复变函数复习提纲

复变函数复习提纲
复变函数复习提纲

复变函数复习参考

一、填空题

1复数-2是复数________的一个平方根。2、设y 是实数,则sin(iy)的模为________。

3、设a>0,则Lna=________。

4、记号Res z=a

f(z)表示________。 5、设f(z)=u(x,y)+iv(x,y),如果________,则称f(z)满足柯西—黎曼条件

6、方程z=t+i t

(t 是实参数)给出的曲线为________。7、i 3=_______. 8、0z =0是函数51cos )(z

z z f -=的 9、i y xy yi x x z f 322333)(--+=,则()f z '= 10、=]0,sin 1

[Re z z s . 11、函数sin w z =在4z π=

处的转动角为____ 12、幂级数∑∞=0)(cos n n z in 的收敛半径为R =_______

二、计算题

1、求复数z=1-i 1+i 的实部、虚部、模和辐角

2、计算积分∫c (x-y+ix 2)dz,积分路径C 是连接由0到1+i 的直线段。

3、求sin

π41

2z z dz c -?之值,其中C:|z|=2. 4、求函数f(z)=

e z z

21-在点z=±1,∞的残数. 5、求())

2)(1(--=z z z z f 在圆环域21<

6、.设?

-++=

C d z z f ξξξξ173)(2,其中C 为圆周3||=z 的正向,求(1)f i '+ 7、计算积分

dx x x x ?∞+∞-++54cos 22. 8、y e v px sin =为调和函数,求p 的值,并求出解析函数iv u z f +=)(

三、证明题

1、设f(z)及g(z)在区域D 内解析,并且f(z)·g(z)≡0,试证:在D 内f(z)≡0或g(z)≡0

2、.函数f(z)=|z|在z 平面上任何点都不解析。

3、设f (z )在区域D 内解析,并且在某一点z 0∈D 有f (n )(z 0)=0, n =1,2,

f (z )在D 内必为常数.

4、设f (z )=u (x,y )+iv (x,y )在区域D 内解析,试证:在区域D 内f ′(z )=u x +iv x

参考答案:

一、

5,u v x y ??=??,u v y

x ??=-?? 6 双曲线1y x = 7.3ln 2i k e +-π; 8. 三级极点 ;9. 23z ;10. 0 ;11. 0 ;12. e

1 二、1解:

2、

3.

4 解:

5:在2||1<

11000111111()()(()())()21222

n n n n n n n n z z f z z z z z z z z +∞∞∞+====-=--=-+--∑∑∑ 2) 在1|2|z <-<∞

20111111()(1)(1)(1)122122(2)(2)(1)2

n n n f z z z z z z z z ∞+==+=+=+---+----+-∑ 6: 22371()()C

f z d z ξξξξ++'=-? 由于1+i 在3||=z 所围的圆域内, 故 i C

i d i i f +='++=+-++=+'?1222|)173(2))1((173)1(ξξξπξξξξ)136(2i +-=π 7 解:被积函数分母最高次数比分子最高次数高二次,且在实轴上无奇点,在上半平面有一个一级极点 -2+i, 故

]

2,54[Re 25422i z z e s i dx x x e iz

ix +-++=++?∞+∞-π

)2sin 2(cos 54))2((lim 222i e

z z e i z i iz i z -=+++--=+-→ππ 故 2cos 254Re 254cos 222e

dx x x e dx x x x ix π=++=++??∞+∞-∞+∞- 8 解:因为y e v px sin =是调和函数,则有 02222=??+??y

v x v ,即 0sin )1(sin sin 22=-=-y e p y e y e p px px px 故1±=p 1) 当 1=p 时, y e v x sin =, 由C-R 方程,

y e y

v x u x cos =??=??, 则)(cos ),(y g y e y x u x +=, 又由 y e x

v y g y e y u x x sin )(sin -=??-='+

-=??,故 0)(='y g , 所以c y g =)( 。

则 c e z f z +=)(

2) 当 1-=p 时, y e v x sin -=, 由C-R 方程,

y e y v x u x cos --=??=??, 则)(cos ),(y g y e y x u x +-=-, 又由y e x

v y g y e y u x x sin )(sin =??-='+=??-,故 0)(='y g , 所以c y g =)( 。则 c e z f z +-=-)( ,

三、

1

2证明

3证明 取完全含在D 内的z 0的邻域K :|z -z 0|<δ,则在K 内f (z )可表示为

f (z )=f (z 0)+f z n z z n n n ()()!(),001

-=∞∑于是,由条件知,在K 内f (z )=f (z 0),即在K 内f (z )恒等于常数。从而由唯一性定理知,f (z )在D 内必为常数.

4.证明:f ′(z )=lim lim ???????z z f z z f z z u i v z

→→+-+00()() =lim ?????x y x x u i v x u iv →=+=+00

.

复变函数总结

第一章 复数的运算与复平面上的拓扑 1.复数的定义 一对有序实数(x,y )构成复数z x iy =+,其中()()Re ,Im x z y z ==.21i =-, X 称为复数的实部,y 称为复数的虚部。 复数的表示方法 1) 模: z = 2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值 ()arg z 是位于(,]ππ-中的幅角。 3)()arg z 与 arctan y x 之间的关系如下: 当0,x > arg arctan y z x =; 当0,arg arctan 0,0,arg arctan y y z x x y y z x ππ? ≥=+??

4)若 12 1122,i i z z e z z e θθ==, 则 () 121212i z z z z e θθ+=; ()121122 i z z e z z θθ-= 5.无穷远点得扩充与扩充复平面 复平面对内任一点z , 用直线将z 与N 相连, 与球面相交于P 点, 则球面上除N 点外的所有点和复平面上的所有点有一一对应的关系, 而N 点本身可代表无穷远点, 记作∞.这样的球面称作复球面 这样的球面称作复球面. 扩充复平面---引进一个“理想点”: 无穷远点 ∞ 复平面的开集与闭集 复平面中领域,内点,外点,边界点,聚点,闭集等概念 复数序列的极限和复数域的完备性 复数的极限,,柯西收敛定理,魏尔斯特拉斯定理,聚点定理等从实数域里的推广,可以结合实数域中的形式来理解。 第二章 复变量函数 1.复变量函数的定义 1)复变函数的反演变换(了解) 2)复变函数性质 反函数 有界性 周期性, 3)极限与连续性 极限: 连续性 2.复变量函数的形式偏导 1)复初等函数 ). ( ),( , , , , . z f w z w iv u w z G iy x z G =+=+=记作复变函数简称的函数是复变数那末称复变数之对应与就有一个或几个复数每一个复数中的对于集合按这个法则个确定的法则存在如果有一的集合是一个复数设. )( )(,)0(0 )( ,0 , , 0 )( 0000时的极限趋向于当为那末称有时使得当相应地必有一正数对于任意给定的存在如果有一确定的数内的去心邻域定义在设函数z z z f A A z f z z A z z z z f w ερδδεδερ<-≤<<-<><-<= . )( , )( . )( ),()(lim 000 内连续在我们说内处处连续在区域如果处连续在那末我们就说如果D z f D z f z z f z f z f z z =→

复变函数_期末试卷及答案

一、单项选择题(本大题共15小题,每小题2分,共30分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括 号内。错选、多选或未选均无分。 1.下列复数中,位于第三象限的复数是( ) A. 12i + B. 12i -- C. 12i - D. 12i -+ 2.下列等式中,不成立的等式是( ) 3.下列命题中,正确..的是( ) A. 1z >表示圆的内部 B. Re()0z >表示上半平面 C. 0arg 4 z π << 表示角形区域 D. Im()0z <表示上半平面 4.关于0 lim z z z z ω→=+下列命题正确的是( ) A.0ω= B. ω不存在 C.1ω=- D. 1ω= 5.下列函数中,在整个复平面上解析的函数是( ) 6.在复平面上,下列命题中,正确..的是( ) A. cos z 是有界函数 B. 2 2Lnz Lnz = 7 .在下列复数中,使得z e i =成立的是( ) 8.已知3 1z i =+,则下列正确的是( ) 9.积分 ||342z dz z =-??的值为( ) A. 8i π B.2 C. 2i π D. 4i π 10.设C 为正向圆周||4z =, 则10()z C e dz z i π-??等于( ) A. 1 10! B. 210! i π C. 29! i π D. 29! i π- 11.以下关于级数的命题不正确的是( ) A.级数0327n n i ∞ =+?? ?? ?∑是绝对收敛的 B.级数 212 (1)n n i n n ∞ =??+ ?-??∑是收敛的 C. 在收敛圆内,幂级数绝对收敛 D.在收敛圆周上,条件收敛 12.0=z 是函数(1cos ) z e z z -的( ) A. 可去奇点 B.一级极点 C.二级极点 D. 三级极点

【填空题】《复变函数与积分变换》期末练习题

2020届《复变函数与积分变换》练习题 填空题 1.若 ()f z u iv =+可导,则()f z ¢ = . 2.设()t d 是单位脉冲函数,则()t d 轾=臌 . 3.复变函数3()z f z e =的周期为 . 4.曲线积分3 4sin ()z z dz z p == -ò? . 5.已知复变函数 22()3326f z x y xyi =--+,若z x iy =+,则()f z 关于变量z 的 表达式为 . 6.复变函数()z f z e =的周期为 . 7. 若()f z u iv =+可导,则()f z ¢= . 8.计算乘幂 = . 9.曲线积分24cos ()z z dz z π== -?? . 10. 已知222211()(1)(1)f z x iy x y x y =+ +-++,若z x iy =+,则复变函数()z f 关于变 量z 的表达式为 . 11. ()=+51i ________. 12. 当=a ________,函数)72(2)(y x i y ax z f +-++=为复平面上的一个解析函数. 13. 复数6cos 6sin π πi z +-=的指数形式为=z ________________. 14. 函数t t f 7sin )(=的Fourier 变换为________________. 18. =?+∞ -tdt e t 2cos 04________________. 19. =i 1________.

20. 当=a ________,函数)9()(y x i ay x z f ++-=为复平面上的一个解析函数. 21. 复数32cos 32sin ππi z +=的指数形式为=z ________________. 22. 函数t t f 5sin )(=的Fourier 变换为________________. 23. =?+∞-tdt e t 2cos 03________________. 24.公式cos sin ix e x i x =+称为_____________________. 25.函数()f z Lnz =的奇点之集为_____________________. 26. ()+t dt δ∞∞=?— ___________. 27.复变函数3()z f z e =的周期为 . 28.若21(1)1n n n z i n n +=++-,则lim n n z =___________. 29.设34z i =+,则2z e = . 30.函数()cos 6f t t =的傅立叶变换[cos 6]F t = . 31.xyi y x z f 2)(22+-=的导数=')(z f . 32.已知复变函数 22()3326f z x y xyi =--+,若z x iy =+,则()f z 关于变量z 的 表达式为 . 33.=+i i )1(____________________. 34. 当=a _____,=b _____,函数)9()(2y x i ay bx z f ++-=为复平面上的一个解析函数. 35. =-)33(i Ln _______________.

复变函数与积分变换期末考试试卷A及答案

复变函数与积分变换期末试题(A )答案及评分标准 复变函数与积分变换期末试题(A ) 一.填空题(每小题3分,共计15分) 1. 231i -的幅角是(Λ2,1,0,23 ±±=+-k k ππ );2.)1(i Ln +-的主值是 ( i 4 32ln 21π+ );3. 211)(z z f += , =)0() 5(f ( 0 ); 4.0=z 是 4 sin z z z -的(一级)极点;5. z z f 1 )(=,=∞]),([Re z f s (-1); 二.选择题(每小题3分,共计15分) 1.解析函数),(),()(y x iv y x u z f +=的导函数为( B ); (A ) y x iu u z f +=')(; (B )y x iu u z f -=')(; (C ) y x iv u z f +=')(; (D )x y iv u z f +=')(. 2.C 是正向圆周3=z ,如果函数=)(z f ( D ),则0d )(=?C z z f . (A ) 23-z ; (B )2 ) 1(3--z z ; (C )2)2()1(3--z z ; (D )2)2(3-z . 3.如果级数∑∞ =1 n n n z c 在2=z 点收敛,则级数在( C ) (A )2-=z 点条件收敛 ; (B )i z 2=点绝对收敛; (C )i z +=1点绝对收敛; (D )i z 21+=点一定发散. 4.下列结论正确的是( B ) (A )如果函数)(z f 在0z 点可导,则)(z f 在0z 点一定解析;

(B) 如果)(z f 在C 所围成的区域内解析, 则 0)(=? C dz z f (C )如果 0)(=? C dz z f ,则函数)(z f 在C 所围成的区域内一定解析; (D )函数 ),(),()(y x iv y x u z f +=在区域内解析的充分必要条件是 ),(y x u 、),(y x v 在该区域内均为调和函数. 5.下列结论不正确的是( D ). (A) 的可去奇点;为z 1 sin ∞ (B) 的本性奇点;为z sin ∞ (C) ;1sin 1 的孤立奇点为 z ∞ (D) .sin 1的孤立奇点为z ∞ 三.按要求完成下列各题(每小题10分,共计40分) (1)设)()(2 2 2 2 y dxy cx i by axy x z f +++++=是解析函数,求.,,,d c b a (2).计算 ? -C z z z z e d ) 1(2 其中C 是正向圆周:2=z ; (3)计算?=++33 42215 d )2()1(z z z z z (4)函数3 2 32) (sin )3()2)(1()(z z z z z z f π-+-=在扩充复平面上有什么类型的奇点,如果有极点,请指出它的级. 四、(本题14分)将函数) 1(1 )(2 -= z z z f 在以下区域内展开成罗朗级数; (1)110<-

复变函数学习指导书

复变函数复习提纲 (一)复数的概念 1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.2 1i =-. 注:两个复数不能比较大小. 2.复数的表示 1 )模:z = 2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。 3)()arg z 与arctan y x 之间的关系如下: 当0,x > arg arctan y z x =; 当0,arg arctan 0,0,arg arctan y y z x x y y z x ππ? ≥=+??

《复变函数》-期末试卷及答案(A卷)

《复变函数》试卷 第1页(共4页) 《复变函数》试卷 第2页(共4页) XXXX 学院2016—2017学年度第一学期期末考试 复变函数 试卷 一、单项选择题(本大题共10小题,每题3分,共30分,请从每题备选项中选出唯一符合题干要求的选项,并将其前面的字母填在题中括号内。) 1. =)i Re(z ( ) A.)i Re(z - B.)i Im(z C.z Im - D.z Im 2. 函数2 ) (z z f =在复平面上 ( ) A.处处不连续 B. 处处连续,处处不可导 C.处处连续,仅在点0= z 处可导 D.处处连续,仅在点0=z 处解析 3.设复数a 与b 有且仅有一个模为1,则b a b a --1的值 ( ) A.大于1 B.等于1 C.小于1 D.无穷大 4. 设x y z f y x z i )(i +-=+=,,则=')(z f ( ) A.i 1+ B.i C.1- D.0 5.设C 是正向圆周 1=z ,i 2sin π=?dz z z C n ,则整数n 等于 ( ) A.1- B.0 C.1 D.2 6.0=z 是2 1 )( z e z f z -=的 ( ) A.1阶极点 B.2阶极点 C. 可去奇点 D.本性奇点 7.幂级数!2)1(0 n z n n n n ∑∞ =-的和函数是 ( ) A.z e - B.2 z e C.2 z e - D.z sin 8.设C 是正向圆周 2=z ,则 =?C z dz 2 ( ) A.0 B.i 2π- C.i π D.i 2π 9.设函数)(z f 在)0( 00+∞≤<<-

《复变函数》总结

复变小结 1.幅角(不赞成死记,学会分析) .2 argtg 20,0,0,0,arctg 0,0,20,arctg arg ππ πππ<<-???? ?????=<≠<±≠=±>=x y y x y x x y y x x x y z 其中 -∏

b.对于P12例题 1.11可理解为高中所学的平面上三点(A,B,C )共线所满足的公式: (向量) OC=tOA+(1-t )OB=OB+tBA c.对于P15例题1.14中可直接转换成X 和Y 的表达式后判断正负号来确定其图像。 d.判断函数f(z)在区域D 内是否连续可借助课本P17定义1.8 4.解析函数,指数,对数,幂、三角双曲函数的定义及表达式,能熟练计算,能熟练解初等函数方程 a.在某个区域内可导与解析是等价的。但在某一点解析一定可导,可导不一定解析。 b.柯西——黎曼条件,自己牢记:(注意那个加负那个不加) c.指数函数:复数转换成三角的定义。 d.只需记住:Lnz=ln[z]+i(argz+2k π) e.幂函数:底数为e 时直接运算(一般转换成三角形式) 当底数不为e 时,w= z a = e aLnz (幂指数为Ln 而非ln) 能够区分: 的计算。 f.三角函数和双曲函数: 只需记住: 及 其他可自己试着去推导一下。 反三角中前三个最好自己记住,特别 iz iz i z -+-=11Ln 2Arctg 因为下一章求积分会用到 11)(arctan ,2+=z z (如第三章的习题9) 5.复变函数的积分 ,,,i e e i i e i ππ+)15.2(.2e e sin ,2e e cos i z z iz iz iz iz ---=+=???????=-==+=--y i i iy y iy y y y y sh 2e e sin ch 2e e cos

《复变函数与积分变换》期末考试试卷及答案(1)

得分 得分 ?复变函数与积分变换?期末试题(A ) 吉林大学南岭校区2011年12月 题号 一 二 三 四 五 六 总分 得分 一.填空题(每小题3分,共计15分) 1. 2 3 1i -的幅角是( ); 2.)1(i Ln +-的主值是( ); 3. 211)(z z f += ,=)0() 5(f ( ); 4.0=z 是 4 sin z z z -的( )极点; 5. z z f 1 )(= ,=∞]),([Re z f s ( ); 二.选择题(每小题3分,共计15分) 1.解析函数),(),()(y x iv y x u z f +=的导函数为( ); (A ) y x iu u z f +=')(; (B )y x iu u z f -=')(; (C ) y x iv u z f +=')(; (D )x y iv u z f +=')(. 2.C 是正向圆周3=z ,如果函数=)(z f ( ),则0d )(=?C z z f . (A ) 23-z ; (B )2 ) 1(3--z z ; (C )2)2()1(3--z z ; (D )2 )2(3-z . 3.如果级数∑∞ =1 n n n z c 在 2=z 点收敛,则级数在

(A )2-=z 点条件收敛 ; (B )i z 2=点绝对收敛; (C )i z +=1点绝对收敛; (D )i z 21+=点一定发散. 4.下列结论正确的是( ) (A )如果函数)(z f 在0z 点可导,则)(z f 在0z 点一定解析; (B) 如果)(z f 在C 所围成的区域内解析,则0)(=? C dz z f (C )如果 0)(=? C dz z f ,则函数)(z f 在C 所围成的区域内一定解析; (D )函数 ),(),()(y x iv y x u z f +=在区域内解析的充分必要条件是 ),(y x u 、),(y x v 在该区域内均为调和函数. 5.下列结论不正确的是( ). (A) 的可去奇点;为z 1 sin ∞(B) 的本性奇点;为z sin ∞ (C) ;1sin 1 的孤立奇点为 z ∞(D) .sin 1的孤立奇点为z ∞ 三.按要求完成下列各题(每小题10分,共计40分) (1)设)()(2 2 2 2 y dxy cx i by axy x z f +++++=是解析函数,求.,,,d c b a (2).计算 ? -C z z z z e d ) 1(2 其中C 是正向圆周:2=z ; (3)计算?=++33 42215 d )2()1(z z z z z (4)函数3 2 32)(sin )3()2)(1()(z z z z z z f π-+-=在扩充复平面上有什么类型的奇 点?,如果有极点,请指出它的级. 得分

复变函数试题与答案

复变函数试题与答案 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-

第一章 复数与复变函数 一、 选择题 1.当i i z -+= 11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1- 2.设复数z 满足3 )2(π = +z arc ,6 5)2(π = -z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2 321+- (D )i 2 1 23+- 3.复数)2 (tan πθπθ<<-=i z 的三角表示式是( ) (A ))]2 sin()2 [cos(sec θπ θπθ+++i (B ) )]2 3sin()23[cos( sec θπ θπθ+++i (C ))]23sin()23[cos( sec θπθπθ+++-i (D ))]2 sin()2[cos(sec θπ θπθ+++-i 4.若z 为非零复数,则22z z -与z z 2的关系是( ) (A )z z z z 222≥- (B )z z z z 222=- (C )z z z z 222≤- (D )不能比较大小

5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹是( ) (A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转 3 π ,向右平移3个单位,再向下平移1个单位后对应的复数为i 31-,则原向量对应的复数是( ) (A )2 (B )i 31+ (C )i -3 (D )i +3 7.使得2 2z z =成立的复数z 是( ) (A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 8.设z 为复数,则方程i z z +=+2的解是( ) (A )i +- 43 (B )i +43 (C )i -4 3 (D )i -- 4 3 9.满足不等式 2≤+-i z i z 的所有点z 构成的集合是( ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无 界闭区域 10.方程232=-+i z 所代表的曲线是( )

(完整版)复变函数第六章留数理论及其应用知识点总结

第六章留数理论及其应用 §1.留数 1.(定理6.1 柯西留数定理): ∫f(z)dz=2πi∑Res(f(z),a k) n k=1 C 2.(定理6.2):设a为f(z)的m阶极点, f(z)= φ(z) (z?a)n , 其中φ(z)在点a解析,φ(a)≠0,则 Res(f(z),a)=φ(n?1)(a) (n?1)! 3.(推论6.3):设a为f(z)的一阶极点, φ(z)=(z?a)f(z),则 Res(f(z),a)=φ(a) 4.(推论6.4):设a为f(z)的二阶极点 φ(z)=(z?a)2f(z)则 Res(f(z),a)=φ′(a) 5.本质奇点处的留数:可以利用洛朗展式 6.无穷远点的留数: Res(f(z),∞)= 1 2πi ∫f(z)dz Γ? =?c?1 即,Res(f(z),∞)等于f(z)在点∞的洛朗展式中1 z 这一项系数的反号 7.(定理6.6)如果函数f(z)在扩充z平面上只有有限个孤立奇点(包括无穷远点在内),设为a1,a2,…,a n,∞,则f(z)在各点的留数总和为零。 注:虽然f(z)在有限可去奇点a处,必有Res(f(z),∞)=0,但是,如果点∞为f(z)的可去奇点(或解析点),则Res(f(z),∞)可以不为零。 8.计算留数的另一公式:

Res (f (z ),∞)=?Res (f (1t )1t 2,0) §2.用留数定理计算实积分 一.∫R (cosθ,sinθ)dθ2π0型积分 → 引入z =e iθ 注:注意偶函数 二.∫P(x)Q(x)dx +∞?∞型积分 1.(引理6.1 大弧引理):S R 上 lim R→+∞zf (z )=λ 则 lim R→+∞∫f(z)dz S R =i(θ2?θ1)λ 2.(定理6.7)设f (z )=P (z )Q (z )为有理分式,其中 P (z )=c 0z m +c 1z m?1+?+c m (c 0≠0) Q (z )=b 0z n +b 1z n?1+?+b n (b 0≠0) 为互质多项式,且符合条件: (1)n-m ≥2; (2)Q(z)没有实零点 于是有 ∫ f (x )dx =2πi ∑Res(f (z ),a k )Ima k >0 +∞ ?∞ 注:lim R→R+∞ ∫f(x)dx +R ?R 可记为P.V.∫f(x)dx +∞?∞ 三. ∫P(x)Q(x)e imx dx +∞?∞ 型积分 3.(引理6.2 若尔当引理):设函数g(z)沿半圆周ΓR :z =Re iθ(0≤θ≤π,R 充分大)上连续,且 lim R→+∞g (z )=0 在ΓR 上一致成立。则 lim R→+∞ ∫g(z)e imz dz ΓR =0 4.(定理6.8):设g (z )=P (z )Q (z ),其中P(z)及Q(z)为互质多项式,且符合条件:

复变函数期末考试题大全(东北师大)

____________________________________________________________________________________________________ 一、填空题(每小题2分) 1、复数i 212--的指数形式是 2、函数w = z 1将Z S 上的曲线()1122 =+-y x 变成W S (iv u w +=)上 的曲线是 3、若01=+z e ,则z = 4、()i i +1= 5、积分()? +--+i dz z 22 22= 6、积分?==1sin 21z dz z z i π 7、幂级数()∑∞ =+0 1n n n z i 的收敛半径R= 8、0=z 是函数 z e z 1 11- -的 奇点 9、=??? ? ??-=1Re 21z e s z z 10、将点∞,i,0分别变成0,i,∞的分式线性变换=w 二、单选题(每小题2分) 1、设α为任意实数,则α 1=( ) A 无意义 B 等于1 C 是复数其实部等于1 D 是复数其模等于1 2、下列命题正确的是( ) A i i 2< B 零的辐角是零 C 仅存在一个数z,使得z z -=1 D iz z i =1 3、下列命题正确的是( ) A 函数()z z f =在z 平面上处处连续 B 如果()a f '存在,那么()z f '在a 解析 C 每一个幂级数在它的收敛圆周上处处收敛 D 如果v 是u 的共轭调和函数,则u 也是v 的共轭调和函数 4、根式31-的值之一是( ) A i 2321- B 223i - C 223i +- D i 2 321+- 5、下列函数在0=z 的去心邻域内可展成洛朗级数的是( ) A z 1sin 1 B z 1cos C z ctg e 1 D Lnz 6、下列积分之值不等于0的是( ) A ?=-123z z dz B ?=-12 1z z dz C ?=++1242z z z dz D ?=1 cos z z dz 7、函数()z z f arctan =在0=z 处的泰勒展式为( ) A ()∑∞ =+-02121n n n n z (z <1) B ()∑∞ =+-0 1221n n n n z (z <1) C ()∑∞ =++-012121n n n n z (z <1) D ()∑∞=-0 221n n n n z (z <1) 8、幂级数n n n z 20 1)1(∑∞ =+-在1w 的分式线性变换是( ) A )1(1>--=a z a a z e w i β B )1(1<--=a z a a z e w i β

复变函数试题

第一章 复数与复变函数 一、 选择题 1.当i i z -+= 11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1- 2.设复数z 满足3 )2(π = +z arc ,6 5)2(π = -z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2321+- (D )i 2 123+- 3.复数)2 (tan πθπ θ<<-=i z 的三角表示式是( ) (A ))]2sin()2[cos( sec θπθπ θ+++i (B ))]2 3sin()23[cos(sec θπ θπθ+++i (C ))]23sin()23[cos( sec θπθπθ+++-i (D ))]2 sin()2[cos(sec θπ θπθ+++-i 4.若z 为非零复数,则22z z -与z z 2的关系是( ) (A )z z z z 222≥- (B )z z z z 222=- (C )z z z z 222≤- (D )不能比较大小 5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点) ,(y x 的轨迹是( ) (A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转 3 π ,向右平移3个单位,再向下平移1个单位后对应的复数为i 31-,则原向量对应的复数是( ) (A )2 (B )i 31+ (C )i -3 (D )i +3

7.使得2 2 z z =成立的复数z 是( ) (A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 8.设z 为复数,则方程i z z +=+2的解是( ) (A )i +- 43 (B )i +43 (C )i -4 3 (D )i --43 9.满足不等式 2≤+-i z i z 的所有点z 构成的集合是( ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域 10.方程232= -+i z 所代表的曲线是( ) (A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周 11.下列方程所表示的曲线中,不是圆周的为( ) (A ) 22 1 =+-z z (B )433=--+z z (C ) )1(11<=--a az a z (D ))0(0>=-+++c c a a z a z a z z 12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ( ) (A )i 44-- (B )i 44+ (C )i 44- (D )i 44+- 13.0 0) Im()Im(lim 0z z z z x x --→( ) (A )等于i (B )等于i - (C )等于0 (D )不存在 14.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( ) (A )),(y x u 在),(00y x 处连续 (B )),(y x v 在),(00y x 处连续 (C )),(y x u 和),(y x v 在),(00y x 处连续(D )),(),(y x v y x u +在),(00y x 处连续

复变函数考试试题与答案各种总结

《复变函数》考试试题(一) 一、 判断题(20分): 1.若f(z)在z 0的某个邻域内可导,则函数f(z)在z 0解析. ( ) 2.有界整函数必在整个复平面为常数. ( ) 3.若 } {n z 收敛,则 } {Re n z 与 } {Im n z 都收敛. ( ) 4.若f(z)在区域D 内解析,且 0)('≡z f ,则C z f ≡)((常数). ( ) 5.若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( ) 6.若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( ) 7.若 ) (lim 0 z f z z →存在且有限,则z 0是函数f(z)的可去奇点. ( ) 8.若函数f(z)在是区域D 内的单叶函数,则)(0)('D z z f ∈?≠. ( ) 9. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=? C dz z f . ( ) 10.若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数.( ) 二.填空题(20分) 1、 =-?=-1||0 0)(z z n z z dz __________.(n 为自然数) 2. =+z z 22cos sin _________. 3.函数z sin 的周期为___________. 4.设 11 )(2+= z z f ,则)(z f 的孤立奇点有__________. 5.幂级数 n n nz ∞ =∑的收敛半径为__________. 6.若函数f(z)在整个平面上处处解析,则称它是__________. 7.若ξ =∞ →n n z lim ,则= +++∞→n z z z n n (i) 21______________. = )0,(Re n z z e s ,其中n 为自然数.

复变函数测试试题库

复变函数试题库

————————————————————————————————作者:————————————————————————————————日期:

《复变函数论》试题库 梅一A111 《复变函数》考试试题(一) 1、 =-?=-1||0 0)(z z n z z dz __________.(n 为自然数) 2. =+z z 22cos sin _________. 3.函数z sin 的周期为___________. 4.设 11 )(2+= z z f ,则)(z f 的孤立奇点有__________. 5.幂级数 n n nz ∞ =∑的收敛半径为__________. 6.若函数f(z)在整个平面上处处解析,则称它是__________. 7.若ξ =∞ →n n z lim ,则= +++∞→n z z z n n (i) 21______________. 8.= )0,(Re n z z e s ________,其中n 为自然数. 9. z z sin 的孤立奇点为________ . 10.若0z 是)(z f 的极点,则___ )(lim 0 =→z f z z . 三.计算题(40分): 1. 设 )2)(1(1 )(--= z z z f ,求)(z f 在}1||0:{<<=z z D 内的罗朗展式. 2. .cos 1 1||?=z dz z 3. 设 ? -++=C d z z f λ λλλ1 73)(2,其中 }3|:|{==z z C ,试求).1('i f + 4. 求复数 11 +-= z z w 的实部与虚部. 四. 证明题.(20分) 1. 函数 )(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内

复变函数与积分变换重要知识点归纳

复变函数与积分变换重要知 识点归纳 标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

复变函数复习重点 (一)复数的概念 1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-. 注:一般两个复数不比较大小,但其模(为实数)有大小. 2.复数的表示 1 )模:z = 2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。 3)()arg z 与arctan y x 之间的关系如下: 当0,x > arg arctan y z x =; 当0,arg arctan 0,0,arg arctan y y z x x y y z x ππ? ≥=+??

复变函数与积分变换期末试题(附有答案)

复变函数与积分变换期末试题 一.填空题(每小题3分,共计15分) 1. 2 3 1i -的幅角是( 2,1,0,23±±=+-k k ππ);2. )1(i Ln +-的主值是 ( i 4 32ln 21π + );3. 211)(z z f +=,=)0() 5(f ( 0 ),4.0=z 是 4sin z z z -的( 一级 )极点;5. z z f 1 )(=,=∞]),([Re z f s (-1 ); 二.选择题(每题3分,共15分) 1.解析函数),(),()(y x iv y x u z f +=的导函数为( ); (A ) y x iu u z f +=')(; (B )y x iu u z f -=')(; (C ) y x iv u z f +=')(; (D )x y iv u z f +=')(. 2.C 是正向圆周3=z ,如果函数=)(z f ( ),则0d )(=?C z z f . (A ) 23-z ; (B )2)1(3--z z ; (C )2)2()1(3--z z ; (D )2 ) 2(3 -z . 3.如果级数∑∞ =1 n n n z c 在2=z 点收敛,则级数在 (A )2-=z 点条件收敛 ; (B )i z 2=点绝对收敛;

(C )i z +=1点绝对收敛; (D )i z 21+=点一定发散. 4.下列结论正确的是( ) (A )如果函数)(z f 在0z 点可导,则)(z f 在0z 点一定解析; (B) 如果)(z f 在C 所围成的区域内解析,则 0)(=? C dz z f (C )如果 0)(=? C dz z f ,则函数)(z f 在C 所围成的区域内一定解析; (D )函数 ),(),()(y x iv y x u z f +=在区域内解析的充分必要条件是 ),(y x u 、),(y x v 在该区域内均为调和函数. 5.下列结论不正确的是( ). (A) 的可去奇点;为z 1 sin ∞(B) 的本性奇点;为z sin ∞ (C) ;1sin 1 的孤立奇点为 z ∞(D) .sin 1的孤立奇点为z ∞ 三.按要求完成下列各题(每小题10分,共40分) (1).设)()(2 2 2 2 y dxy cx i by axy x z f +++++=是解析函数,求 .,,,d c b a 解:因为)(z f 解析,由C-R 条件

复变函数期末卷A

复变函数期末卷A 部门: xxx 时间: xxx 整理范文,仅供参考,可下载自行编辑

南昌大学 2005~2006学年第一学期期末试卷 一 . 填空 (每题2分,共10分>。 1.设 )2)(3() 3)(2)(1(i i i i i z ++--+= ,则=z . 2.设c 为沿原点z=0到点z=1+i 的直线段,则=?c dz z 2 2. 3. 函数f(z>=]1)(z 1 1z 1[1z 15+++++ 在点 z=0处的留数为__________________ 4. 若幂级数i z z c n n n 210 +=∑ ∞ =在处收敛,则该级数在z=2处的敛散性为. 5. 设幂级数∑∞ =0 n n n z c 的收敛半径为R ,那么幂级数∑∞ =-0 )12 (n n n n z c 的收敛半径为. 二. 单项选择题 (每题2分,共40分>。 1.复数 i 258-2516z = 的辐角为< ) A .arctan 2 1 B .-arctan 21 C .π -arctan 2 1 D .π+arctan 2 1b5E2RGbCAP 2.方程1Rez 2 =所表示的平面曲线为< ) A .圆 B .直线 C .椭圆 D .双曲线 3.复数 ) 5isin -5-3(cos z π π=的三角表示式为< ) A . )54isin 543(cos -ππ+ B .) 54 isin 543(cos ππ- C . )54isin 543(cos ππ+ D .) 54isin 543(cos -ππ- 4.设z=cosi ,则< ) A .Imz=0 B .Rez=π C .|z|=0 D .argz=π 5.复数i 3e +对应的点在< ) A .第一象限 B .第二象限 C .第三象限 D .第四象限

相关文档
最新文档