10.用根轨迹法判定系统稳定性的

中北大学

课程设计说明书

学生姓名:学号:

学院:

专业:

题目:

职称:

年月日

中北大学

课程设计任务书

学年第学期

学院:

专业:

学生姓名:学号:

课程设计题目:用根轨迹法判定系统稳定性的

MATLAB实现

起迄日期:月日~月日课程设计地点:

指导教师:

系主任:

下达任务书日期: 年月日

(完整word版)自控 根轨迹法习题及答案

1 第四章 根轨迹法习题及答案 1系统的开环传递函数为 ) 4)(2)(1()()(* +++=s s s K s H s G 试证明点311j s +-=在根轨迹上,并求出相应的根轨迹增益*K 和开环增益K 。 解 若点1s 在根轨迹上,则点1s 应满足相角条件π)12()()(+±=∠k s H s G ,如图解4-1所示。 对于31j s +-=,由相角条件 =∠)()(11s H s G =++-∠-++-∠-++-∠-)431()231()131(0j j j ππ π π -=- - - 6 3 2 满足相角条件,因此311j s +-=在根轨迹上。将1s 代入幅值条件: 14 31231131)(* 11=++-?++-?++-= j j j K s H s G )( 解出 : 12* =K , 2 3 8*==K K 2 已知开环零、极点如图4-22所示,试绘制相应的根轨迹。

2 解根轨如图解4-2所示: 3已知单位反馈系统的开环传递函数,要求: (1)确定 ) 20 )( 10 ( ) ( ) ( 2+ + + = * s s s z s K s G产生纯虚根为1j ±的z值和* K值; (2)概略绘出 )2 3 )( 2 3 )( 5.3 )(1 ( ) ( j s j s s s s K s G - + + + + + = * 的闭环根轨迹图(要求

3 确定根轨迹的渐近线、分离点、与虚轴交点和起始角)。 解(1)闭环特征方程 020030)()20)(10()(2342=++++=++++=***z K s K s s s z s K s s s s D 有 0)30()200()(3 2 4 =-++-=* * ωωωωωK j z K j D 令实虚部分别等于零即: ?????=-=+-**0 300 200324ωωωωK z K 把1=ω代入得: 30=* K , 199=z 。 (2)系统有五个开环极点: 23,23,5.3,1,054321j p j p p p p --=+-=-=-== ① 实轴上的根轨迹:[],5.3,-∞- []0,1- ② 渐近线: 1 3.5(32)(32) 2.15 (21)3,,555a a j j k σπππ?π--+-++--?==-???+?==±±?? ③ 分离点: 02 312315.31111=+++-++++++j d j d d d d 解得: 45.01-=d , 4.22-d (舍去) , 90.125.343j d ±-=、 (舍去) ④ 与虚轴交点:闭环特征方程为 0)23)(23)(5.3)(1()(=+-+++++=*K j s j s s s s s D 把ωj s =代入上方程,整理,令实虚部分别为零得: ?????=+-==-+=*0 5.455.43 )Im(05.795.10)Re(3 52 4ωωωωωωωj K j 解得: ???==*00K ω ,???=±=*90.7102.1K ω,???-=±=*3 .1554652.6K ω(舍去) ⑤ 起始角:根据法则七(相角条件),根轨迹的起始角为 74..923..1461359096..751804=----=p θ 由对称性得,另一起始角为 74.92,根轨迹如图解4-6所示。

自动控制原理 题库 第四章 线性系统根轨迹 习题

4-1将下述特征方程化为适合于用根轨迹法进行分析的形式,写出等价的系统开环传递函数。 (1)210s cs c +++=,以c 为可变参数。 (2)3(1)(1)0s A Ts +++=,分别以A 和T 为可变参数。 (3)1()01I D P k k s k G s s s τ?? ++ + =? ?+? ? ,分别以P k 、I K 、T 和τ为可变参数。 4-2设单位反馈控制系统的开环传递函数为 (31)()(21) K s G s s s += + 试用解析法绘出开环增益K 从0→+∞变化时的闭环根轨迹图。 4-2已知开环零极点分布如下图所示,试概略绘出相应的闭环根轨迹图。 4-3设单位反馈控制系统的开环传递函数如下,试概略绘出相应的闭环根轨迹图(要求确定分离点坐标)。 (1)()(0.21)(0.51)K G s s s s = ++ (2)(1)()(21) K s G s s s +=+ (3)(5)()(2)(3) K s G s s s s += ++ 4-4已知单位反馈控制系统的开环传递函数如下,试概略绘出相应的闭环根轨迹图(要求算出起始角)。 (1)(2) ()(12)(12) K s G s s s j s j += +++- (2)(20) ()(1010)(1010) K s G s s s j s j +=+++-

4-5设单位反馈控制系统开环传递函数如为 * 2 ()()(10)(20) K s z G s s s s += ++ 试确定闭环产生纯虚根1j ±的z 值和*K 值。 4-6已知系统的开环传递函数为 * 2 2 (2)()()(49) K s G s H s s s += ++ 试概略绘出闭环根轨迹图。 4-7设反馈控制系统中 * 2 ()(2)(5) K G s s s s = ++ (1)设()1H s =,概略绘出系统根轨迹图,判断闭环系统的稳定性 (2)设()12H s s =+,试判断()H s 改变后的系统稳定性,研究由于()H s 改变所产生的影响。 4-8试绘出下列多项式的根轨迹 (1)322320s s s Ks K ++++= (2)323(2)100s s K s K ++++= 4-9两控制系统如下图所示,试问: (1)两系统的根轨迹是否相同?如不同,指出不同之处。 (2)两系统的闭环传递函数是否相同?如不同,指出不同之处。 (3)两系统的阶跃响应是否相同?如不同,指出不同之处。 4-10设系统的开环传递函数为 12 (1)(1) ()K s T s G s s ++= (1)绘出10T =,K 从0→+∞变化时系统的根轨迹图。 (2)在(1)的根轨迹图上,求出满足闭环极点阻尼比0.707ξ=的K 的值。 (3)固定K 等于(2)中得到的数值,绘制1T 从0→+∞变化时的根轨迹图。 (4)从(3)的根轨迹中,求出临界阻尼的闭环极点及相应的1T 的值。 4-11系统如下图所示,试 (1)绘制0β=的根轨迹图。 (2)绘制15K =,22K =时,β从0→+∞变化时的根轨迹图。 (3)应用根轨迹的幅值条件,求(2)中闭环极点为临界阻尼时的β的值。

根轨迹法习题和答案

第四章 根轨迹法习题及答案 4-1 系统的开环传递函数为 ) 4s )(2s )(1s (K )s (H )s (G * +++= 试证明3j 1s 1+-=在根轨迹上,并求出相应的根轨迹增益*K 和开环增益K 。 解 若点1s 在根轨迹上,则点1s 应满足相角条件 π)12()()(+±=∠k s H s G ,如图所示。 对于31j s +-=,由相角条件 =∠)s (H )s (G 11-++-∠-)13j 1(0 =++-∠-++-∠)43j 1()23j 1( ππ π π -=- - - 6 3 2 满足相角条件,因此311j s +-=在根轨迹上。 将1s 代入幅值条件: 14 3j 123j 113j 1K s H )s (G * 11=++-?++-?++-= )( 解出 : 12K * = , 2 3 8K K *== 4-2 已知单位反馈系统的开环传递函数如下,试求参数b 从零变化到无穷大时的根轨迹方程,并写出2b =时系统的闭环传递函数。 (1))b s )(4s (02)s (G ++= (2)) b s )(2s (s )b 2s (01)s (G +++= 解 (1) ) 4j 2s )(4j 2s () 4s (b 20s 4s )4s (b )s (G 2-++++=+++= '

28 s 6s 20 )s (G 1)s (G )s (2++=+=Φ (2) ) 10s 2s (s )20s 2s (b )s (G 2 2++++='=)3j 1s )(3j 1s (s ) 19j 1s )(19j 1s (b -+++-+++ 40 s 14s 4s ) 4s (10)s (G 1)s (G )s (23++++=+= Φ 4-3 已知单位反馈系统的开环传递函数) b s )(4s (s 2)s (G ++= ,试绘制参数b 从零变 化到无穷大时的根轨迹,并写出s=-2这一点对应的闭环传递函数。 解 ) 6s (s ) 4s (b )s (G ++= ' 根轨迹如图。 2s -=时4b =, ) 8s )(2s (s 216s 10s s 2)s (2 ++=++=Φ 4-4 已知单位反馈系统的开环传递函数,试概略绘出系统根轨迹。 ⑴ ) 1s 5.0)(1s 2.0(s k )s (G ++= (2) )1s 2(s )1s (k )s (G ++= (3) )3s )(2s (s ) 5s (k )s (G *+++= (4) ) 1s (s )2s )(1s (*k )s (G -++= 解 ⑴ ) 2s )(5s (s K 10)1s 5.0)(1s 2.0(s K )s (G ++=++= 三个开环极点:0p 1=,2p 2-=,5p 3-= ① 实轴上的根轨迹:(] 5,-∞-, []0,2-

第四章 根轨迹法习题

第四章 根轨迹法习题 4-1 系统的开环传递函数为 ) 4)(2)(1()()(* +++= s s s K s H s G 试证明点311j s +-=在根轨迹上,并求出相应的根轨迹增益*K 和开环增益K 。 4-2 已知开环零、极点如图4-2 所示,试绘制相应的根轨迹。 4-3 单位反馈系统的开环传递函数如下,试概略绘出系统根轨迹。 ⑴ ) 15. 0)(12.0()(++= s s s K s G ⑵ ) 3)(2()5()(* +++= s s s s K s G ⑶ ) 12()1()(++= s s s K s G 4-4单位反馈系统的开环传递函数如下,试概略绘出相应的根轨迹。 ⑴ ) 21)(21() 2()(* j s j s s K s G -++++= ⑵ ) 1010)(1010() 20()(*j s j s s s K s G -++++=

4-5 系统的开环传递函数如下,试概略绘出相应的根轨迹。 ⑴ ) 208()()(2 ++= * s s s K s H s G ⑵ ) 5)(2)(1()()(+++= * s s s s K s H s G ⑶ ) 22)(3() 2()()(2 ++++= * s s s s s K s H s G ⑷ ) 164)(1()1()()(2++-+=* s s s s s K s H s G 4-6 已知单位反馈系统的开环传递函数)(s G ,要求: (1)确定) 20)(10()()(2 +++= * s s s z s K s G 产生纯虚根为1j ±的z 值和*K 值; (2)概略绘出) 23)(23)(5.3)(1()(j s j s s s s K s G -+++++= * 的闭环根轨迹图(要求 确定根轨迹的渐近线、分离点、与虚轴交点和起始角)。 4-7 已知控制系统的开环传递函数为 2 2 ) 94(2)()(+++=* s s s K s H s G )( 试概略绘制系统根轨迹。 4-8 已知系统的开环传递函数为 ) 93()(2 ++= * s s s K s G 试用根轨迹法确定使闭环系统稳定的K 值范围。 4-9单位反馈系统的开环传递函数为 ) 17 4( )1()12()(2 -++= s s s K s G 试绘制系统根轨迹,并确定使系统稳定的K 值范围。 4-10单位反馈系统的开环传递函数为

第4章根轨迹分析法知识题解答

第四章根轨迹分析法 4.1 学习要点 1根轨迹的概念; 2 根轨迹方程及幅值条件与相角条件的应用; 3根轨迹绘制法则与步骤; 4 应用根轨迹分析参数变化对系统性能的影响。 4.2 思考与习题祥解 题4.1 思考与总结下述问题。 (1)根轨迹的概念、根轨迹分析的意义与作用。 (2)在绘制根轨迹时,如何运用幅值条件与相角条件? (3)归纳常规根轨迹与广义根轨迹的区别与应用条件。 (4)总结增加开环零、极点对系统根轨迹的影响,归纳系统需要增加开环零、极点的情况。 答:(1)当系统某一参数发生变化时,闭环特征方程式的特征根在S复平面移动形成的轨线称为根轨迹。根轨迹反映系统闭环特征根随参数变化的走向与分布。 根轨迹法研究当系统的某一参数发生变化时,如何根据系统已知的开环传递函数的零极点,来确定系统的闭环特征根的移动轨迹。因此,对于高阶系统,不必求解微分方程,通过根轨迹便可以直观地分析系统参数对系统动态性能的影响。 应用根轨迹可以直观地分析参数变化对系统动态性能的影响,以及要满足系统动态要求,应如何配置系统的开环零极点,获得期望的根轨迹走向与分布。 (2)根轨迹上的点是闭环特征方程式的根。根轨迹方程可由闭环特征方程式得到,且为复数方程。可以分解为幅值条件与相角条件。运用相角条件可以确定S复平面上的点是否在根轨迹上;运用幅值条件可以确定根轨迹上的点对应的参数值。 (3)归纳常规根轨迹与广义根轨迹的区别与应用条件。 考察开环放大系数或根轨迹增益变化时得到的闭环特征根移动轨迹称为常规根轨迹。除开环放大系数或根轨迹增益变化之外的根轨迹称为广义根轨迹,如系统的参数根轨迹、正反馈系统根轨迹和滞后系统根轨迹等。

自动控制原理(系统根轨迹分析)

武汉工程大学自动控制原理实验报告 专业班级:指导老师: 姓名:学号: 实验名称:系统根轨迹分析 实验日期:2011-12-01 第三次试验 一、实验目的 1、掌握利用MATLAB精确绘制闭环系统根轨迹的方法; 2、了解系统参数或零极点位置变化对系统根轨迹的影响; 二、实验设备 1、硬件:个人计算机 2、软件:MATLAB仿真软件(版本6.5或以上) 实验内容

1.根轨迹的绘制 1) 将系统特征方程改成为如下形式:1 + KG ( s ) = 1 + K ) () (s q s p =0, 其中,K 为我们所关心的参数。 2) 调用函数 r locus 生成根轨迹。 关于函数 rlocus 的说明见图 3.1。 不使用左边的选项也能画出根轨迹,使用左边的选项时,能 返回分别以矩阵和向量形式表征的特征根的值及与之对应的增益值。 图3.1 函数rlocus 的调用 例如,图 3.2 所示系统特征根的根轨迹及其绘制程序见图 3.3。 图3.2 闭环系统一

图3.3 闭环系统一 的根轨迹及其绘制 程序 注意:在这里,构成系统s ys 时,K 不包括在其中,且要使分子和分母中s最高

次幂项的系数为1。 当系统开环传达函数为零、极点形式时,可调用函数 z pk 构成系统 s ys : sys = zpk([zero],[pole],1); 当系统开环传达函数无零点时,[zero]写成空集[]。 对于图 3.2 所示系统, G(s)H(s)= )2()1(++s s s K *11+s =) 3)(2() 1(+++s s s s K . 可如下式调用函数 z pk 构成系统 s ys : sys=zpk([-1],[0 -2 -3],1) 若想得到根轨迹上某个特征根及其对应的 K 的值,一种方法是在调用了函数 rlocus 并得到了根 轨迹后调用函数 r locfind 。然后,将鼠标移至根轨迹图上会出现一个可移动的大十字。将该十字的 中心移至根轨迹上某点,再点击鼠标左键,就可在命令窗口看到该点对应的根值和 K 值了。另外一种 较为方便的做法是在调用了函数 rlocus 并得到了根轨迹后直接将鼠标移至根轨迹图中根轨迹上某点 并点击鼠标左键,这时图上会出现一个关于该点的信息框,其中包括该系统在此点的特征根的值及其 对应的 K 值、超调量和阻尼比等值。图 3.4 给出了函数 r locfind 的用法。 2.实验内容 图3.5 闭环系统二 1) 对于图 3.5 所示系统,编写程序分别绘制当 (1) G(s)= )2(+s s K , (2) G(s)= ) 4)(1(++s s s K ,

第四章 根轨迹法 习题

第四章 根轨迹法 4-1试粗略画出对应反馈控制系统具有以下前向和反馈传递函数的根轨迹图: ()()() ()s s H s s s K s G 6.01,01.01.02 +=++= 4-2 试粗略地画出反馈系统函数 ()()()() 2 411+-+= s s s K s G 的根轨迹。 4-3 对应负反馈控制系统,其前向和反馈传递函数为 ()()() ()1,42) 1(2 =+++= s H s s s s K s G 试粗略地画出系统的根轨迹。 4-4 对应正反馈重做习题4-3,试问从你的结果中得出什么结论? 4-5 试画出具有以下前向和反馈传递函数的,正反馈系统根轨迹的粗略图。 ()()()()1,412 2=++= s H s s K s G 4-6 试确定反馈系统开环传递函数为 ()()()()() 5 284) 2(2 +++++= s s s s s s K s H s G 对应-∞

自动控制原理_课后习题及答案

第一章绪论 1-1试比较开环控制系统和闭环控制系统的优缺点. 解答:1开环系统 (1)优点:结构简单,成本低,工作稳定。用于系统输入信号及扰动作 用能预先知道时,可得到满意的效果。 (2)缺点:不能自动调节被控量的偏差。因此系统元器件参数变化, 外来未知扰动存在时,控制精度差。 2 闭环系统 ⑴优点:不管由于干扰或由于系统本身结构参数变化所引起的被控量 偏离给定值,都会产生控制作用去清除此偏差,所以控制精度较高。 它是一种按偏差调节的控制系统。在实际中应用广泛。 ⑵缺点:主要缺点是被控量可能出现波动,严重时系统无法工作。 1-2 什么叫反馈?为什么闭环控制系统常采用负反馈?试举例说明之。 解答:将系统输出信号引回输入端并对系统产生控制作用的控制方式叫反馈。 闭环控制系统常采用负反馈。由1-1中的描述的闭环系统的优点所证 明。例如,一个温度控制系统通过热电阻(或热电偶)检测出当前炉 子的温度,再与温度值相比较,去控制加热系统,以达到设定值。 1-3 试判断下列微分方程所描述的系统属于何种类型(线性,非线性,定常,时变)? (1) (2) (3) (4) (5)

(6) (7) 解答:(1)线性定常(2)非线性定常(3)线性时变 (4)线性时变(5)非线性定常(6)非线性定常 (7)线性定常 1-4如图1-4是水位自动控制系统的示意图,图中Q1,Q2分别为进水流量和出水流量。控制的目的是保持水位为一定的高度。 试说明该系统的工作原理并画出其方框图。 题1-4图水位自动控制系统 解答: (1) 方框图如下: ⑵工作原理:系统的控制是保持水箱水位高度不变。水箱是被控对象,水箱的水位是被控量,出水流量Q2的大小对应的水位高度是给定量。当水箱水位高于给定水位,通过浮子连杆机构使阀门关小,进入流量减小,水位降低,当水箱水位低于给定水位时,通过浮子连杆机构使流入管道中的阀门开大,进入流量增加,水位升高到给定水位。 1-5图1-5是液位系统的控制任务是保持液位高度不变。水箱是被控对象,水箱液位是被控量,电位器设定电压时(表征液位的希望值Cr)是给定量。

自考自控复习题及答案

一、单项选择题 1. 对自动控制系统的性能最基本的要求为 【 A 】 A.稳定性 B.灵敏性 C.快速性 D.准确性 2. 有一线性系统,其输入分别为u 1(t) 和u 2(t) 时,输出分别为y 1(t ) 和y 2(t) 。当输入 为 a 1u 1(t)+a 2u 2(t) 时 (a 1,a 2 为常数),输出应为 【 B 】 A. a 1y 1(t)+y 2(t) B. a 1y 1(t)+a 2y 2(t) C.a 1y 1(t)-a 2y 2(t) D.y 1(t)+a 2y 2(t) 3. 如图所示的非线性为 【 D 】 A. 饱和非线性 B. 死区非线性 C. 磁滞非线性 D. 继电型非线性 4. 时域分析中最常用的典型输入信号是 【 D 】 A.脉冲函数 B.斜坡函数 C.抛物线函数 D.阶跃函数 5. 控制理论中的频率分析法采用的典型输入信号为 【 C 】 A. 阶跃信号 B. 脉冲信号 C. 正弦信号 D. 斜坡信号 6. 单位抛物线函数在0t ≥时的表达式为()x t = 【 C 】 A.t B.2t C.2/2t D.2 2t 7. 函数sin t ω的拉氏变换是 【 A 】 A. 22s ωω+ B.22s s ω+ C.22 1s ω + D.22 s ω+ 8. 函数cos t ω的拉普拉斯变换是 【 B 】

A. 22s ωω+ B.22s s ω+ C.22 1 s ω + D.22s ω+ 9. 线性定常系统的传递函数,是在零初始条件下 【 B 】 A. 系统输出信号与输入信号之比 B. 系统输出信号的拉氏变换与输入信号的拉氏变换之比 C. 系统输入信号与输出信号之比 D. 系统输入信号的拉氏变换与输出信号的拉氏变换之比 10. 传递函数反映了系统的动态性能,它 【 C 】 A. 只与输入信号有关 B. 只与初始条件有关 C. 只与系统的结构参数有关 D. 与输入信号、初始条件、系统结构都有关 11. 控制系统中,典型环节的划分是根据 【 D 】 A. 元件或设备的形式 B. 系统的物理结构 C. 环节的连接方式 D. 环节的数学模型 12. 令线性定常系统传递函数的分母多项式为零,则可得到系统的 【 D 】 A.代数方程 B.差分方程 C.状态方程 D.特征方程 13. 主导极点的特点是 【 C 】 A. 距离实轴很近 B. 距离实轴很远 C. 距离虚轴很近 D. 距离虚轴很远 14. 设控制系统的开环传递函数为()(1)(2) k G s s s s = ++,该系统为 【 B 】 A. 0型系统 B. 1型系统 C. 2型系统 D. 3型系统 15. 控制系统的上升时间 t r 、调整时间 t S 等反映出系统的 【 C 】 A. 相对稳定性 B. 绝对稳定性 C. 快速性 D. 准确性 16. 控制系统的稳态误差e ss 反映了系统的 【 A 】 A.稳态控制精度 B.相对稳定性 C.快速性 D.绝对稳定性 17. 一阶系统单位阶跃响应的稳态误差为 【 A 】

时域分析法与根轨迹练习题

1. 自动控制系统对输入信号的响应,一般都包含两个分量,即一个是____________,另一个是__________分量。 2. 函数f(t)=t e 63-的拉氏变换式是________________________________。 3. 积分环节的传递函数表达式为G (s )=_________________________。 4. 在斜坡函数的输入作用下,___________型系统的稳态误差为零。 四、控制系统结构图如图2所示。 (1)希望系统所有特征根位于s 平面上s =-2的左侧区域,且ξ不小于0.5。试画出特征根在s 平面上的分布范围(用阴影线表示)。 (2)当特征根处在阴影线范围内时,试求,K T 的取值范围。 (20分) 五、已知系统的结构图如图3所示。若()21()r t t =?时,试求 (1)当0f K =时,求系统的响应()c t ,超调量%σ及调节时间s t 。 (2)当0f K ≠时,若要使超调量%σ=20%,试求f K 应为多大?并求出此时的调节时间s t 的值。 (3)比较上述两种情况,说明内反馈f K s 的作用是什么? (20分) 图3 六、系统结构图如图4所示。当输入信号()1()r t t =,干扰信号()1()n t t =时,求系统总 的稳态误差e ss 。 (15分) 图4 1、 根轨迹是指_____________系统特征方程式的根在s 平面上变化的轨迹。 2、 线性系统稳定的充分必要条件是闭环传递函数的极点均严格位于s______________半平面

3、在二阶系统中引入比例-微分控制会使系统的阻尼系数________________。 9、已知单位反馈系统的开环传递函数 50 ( ) (0.11)(5) G s s s s = ++ ,则在斜坡信号作用下的稳态误差为_________。 3、某控制系统的方框图如图所示,试求(16分) (1)该系统的开环传递函数) (s G k 、闭环传递函数 ) ( ) ( s R s C 和误差传递函数 ) ( ) ( s R s E 。 (2)若保证阻尼比0.7 ξ=和单位斜坡函数的稳态误差为0.25 ss e=,求系统参数K和τ。(3) 计算超调量和调节时间。 1、已知单位反馈系统的开环传递函数为 * ()() (2)(3) K G s H s s s s ,试绘制闭环系统的根轨迹,并判断使系统稳定的* K范围。 R(s)C(s) - 2 K s N(s) 1 K 5.图4 6.在二阶系统中引入测速反馈控制会使系统的开环增益________________。 7.已知单位反馈系统的开环传递函数 100 () (0.11)(5) G s s s = ++ ,则在斜坡信号作用下的稳态误差为________________。 8.闭环系统的稳定性只决定于闭环系统的________________。

自动控制原理-线性系统的根轨迹实验报告

线性系统的根轨迹 一、 实验目的 1. 熟悉MATLAB 用于控制系统中的一些基本编程语句和格式。 2. 利用MATLAB 语句绘制系统的根轨迹。 3. 掌握用根轨迹分析系统性能的图解方法。 4. 掌握系统参数变化对特征根位置的影响。 二、 实验容 1. 请绘制下面系统的根轨迹曲线。 ) 136)(22()(22++++=s s s s s K s G ) 10)(10012)(1()12()(2+++++=s s s s s K s G )11.0012.0)(10714.0()105.0()(2++++= s s s s K s G 同时得出在单位阶跃负反馈下使得闭环系统稳定的K 值的围。 2. 在系统设计工具rltool 界面中,通过添加零点和极点方法,试凑出上述系统,并 观察增加极、零点对系统的影响。 三、 实验结果及分析 1.(1) ) 136)(22()(22++++=s s s s s K s G 的根轨迹的绘制: MATLAB 语言程序: num=[1];

den=[1 8 27 38 26 0]; rlocus(num,den) [r,k]=rlocfind(num,den) grid xlabel('Real Axis'),ylabel('Imaginary Axis') title('Root Locus') 运行结果: 选定图中根轨迹与虚轴的交点,单击鼠标左键得: selected_point = 0.0021 + 0.9627i k = 28.7425 r = -2.8199 + 2.1667i -2.8199 - 2.1667i -2.3313 -0.0145 + 0.9873i

自动控制原理-第四章习题集配套答案

第四章 根轨迹分析法习题 4-2 单位回馈控制系统的开环传递函数1 )(+= s K s G r ,试用解析法绘出r K 从零变化到无穷时的死循环根轨迹图,并判断-2, j1, (-3+j2)是否在根轨迹上。 解:1-s 01s 0r =?=+=时,K 2-s 02s 1r =?=+=时,K 3-s 03s 2r =?=+=时,K …… -2 在根轨迹上,(-3+j2),j1不在根轨迹上。 4-3 回馈控制系统的开环传递函数如下,0≥r K ,试画出各系统的根轨迹图。 (2) )4)(1() 5.1()(+++=s s s s K s G r (3) 2 ) 1()(+=s s K s G r , 解:(2) 1)开环零、极点:p 1=0,p 2=-1,p 3=-4,z=-1.0,n=3,m=1 2)实轴上根轨迹段:(0,-1),(-1.5,-4) 3)根轨迹的渐近线: ? ±=±=-+±= -=----= 902 )12(, 75.12 )5.1(410)2( π π?σm n k a a 夹角交点条渐近线 4)分离点和会合点 6 .05.1141111-=+= ++++d d d d d 试探法求得 (3) 1)开环零、极点:p 1=0,p 2,3=-1,n=3 2)实轴上根轨迹段:(0,-1),(-1,-∞) 3)根轨迹的渐近线:

±=-+±= -=--= 3 )12(,3 2 3110)3( π π?σm n k a a 夹角交点条渐近线 4)分离点和会合点 3 1 01 21- =?=++d d d 5)与虚轴交点:22 3++s s 4-5 系统的开环传递函数为) 1() 2()(++= s s s K s G r , (1) 画出系统的根轨迹,标出分离点和会合点; (2) 当增益r K 为何值时,复数特征根的实部为-2?求出此根。 解: (1) 1)开环零、极点:p 1=0,p 22)实轴上根轨迹段:(0,-13)分离点和会合点 .3,586.02 11112 1 -=-=?+= ++d d d d d (2)系统特征方程为02)1(r r 2 =+++K s K s 2j 2322 122 ,1r r ±-==-=+-=- s K K a b ,,得:由0 1 23 s s s s r 2K -r 21 1K r K j ,20 2r r ±==?=-s K K

控制系统的根轨迹分析

实验四 控制系统的根轨迹分析 一. 实验目的: 1. 学习利用MATLAB 语言绘制控制系统根轨迹的方法。 2. 学习利用根轨迹分析系统的稳定性及动态特性。 二. 实验内容: 1. 应用MATLAB 语句画出控制系统的根轨迹。 2. 求出系统稳定时,增益K 的范围。 3. 实验前利用图解法画出系统的根轨迹,算出系统稳定的增益范围,与实测值相比较。 4. 应用SIMULINK 仿真工具,建立闭环系统的实验方块图进行仿真。观察不同增益下系统的阶跃响应,观察闭环极点全部为实数时响应曲线的形状;有共轭复数时响应曲线的形状。(实验方法参考实验二) 5. 分析系统开环零点和极点对系统稳定性的影响。 三. 实验原理: 根轨迹分析法是由系统的开环传递函数的零极点分布情况画出系统闭环根轨迹,从而确定增益K 的稳定范围等参数。假定某闭环系统的开环传递函数为 ) 164)(1()1()()(2++-+=s s s s s K s H s G 利用MATLAB 的下列语句即可画出该系统的根轨迹。 b=[1 1]; %确定开环传递函数的分子系数向量 a1=[l 0]; %确定开环传递函数的分母第一项的系数 a2=[l -1]; %确定开环传递函数的分母第二项的系数 a3=[l 4 16]; %确定开环传递函数的分母第三项的系数 a=conv(al ,a2); %开环传递函数分母第一项和第二项乘积的系数 a=conv(a ,a3); %分母第一项、第二项和第三项乘积的系数 rlocus(b,a) %绘制根轨迹,如图(4-l )所示。 p=1.5i ; % p 为离根轨迹较近的虚轴上的一个点。 [k ,poles]=rlocfind(b ,a ,p) %求出根轨迹上离p 点很近的一个根及所对应

MATLAB的根轨迹分析法及重点习题

4.1某系统的结构如题4-1图所示,试求单位阶跃响应的调节时间t s ,若要求t s =0.1秒,系统的反馈系数应调整为多少? 解:(1)由系统结构图可知系统闭环传递函数为: 100 ()100()1001()()1001*G s s s G s H s s a a s Φ=== +++ 在单位阶跃函数作用下系统输出为: 12100 ()()()(100)100k k C s R s s s s a s s a =Φ= =+++ 为求系统单位阶跃响应,对C(s)进行拉斯反变换: 10 21001001001001 lim ()lim 1001001 lim (100)()lim 11 ()(100)1 ()(1) s s s a s a at k sC s s a a k s a C s s a C s as a s a c t e a →→→-→--=== +=+==- =- +=- 根据定义调节时间等于响应曲线进入5%误差带,并保持在此误差带内所需要的最短时间,且根据响应系统单位阶跃响应的函数表达式可以看出系统单位阶跃响应的稳态值为 1 a ,因此: 10010011()(1)0.950.051 ln 20 1001 =0.1ln 20=0.3s 10 s s at s at s s c t e a a e t a a t --= -=?=?== 因为题中,所以 (2)若要求t s =0.1秒,则有: 1 ln 20=0.1 100=0.3s t a a = ? 即:若要求调节时间缩小为0.1秒,则需将反馈环节的反馈系数调整为0.3。

4.2已知二阶系统的阶跃响应曲线如题4.2图所示,该系统为单位负反馈系统,试确定其开环传递函数。 解:根据系统阶跃响应曲线可以看出: 峰值时间=0.1s p t ,超调量 1.3-1 %= 100%30%1 σ?=; 根据课本中对典型二阶系统222 ()2n n n s s s ωζωωΦ=++暂态性能指标的推导计算可知: %p t e σ-= =结合本题已知阶跃响应曲线可知: 0.1(1)%30% (2) p t e σ-= === 由式(2)可知: 0.3ln 0.30.3832 cot =0.3832 =arccot 0.3832=69.0332=cos =0.3578 e ζ?ζ?ζ?-=?-=?= =即: 将ζ带入式(1)中可得: 0.1 p n t ω= = 回顾题意对于典型二阶系统其闭环传递函数为222 ()2n n n s s s ωζωωΦ=++,且系统为单位负反馈系统,所以系统开环传递函数和闭环传递函数之间满足如下关系: 2222 2 22 2 2211 ()()121211211131.8851 ===224.0753n n n n n n n n n G s s s s G s s G s s G G s s s s ωζωζωωωζωωωζωΦ==Φ==+++++++++,因为:所以:,

系统根轨迹校正

自动控制系统的设计--基于根轨迹的串联校正设计 与频域法相似,利用根轨迹法进行系统的设计也有两种方法:1)常规方法;2)Matlab方法。Matlab的根轨迹方法允许进行可视化设计,具有操作简单、界面直观、交互性好、设计效率高等优点。目前常用的Matlab设计方法有:1)直接编程法;2)Matlab 控制工具箱提供的强大的Rltool工具;3)第三方提供的应用程序,如CTRLLAB等。本节在给出根轨迹的设计思路的基础上,将重点介绍第一、二种方法。 6.4.1 超前校正 关于超前校正装置的用途,在频率校正法中已进行了较详细的叙述,在此不再重复。 利用根轨迹法对系统进行超前校正的基本前提是:假设校正后的控制系统有一对闭环主导极点,这样系统的动态性能就可以近似地用这对主导极点所描述的二阶系统来表征。因此在设计校正装置之前,必须先把系统时域性能的指标转化为一对希望的闭环主导极点。通过校正装置的引入,使校正后的系统工作在这对希望的闭环主导极点处,而闭环系统的其它极点或靠近某一个闭环零点,或远离s平面的虚轴,使它们对校正后系统动态性能的影响

最小。 是否采用超前校正可以按如下方法进行简单判断:若希望的闭环主导极点位于校正前系统根轨迹的左方时,宜用超前校正,即利用超前校正网络产生的相位超前角,使校正前系统的根轨迹向左倾斜,并通过希望的闭环主导极点。(一)根轨迹超前校正原理设一个单位反馈系统,G0(s)为系统的不变部分,Gc(s)为待设计的超前校正装置, Kc为附加放大器的增益。绘制G0(s)的根轨迹于图6—19上,设点Sd为系统希望的闭环极点,则若为校正后系统根轨迹上的一点,必须满足根轨迹的相角条件,即 ∠Gc(Sd)G0(Sd)=∠Gc(Sd)+G0(Sd)=-π 图6-18

自动控制原理Matlab实验3(系统根轨迹分析)

《自动控制原理》课程实验报告 实验名称系统根轨迹分析 专业班级 *********** ********* 学 号 姓名** 指导教师李离 学院名称电气信息学院 2012 年 12 月 15 日

一、实验目的 1、掌握利用MATLAB 精确绘制闭环系统根轨迹的方法; 2、了解系统参数或零极点位置变化对系统根轨迹的影响; 二、实验设备 1、硬件:个人计算机 2、软件:MATLAB 仿真软件(版本6.5或以上) 三、实验内容和步骤 1.根轨迹的绘制 利用Matlab 绘制跟轨迹的步骤如下: 1) 将系统特征方程改成为如下形式:1 + KG ( s ) = 1 + K ) () (s q s p =0, 其中,K 为我们所关心的参数。 2) 调用函数 r locus 生成根轨迹。 关于函数 rlocus 的说明见图 3.1。 不使用左边的选项也能画出根轨迹,使用左边的选项时,能 返回分别以矩阵和向量形式表征的特征根的值及与之对应的增益值。 图3.1 函数rlocus 的调用 例如,图 3.2 所示系统特征根的根轨迹及其绘制程序见图 3.3。

图3.2 闭环系统一 图3.3 闭环系统一的根轨迹及其绘制程序

图 3.4 函数 rlocfind 的使用方法 注意:在这里,构成系统 s ys 时,K 不包括在其中,且要使分子和分母中 s 最高次幂项的系数为1。 当系统开环传达函数为零、极点形式时,可调用函数 z pk 构成系统 s ys : sys = zpk([zero],[pole],1); 当系统开环传达函数无零点时,[zero]写成空集[]。 对于图 3.2 所示系统, G(s)H(s)= )2()1(++s s s K *11+s =) 3)(2() 1(+++s s s s K . 可如下式调用函数 z pk 构成系统 s ys : sys=zpk([-1],[0 -2 -3],1) 若想得到根轨迹上某个特征根及其对应的 K 的值,一种方法是在调用了函数 rlocus 并得到了根 轨迹后调用函数 rlocfind 。然后,将鼠标移至根轨迹图上会出现一个可移动的大十字。将该十字的 中心移至根轨迹上某点,再点击鼠标左键,就可在命令窗口看到该点对应的根值和 K 值了。另外一种 较为方便的做法是在调用了函数 rlocus 并得到了根轨迹后直接将鼠标移至根轨迹图中根轨迹上某

根轨迹分析法 参考答案

习题 已知下列负反馈的开环传递函数,应画零度根轨迹的是:(A) A *(2)(1)K s s s -+ B *(1)(5)K s s s -+ C *2(31)K s s s -+ D *(1)(2) K s s s -- 若两个系统的根轨迹相同,则有相同的:(A) A 闭环零点和极点 B 开环零点 C 闭环极点 D 阶跃响应 己知单位负反馈控制系统的开环传递函数为 * ()()(6)(3)K G s H s s s s = ++ (1) 绘制系统的根轨迹图(*0K <<∞); (2) 求系统临界稳定时的*K 值与系统的闭环极点。 解:系统有三个开环极点分别为10p =、23p =-、36p =-。 系统有3条根轨迹分支,分别起始于开环极点,并沿渐进线终止于无穷远。 实轴上的根轨迹区段为(],6-∞-、[]3,0-。 根轨迹的渐近线与实轴交点和夹角分别为 ()()36 33a σ-+-==-,() (0) 321 (1)3 (2)3 a k k k k π ?ππ ?=?+?===???-=? 求分离点方程为 111036 d d d ++=++ 经整理得2660d d ++=,解方程得到1 4.732d =-、2 1.268d =-。显然分离点位于实轴上 []3,0-间,故取2 1.268d =-。 求根轨迹与虚轴交点,系统闭环特征方程为 32*()9180D s s s s K =+++= 令j s ω=,然后代入特征方程中,令实部与虚部方程为零,则有 [][]2* 3 Re (j )(j )190 Im (j )(j )1180 G H K G H ωωωωωωω?+=-+=??+=-+=?? 解之得 *00K ω=??=? 、*162 K ω?=±??=?? 显然第一组解是根轨迹的起点,故舍去。根轨迹与虚轴的交点为s =±,对应的根轨迹增益*162K =为临界根轨迹增益。根轨迹与虚轴的交点为临界稳定的2个闭环极点,第 三个闭环极点可由根之和法则求得 1233036λλλλ--=++=+ 解之得39λ=-。即当*162K =时,闭环系统的3 个特征根分别为1λ= 、 2λ=-39λ=-。系统根轨迹如图所示。

控制系统的根轨迹分析知识讲解

实验报告 课程名称:____ 自动控制理论实验_____指导老师:_____________成绩:__________ 实验名称:___控制系统的根轨迹分析___实验类型:___仿真实验___同组学生姓名:__无__ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 实验十一 控制系统的根轨迹分析 一、实验目的 1、用计算机辅助分析的办法,掌握系统的根轨迹分析方法。 2、熟练掌握 Simulink 仿真环境。 二、实验原理 1、根轨迹分析方法 所谓根轨迹,是指当开环系统的某一参数(一般来说,这一参数选作开环系统的增益 K ) 从零变到无穷大时,系统特征方程的根在 s 平面上的轨迹。在无零极点对消时,闭环系统特 征方程的根就是闭环传递函数的极点。 根轨迹分析方法是分析和设计线性定常控制系统的图解方法,使用十分简便。利用它可 以对系统进行各种性能分析: (1) 稳定性 当开环增益 K 从零到无穷大变化时,图中的根轨迹不会越过虚轴进入右半 s 平面,因 此这个系统对所有的 K 值都是稳定的。如果根轨迹越过虚轴进入右半 s 平面,则其交点的 K 值就是临界稳定开环增益。 (2) 稳态性能 开环系统在坐标原点有一个极点,因此根轨迹上的 K 值就是静态速度误差系数,如果 给定系统的稳态误差要求,则可由根轨迹确定闭环极点容许的范围。 (3) 动态性能 当 0 < K < 0.5 时,所有闭环极点位于实轴上,系统为过阻尼系统,单位阶跃响应为非周 期过程;当 K = 0.5 时,闭环两个极点重合,系统为临界阻尼系统,单位阶跃响应仍为非周 期过程,但速度更快;当 K > 0.5 时,闭环极点为复数极点,系统为欠阻尼系统,单位阶跃 响应为阻尼振荡过程,且超调量与 K 成正比。 同时,可通过修改系统的设计参数,使闭环系统具有期望的零极点分布,即根轨迹对系 统设计也具有指导意义。 2、根轨迹分析函数 在 MA TLAB 中,绘制根轨迹的有关函数有 rlocus 、rlocfind 、pzmap 等。 (1) pzmap :绘制线性系统的零极点图,极点用×表示,零点用 o 表示。 专业:_____________________ 姓名:____________________ 学号:___________________ 日期:____________________ 地点:____________________

相关文档
最新文档