z ——计算相二次接入单个电能表电流线圈阻抗,单个三相电子式电能表一般选定为Ω,三相机械表选择Ω。 m Z ∑——计算相的电流互感器其二次回路所串接入的N 个电能表电流线圈总阻抗之 和。 k R ——二次回路接头接触电阻,一般取~ 根据上述的设定,以二次额定电流为5A ,分相接法,4 mm 2的电缆长100米,本计量点

接入2个三相电子表为例, 222221.5() 21001.55( 120.050.1)57440I n jx l jx m k S I K R K Z R =+∑+???+??+? = =(VA) 取40VA ,如电流互感器选择40VA 有困难,则应加大导线截面,选用较小容量的设备。 而上述计量装置采用简化接线方式时,本计量点电流互感器的额定容量为: 222221.5() 11005( 120.050.1)574I n jx l jx m k S I K R K Z R =+∑+???+??+? =1.5 =24(VA) 取30VA 。 附录D 电压互感器额定二次容量选择方法 电压互感器的实际二次负载按公式(3)计算: 22Y n U S U =2 (3) 因电压互感器二次容量,一般仅考虑所计表计电压回路的总阻抗,导线电阻及接触电阻相对于表计阻抗常可以忽略,故各相电压互感器额定二次容量,可根据本计量点各相所接电能表电压回路的总功耗,来确定电压互感器所接的实际二次负载。 2U b S S =∑ (4) b S ——电能表单相电压回路功耗

PT开口三角(三相五柱式电压互感器)的工作原理

PT 开口三角(三相五柱式电压互感器)的工作原理 电压互感器是将电力系统的一次电压按一定变比缩小为要求的二次电压,向测量表计和继电器供电,其工作原理与变压器基本相同。电压互感器通常有单相、三相三柱式、三相五柱式电压互感器等几种,由于使用方法不同,各有优、缺点。三相五柱式电压互感器,是磁系统 具有五个磁柱的三相三绕组电压互感器,广泛采用于大中型企业,具有低电压、过电压保护、低电压启动等各种保护功能;备自投等所有电压继电器电压值均来自电压互感器二次。 信息来自:输配电设备网 1 三相五柱式电压互感器的接地方式 信息请登陆:输配电设备网 电压互感器二次绕组接地方式与保护、测量表计及同步电压回路有关,有b 相接地和中性点接地两种方式,其接线方式见图1、2。信息来源:https://www.360docs.net/doc/d512098188.html, 图1 电压互感器二次通过 b 相及JB 接地原理图信息来源:https://www.360docs.net/doc/d512098188.html, 图2 电压互感器二次不接地原理图信息来源:https://www.360docs.net/doc/d512098188.html,

1.1 电压互感器二次绕组两种接地方式的比较信息:输配电设备网 1.1.1 在同步回路中在 b 相接地系统中,对中性点非直接接地系统,单相接地时,中性 点位移,不能用相电压同步,必须用线电压同步。如同步点两侧均为 b 相接地,其中一相公用,同步开关档数减少(如采用综保,则接线更为简单),同步接线简单。对中性点直接接地 系统,可用辅助二次绕组的相电压同步。信息来自:https://www.360docs.net/doc/d512098188.html, 1.1.2 在保护回路中信息来源:https://www.360docs.net/doc/d512098188.html, 在b 相接地系统中,①在零线上串接的隔离开关辅助触点G,如不可靠而断开时,会使10kV 以上电压距离保护断线闭锁装置失去作用,这时若再发生一相或两相断线,将导致保 护误动作。②因为辅助信息请登陆:输配电设备网 绕组的一端与 b 相接地点相连,由于基本二次侧绕组上有负荷电流流过,在电缆芯出上产生电压降,使正常开口三角形有电压3U0 ,对零序方向元件不利。若单独从接地点引接零序方向继电器回路,则接线 信息来自:https://www.360docs.net/doc/d512098188.html, 较为复杂。 信息来自:https://www.360docs.net/doc/d512098188.html, 在中性点接地系统中,由于中性点无任何断开触点,可靠性高。因中性点没有电流通过,无电压降,对保护无影响。信息请登陆:输配电设备网 1.1.3 在测量表计回路中信息来自:https://www.360docs.net/doc/d512098188.html,

电压互感器与电流互感器的作用、原理及两者区别

电流互感器作用及工作原理_电压互感器的作用及工作原理_电压互感器和电流互感器的区别 电力系统为了传输电能,往往采用交流电压、大电流回路把电力送往用户,无法用仪表进行直接测量。互感器的作用,就是将交流电压和大电流按比例降到可以用仪表直接测量的数值,便于仪表直接测量,同时为继电保护和自动装置提供电源,所以说电压互感器与电流互感器在电力系统中起到了非常的大的作用,而本文要介绍的就是电压互感器与电流互感器的区别以及如何使用电压互感器测量交流电路线电压。 电流互感器作用及工作原理 电流互感器的主要所用是用来将交流电路中的大电流转换为一定比例的小电流(我国标准为5安倍),以供测量和继电保护只之用。大家应该知道在发电、变电、输电、配电过程中由于用电设备的不同,电流往往从几十安到几万安都有,而且这些电路还可能伴随高压。那么为了能够对这些线路的电路进行监控、测量,同时又要解决高压、高电流带来的危险,这时就需要用到电流互感器了。有些人可能见过电工用的钳形表,这是一种用来测量交流电流的设备,它那个“钳”便是穿心式电流互感器。

电流互感器的结构如下图所示,可用它扩大交流电流表的量程。在使用时,它的原线圈应与待测电流的负载线路相串联,副边线圈则与电流表串接成闭合回路,如图中右边的电路图所示。 电流互感器的原线圈是用粗导线绕成,其匝数只有一匝或几匝,因而它的阻抗极小。原线圈串接在待测电路中时,它两端的电压降极小。副线圈的匝数虽多,但在正常情况下,它的电动势E2并不高,大约只有几伏。 由于I1/I2=K i(Ki称为变流比)所以I1=K i*I2

由此可见,通过负载的电流就等于副边线圈所测得的电流与变流比K i之乘积。如果电流表同一只专用的电流互感器配套使用,则这安培表的刻度就可按大电流电路中的电流值标出。电流互感器次级电流最大值,通常设计为标准值5A。不同的电流的电路所配用的电流互感器是不同的,其变流比有10/5、20/5、30/5、50/5、75/5、100/5等等。 为了安全起见,电流互感器副线圈的一端和铁壳必须接地。 电流互感器规格型号识别方法 电流互感器的型号是由2~4位拼音字母及数字组成。通常能表示出电流互感器的线圈型式、绝缘种类、导体的材料及使用场所等。横线后面的数字表示绝缘结构的电压等级(4级)。电流互感器型号中字母的含义如下: L:在第一位,表示电流互感器;

变电站电流互感器与电压互感器介绍

https://www.360docs.net/doc/d512098188.html, 变电站电流互感器与电压互感器介绍电流互感器与电压互感器 结构原理:一次绕组串联在主电路中或 直接利用一次母线;二次绕组所接仪表、继电器均串联。 I2N=5A或1A (一)电流互感器(CT) 可选用标准电流互感器校准测定 准确度级:测量用有0.1、0.2、0.5、1、3、5等级, 保护用有5P和10P两级。

https://www.360docs.net/doc/d512098188.html, 高压电流互感器一般制成两个铁心和两个二次绕组,其中准确度级高的二次绕组接测量仪表,其铁心易饱和;准确度级低的二次绕组接继电器,其铁心不应饱和。 一相式接线反应一次电路对应相的电流。通常用在负载平衡的三相电路中测量电流,或在继电保护中作为过负荷保护接线。 两相V形接线广泛用于中性点不接地的三相三线制电路中,供用于三相电流、电能的测量及过电流继电保护。 三相星形接线反应各相电流,因此广泛用于中性点直接接地的三相三线制特别是三相四线制电路中,用于测量或过电流继电保护等。 (二)电压互感器 (PT) 可选用标准电压互感器校准测定 结构原理:一次绕组并联在主电路中,二次绕组中仪表,继电器均并联连接。 有的电压互感器具有3个绕组(有2个二次绕组),其图形符号为 准确度级:有0.2、0.5、1、3等级。 1) 一个单相电压互感器的接线 2) 两个单相电压互感器接成V/V形 常用接线方案有以下几种: 可测量一个线电压 可测量三相三线制电路的各个线电压,它广泛地应用于用户10kV高压配电装置中。

https://www.360docs.net/doc/d512098188.html, 3)三个单相三绕组电压互感器或一个三相五心柱三绕组电压互感器接成Y0/Y0/L 形接成Y0的二次绕组可测量各个线电压及相对地电压,而接成开口三角形的辅助二次绕组可测量零序电压,可接用于绝缘监察的电压继电器或微机小电流接地选线装置。

电磁式互感器的工作原理

在供电用电的线路中电流电压大大小小相差悬殊从几安到几万安都有。为便于二次仪表测量需要转换为比较统一的电流,另外线路上的电压都比较高如直接测量是非常危险的。电流互感器就起到变流和电气隔离作用。 较早前,显示仪表大部分是指针式的电流电压表,所以电流互感器的二次电流大多数是安培级的(如5A等)。当今电量测量大多数字化,而计算机的采样的信号一般为毫安级(0-5V、4-20mA等)。微型电流互感器二次电流为毫安级,主要起大互感器与采样之间的桥梁作用。 微型电流互感器称之为“仪用电流互感器”。(“仪用电流互感器”有一层含义是在实验室使用的多电流比精密电流互感器,一般用于扩大仪表量程。) 电流互感器原理线路图微型电流互感器与变压器类似也是根据电磁感应原理工作,变压器变换的是电压而微型电流互感器变换的是电流罢了。绕组N1接被测电流,称为一次绕组(或原边绕组、初级绕组);绕组N2接测量仪表,称为二次绕组(或副边绕组、次级绕组)。 微型电流互感器一次绕组电流I1与二次绕组I2的电流比,叫实际电流比K。微型电流互感器在额定工作电流下工作时的电流比叫电流互感器额定电流比,用Kn表示。Kn=I1n/I2n 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有 10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关低压配电产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.360docs.net/doc/d512098188.html,。

电压互感器原理及作用

电压互感器和电流互感器都是一种特殊的变压器,它们的应用主要是保护测量仪表和继电器,同时使二次侧设备小型化,那么电压互感器的原理和作用具体是什么呢? 电压互感器的工作原理和特性 电压互感器可分为电磁式和电容分压式两种,电压等级在220kV 及以下时多为电磁式,那么就以电磁式介绍。 1.工作原理 电压互感器利用了电磁感应原理,在闭合的铁芯上,绕有两个不同匝数、相互绝缘的绕组,接入电源侧的是一次绕组N1,输出侧是二次绕组N2。 当一次绕组加有电压时,绕组就会有交流电流通过,铁芯中就会产生与电源频率相同的交变磁通¢1,由于一次绕组和二次绕组在一个铁芯上,根据电磁感应定律,在二次绕组会产生频率相同到数值不同的感应电动势E2。因为匝数的不同导致两个绕组的感应电动势不同,具体数值关系就是:N1/N2=U1/U2根据国标,电压互感器二次侧输出电压值是100V。 2.电压互感器特性 电压互感器一次电压不受二次负荷的影响。 电压互感器二次侧仪表或继电器的电压线圈阻抗很大,通过的电流很小,因此电压互感器正常工作时接近空载状态。

电压互感器二次侧不能短路,因为短路后二次侧会产生很大的短路电流,会烧毁电压互感器,所以一般电压互感器一次、二次侧装设熔断器用于短路保护。 电压互感器接线 电压互感器有单相和三相两种,三相电压互感器一般只有20kV 以下电压等级。 单相电压互感器:两台单相互感器接成Vv接线,三台单相电压互感器接成开口三角形。 三相电压互感器:一台三相三柱式接成Yy0接线,用于测量线电压。 结束语 电压互感器和电流互感器原理一样都是利用了电磁感应原理,通过“电生磁”和“磁生电”将高电压转化成低电压,将大电流转化成小电流,使二次侧设备(测量仪表和继电器)都能小型化,同时也能使工作人员原理高压,保障人身安全。

电压互感器与电流互感器作用区别

电流互感器与电压互感器的区别 电流互感器的作用: 电流互感器是电力系统中很重要的一个一次设备,其原理是根据电磁感应原理而制造的.它的一次线圈匝数很少,通常采用单匝线圈,即一根铜棒或一根铜排.二次线圈主要接测量仪表或继电器的线圈.电流互感器的二次侧不能开路运行,当二次侧开路时,一次侧的电流主要用于激磁,这样会在二次侧感应出很高的电压,从而危及二次设备和人身的安全,也会造成电流互感器烧毁. 其主要作用是:1、将很大的一次电流转变为标准的5安培;2、为测量装置和继电保护的线圈提供电流;3、对一次设备和二次设备进行隔离。电压互感器和电流互感器在作用原理上的区别主要区别是正常运行时工作状态大不相同,主要表现为: 1)电流互感器二次可以短路,但是不得开路;电压互感器二次可以开路,但是不得短路 2)对于二次侧的负荷来说,电压互感器的一次内阻抗较小甚至可以忽略不计,大可以认为电压互感器是一个电压源;而电流互感器的一次却内阻很大,以至可以认为是一个内阻无穷大的电流源。 3)电压互感器正常工作时的磁通密度接近饱和值,故障时候磁通密度下降;电流互感器正常工作时磁通密度很低,而短路时由于一次侧短路电流变得很大,使磁通密度大大增加,有时甚至远远超过饱和值. 4)电压互感器是用来测量电网高电压的特殊变压器,它能将高电压按规定比例转换为较低的电压后,再连接到仪表上去测量。电压互感器,原边电压无论是多少伏,而副边电压一般均规定为100伏,以供给电压表、功率表及千瓦小时表和继电器的电压线圈所需要的电压。把大电流按规定比例转换为小电流的电气设备,称为电流互感器。电流互感器副边的电流一般规定为5安或1安,以供给电流表、功率表、千瓦小时表和继电器的电流线圈电流。

电磁式电压互感器

电磁式电压互感器(VT)和电容式电压互感器(CVT)的定义及区别 电磁式电压互感器其工作原理与变压器相同,基本结构也是铁心和原、副绕组。特点是容量很小且比较恒定,正常运行时接近于空载状态。 电容式电压互感器由串联电容器抽取电压,再经变压器变压。CVT可防止因铁芯饱和引起铁磁谐振 电磁式多用于220kV及以下电压等级。电容式一般用于110KV以上的电力系统,330~700kV超高压较多。 电容式电压互感器是由串联电容器抽取电压,再经变压器变压作为表计、继电保 护等的电压源的电压互感器电感式是线圈式的和变压器一样 电容式电压互感器时电容分压后通过电磁式电压互感器二次分压将二次额定电 压规范到100V,57.7V,作用和电磁式电压互感器一样,但前者具有康铁磁谐 振功能,且呈容性可提高系统功率因数,也可用于载波通讯。电容式电压抽取装置就是电容分压器,其输出容量很小只能接输入阻抗大的测量设备,输出电压一般很小,负载能力很差。 电压互感器的工作原理 在测量交变电流的大电压时,为能够安全测量在火线和地线之间并联一个变压器(接在变压器的输入端),这个变压器的输出端接入电压表,由于输入线圈的匝数大 于输出线圈的匝数,因此输出电压小于输入电压,电压互感器就是降压变压器. 电流互感器的工作原理 在测量交变电流的大电流时,为能够安全测量在火线(或地线)上串联一个变压器(接在变压器的输入端),这个变压器的输出端接入电流表,由于输入线圈的匝数小 于输出线圈的匝数,因此输出电流小于输入电流(这时的输出电压大于输入电压, 但是由于变压器是串联在电路中所以输入电压很小,输出电压也不大),电流互感 器就是升压(降流)变压器.

电压互感器和电流互感器

目录 1. 概述 (2) 2. 电压互感器 (2) 2.1. 基本介绍 (2) 2.2. 主要类型 (3) 2.3. 工作原理 (3) 2.4. 注意事项 (4) 2.5. 铭牌标志 (5) 2.6. 基本作用 (5) 2.7. 接线方式 (5) 2.8. 常见异常 (6) 3. 电流互感器 (7) 3.1. 基本介绍 (7) 3.2. 基本原理 (7) 3.3. 型号参数 (8) 3.4. 使用原则 (10) 3.5. 校验方法 (11) 3.6. 注意事项 (12)

1.概述 互感器在供配电系统中主要分为两种:电压互感器和电流互感器。 在供配电系统中,大电流、高电压有时不能直接用电流表和电压表来测量,必须通过互感器按比例减小后测量。互感器的内部结构就是变压器。按照变压器的原理运行。 互感器和变压器的工作原理相同,都是运用电磁感应原理来工作的.变压器的作用是将一种等级的电压变换成另一种等级的同频率的电压,它只能实现电压的变换,不能实现功率的变换.互感器分为电压互感器和电流互感器.电压互感器的作用是供给测量仪表,继电器等电压,从而正确的反映一次电气系统的各种运行情况.使测量仪表,继电器等二次电气系统与一次电气系统隔离,以保证人员和二次设备的安全,将一次电气系统的高电压变换成同意标准的低电压值(100 伏,100/1.732伏,100/3伏). 电力互感器的作用与电压互感器的作用基本相同,不同的就是电流互感器是将一次电气系统的大电流变换成标准的5安或1安供给继续电器,测量仪表的电流线圈。 2.电压互感器 2.1.基本介绍 电压互感器是一个带铁心的变压器。它主要由一、二次线圈、铁心和绝缘组成。当在一次绕组上施加一个电压U1时,在铁心中就产生一个磁通φ,根据电磁感应定律,则在二次绕组中就产生一个二次电压U2。改变一次或二次绕组的匝数,可以产生不同的一次电压与二次电压比,这就可组成不同比的电压互感器。电压互感器将高电压按比例转换成低电压,即100V,电压互感器一次侧接在一次系统,二次侧接测量仪表、继电保护等;主要是电磁式的(电容式电压互感器应用广泛),另有非电磁式的,如电子式、光电式。 电压互感器(Potential transformer 简称PT,也简称TV)和变压器很相像,都是用来变换线路上的电压。但是变压器变换电压的目的是为了输送电能,因此容量很大,一般都是以千伏安或兆伏安为计算单位;而电压互感器变换电压的目的,主要是用来给测量仪表和继电保护装置供电,用来测量线路的电压、功率和

TYD型电容式电压互感器使用说明书

TYD110/3— 电容式电压互感器 杨京线C 相 安装使用说明书 湖南电力电瓷电器厂 0. 02H 0.015H

产品安装使用前,请认真阅读本说明书。 1 主要用途与适用范围 1.1 本系列电容式电压互感器(即CVT以下简称互感器)适用于额定电压110kV、220kV,额定频率50Hz的中性点有效接地系统,作电压、电能测量及继电保护之用,并可兼作载波通讯。 1.2 注:型号中带“H”或“W”的产品适用于污秽程度为Ⅲ级的火电厂、电站及其它污秽等级类同的电站,其爬电比距大于2.5cm/kV;不带“H”或“W”的产品适用于Ⅱ级的污秽环境,其爬电比距大于2.0cm/kV(按系统最高电压计算)。

2 使用环境 2.1 温度类别:-25/B,-40/B 2.2 海拔:不超过1000m 2.3 风速:不超过150km/h 2.4 地震:烈度不超过8度 3 主要技术性能 3.1 额定电压比 110000/3/100/3/100/3/100, 3.2 额定中间电压:19.05kV 3.3 设备最高工作电压:126 kV 3.4 电容及电容偏差见表1: 表 1 3.5 极性:减极性 3.6 额定电压因数:1.2倍连续,1.5倍30S

3.7 中间变压器连接组标号:1/1/1/1-12-12-12 3.8 准确级次组合:0.2/0.5/3P 3.9 标准准确级下的额定输出见表2: 表 2 注:负荷的功率因数为0.8(滞后)。 3.10 误差限值 在规定的条件下,互感器的二次绕组和剩余电压绕组的电压误差和相角差的限值符合表3规定: 表 3

3.11 绝缘水平 3.11.1 标准雷电冲击全波耐受电压: TYD110/3: 480kV 3.11.2 电容分压器绝缘水平: a)高电压端子短时工频耐受电压: TYD110/3: 200 kV,1min b)低电压端子(即通讯端子N)短时工频耐受电压: 4 kV,1min 3.11.3 中间变压器绝缘水平 a)感应耐受电压:66kV ,1min b)二次绕组、剩余电压绕组之间及对地短时工频耐受电压:3kV ,1min 3.11.4 互感器接地端(E)短时工频耐受电压:3kV ,1min 3.12 绝缘电阻

jdzx电压互感器介绍与说明

分类 1) 一般电压互感器按用途分:测量用和保护用 2) 2)按相数分:单相和三相 3) 3)按变换原理分:电磁式电压互感器(VT)和电容式电压互感器(CVT) 4) 4)按绕组个数分:双绕组电压互感器,其低压侧只有一个二次绕组的电压互感 器;三绕组电压互感器,有两个分开的二次绕组的电压互感器;四绕组电压互感器,有三个分开的二次绕组的电压互感器. 5) 5)按一次绕组对地状态分:接地电压互感器,在一次绕组的一端准备直接接地 的单相电压互感器,或一次绕组的星形联结点(中性点)准备直接接地的三相电压互感器;不接地电压互感器,一次绕组的各部分,包括接线端子在内,都是按额定绝缘水平对地绝缘的电压互感器. 6) 6)按装置种类分:户内型和户外型 7) 7)按结构形式分:单级式电压互感器,一、二次绕组在同一个铁心柱上,绝缘不 分级的电压互感器;串级式电压互感器,一次绕组由几个匝数相等、几何尺寸相同的级绕组串联而成,二次绕组与一次绕组的接地端级在同一铁心柱上。 8) 8)按绝缘介质分:干式,浇注,油浸,气体绝缘等! 9) 主要作用如下: 10) 1、给重合闸提供必要信号,一条线路两侧重合闸的方式要么是检无压,要 么是检同期,线路PT可以为重合闸提供电压信号。 11) 2、现在部分线路PT时用的电容式电压互感器,可以为载波通信提供信号通 道。 12) 3、目前对一些特殊的供电用户线路提供计量电压。 13) 14) 电容式电压互感器 15) 16) 1、概述 17) 电容式电压互感器(简称CVT),1970年研制出国产第一台330KVCVT,1980 年和1985年研制出第一代和第二代500KVCVT,1990 年和1995年研制出第三代和第四代500KVCVT,30多年来积累了丰富的科研、开发设计和生产经验,在国内开发出一代又一代的CVT新产品,带动了国产CVT的发展。CVT 最主要的特点是: 18) ——耐电强度高,绝缘裕度大,运行可靠。 19) ——能可靠的阻尼铁磁谐振。成功采用新型组尼期,严格进行质量控制,确 保出厂的每一台CVT均能在从低到高的任何电压下有效阻尼各种频率的铁磁谐振。 20) ——优良的顺变响应特性。当一次短路后其二次剩余电压能在20MS内降到 5%以下,特别适应于快速继电保护。 21) ——具有电网谐波监测的专利技术。 22)

民熔电压互感器介绍(图文)

民熔电压互感器介绍 电压互感器简称PT,文字符号为TV。它是变换电压的设备。 1.基本原理和结构电压互感器的基本结构原理如图4-19所示,它由一次绕组、二次绕组和铁心组成。其结构特点为: Noon 多线图单线图 1一铁心2—一次绕组3一二次绕组(1)一次绕组并联在主回路中,二次绕组并联二次回路中的仪表、继电器等的电压线圈,由于这些二次绕组的电压线圈阻抗很大,电压互感器工作时二次绕组接近于开路状态。 (2)一次绕组匝数较多,二次绕组的匝数较少,相当于降压变压器。 (3)一次绕组的导线较细,二次绕组的导线较粗,二次侧额定电压一般为100v,用于接地保护的电压互感器二次侧额定电压为(100/)V,辅助二次绕组则为(100/3)V。 电压互感器的变压比用Ku表示: U1N1 Ku=豆~N泛式中,U1、U2分别为电压互感器一次绕组和二次绕组额定电压,N1、N2为一次绕组和二次绕组的匝数。变压比通常表示成如10/0.1kV的形式。电压互感器有单相和三相两类,在成套装置内,采用单相电压互感器较为常见。 2.电压互感器的结线方案电压互感器在三相电路中有如图4-20所示的四种常见的结线方案。 (1)一个单相电压互感器的结线,如图4-20a所示。供仪表和继电器接一个线电压,适用于电压对称的三相线路,如用做备用线路的电压监视。 (2)两个单相电压互感器接成V/V形,如图4-20b所示。供仪表和继电器接于各个线电压,适用于三相三线制系统。 (3)三个单相电压互感器接成YO/Y0形,如图4-20c所示,供电给要求线电压的仪表和继电器:在小接地电流系统中,供电给接相电压的绝缘监视电压表.在这种结线方式中电压表应按线电压选择。常用于三相三线和三相四线制线路。 (4)三个单相三绕组电压互感器或一个三相五心柱式三绕组电压互感器接成 Yo/Y0/△形,如图4-20d所示。其中一组二次绕组接成Y0的二次绕组,供电给需线电压的仪表,继电器和绝缘监视用电压表;另一组绕组(辅助二次绕组)接成开口三角形(△),接作绝缘监视用的电压继电器(kV)。当线路正常工作时,开口三角两端的零序电压接近于零:而当线路上发生单相接地故障时,开口三角两端的零序电压接近100V,使电压然电器kV动作,发出故障信号。此辅助二次绕组又称“剩余电压绕组”,适用于三相三线制系统。

电流、电压互感器准确等级的详细解析

电流、电压互感器准确等级的详细解析 根据电流互感器在额定工作条件下所产生的变比误差规定了准确等级。 准确级是指在规定的二次负荷变化范围内,一次电流为额定值时的最大电流误差的百分值。国产电流互感器的准确等级有:0.01;0.02;0.05;0.1;0.2;0.5;1;3;10级。 按照国家标准《电流互感器》GB1208-75规定,电力系统用电流互感器的误差限值。带S 的是特殊电流互感器,要求在1%-120%负荷范围内精度足够高,一般取5个负荷点测量其误差小于规定的范围;0.1级以上电流互感器,主要用于实验室进行精密测量,或者作为标准,用来校验低等级的互感器,也可以与标准仪表配合,用来校验仪表,所以叫做标准电流互感器;在工业上,0.2级和0.5级互感器用来连接电器测量仪表,要求误差20%-120%负荷范围内精度足够高,一般取4个负荷点测量其误差小于规定的范围(误差包括比差和角差,因为电流是矢量,故要求大小和相角差),而3.0级及以下等级互感器主要用于连接某些继电保护装置和控制设备,如5P,10P的电流互感器一般用于接继电器保护用,即要求在短路电流下复合误差小于一定的值,5P即小于5%,10P即小于10%;标有B(或D)级的电流互感器,用来接差动保护和距离保护装置。所以电流互感器根据用途规定了不同的准确度,也就是不同电流范围内的误差精度。 保护用电流互感器按其功能特性分级如下: 保护用电流互感器按用途分为稳态保护用(P)和暂态保护用(TP)。 P级:准确限值规定为稳态对称一次电流下的复合误差,无剩磁限值。5P20表示在加20倍额定电流的情况下,误差小等于5% 。 暂态保护用电流互感器准确级分为TPX、TPY、TPZ三个级别。 TPS 级:低漏磁电流互感器,其性能由二次励磁特性和匝数比误差限值规定。无剩磁限值。TPX级:准确限值规定为在指定的暂态工作循环中的峰值瞬时误差。无剩磁限值。TPX级电流互感器环形铁芯中不带气隙,在额定电流和负载下,其电流误差不大于±0.5% TPY级:准确限值规定为在指定的暂态工作循环中的峰值瞬时误差。剩磁不超过饱和磁通的10%。级电流互感器铁芯带有小气隙,气隙长度约为磁路平均长度的0.05%,由于气隙使铁芯不易饱和,有利于直流分量的快速衰减,在额定负荷下允许最大电流误差为±1%。TPZ级:准确限值规定了为在指定的二次回路时间常数下,具有最大直流偏移的单次通电时的峰值瞬时交流分量误差。无直流分量误差限值要求,剩磁通实际上可以忽略。TPZ级电流互感器铁芯心有较大气隙,气隙长度约为磁路平均长度的0.1%,由于铁芯气隙较大,一般不易饱和,特别适合于有快速重合闸(无电流时间间隙不大于0.3s)线路上使用。 测量用单相电磁式电压互感器的标准准确级为:0.1,0.2,0.5,1.0,3.0,5.0; 保护用电压互感器的标准准确级为:3P和6P,电压误差分别是3%和6%。

ECVT1-2522电子式电流电压互感器技术和使用说明书

ZL_DLYH0101.0510 ECVT1-252 电子式电流电压互感器 技术和使用说明书 说明:此页为封面,印刷时必须与公司标准图标合成,确保资料名称、资料编号及其相对位置与本封面一致

南瑞继保电气有限公司版权所有 本说明书和产品今后可能会有小的改动,请注意核对实际产品与说明书的版本是否相符。 更多产品信息,请访问互联网:https://www.360docs.net/doc/d512098188.html,

目录 1 概述 (1) 1.1应用范围 (1) 1.2型号和名称 (1) 1.3引用标准 (2) 1.4使用环境条件 (2) 1.5主要技术参数 (2) 2 结构及工作原理 (3) 2.1总体结构 (3) 2.2电流传感器 (4) 2.3电压传感器 (4) 2.4数字变换器 (5) 3 外型尺寸及装配结构 (5) 4 与二次设备的接口 (7) 5 运输、安装及调试 (7) 6 维护 (8)

ECVT1-252电子式电流电压互感器 技术和使用说明书 1 概述 常规仪用互感器绝缘要求高,尺寸大,重量重,价格高;动态范围小,电流互感器有饱和现象;易产生铁磁谐振。 电子式互感器是仪用互感器的发展方向。和常规仪用互感器相比,电子式互感器绝缘结构简单,体积小、重量轻、造价低;不含铁心,无磁饱和、铁磁谐振等问题;抗电磁干扰性能好;动态范围大,频率响应宽。 依据国家电网公司科学技术项目SP11-2001-01-13-01《电子式电压电流互感器的研制》、国家经贸委技术创新项目01BK-042《数字式电压电流互感器研制》,南京南瑞继保电气有限公司联合西安西开高压电气股份有限公司共同完成了《ECVTⅠ- 252/363kV GIS用组合型电子式电流电压互感器》项目。 1.1 应用范围 ECVT1-252电子式电流电压互感器与220kV六氟化硫气体绝缘金属封闭开关设备(GIS)配套,是GIS的组成元件之一。在额定电压为220kV、频率为50Hz的电力系统中,作为测量电流、电压,为数字化计量、测控及继电保护装置提供电流、电压信息的设备使用。可用于户内及户外环境下。 目前,GIS中普遍采用铁芯式电流电压互感器,此类互感器存在动态范围小,在故障电流下易饱和,体积大,笨重,输出信号不能直接与数字化二次设备接口等缺点。ECVT1-252电子式电流电压互感器是为克服常规互感器的缺点,适应变电站自动化技术的发展而开发的新型互感器。设备开发中充分考虑了变电站现场电磁干扰强及温度变化范围大等恶劣运行环境的影响。 ECVT1-252利用空芯线圈测量电流,利用电容分压技术测量电压,利用光纤传送输出信号。本产品体积小、重量轻、无饱和现象、暂态性能好、性能稳定,具有良好的电磁兼容性能及较宽的工作温度范围。 ECVT1-252电子式电流电压互感器的性能指标均符合IEC60044-6《互感器 第六部分:保护用电流互感器暂态特性要求》、IEC60044-7《互感器 第七部分:电子式电压互感器》、IEC60044-8《互感器 第八部分:电子式电流互感器》等相关标准的要求。 1.2 型号和名称 型号和名称含义如下: ECVT1-252 设备最高工作电压(kV) 设计序号 电子式电流电压互感器 1

电流互感器及电压互感器型号含义大全

电流互感器及电压互感器型号含义说明 PT型号含义说明 第1位:J—PT 第2位:D—单相;S—三相;C—串级;W—五铁芯柱 第3位:G—干式;J—油浸;C—瓷绝缘;Z—浇注绝缘;R—电容式;S—三相第4位:W—五铁芯柱;B—带补偿角差绕组; 连字符号后面:GH—高海拔;TH—湿热区 CT型号含义说明 第1位:L—CT 第2或3位:A—穿墙式;M—母线型;B—支柱式;C—瓷绝缘;S—塑料注射绝缘; D—单匝贯穿式;W—户外式;F—复匝式;G—改进型;Y—低压式;Z—浇注绝缘 式支柱式;Q—母线型;K—塑料外壳;J—浇注绝缘或加大容量 第4或5位:B—保护级;C—差动保护;D—D级;J—加大容量;Q—加强型例: LZZBJ9-10A3G L 电流互感器Current transformer Z 支柱式Post type Z 浇注式Casting type B 带保护级Wity protective class J 加强型Reinforced type 9 设计序号Design Number 10 额定电压(kV)Highest voltage for equipment(kV) A3G 结构代号Structure code LFZ-10Q L 电流互感器Current transformer F 复匝式

Z 浇注式Casting type 10 额定电压(kV)Highest voltage for equipment(kV) Q 结构代号Structure code LZZ-10 L 电流互感器Current transformer Z 支柱式Post type Z 浇注式Casting type 10 额定电压(kV)Highest voltage for equipment(kV) LDZB6-10Q 来源:https://www.360docs.net/doc/d512098188.html, L 电流互感器Current transformer D 单匝式 Z 浇注式Casting type B 带保护级Wity protective class 6 设计序号Design Number 10 额定电压(kV)Highest voltage for equipment(kV) Q 结构代号Structure code LZZJ-10 L 电流互感器Current transformer Z 支柱式Post type Z 浇注式Casting type J 加强型Reinforced type 10 额定电压(kV)Highest voltage for equipment(kV) LFSQ-10Q L 电流互感器Current transformer F 封闭式Hermetical type S 手车式Handcart type

(完整word版)电压互感器工作原理.docx

电压互感器 本词条由“科普中国”百科科学词条编写与应用工作项目审核。 电压互感器 [1] (Potential transformer简称PT,Voltage transformer也简称VT)和变压器类似,是用来变换线路上的电压的仪器。但是变压器变换电压的目的是为了输送电能,因此容量很大,一般都是以千伏安或兆伏安为计算单 位;而电压互感器变换电压的目的,主要是用来给测量仪表和继电保护装置供电,用来测量线路的电压、功率和电能, 或者用来在线路发生故障时保护线路中的贵重设备、电机和变压器,因此电压互感器的容量很小,一般都只有几伏安、 几十伏安,最大也不超过一千伏安。词条介绍了其基本结构、工作原理、主要类型、接线方式、注意事项、异常与处理、 以及铁磁谐振等。 基本结构 电压互感器的基本结构和变压器很相似,它也有两个绕组,一个叫一次绕组,一个叫二次绕组。两个绕组都装在或绕在铁心上。两个绕组之间以及绕组与铁心之间都有绝缘,使两个绕组之间以及绕组与铁心之间都有电气隔离。电压 互感器在运行时,一次绕组N1 并联接在线路上,二次绕组N2 并联接仪表或继电器。因此在测量高压线路上的电压时,尽管一次电压很高,但二次却是低压的,可以确保操作人员和仪表的安全。 工作原理 其工作原理与变压器相同 [2] ,基本结构也是铁心和原、副绕组。特点是容量很小且比较恒定,正常运行时接近于空载状态。 电压互感器本身的阻抗很小,一旦副边发生短路,电流将急剧增长而烧毁线圈。为此,电压互感器的原边接有熔断器,副边可靠接地,以免原、副边绝缘损毁时,副边出现对地高电位而造成人身和设备事故。 测量用电压互感器一般都做成单相双线圈结构,其原边电压为被测电压(如电力系统的线电压),可以单相使用,也可以用两台接成 V-V 形作三相使用。实验室用的电压互感器往往是原边多抽头的,以适应测量不同电压的需要。供保 护接地用电压互感器还带有一个第三线圈,称三线圈电压互感器。三相的第三线圈接成开口三角形,开口三角形的两引 出端与接地保护继电器的电压线圈联接。 正常运行时,电力系统的三相电压对称,第三线圈上的三相感应电动势之和为零。一旦发生单相接地时,中性点出现位移,开口三角的端子间就会出现零序电压使继电器动作,从而对电力系统起保护作用。 线圈出现零序电压则相应的铁心中就会出现零序磁通。为此,这种三相电压互感器采用旁轭式铁心(10KV 及以下时)或采用三台单相电压互感器。对于这种互感器,第三线圈的准确度要求不高,但要求有一定的过励磁特性(即当原 边电压增加时,铁心中的磁通密度也增加相应倍数而不会损坏)。[3] 电压互感器是发电厂、变电所等输电和供电系统不可缺少的一种电器。精密电压互感器是电测试验室中用来扩大量限,测量电压、功率和电能的一种仪器。电压互感器和变压器很相像,都是用来变换线路上的电压。 线路上为什么需要变换电压呢?这是因为根据发电、输电和用电的不同情况,线路上的电压大小不一,而且相差悬殊,有的是低压220V 和 380V ,有的是高压几万伏甚至几十万伏。要直接测量这些低压和高压电压,就需要根据线 路电压的大小,制作相应的低压和高压的电压表和其他仪表和继电器。这样不仅会给仪表制作带来很大困难,而且更主要的是,要直接制作高压仪表,直接在高压线路上测量电压,那是不可能的,而且也是绝对不允许的。

相关文档
最新文档