边坡稳定性监测方法及预警系统

边坡的稳定性计算方法

边坡稳定性计算方法 目前的边坡的侧压力理论,得出的计算结果,显然与实际情形不符。边坡稳定性计算,有直线法和圆弧法,当然也有抛物线计算方法,这些不同的计算方法,都做了不同的假设条件。 当然这些先辈拿出这些计算方法之前,也曾经困惑,不做假设简化,基本无法计算。而根据各种假设条件,是会得出理论上的结果,但与实际情况又不符。倒是有些后人不管这些假设条件,直接应用其计算结果,把这些和实际不符的公式应用到现有的规范和理论中。 瑞典条分法,其中的一个假设条件破裂面为圆弧,另一个条件为假设的条间土之间,没有相互作用力,这样的话,对每一个土条在滑裂面上进行力学分解,然后求和叠加,最后选取系数最小的滑裂面。从而得出判断结果。其实,那两个假设条件对吗?都不对! 第一、土体的实际滑动破裂面,不是圆弧。第二、假设的条状土之间,会存在粘聚力与摩擦力。边坡的问题看似比较简单,只有少数的几个参数,但是,这几个参数之间,并不是线性相关。对于实际的边坡来讲,虽然用内摩擦角①和粘聚力C来表示,但对于不同的破裂面,破裂面上的作用力,摩擦力和粘聚力,都是破裂面的函数,并不能用线性的方法分别求解叠加,如果是那样,计算就简单多了。 边坡的破裂面不能用简单函数表达,但是,如果不对破裂面作假设,那又无从计算,直线和圆弧,是最简单的曲线,所以基于这两种曲线的假设,是计算的第一步,但由于这种假设与实际不符,结果肯定与实际相差甚远。

条分法的计算,是来源于微积分的数值计算方法,如果条间土之间,存在相互作用力,那对条状土的力学分解,又无法进行下去。 所以才有了圆弧破裂面的假设与忽略条间土的相互作用的假设。 其实先辈拿出这样与实际不符的理论,内心是充满着矛盾的。 实际看到的边坡的滑裂,大多是上部几乎是直线,下部是曲线形状,不能用简单函数表示,所以说,要放弃求解函数表达式的想法。计算还是可以用条分法,但要考虑到条间土的相互作用。 用微分迭代的方法求解,能够得出近似破裂面,如果每次迭代,都趋于收敛,那收敛的曲线,就是最终的破裂面。 参照图3,下面将介绍这种方法的求解步骤。

【精品】第9章边坡稳定性分析

第9章边坡稳定性分析 学习指导:本章介绍了边坡的破坏类型,即:岩崩和岩滑;着重介绍了边坡稳定性分析与评价基本方法,包括圆弧法岩坡稳定分析、平面滑动法岩坡稳定分析、双平面滑动岩坡稳定分析、力多边形法岩坡稳定分析及近代理论计算法;介绍了岩坡处理的措施。 重点:1边坡的变形与破坏类型; 2影响边坡稳定性的因素; 3边坡稳定性分析与评价. 9。1边坡的变形与破坏类型 9。1.1概述

随着社会进步及经济发展,越来越多地在工程活动中涉及边坡工程问题,通过长期的工程实践,工程地质工作者已对边坡工程形成了比较完善的理论体系,并通过理论对人类工程活动,进行有效地指导。近年来,随着环境保护意识的增加及国际减轻自然灾害十年来的开展,人类已认识到:边坡诞生不仅仅是其本身的历史发展,而是与人类活动密切相关;人类在进行生产建设的同时,必须顾及到边坡的环境效应,并且把人类的发展置于环境之中,因而相继开展了工程活动与地质环境相互作用研究领域,在这些领域中,边坡作为地质工程的分支之一,一直是人们研究的重点课题之一。 在水电、交通、采矿等诸多的领域,边坡工程都是整体工程不可分割的部分,为保证工程运行安全及节约经费,广大学者对边坡的演化规律、边坡稳定性及滑坡预测预报等进行了广泛研究。然而,随着人类工程活动的规模扩大及经济建设的急剧发展,边坡工程中普遍出现了高陡边坡稳定性及大型灾害性滑坡预测问题。在我国,目前的露天采矿的人工边

坡已高达300—500m,而水电工程中遇到的天然边坡高度已达500—1000米,其中涉及的工程地质问题极为复杂,特别是在西南山区,边坡的变形、破坏极为普遍,滑坡灾害已成为一种常见的危害人民生命财产安全及工程正常运营的地质灾害。

边坡稳定性分析资料讲解

边坡稳定性分析

第9章边坡稳定性分析 学习指导:本章介绍了边坡的破坏类型,即:岩崩和岩滑;着重介绍了边坡稳定性分析与评价基本方法,包括圆弧法岩坡稳定分析、平面滑动法岩坡稳定分析、双平面滑动岩坡稳定分析、力多边形法岩坡稳定分析及近代理论计算法;介绍了岩坡处理的措施。 重点:1边坡的变形与破坏类型; 2影响边坡稳定性的因素; 3边坡稳定性分析与评价。 9.1 边坡的变形与破坏类型 9.1.1概述 随着社会进步及经济发展,越来越多地在工程活动中涉及边坡工程问题,通过长期的工程实践,工程地质工作者已对边坡工程形成了比较完善的理论体系,并通过理论对人类工程活动,进行有效地指导。近年来,随着环境保护意识的增加及国际减轻自然灾害十年来的开展,人类已认识到:边坡诞生不仅仅是其本身的历史发展,而是与人类活动密切相关;人类在进行生产建设的同时,必须顾及到边坡的环境效应,并且把人类的发展置于环境之中,因而相继开展了工程活动与地质环境相互作用研究领域,在这些领域中,边坡作为地质工程的分支之一,一直是人们研究的重点课题之一。 在水电、交通、采矿等诸多的领域,边坡工程都是整体工程不可分割的部分,为保证工程运行安全及节约经费,广大学者对边坡的演化规律、边坡稳定性及滑坡预测预报

等进行了广泛研究。然而,随着人类工程活动的规模扩大及经济建设的急剧发展,边坡工程中普遍出现了高陡边坡稳定性及大型灾害性滑坡预测问题。在我国,目前的露天采矿的人工边坡已高达300—500m,而水电 工程中遇到的天然边坡高度已达500—1000米,其中涉及的工程地质问题极为复杂,特别是在西南山区,边坡的变形、破坏极为普遍,滑坡灾害已成为一种常见的危害人民生命财产安全及工程正常运营的地质灾害。 因此,广大工程地质和岩石力学工作者对此问题进行了长期不懈的探索研究,取得了很大的进展;从初期的工程地质类比法、历史成因分析法等定性研究发展到极限平衡法、数值分析法等定量分析法,进而发展到系统分析法、可靠度方法灰色系统方法等不确定性方法,同时辅以物理模拟方法,并且诞生了工程地质力学理论、岩(土)体结构控制论等,这些无疑为边坡工程及滑坡预报研究奠定了坚实的基础,为人类工程建设做出了重大贡献。 在工程中常要遇到岩坡稳定的问题,例如在大坝施工过程中,坝肩开挖破坏了自然坡脚,使得岩体内部应力重新分布,常常发生岩坡的不稳定现象。又如在引水隧洞的进出口部位的边坡、溢洪道开挖的边坡、渠道的边坡以及公路、铁路、采矿工程等等都会遇到岩坡稳定的问题。如果岩坡由于力过大和强度过低,则它可以处于不稳定的状态,一部分岩体向下或向外坍滑,这一种现象叫做滑坡。滑坡造成危害很大,为此在施工前,必须做好稳定分析工作。 岩坡不同于一般土质边坡,其特点是岩体结构复杂、断层、节理、裂隙互相切割,块体极不规则,因此岩坡稳定有其独特的性质。它同岩体的结构、块体密度和强度、边坡坡度、高度、岩坡表面和顶部所受荷载,边坡的渗水性能,地下水位的高低等有关。 岩体内的结构面,尤其是软弱结构面的的存在,常常是岩坡不稳定的主要因素。大部分岩坡在丧失稳定性时的滑动面可能有三种。一种是沿着岩体软弱岩层滑动;另一种是沿着岩体中的结构面滑动;此外,当这两种软弱面不存在时,也可能在岩体中滑动,但主要的是前面两种情况较多。在进行岩坡分析时,应当特别注意结构面和软弱层的影

边坡稳定性计算方法.doc

一、边坡稳定性计算方法 在边坡稳定计算方法中,通常采用整体的极限平衡方法来进行分析。根据边坡不同破裂面形状而有不同的分析模式。边坡失稳的破裂面形状按土质和成因不同而不同,粗粒土或砂性土的破裂面多呈直线形;细粒土或粘性土的破裂面多为圆弧形;滑坡的滑动面为不规则的折线或圆弧状。这里将主要介绍边坡稳定性分析的基本原理以及在某些边界条件下边坡稳定的计算理论和方法。 (一)直线破裂面法 所谓直线破裂面是指边坡破坏时其破裂面近似平面,在断面近似直线。为了简 化计算这类边坡稳定性分析采用直线破裂面法。能形成直线破裂面的土类包括:均质砂 性土坡;透水的砂、砾、碎石土;主要由内摩擦角控制强度的填土。 图9 -1 为一砂性边坡示意图,坡高H ,坡角β,土的容重为γ,抗剪 度指标为 c 、φ。如果倾角α的平面AC 面为土坡破坏时的滑动面,则可分析该滑 动体的稳定性。 沿边坡长度方向截取一个单位长度作为平面问题分析。 图9-1 砂性边坡受力示意图 已知滑体ABC重W ,滑面的倾角为α,显然,滑面AC 上由滑体的重量W= γ(ΔABC)产生的下滑力T 和由土的抗剪强度产生的 抗滑力Tˊ分别为: T=W ·sina 和 则此时边坡的稳定程度或安全系数可用抗滑力与下滑力来表示,即 为了保证土坡的稳定性,安全系数 F s 值一般不小于 1.25 ,特殊情况下可允许减小到 1.15 。对于C=0 的砂性土坡或是指边坡,其安全系 数表达式则变为 从上式可以看出,当α=β时,F s 值最小,说明边坡表面一层土最容易滑动,这时

当F s =1 时,β=φ,表明边坡处于极限平衡状态。此时β角称为休止角,也称安息角。 此外,山区顺层滑坡或坡积层沿着基岩面滑动现象一般也属于平面滑动类型。这类滑坡滑动面的深度与长度之比往往很小。当深长比小 于0.1 时,可以把它当作一个无限边坡进行分析。 图9-2 表示一无限边坡示意图,滑动面位置在坡面下H深度处。取一单位长度的滑动土条进 行分析,作用在滑动面上的剪应力为, 在极限平衡状态时,破坏面上的剪应 力等于土的抗剪强度,即 得 式中N s = c/ γH称为稳定系数。通过稳定因数可以确定α和φ关系。当c=0 时,即无 粘性土。α=φ,与前述分析相同。 二圆弧条法 根据大量的观测表明,粘性土自然山坡、人工填筑或开挖的边坡在破坏时,破裂面的形状多呈近似的圆弧状。粘性土的抗剪强度包括摩擦强 度和粘聚强度两个组成部分。由于粘聚力的存在,粘性土边坡不会像无粘性土坡一样沿坡面表面滑动。根据土体极限平衡理论,可以导出均质粘 这坡的滑动面为对数螺线曲面,形状近似于圆柱面。因此,在工程设计中常假定滑动面为圆弧面。建立在这一假定上稳定分析方法称为圆弧滑动 法和圆弧条分法。 1. 圆弧滑动法 1915 年瑞典彼得森(K.E.Petterson )用圆弧滑动法分析边坡的稳定性,以后该法在各国得到广泛应用,称为瑞典圆弧法。 图9 - 3 表示一均质的粘性土坡。AC 为可能的滑动面,O 为圆心,R 为半径。 假定边坡破坏时,滑体ABC 在自重W 作用下,沿AC 绕O 点整体转动。滑动面AC 上的力系有:促使边坡滑动的滑动力矩M s =W ·d ;抵抗边坡滑动的抗滑力矩,它应该 包括由粘聚力产生的抗滑力矩M r =c ·AC ·R ,此外还应有由摩擦力所产生的抗滑力矩, 这里假定φ=0 。边坡沿AC 的安全系数F s 用作用在AC 面上的抗滑力矩和下滑力 矩之比表示,因此有 这就是整体圆弧滑动计算边坡稳定的公式,它只适用于φ=0 的情况。 图9-3 边坡整体滑动 2. 瑞典条分法

边坡稳定性分析方法

边坡稳定性分析方法 1.1 概述 边坡稳定性分析是边坡工程研究的核心问题,一直是岩土工程研究的的一个热点问题。边坡稳定性分析方法经过近百年的发展,其原有的研究不断完善,同时新的理论和方法不断引入,特别是近代计算机技术和数值分析方法的飞速发展给其带来了质的提高。边坡稳定性研究进入了前所未有的阶段。 任何一个研究体系都是由简单到复杂,由宏观到微观,由整体到局部。对于边坡稳定性研究,在其基础理论的前提下,边坡稳定分析方法从二维扩展到三维,更符合工程的实际情况;由于一些新理论和新方法的出现,如可靠度理论和对边坡工程中不确定性的认识,边坡稳定分析方法由确定性分析向不确定性分析发展。同时,由于边坡工程的复杂性,边坡稳定评价不能依赖于单一方法,边坡的稳定性评价也由单一方法向综合评价分析发展。 1.2 边坡稳定性分析方法 边坡稳定性分析方法很多,归结起来可分为两类:即确定性方法和不确定性方法, 确定性方法是边坡稳定性研究的基本方法,它包括极限平衡分析法、极限分析法、数值分析法。不确定性方法主要有随机概率分析法等。 1.2.1 极限平衡分析法 极限平衡法是边坡稳定分析的传统方法,通过安全系数定量评价边坡的稳定性,由于安全系数的直观性,被工程界广泛应用。该法基于刚塑性理论,只注重土体破坏瞬间的变形机制,而不关心土体变形过程,只要求满足力和力矩的平衡、Mohr-Coulomb准则。其分析问题的基本思路:先根据经验和理论预设一个可能形状的滑动面,通过分析在临近破坏情况下,土体外力与内部强度所提供抗力之间的平衡,计算土体在自身荷载作用下的边坡稳定性过程。极限平衡法没有考虑土体本身的应力—应变关系,不能反映边坡变形破坏的过程,但由于其概念简单明了,且在计算方法上形成了大量的计算经验和计算模型,计算结果也已经达到了很高的精度。因此,该法目前仍为边坡稳定性分析最主要的分析方法。在工程实践中,可根据边坡破坏滑动面的形态来选择相应的极限平衡法。目前常用的极限平衡法有瑞典条分法、Bishop法、Janbu法、Spencer法、Sarma法Morgenstern-Price 法和不平衡推力法等。

边坡稳定性计算说明

边坡稳定性计算 一、编制依据 为保证挖方施工安全,施工现场做到“安全、文明”,满足施工进度要求,以下列法律、法规、标准、规范、规程、相关文件为强制性前提,进行边坡稳定性计算。 1、现有施工图设计; 2、《公路桥涵施工技术规范》(JTJ041-2000); 3、《路桥施工计算手册》(人民交通出版社); 4、《土力学与地基基础》; 二、工程概况及地质情况 岢岚至临县高速公路是《山西省高速公路网规划》“3纵11横11环”中西纵高速公路的重要组成部分,也是山西省西部把第四横(保德-五台长城岭)和第五横(平定杨树庄—佳县)高速公路窜连起来的重要路段。 项目区路线走廊带地形起伏极大,总体地势为东北高西南低,地貌主体为隆起的基岩中山与黄土梁峁,部分区域为海拔较低的河流沟谷及冲沟,。受构造活动和水流侵蚀作用的影响,本区地形切割剧烈,河谷发育,沟壑纵横,依据地貌成因类型及其显示特征,将本区划分为黄土丘陵区、侵蚀堆积河川宽谷区、山岭区、黄土覆盖中低山区四个地貌单元,岩性主要为第四系冲、坡积及风积粉土及粉质粘土等。 三、计算 本项目地形复杂,涵洞、桩基及路基施工作业面比较多。根据挖方路段在全线的分布情,选择有代表性路段进行分析计算。由于项目地质挖方为风积粉土及粉质粘土,是典型的黄土地貌。根据施工图纸给出的计算参数,对于黄土挖方路段,拟定边坡参数γ=19g/cm3,C=40 Kpa,φ=29°,采用瑞典条分法进行计算,稳定安全系数达到1.2以上。 3.1 瑞典条分法原理 如图所示边坡,瑞典条分法假定可能滑动面是一圆弧AD,不考虑条块两侧的作用力,即假设Ei和Xi的合力等于Ei+1和Xi+1的合力,同时它们的作用线

高边坡监控方案

高边坡监测实施方案 一、工程概况: 本项目 二、监测内容: 本隧道高边坡监测主要是路堑高边坡监测,监测内容为人为巡视、裂缝观测、坡面观测和水平位移观测。 1、人工巡视和裂缝观测:人工巡视是一项经常性工作,我标将安排专人坚持每天进行巡视。当坡体表面发现裂缝时监测组及时在裂缝处埋设裂缝观测装置,通过观测裂缝的变化过程和变化规律来分析坡体的破坏趋势。 2、坡面观测:高边坡坡面的变化观测是指在平台上设置坡面观测点,利用精度为2”的全站仪进行观测,采用直角坐标法量测。通过数据处理分析,分析坡面几何外观的变化情况,绘制坡面各点在施工过程中的水平位移变化情况,从而了解边坡滑动范围和滑动情况,提供预警信息,它是一种简单,直接的宏观监测方法。 3、水平位移观测:水平位移观测主要为地面水平位移,采用位移边桩观测。 三、监控实施流程 边坡监测工作与边坡施工需要反复交叉开展,为了使边坡监测工作与边坡施工作业协调一致,特制定如下作业流程: 图表 a、人工巡视记录表; b、边坡变形观测点埋设考证表; c、裂缝观测点埋设考证表; d、边坡观测点观测记录表; e、裂缝观测记录表; 图表 f、报警联系函 四、报警方法 1、稳定控制标准; 边坡稳定性评价主要根据一下几点进行综合判断: (1)、最大位移速率小于2mm/d; (2)、边坡开挖停止后位移速率呈收敛趋势; (3)、坡面、坡顶有无开裂,裂缝的变化趋势如何; 在实际监测的过程中如果出现有上述一点或几点现象时,都应引起注意,及时对各项监测内容作综合分析,并通过其他项目的监测资料相互进行对照、比较,以进一步讨论边坡的稳定性,以便及早发现安全隐患情况,采取相应的补救措施。 2、报警流程 (1)、报警工作及稳定控制按照资料报送程序执行; (2)、普通监测的边坡稳定性由我标监测组作为主要控制方,第三方予以辅助并在必要时提供稳定性协助判别。重点监测断面由第三方监测单位与我标监测组共同完成。 (3)普通边坡监测指标控制标准并经综合判定边坡具有失稳危险时,及时填写报警联系函并立刻提交驻地监理。 六、监测技术要求 1、人工巡视 巡视检查是边坡监测工作的主要内容,它不仅可以及时发现险情,而且能系统地记录、描述边坡施工和周边环境变化过程,及时发现被揭露的不利地质情况。项目部将坚持每天安

边坡稳定性分析方法及其适用条件资料

边坡稳定性分析方法及其适用条件 摘要:边坡是一种自然地质体,在外力的作用下,边坡将沿其裂隙等一些不稳定结构面产生滑移,当土体内部某一面上的滑动力超过土体抗滑动的能力,将导致边坡的失稳。边坡稳定性分析是岩土工程的一个重要研究内容,并已经形成一个应用研究课题,本文对目前边坡稳定性分析中所采用的各种方法进行了归纳,并阐述了其适用条件。 关键词:边坡稳定性分析方法适用条件 正文: 一、工程地质类比法 工程地质类比法,又称工程地质比拟法,属于定性分析,其内容有历史分析法、因素类比法、类型比较法和边坡评比法等。该方法主要通过工程地质勘察,首先对工程地质条件进行分析,如对有关地层岩性、地质构造、地形地貌等因素进行综合调查和分类,对已有的边坡破坏现象进行广泛的调查研究,了解其成因、影响因素和发展规律等;并分析研究工程地质因素的相似性和差异性;然后结合所要研究的边坡进行对比,得出稳定性分析和评价。其优点是综合考虑各种影响边坡稳定的因素,迅速地对边坡稳定性及其发展趋势作出估计和预测;缺点是类比条件因地而异,经验性强,没有数量界限。 适用条件:在地质条件复杂地区,勘测工作初期缺乏资料时,都常使用工程地质类比法,对边坡稳定性进行分区并作出相应的定性评价,因此,需要有丰富实践经验的地质工作者,才能掌握好这种方法。

二、极限分析法 应用理想塑性体或刚塑性体处于极限状态的极小值原理和极大 值原理来求解理想塑性体的极限荷载的一种分析方法。它在土坡稳定分析时,假定土体为刚塑性体,且不必了解变形的全过程,当土体应力小于屈服应力时,它不产生变形,但达到屈服应力,即使应力不变,土体将产生无限制的变形,造成土坡失稳而发生破坏。其最大优点是考虑了材料应力—应变关系,以极限状态时自重和外荷载所做的功等于滑裂面上阻力所消耗的功为条件,结合塑性极限分析的上、下限定理求得边坡极限荷载与安全系数。 三、极限平衡法 该法将滑体作为刚体分析其沿滑动面的平衡状态,计算简单。但由于边坡体的复杂性,计算时模型的建立与参数的选取不可避免地使计算结果与实际结果不吻合。常用的方法有如下几种。 1瑞典条分法。基本假定:A边坡稳定为平面应变问题;B滑动面为圆弧;C计算圆弧面安全系数时,将条块重量向滑面法向分解来求法向力。该方法不考虑条间力的作用,仅能满足滑动体的力矩平衡条件,产生的误差使安全系数偏低。 优缺点:在不能给出应力作用下的结构图像的情况下,仍能对结构的稳定性给出较精确的结论,分析失稳边坡反算的强度参数与室内试验吻合度较好,使分析程序更加可信;但需要先知道滑动面的大致位置和形状,对于均质土坡可以通过搜索迭代确定其危险滑动面,但是对于岩质边坡,由于其结构和构造比较复杂,难以准确确定其滑动

边坡稳定计算

附件四:边坡稳定性计算书 1、汽机房区域边坡稳定性计算书(适用于基坑基底标高为-7.00m~-9.00m)H=8.5m 天然放坡支护 ---------------------------------------------------------------------- [ 基本信息 ] ---------------------------------------------------------------------- ---------------------------------------------------------------------- [ 放坡信息 ] ---------------------------------------------------------------------- ---------------------------------------------------------------------- [ 超载信息 ] ----------------------------------------------------------------------

---------------------------------------------------------------------- [ 土层信息 ] ---------------------------------------------------------------------- [ 土层参数 ] ---------------------------------------------------------------------- ---------------------------------------------------------------------- [ 整体稳定验算 ] ---------------------------------------------------------------------- 天然放坡计算条件: 计算方法:瑞典条分法 应力状态:总应力法 基坑底面以下的截止计算深度: 0.00m 基坑底面以下滑裂面搜索步长: 5.00m 条分法中的土条宽度: 1.00m 天然放坡计算结果:

公路高边坡安全监测

公路高边坡的安全监测 摘要:在参阅相关文献的基础上,对目前常用的边坡稳定性监测方法进行了介绍,以研究区公路高边坡为例,对研究区高边坡的地质条件和变形机理进行了分析,重点研究了利用位移计进行边坡内部位移的监测;通过对观测数据的分析,得出了研究区高边坡的近期的形变特点。 关键词:公路高边坡;监测;位移计 0 引言 自20世纪90年代以来,随着我国经济建设发展,对公路交通的要求也越来越高。我国是一个多山的国家,山区的面积约占全国总面积的70%,由于地貌、地质条件限制和公路线形的制约,高填、深挖引起的边坡问题已十分普遍。上世纪80年代初期,我国路线等级低,高填深挖较少,高边坡问题还没有引起足够的重视。由于缺乏对高边坡稳定性的系统研究,以及没有供设计部门应用的成熟经验,常出现高边坡失稳破坏的现象,造成巨大的社会经济损失。因此,公路边坡的稳定性研究和监测已成为道理工程急需解决的重要研究课题。 边坡的地质条件复杂多变,要在工程设计阶段准确无误地预测边坡岩土体稳定状况,不仅依赖于合理的设计和施工,而且取决与贯穿工程全过程的安全监测,目前,监测工作已成为边坡工程施工的重要环节。监测工作对正确评估边坡的安全状态、指导施工、反馈和修改设计、改进边坡设计方法等多方面都具有非常重要的意义,

监测技术的引入使边坡工程的设计和施工在安全稳定和经济合理 的协调统一中起到了不可或缺的桥梁作用。由于边坡位移监测系统较易建立,测值也较可靠,所以边坡监测都以位移监测为主。而边坡变形破坏过程中的累计位移是揭示边坡变形甚至破坏最直观的 信息,能更有效地预测边坡变形的破坏时刻。因此,在工程实践中对边坡变形破坏过程的位移把握就显得十分重要。 本文以研究区的公路高边坡为例,对工程范围内公路高边坡的变形监测进行研究。 1 研究区公路高边坡概况 1.1 地质条件 研究区边坡为砂页岩段,自然坡度为40度左右,浅表部为坡残积块碎石土,其下为伏基岩为砂岩与页岩互层产出,以砂岩占多数,页岩为薄层状并表现为挤压揉皱,部分为层间挤压破碎带。浅表岩体强风化强卸荷,为层状-碎裂、层状-镶嵌结构的v级岩体,岩体强卸荷水平深度30-40m. 1.2 变形机理 研究区的边坡为一套完整性差且强烈风化卸荷松弛的层状-镶嵌碎裂结构岩体,岩体内不存在影响边坡整体失稳的贯穿性结构面。边坡开挖后,岩体松弛回弹,随着开挖向低高程进行,应力逐步向深部传递,变形逐渐向深部发展。目前监测资料反映的位移,是边坡岩体蠕变的反映。因边坡下部的深层锚索支护未及时跟进,边坡蠕变位移也未得到及时有效的抑制,边坡岩体变形一度出现加速蠕

边坡稳定性分析方法

边坡稳定性分析方法 边坡稳定性问题涉及矿山工程、道桥工程、水利工程、建筑工程等诸多工程领域。岩土边坡是一种自然地质体,一般被多组断层、节理、裂隙、软弱带切割,使边坡存在削弱面,在边坡角变化、地下水、地震力、水库蓄水等外因作用下,使边坡沿削弱面产生相对滑移而产生失稳。 边坡稳定性分析过程一般步骤为:实际边坡→力学模型→数学模型→计算方法→结论[4]。其核心内容是力学模型、数学模型、计算方法的研究,即边坡稳定性分析方法的研究。边坡稳定分析方法研究一直是边坡稳定性问题的重要研究内容,也是边坡稳定研究的基础。 1 边坡稳定性研究发展状况 边坡稳定性的分析研究始于本世纪二十年代,最早是对土质边坡的稳定性进行分析和计算,直到60年代初,岩体边坡的稳定性分析研究才开始进行。早期对边坡稳定性的研究主要从两方面进行的:一是借用刚体极限平衡理论,根据三个静力平衡条件计算边坡极限平衡状态下的总稳定性。二是从边坡所处的地质条件及滑坡现象上对滑坡发生的环境及机制进行分析,但基本上都是单因素的。 50年代,我国许多工程地质工作者,在研究中采用前苏联的“地质历史分析”法,也是偏重于描述和定性分析。60年代初的意大利瓦依昂水库滑坡及我国一些水电工程及露天矿山遇到的大型滑坡和岩体失稳事件,使工程地质学家们认识到边坡是一个时效变形体,边坡的演变是一个时效过程或累进性破坏过程,每一类边坡都有其特定的时效变形形式或时效变形过程,这些过程所包含的力学机制只有用近代岩石力学理论才能解释,从而使边坡稳定性研究进入了模式机制研究或内部作用过程研究的新阶段。 进入80年代以来,边坡稳定研究进入了蓬勃发展的新时期。一方面随着计算理论和计算机科学的迅猛发展,数值模拟技术已广泛应用于边坡稳定性研究。边坡稳定性分析的研究也开始采用数值模拟手段定量或半定量地再现边坡变形破坏过程和内部机制作用过程,从岩石力学和数学计算的角度认识边坡变形破坏机制,认识边坡稳定性的发展变化。另一方面,现代科学理论方法,如系统方法、模糊数学、灰色理论、数量化理论及现代概率统计等新兴学科都被广泛的引入边坡稳定性的科学研究中,从而大大扩充了边坡工程的理论和研究方法,提高

边坡稳定性监测方案

隧道工程 边坡施工安全监测设置及实施方案 (现场监测) *******有限责任公司 二O一一年三月

目录 一设计目标及要求 (3) 1.1 监测的内因 (3) 1.2 监测的外因 (3) 二设计原则 (3) 三主要监测项目说明 (3) 3.1 变形监测 (3) 3.2 土体松动监测 (4) 3.3 对加固用的材料进行监测 (4) 3.4 对土体压力进行监测 (4) 3.5 外部条件监测 (4) 四边坡安全管理监测设置及实施方案(现场监测) (4) 4.1 工程概况 (4) 4.2 监测方案 (4) 4.2.1 测点布置 (5) 4.2.2 远程监控系统及监控方案 (5) 4.3 其他可补充监测技术 (6) 4.3.1 测斜监测 (6) 4.3.2以“面”为监测对象的表面变形 (6) 4.3.3 钢筋等的辅助测量 (6)

滑坡体监测初设概要及具体项目实施方案 一设计目标及要求 监测的主要目的在于确保工程的安全。边坡的安全监测以边坡岩体整体稳定性监测为主,兼顾局部滑动砌体稳定性监测。由于过大变形是岩体破坏的主要形式,因此(地表和深部)变形监测是安全监测的重点。 1.1 监测的内因 边(滑)坡中存在的不利结构面常常是引起边(滑)破破坏的主要内在因素,故监测的重点对象是岩体中的这些结构面,监测测点应放在这些对象上或测孔应穿过这些对象等。 1.2 监测的外因 开挖爆破和水的作用是影响边(滑)坡稳定的主要外因,施工期的质点振动速度、加速度的监测,运行期的渗流、渗压监测也是必要的。 二设计原则 (一)及时埋设、及时观测、及时整理分析监测资料和及时反馈监测信息。 (二)布置仪器力求少而精。 (三)监测仪器力求满足精度和稳定性,同时考虑经济性和社会影响性。 (四)尽可能利用已有的设施和条件进行监测设备的选型、施工。 三主要监测项目说明 3.1 变形监测 变形监测按表面和深层分为内部变形监测和外部变形监测,按方向划分为纵向、横向和轴向三个方向。滑坡体在三个方向上均应考虑,这里主要进行内部变形监测和外部变形监测的简要说明。 (一)内部监测 由于滑坡体已经采用衬砌加固,故属于施工后期的监测,应采用钻孔深部位移监测,包括水平位移的钻孔测斜仪法和测钻孔轴向位移的多点位移计法。随时发现滑动面的出现,确定其位置和其变化、发展。 水平位移监测采用钻孔测斜仪,一般先采用活动倾斜仪,待发现滑动面后改用固定

不稳定边坡稳定性分析与评价

一、不稳定边坡稳定性分析 (一)、方法的选择 极限平衡法是当前边坡稳定性分析的常用方法,其具有计算模型简单、计算参数量化准确、计算结果直截实用的特点。在极限平衡法理论体系形成的过程中,出现过一系列简化计算方法,诸如瑞典法、毕肖普法和陆军工程师团法等,不同的计算方法,其力学机理与适用条件均有所不同。随着计算机的出现和发展,又出现了一些求解步骤更为严格的方法,如Morgenstern-Price 法、Spencer 法等。 考虑到采场和排土场滑坡的潜在模式是圆弧滑面滑动和圆弧直线型滑动,因此本评价报告仅对Bishop 法和Morgenstern-Price 法进行分析,并选用基于该2种算法原理的软件进行边坡稳定性验算。2种方法的原理分述如下: 1、Bishop 法 Bishop 法是对提出边坡稳定分析圆弧滑动分析法的Fellenius 法作了重要改进的一种计算方法,Bishop 法率先提出了安全系数的定义,对条分法的发展起到了重要的作用。然后通过假定土条间的作用力为水平方向,求出土条间的法向力。它都是通过力矩平衡来确定安全系数。 Bishop 法设滑面为圆弧面,安全系数表述为对滑面旋转中心的抗滑力矩与下滑力矩之比,每个分条都处于力的平衡状态。 按分条铅垂方向力的平衡,则分条底部的有效法向力'n P (参见图4-1-1): 1'[()(cos sin )]n n n C W X X L u F P m α αα-+--+ = (4.3) 式中:cos sin /s m tg F αααφ=+。

安全系数为: {}11[()()]/sin n n Cb tg W ub X X m W αφα -+-+-∑∑ (4.4) 图4-1-1 毕肖普法分条间力 Bishop 方法是考虑了分条间力的作用进而来求解安全系数的。E n 和E n+1是分条间的法向力,它不存在于安全系数的表达式中,因为它是通过平衡方程在推导安全系数的过程中被消去的,每个分条的力都处于平衡状态,整个滑体的力矩处于平衡状态,单个分条力矩的平衡条件没有被考虑,由于很难准确求得分条间的剪力X n -X n +1,所以为了考虑实用性,设X n -X n +1=0,即分条间剪力的作用被忽略,这就是Bishop 简化法。 2、Morgenstern-Price 法 Morgenstern-Price 法的特点是考虑了全部平衡条件与边界条件,这样做的目的是为了消除计算方法上的误差,并对Janbu 推导出来的近似解法提供了更加精确的解答。对方程式的求解采用的是数值解法,滑面的形状为任意的,稳定系数采用力平衡法。 Morgenstern-Price 法对任意曲线形状的滑裂面进行分析,推导出了既满足力平衡又满足力矩平衡条件的微分方程,是国际公认的最严

边坡监测方案

舟山国家石油储备基地第一期项目岙山基地工程边坡监测方案 宁波工程勘察院

二00六年一月 舟山国家石油储备基地第一期项目岙山基地工程边坡监测方案 院长:陶灵法 总工程师:陶灵法 项目负责:赵平川 编写:丁传庭 审核:陶灵法

宁波工程勘察院 二00六年一月 国家石油储备基地第一期项目岙山基地工程边坡 监测方案 一、编制依据 1、《国家石油储备基地第一期项目岙山基地工程边坡支护施工图设 计》(2005年9月); 2、国家行业标准:《建筑边坡工程技术规范》(GB50330-2002); 3、国家标准:《锚索喷射混凝土支护技术规范》(GB50086-2001); 4、《建筑变形测量规程》(JGJ/T 8-97); 5、《边坡工程处置技术》,人民交通出版社2003年10月; 6、《岩土锚固技术手册》,人民交通出版社2004年5月。 二、工程概况 岙山国家石油储备基地位于舟山市定海区临城街道岙山岛海防村,设计规模为500万立方米,总占地面积1418900平方米,布置10万立方米储油罐50个,总建筑面积13956平方米,设计总概算约40亿元。根据国家发改委的部署,该项目由中化集团公司负责建设。岙山基地现有21座储罐,总容量达158万立方米。

岙山基地年作业天数可达300天以上,航线可达国内主要港口和国外各大港口,具有面向长江三角洲和沿海经济带、背靠东南沿海、服务全国的独特区位优势,是我国重要的国际油品中转基地。 油库基地四周均为火山碎屑岩组成的低丘陵地貌,共分布有1#~10#等10个山头,拟建的9个储油罐组中有8个罐组(1#、3#~9#罐组)与山头相切,其中8#、9#罐组东侧的2#山头由于受场地限制,该边坡按坡率1:0.5、每级坡高10m、台阶宽2m进行放坡开挖,2#山头与3#山头间边坡坡率由1:0.5向1:0.8渐变,其余山头分多级放坡,每级坡高为10m,坡率为1:0.80。 对2#、3#山头拟采用锚索+锚索综合加固,其具体加固措施为:1)对2#山头边坡削坡坡率为1:0.5及1:0.5向1:0.8过渡坡段潜在滑动岩体进行锚索+锚索加固。每一级边坡设置二道应力分散型预应力锚索,锚固段长6m;每孔9根7φ5钢铰线,锚索工作拉力为1064kN,锚索孔径130mm,俯角15°o,间距5m×5m,梅花型布置。锚索间设置长5m的全长粘结型水泥砂浆锚索,锚索俯角15°o,锚索孔直径100mm。 2)对2#山头坡率为1:0.8坡段,采用全长粘结型锚索进行加固,锚索俯角15°,锚索孔直径100mm。 3)对3#山头边坡潜在滑动岩体进行锚索+锚索加固。每一级边坡设置二道预应力锚索(锚索长度详见设计图),采用压力集中型预应力锚索,锚固段长6m;每孔6根7φ5钢铰线,锚索工作拉力为682kN,锚索孔径130mm,俯角20°o,间距5m×5m,梅花型布

岩石边坡稳定性分析方法_贾东远

文章编号:1001-831X(2004)02-0250-06 岩石边坡稳定性分析方法 贾东远1,2,阴 可1,李艳华3 (1.重庆大学土木工程学院,重庆 400045;2.秦皇岛市建筑设计院,河北秦皇岛 066001; 3.河北农经学院工业工程系,河北廊坊 065000) 摘 要:通过综述岩石边坡稳定性分析方法及其研究的一些新近展,并具体从极限平衡法、数值计算方法、流变分析、动力分析等方面进行详细论述,对岩石边坡稳定性分析中涉及到的岩体参数取值、计算模型、各种方法的优缺点等方面进行了探讨,最后提出对岩石边坡稳定性分析的建议。 关键词:岩石边坡;稳定性;极限平衡;数值计算 中图分类号:TU457 文献标识码:A 前言 岩石边坡稳定性分析一直是岩土工程中重要的研究内容。在我国基本建设中,特别是三峡工程及西部大开发,出现了许多岩石边坡工程,如三峡船闸高边坡、链子崖危岩体以及由于移民迁建用地、城市建设用地形成的边坡等等。在解决这些复杂的岩石边坡问题的过程中,大大促进了岩石边坡稳定性分析方法的发展。随着人们对岩石边坡认识的不断深入以及计算机技术的发展,岩石边坡稳定性分析方法近年来发展很快,取得了一系列研究成果,现分别对其中主要的研究方向和成果作简要介绍并分析各自特点和适用条件,为岩石边坡稳定性分析的工程应用和理论研究提供参考意见。 1 岩体参数及计算模型 极限平衡、数值计算等计算方法在岩石边坡稳定性分析中得到广泛应用,其中如何选择计算所需的工程岩体力学参数成为关键的问题。对于重大工程,可通过现场大型岩体原位试验取得岩体力学参数,但由于时间和资金限制,原位试验不可能大量进行,因而该方法仍有一定的局限性。另外,选取岩性特别均匀的试样几乎是不可能的,多数情况下,是用经验公式来确定岩体抗剪强度参数。但是,经验公式是以一定数量的室内和现场实验资料为依据,通过回归分析求出的,而未能把较多的地质描述引入其中。各个经验公式计算同一岩体的参数时,普遍存在因经验程度不同而确定出的抗剪强度相差较大。由于这些原因,许多文献提出了用其它方法来确定岩体的抗剪强度参数[1-4]。其中张全恒(1992)[1]讨论了确定岩体结构面抗剪强度参数常规方法存在的问题,提出了经验公式和实验相结合的试件法;何满潮(2001)[2]根据工程岩体的连续性理论,提出了根据室内完整岩块试验参数,结合野外工程岩体结构特点进行计算机数值模拟试验,从而确定工程岩体力学参数的方法;周维垣(1992)[3]提出确定节理岩体力学参数的计算机模拟试验法,该方法基于节理裂隙岩体的野外勘察资料,建立岩体损伤断裂模型,在计算机上模拟试验过程,获得所需数据;杨强等(2002)[4]在样本有限的情况下,采用可靠度理论,求出某保证率下的岩体抗剪强度值。 岩体作为复杂的地质体,其力学特性是多种因素共同作用的结果,如形成过程、地质环境和工程环境等。为了能将所有控制因素作为一个整体来考虑,而不仅局限于定量因素,许多文献利用人工 第24卷 第2期2004年6月 地 下 空 间 UNDERGROUND SPACE Vol.24 No.2 Jun.2004 收稿日期:2003-12-11(修改稿) 作者简介:贾东远(1975-),男,河北唐山人,硕士,主要从事岩土工程设计、检测方面的工作。

深基坑边坡稳定性计算书

... . . 土坡稳定性计算书 本计算书参照《建筑施工计算手册》江正荣编著中国建筑工业、《实用土木工程手册》第三版文渊编著人民教同、《地基与基础》第三版中国建筑工业、《土力学》等相关文献进行编制。 计算土坡稳定性采用圆弧条分法进行分析计算,由于该计算过程是大量的重复计算,故本计算书只列出相应的计算公式和计算结果,省略了重复计算过程。 本计算书采用瑞典条分法进行分析计算,假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。 一、参数信息: 条分方法:瑞典条分法; 考虑地下水位影响; 基坑外侧水位到坑顶的距离(m):1.56; 基坑侧水位到坑顶的距离(m):14.000; 放坡参数: 序号放坡高度(m) 放坡宽度(m) 平台宽度(m) 条分块数 0 3.50 3.50 2.00 0.00 1 4.50 4.50 3.00 0.00 2 6.20 6.20 3.00 0.00 荷载参数: 土层参数:

序号土名称 土厚 度 (m) 坑壁土的重 度γ(kN/m3) 坑壁土的摩 擦角φ(°) 粘聚力 (kPa) 饱容重 (kN/m3) 1 粉质粘土15 20.5 10 10 20.5 二、计算原理: 根据土坡极限平衡稳定进行计算。自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条,不考虑其侧面上的作用力时,该土条上存在着: 1、土条自重, 2、作用于土条弧面上的法向反力, 3、作用于土条圆弧面上的切向阻力。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规》要求,安全系数要满足>=1.3的要求。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规》要求,安全系数要满足>=1.3的要求。 三、计算公式:

边坡稳定性分析模式及流程

一、土岩混合边坡分析 土岩混合边坡稳定性分析一般有四种: 1、上部土层及风化层内部的破坏(圆弧或折线,受土体强度控制,软件自动搜索最危险滑面); 2、沿土岩交界面滑动破坏(土与风化层面或土、风化层与基岩面,受交界面强度控制,软件指定交界面进行计算稳定性,采用圆滑滑动(均质土体时)和折线滑动(覆盖层与基岩面时)两种计算); 3、下部岩体结构面破坏(受结构面控制,平面或楔形体破坏,倾倒破坏也可能。先用赤平投影定性分析(龙海涛和理正结合使用),根据定性情况,若不稳定,则用理正进行定量稳定性计算(平面滑动和楔形体滑动))。 4、上部土体圆弧滑动,下部岩体沿结构面滑动破坏(分析了1和3后,二者都不稳定时,则对边坡整体进行计算,采用1的最危险滑动面与3的平面滑动面组合成上部圆弧,下部直线(层面、某节理裂隙或结构面组合的交线)的整体滑动面,采用传递系数法进行稳定性计算),则1.2.3.4得到四种稳定系数,根据稳定系数进行综合评价。 5、极软岩边坡可能受岩土体强度控制,也可能受结构面控制,故也应对边坡整体进行稳定性计算,采用圆弧滑动(简化毕肖普法)和折线滑动(传递系数隐式解法)分别进行计算。 6、若1.2稳定,3不稳定,则会发生下部岩体沿结构面滑动破坏,从而带动上部土体一起滑动破坏。故下部岩体稳定性很重要。 综合內摩擦角是对平面滑动的,若提粘聚力很小,甚至为零,只有內摩擦角,则破坏模式为平面滑动,如砂砾石层,岩层等。若判断破坏模式为圆弧滑动,则必须提粘聚力与內摩擦角,如破碎岩层、强风化层与上部土层可能发生圆弧滑动破坏。故,提不提粘聚力,可否换算成综合內摩擦角,取决于判断其破坏模式是圆弧还是平面滑动。 下部为极软岩的土岩混合边坡除按岩质边坡分析外,还需计算五种滑动面稳定系数,如下:(下部为硬质的边坡,可不计算整体圆弧滑动,整体折现滑动视基岩内部裂隙及破碎带

边坡工程监测

第11章边坡工程监测 §11.1概述 §1 1.1.1边坡工程监测的意义 从岩土力学的角度来看,边坡处治是通过某种结构人为给边坡岩土体施加一个外力作 用或者通过人为改善原有边坡的环境,最终使其达到一定的力学平衡状态。但由于边坡内 部岩土力学作用的复杂性,从地质勘察到处治设计均不可能完全考虑边坡内部的真实力学效应,我们的设计都是在很大程度的简化计算上进行的。为了反映边坡岩土真实力学效应、检验设计施工的可靠性和处治后的边坡的稳定状态,边坡工程防治监测具有极其重要的意义。 边坡处治监测的主要任务就是检验设计施工、确保安全,通过监测数据反演分析边坡的 内部力学作用,同时积累丰富的资料作为其他边坡设计和施工的参考资料。边坡工程监测 的作用在于: (1)为边坡设计提供必要的岩土工程和水文地质等技术资料。 (2)边坡监测可获得更充分的地质资料(应用侧斜仪进行监测和无线边坡监测系统监 测等)和边坡发展的动态,从而圈定可疑边坡的不稳定区段。 (3)通过边坡监测,确定不稳定边坡的滑落模式,确定不稳定边坡滑移方向和速度,掌握 边坡发展变化规律,为采取必要的防护措施提供重要的依据。 (4)通过对边坡加固工程的监测,评价治理措施的质量和效果。 (5)为边坡的稳定性分析、提供重要依据。 边坡工程监测是边坡研究工作中的一项重要内容,随着科学技术的发展,各种先进的监 测仪器设备、监测方法和监测手段的不断更新,使边坡监测工作的水平正在不断地提高。 §11.1.2边坡工程监测的内容与方法 边坡处治监测包括施工安全监测、处治效果监测和动态长期监测。一般以施工安全监测和处治效果监测为主。 施工安全监测是在施工期对边坡的位移、应力、地下水等进行监测,监测结果作为指导施工、反馈设计的重要依据,是实施信息化施工的重要内容。施工安全监测将对边坡体进行实时监控,以了解由于工程扰动等因素对边坡体的影响,及时地指导工程实施、调整工程部署、安排施工进度等。在进行施工安全监测时,测点布置在边坡体稳定性差,或工程扰动大的部位,力求形成完整的剖面,采用多种手段互相验证和补充。边坡施工安全监测包括地面变形监测、地表裂缝监测、滑动深部位移监测、地下水位监测、孔隙水压力监测、地应力监测等内容。施工安全监测的数据采集原则上采用24h自动实时观测方式进行,以使监测信息能及时地反映边坡体变形破坏特征,供有关方面作出决断。如果边坡稳定性好,工程扰动小,可采用8~24h观测一次的方式进行。 边坡处治效果监测是检验边坡处治设计和施工效果、判断边坡处治后的稳定性的重要手段。一方面可以了解边坡体变形破坏特征,另一方面可以针对实施的工程进行监测, 例如,监测预应力锚索应力值的变化、抗滑桩的变形和土压力、排水系统的过流能力等,以直接了解工程实施效果。通常结合施工安全和长期监测进行,以了解工程实施后,边 坡体的变化特征,为工程的竣工验收提供科学依据。边坡处治效果监测时间长度一般要求不少于一年,数据采集时间间隔一般为7~10天,在外界扰动较大时,如暴雨期间,可加密观测次数。 边坡长期监测将在防治工程竣工后,对边坡体进行动态跟踪,了解边坡体稳定性变化特征。长期监测主要对一类边坡防治工程进行。边坡长期监测一般沿边坡主剖面进行,监测点的布置少于施工安全监测和防治效果监测;监测内容主要包括滑带深部位移监测、地下水位监测和地面变形监测。数据采集时间间隔一般为l0~15天。 边坡监测的具体内容应根据边坡的等级、地质及支护结构的特点进行考虑,通常对于

相关文档
最新文档