草甘膦合成路线设计

草甘膦合成路线设计
草甘膦合成路线设计

合成工艺的优化

合成工艺的优化 有机合成工艺优化是物理化学与有机化学相结合的产物,是用化学动力学的方法解决有机合成的实际问题,是将化学动力学的基本概念转化为有机合成的实用技术。 转化率是消耗的原料的摩尔数除于原料的初始摩尔数。 选择性为生成目标产物所消耗的原料摩尔数除于消耗的原料的摩尔数。 收率为反应生成目标产物所消耗的原料的摩尔数除于原料的初始摩尔数。 转化率×选择性= 收率 反应中消耗的原料一部分生成了目标产物,一部分生成了杂质,少量原料依然存在于反应体系中。 反应的目标是提高收率,但是影响收率的因素较多,使问题复杂化。 化学动力学的研究目标是提高选择性,即尽量使消耗的原料转化为主产物。 只有温度和浓度是影响选择性的主要因素。在一定转化率下,主副产物之和是一个常数,副产物减少必然带来主产物增加。 提高转化率可以采取延长反应时间,升高温度,增加反应物的浓度,从反应体系中移出产物等措施。

而选择性虽只是温度和浓度的函数,看似简单,却远比转化率关系复杂。因此将研究复杂的收率问题转化为研究选择性和转化率的问题,可简化研究过程。 2.选择性研究的主要影响因素 提高主反应的选择性就是抑制副反应,副反应不外平行副反应和连串副反应两种类型。平行副反应是指副反应与主反应同时进行,一般消耗一种或几种相同的原料,而连串副反应是指主产物继续与某一组分进行反应。主副反应的竞争是主副反应速度的竞争,反应速度取决于反应的活化能和各反应组分的反应级数,两个因素与温度和各组分的浓度有关。因此选择性取决于温度效应和浓度效应。可是,活化能与反应级数的绝对值很难确定。但是我们没有必要知道它们的绝对值,只需知道主副反应之间活化能的相对大小与主副反应对某一组分的反应级数的相对大小就行了。我们知道,升高温度有利于活化能高的反应,降低温度有利于活化能低的反应,因此选择反应温度条件的理论依据是主副反应活化能的相对大小,而不是绝对大小。 (1)温度范围的选择:在两个反应温度下做同一合成实验时,可以根据监测主副产物的相对含量来判断主副反应活化能的相对大小,由此判断是低温还是高温有利于主反应,从而缩小了温度选择的范围。实际经验中,一般采取极限温度的方式,低温和高温,再加上二者的中间温度,可判断出反应温度对反应选择性的影响趋势。 (2)某一组分浓度的选择:在同一温度下(第一步已经选择好的温度下),将某一组分滴加(此组分为低浓度,其他组分就是高浓

一乙醇胺合成草甘膦的工艺 、

一乙醇胺合成草甘膦的工艺、 摘要研究了一种新的制备草甘膦的工艺:在合适的反应条件下,加入一乙醇胺、甲醛、亚磷酸三甲酯生成一种混合物,再在适当的条件下水解该混合物,生成N-(膦酰基甲基)乙醇胺及其盐,在同一浴中,N-(膦酰基甲基)乙醇胺及其盐用RaneyCu催化氧化,再水解得到草甘膦。草甘膦的平均收率可达80%。 一乙醇胺代替甘氨酸和IDA,直接反应、水解、氧化制备草甘膦的新工艺,此工艺不仅能保证正常的草甘膦的收率,而且由于一乙醇胺的价格比甘氨酸和IDA都低,降低了生产成本。具体反应分以下三步进行。 ⑴在充满氮气的反应容器中混合一乙醇胺和多聚甲醛。NH2CH2CH2OH+CH2OHOCH2NHCH2CH2OH ⑵向反应容器中逐滴滴加亚磷酸二甲酯,并加热反应1小时,然后冷却到室温。HOCH2NHCH2CH2OH+(CH3-O)2POH(CH3O)2P(O)CH2NHCH2CH2OH ⑶加入盐酸水解6小时, (CH3O)2P(O)CH2NHCH2CH2OH+HCI(HO)2P(O)CH2NHCH2CH2OH用31P-NMR测试反应后的混合物,产物基本不含N-(膦酰基甲基)乙醇胺。本实验研究采用新的工艺条件,用亚磷酸三甲酯代替酸式亚膦酸二甲酯制备草甘膦。 1实验 1.1反应原料亚磷酸三甲酯(分析纯),多聚甲醛(工业级),一乙醇胺(工业级纯度≥98%),氢 氧化钠(w=50%),甲醇,浓盐酸,RaneyCu催化剂。 1.2RaneyCu催化剂的制备 1.3反应步骤及工艺条件 制备N-(膦酰基甲基)乙醇胺将亚磷酸三甲酯、多聚甲醛、一乙醇胺倒入一个圆底烧瓶,烧瓶装有带磁性的搅拌器和回流冷凝器。反应器加热,反应16小时,停止反 应。反应方程如下:NH2CH2CH2OH+CH2O+(CH3-O)3P→(CH3-O)2P (O)CH2NHCH2CH2OH水解反应产物N-(膦酰基甲基-二甲氧基)乙醇胺,水 解可以在酸性条件下进行,也可以在碱性条件下进行。(CH3-O)2P(O)CH2NH CH2CH2OH→(HO)2P(O)CH2NHCH2CH2OH+CH3OH,用Ran eyCu催化剂氧化N-(膦酰基甲基)乙醇胺在GSH-1型1000ml带搅拌器的高 压反应釜中,加入N-(膦酰基甲基)乙醇胺、水、50%氢氧化钠,RaneyCu催化 剂,反应釜密封,用氮气排空气3次,再抽真空,反应在绝氧的环境下进行,加热到 160℃,压力控制在9.5kg/cm2。在反应釜内,温度随着氢气的放出而不断的上 升,180分钟后,放氢停止,证明反应结束,草甘膦钠盐的收率为98.5%。(HO)2P(O) CH2NHCH2CH2OH+NaOH〔o〕(NaO)2P(O)CH2NHCH2 COONa+H2O1.3.3草甘膦的提纯催化氧化反应产物包括草甘膦的钠盐,未反 应完的氢氧化钠和少量的N-(膦酰甲基)乙醇胺。先过滤,母液加入盐酸中和。HC l+NaOHNaCl+H2O(NaO)2P(O)CH2NHCH2COONa+HCl (HO)2P(O)CH2NHCH2COOH+NaCl生成的氯化钠基本全部溶解在水 中,草甘膦只有很少部分溶解在水中(草甘膦在水中的溶解度很小),其余以白色沉淀 析出。浓缩溶液后再加入甲醇醇析,静置一段时间后用滤纸抽滤。重复操作几次,滤 饼在(80~100)℃烘干,得到白色的草甘膦晶体。

专题5合成路线设计--教师版

有机小专题 专题5 合成路线的设计 (2)逆推法 即从目标产物入手,分析目标分子的结构,然后由目标分子逆推出原料分子,并进行合成路线的设计,其思维程序为:CH 2CHCH 3 必备知识 1.有机合成题的解题思路 2.设计有机合成路线的思维方法 (1)正推法 即从某种原料分子开始,对比目标分子与原料分子的结构(碳骨架及官能团),对该原料分子进行碳骨架的构建和官能团的引入(或者官能团的转化),从而设计出合理的合成路线,其思维程序为: 如以乙烯为原料合成乙酸乙酯,可采用正推法: 设计合成路线时,要选择反应步骤少;试剂成本低,毒性小;操作简单,污染小;副产物少。即 (3)正逆互推结合法 采用正推和逆推相结合的方法,是解决有机合成路线设计的最实用的方法。 其思维程序为 3.有机合成路线的几种常见类型 根据目标产物与原料在碳骨架和官能团两方面的特点,我们将合成路线的设计分为: (1)以熟悉官能团的转化为主 如:请设计以CH2=CHCH3为主要原料(无机试剂任用)制备CH3CH(OH)COOH的合成路线流程图(须注明反应条件)。

有机小专题 (2)以分子骨架变化为主 如:请以苯甲醛和乙醇为原料设计苯乙酸乙酯 (3)以陌生官能团及骨架显著变化为主 要注意模仿已知信息和题干中的变化,找到相似点,完成陌生官能团及骨架的变化。 如:模仿 设计以苯甲醇、硝基甲烷为主要原料制备苯乙胺 关键是找到原流程中与新合成路线中的相似点。(碳架的变化、官能团的变化; 硝基引入及转化为氨基的过程)

1.聚丙烯醛可用于合成有机高分子色素,根据Claisen 缩合反应, 设计以甲醛和乙醛为原料合成聚丙烯醛的路线。 。 Claisen 缩合:R 1—CHO +――→NaOH (aq ) △ +H 2O(R 1、 R 2和R 3表示烃基或氢) 答案:HCHO +CH 3CHO ――→Claisen 缩合 2.请写出以 和(CH 3CO)2O 为原料制备染料中间体 的合成路线 流程图(无机试剂任用): 。 已知:①RNH 2+(CH 3CO)2O ―→CH 3CONHR +CH 3COOH ②CH 3CONHR +NaOH ―→RNH 2+CH 3COONa ; ③呈弱碱性,易被氧化 答案: 3.(2017·全国高考卷Ⅰ)化合物H 是一种有机光电材料中间体。实验室由芳香化合物A 制备H 的一种合成路线如下: 已知:①RCHO +CH 3CHO ――→NaOH/H 2O △ RCH===CHCHO +H 2O ②

草甘膦

caoganlin 草甘膦 glyphosate 一种有机磷, 学名-(膦酰基甲基)甘氨酸纯品为白色固体,熔点约230℃(分解),在水中溶解度为1.2%(25℃),不溶于一般有机溶剂,它的盐在水中有更大的溶解度。毒性低,急性毒性LD50值:对大白鼠经口为4320mg/kg(见)。 草甘膦的除草性质是1971年由美国D.D.贝尔德等发现的,由开发生产,到80年代已成为世界除草剂重要品种。 生产方法主要有两种: ①加压法用三氯化磷与无水甲醛在加压下反应,产物水解得到氯甲基膦酸,再与甘氨酸缩合生成草甘膦原药。 ②常压法用氯乙酸和氨水在氢氧化钙存在下反应得到亚氨基二乙酸,再与甲醛、三氯化磷缩合生成中间体双甘膦,最后氧化得到草甘膦原药。 草甘膦是灭生性芽后除草剂,通过茎叶吸收进入植物体内,并传导至全身组织,抑制氨基酸的生物合成,干扰光合作用,使之枯死。草甘膦对一二年生和多年生深根杂草均能防除,但对作物也有药害,不可直接喷洒到作物植株上。通常使用其盐类的水溶液,用于橡胶园、茶园、果园、森林苗圃及防火带等除草,也广泛应用于铁路、公路、机场、油库、电站等非农耕地的除草。草甘膦还可配合免耕法在农作物休耕期或播种前施用,杀死田间覆盖的杂草。草甘膦在土壤中迅速分解,没有持效期。 目前我国草甘膦主要有两种生产工艺:(氯乙酸)甘氨酸法和(二乙醇胺)IDA法,氯乙酸制甘氨酸法占据主流地位(产量占70%以上)。这两种路线之所以成为国内主流主要是由国内特殊的行业环境以及技术壁垒造成。例如国内缺乏稳定低廉的HCN来源,限制了下游IDA的发展,HCN制甘氨酸更有技术方面的困难没有得到发展。二乙醇胺IDA路线也受制于国内二乙醇胺短缺、进口二乙醇胺价格昂贵。在这种特殊国情之下,国外完全淘汰的落后的氯乙酸法才占据国内主流地位。 氯乙酸-甘氨酸路线经过国内企业的多年摸索,通过优化生产工艺条件、采用先进的大型设备和DCS自控,产品收率、原材料消耗等方面不断提升,生产成本得以降低,副产物的综合利用也有明显进步。

高考要求有机合成路线设计 汇总练习

【高考要求】:有机合成路线设计---汇总练习2014.4 一、请根据提示自选反应物和反应条件写出化学方程式: 1.官能团的引入和转换 (1)C=C的形成: ①一元卤代烃在强碱的醇溶液中消去HX ②醇在浓硫酸存在的条件下消去H2O ③烷烃(C4H10)的热裂解和催化裂化 (2)C≡C的形成: ①二元卤代烃在强碱的醇溶液中消去2分子的HX ②一元卤代烯烃在强碱的醇溶液中消去HX ③实验室制备乙炔原理的应用 (3)卤素原子的引入方法: ①烷烃的卤代(主要应用与甲烷) ②烯烃、炔烃的加成(HX、X2) ③芳香烃与X2的加成 ④芳香烃苯环上的卤代 ⑤芳香烃侧链上的卤代 ⑥醇与HX的取代 ⑦烯烃与次氯酸(HO-Cl)的加成 (4)羟基(-OH)的引入方法: ①烯烃与水加成 ②卤代烃的碱性水解 ③醛的加氢还原 ④酮的加氢还原 ⑤酯的酸性或碱性水解 ⑥苯酚钠与酸反应 ⑦烯烃与HO-Cl的加成 (5)醛基(-CHO)或羰基(C=O)的引入方法: ①烯烃的催化氧化 ②烯烃的臭氧氧化分解 ③炔烃与水的加成 ④醇的催化氧化 (6)羧基(-COOH)的引入方法: ①丁烷的催化氧化制醋酸 ②苯的同系物被酸性高锰酸钾溶液氧化 ③醛的催化氧化 ④酯的水解 (7)酯基(-COO-)的引入方法: ①酯化反应的发生 ②酯交换反应的发生(甲酸甲酯和乙醇) (8)硝基(-NO2)的引入方法: ①硝化反应的发生(写出三条不同的硝化反应)

2.碳链的增减: (1)增长碳链的方法: ①2分子卤代烃与金属钠反应(武慈反应): ②烷基化反应: 1)C=O与格式试剂反应: 2)通过聚合反应: 3)羟醛缩合(即醛醛加成): (2)缩短碳链的方法: ①脱羧反应(无水醋酸钠和碱石灰共热制甲烷): ②异丙苯被酸性高锰酸钾溶液氧化: ③烷烃(C8H18)的催化裂化: 3.成环: (1)形成碳环:双烯加成(1,3-丁二烯和乙烯成六元环): (2)形成杂环:通过酯化反应形成环酯(乙二醇和乙二酸酯化) 4、官能团之间的衍变: 5、一个官能团转变成两个官能团(设计流程):CH3CH2—OH HOCH2—CH2OH Cl 6、官能团位置转移(设计流程):CH3CH2CH2Cl CH3CHCH3

有机合成工艺优化

有机合成工艺优化 1.合成工艺的优化主要就是反应选择性研究有机合成工艺优化是物理化学与有机化学相结合的产物,是用化学动力学的方法解决有机合成的实际问题,是将化学动力学的基本概念转化为有 机合成的实用技术。 首先分清三个基本概念转化率、选择性、收率。转化率是消耗的原料的摩尔数除于原料的初始摩尔数。选择性为生成目标产物所消耗的原料摩尔数除于消耗的原料的摩尔数。收率为反应生成目标产物所消耗的原料的摩尔数除于原料的初始摩尔数。可见,收率为转化率与选择性的乘积。可以这样理解这三个概念,反应中消耗的原料一部分生成了目标产物,一部分生成了杂质,为有效好的原料依然存在于反应体系中。生成目标产物的那部分原料与消耗的原料之比为选择性,与初始原料之比为收率,消耗的原料与初始原料之比为转化率。 反应的目标是提高收率,但是影响收率的因素较多,使问题复杂化。化学动力学的研究目标是提高选择性,即尽量使消耗的原料转化为主产物。只有温度和浓度是影响选择性的主要因素。在一定转化率下,主副产物之和是一个常数,副产物减少必然带来主产物增加。提高转化率可以采取延长反应时间,升高温度,增加反应物的浓度,从反应体系中移出产物等措施。而选择性虽只是温度和浓度的函数,看似简单,却远比转化率关系复杂。因此将研究复杂的收率问题转化为研究选择性和转化率的问题,可简化研究过程。 2.选择性研究的主要影响因素提高主反应的选择性就是抑制副反应,副反应不外平行副反应和连串副反应两种类型。 平行副反应是指副反应与主反应同时进行,一般消耗一种或几种相同的原料,而连串副反应是指主产物继续与某一组分进行反应。主副反应的竞争是主副反应速度的竞争,反应速度取决于反应的活化能和各反应组分的反应级数,两个因素与温度和各组分的浓度有关。因此选择性取决于温度效应和浓度效应。可是,活化能与反应级数的绝对值很难确定。但是我们没有必要知道它们的绝对值,只需知道主副反应之间活化能的相对大小与主副反应对某一组分的反应级数的相对大小就行了。我们知道,升高温度有利于活化能高的反应,降低温度有利于活化能低的反应,因此选择反应温度条件的理论依据是主副反应活化能的相对大小,而不是绝对大小。 (1)温度范围的选择:在两个反应温度下做同一合成实验时,可以根据监测主副产物的相对含量来判断主副反应活化能的相对大小,由此判断是低温还是高温有利于主反应,从而缩小了温 度选择的范围。实际经验中,一般采取极限温度的方式,低温和高温,再加上二者的中间温度, 可判断出反应温度对反应选择性的影响趋势。 (2)某一组分浓度的选择:在同一温度下(第一步已经选择好的温度下),将某一组分滴加(此组分为低浓度,其他组分就是高浓度)或一次性加入(此组分为高浓度,其他组分就是低 浓度)进行反应,就可根据监测主副产物的相对含量来判断该组分是低浓度还是高浓度有利于主 反应。确定了某一组分的浓度影响,接下来就是研究该组分的最佳配比问题。相同的条件下,再 确定其他组分浓度的影响。 (3)溶剂的影响: (4)酸碱强度的影响: (5)催化剂的影响: 3.定性反应产物 动力学研究方法要求副反应最小,而其他方法要求主反应最大。因此研究反应的选择性, 搞清副反应的产物结构是必要地前提。在条件允许的情况下,应尽量分析反应混合物的全部组 分,包括主产物,各种副产物,分析他们在气相色谱、液相色谱或薄层色谱上的相对位置和相对 大小。从而可以看出各组分的相对大小及各组分随温度和浓度条件不同的变化。对不同的副反应 采取不同的抑制方法。 (1)首先搞清反应过程中那些副产物生成;(2)重点找出含量较多的副产物的结构,因 为只有抑制了主要副反应,才能显著提高主反应的选择性;(3)根据主要副产物的结构,研究

有机合成路线设计题

. 1、局部麻醉剂苯佐卡因的合成: CH 3 HNO 3/H 2SO 4 CH 3 NO 2 KMnO 4 CO 2H NO 2H2/Pd/C CO 2H NH 2EtOH/H 3O + CO 2Et NH 2A B C D E 目标分子 2、 MeOH H 2S O 4 TM2 NaCN dil.H 2S O 4C H 3C H 3C O C H 3C H 3 C CN HO 3、 CH 3COCl/AlCl 3 COCH 3(1)EtMgBr (2)H 3O + TM3 — 4、 O Cl O 3 HCHO N N O MgBr (1)(2)H 3O TM4 CO 2H C 6H 6 O N Cl N 2 N MgCl (1)SOCl 2 (2)5 O (1) (2)TM4 5、

C H 3C CH 3 O NaCN H C CH 3 H 3C CN OH C CH 3 H 3C CN OH TM5 6、 HC CH NaNH 2 Ph C O CH 3 HC CNa (1)H 3O C Ph CH 3 C CH OH C Ph CH 3 C CH OH TM6 < 7、 TM7 Ph OH H 3O CH 3COCl AlCl 3 O 322Ph OH 8、 TM8 a b + MeMgX +CH 3COCH 3 MgBr O a b OH 9、 CO 2 Et + CO 2Et + CHO CHO a. b. TM9 TM9 LiAlH 4 H 3O + (1)NaBH 4(2)3+ OH TM9 》 RMgX +CH 3O C O OCH 3 2(2)H 3O C R R R 10、

有机合成工艺优化.doc

有机合成工艺优化方法学---心得 1.合成工艺的优化主要就是反应选择性研究 有机合成工艺优化是物理化学与有机化学相结合的产物,是用化学动力学的方法解决有机合成的实际问题,是将化学动力学的基本概念转化为有机合成的实用技术。 首先分清三个基本概念转化率、选择性、收率。转化率是消耗的原料的摩尔数除于原料的初始摩尔数。选择性为生成目标产物所消耗的原料摩尔数除于消耗的原料的摩尔数。收率为反应生成目标产物所消耗的原料的摩尔数除于原料的初始摩尔数。可见,收率为转化率与选择性的乘积。可以这样理解这三个概念,反应中消耗的原料一部分生成了目标产物,一部分生成了杂质,为有效好的原料依然存在于反应体系中。生成目标产物的那部分原料与消耗的原料之比为选择性,与初始原料之比为收率,消耗的原料与初始原料之比为转化率。 反应的目标是提高收率,但是影响收率的因素较多,使问题复杂化。化学动力学的研究目标是提高选择性,即尽量使消耗的原料转化为主产物。只有温度和浓度是影响选择性的主要因素。在一定转化率下,主副产物之和是一个常数,副产物减少必然带来主产物增加。提高转化率可以采取延长反应时间,升高温度,增加反应物的浓度,从反应体系中移出产物等措施。而选择性虽只是温度和浓度的函数,看似简单,却远比转化率关系复杂。因此将研究复杂的收率问题转化为研究选择性和转化率的问题,可简化研究过程。 2.选择性研究的主要影响因素 提高主反应的选择性就是抑制副反应,副反应不外平行副反应和连串副反应两种类型。平行副反应是指副反应与主反应同时进行,一般消耗一种或几种相同的原料,而连串副反应是指主产物继续与某一组分进行反应。主副反应的竞争是主副反应速度的竞争,反应速度取决于反应的活化能和各反应组分的反应级数,两个因素与温度和各组分的浓度有关。因此选择性取决于温度效应和浓度效应。可是,活化能与反应级数的绝对值很难确定。但是我们没有必要知道它们的绝对值,只需知道主副反应之间活化能的相对大小与主副反应对某一组分的反应级数的相对大小就行了。我们知道,升高温度有利于活化能高的反应,降低温度有利于活化能低的反应,因此选择反应温度条件的理论依据是主副反应活化能的相对大小,而不是绝对大小。 (1)温度范围的选择:在两个反应温度下做同一合成实验时,可以根据监测主副产物的相对含量来判断主副反应活化能的相对大小,由此判断是低温还是高温有利于主反应,从而缩小了温度选择的范围。实际经验中,一般采取极限温度的方式,低温和高温,再加上二者的中间温度,可判断出反应温度对反应选择性的影响趋势。 (2)某一组分浓度的选择:在同一温度下(第一步已经选择好的温度下),将某一组分滴加(此组分为低浓度,其他组分就是高浓度)或一次性加入(此组分为高浓度,其他组分就是低浓度)进行反应,就可根据监测主副产物的相对含量来判断该组分是低浓度还是高浓度有利于主反应。确定了某一组分的浓度影响,接下来就是研究该组分的最佳配比问题。相同的条件下,再确定其他组分浓度的影响。 (3)溶剂的影响: (4)酸碱强度的影响: (5)催化剂的影响: 3.定性反应产物 动力学研究方法要求副反应最小,而其他方法要求主反应最大。因此研究反应的选择性,搞清副反应的产物结构是必要地前提。在条件允许的情况下,应尽量分析反应混合物的全部组分,包括主产物,各种副产物,分析他们在气相色谱、液相色谱或薄层色谱上的相对位

有机合成路线设计

有机合成路线设计 【考试要求】 1、掌握烃(烷烃、烯烃、炔烃和芳香烃)及其衍生物(卤代烃、醇、酚、醛、羧酸、酯)的组成、结构特点和主要性质。 2、能利用不同类型有机化合物之间的转化关系设计合理路线合成简单有机化合物。 【命题趋势】 根据已经学过的有机反应以及题目给出的信息进行有机化合物的合成路线设计。 【要点梳理】 1.有机合成的原则: (1)起始原料要廉价易得,低毒性、低污染。 (2)应尽量选择步骤最少的合成路线。(3)原子经济性高,具有较高产率。 (4)有机合成反应要操作简单、条件温和、能耗低、易于实现。 2.表达方式:合成路线图 3.有机合成方法:多以逆推为主,其思维途径是 (1)首先确定要合成的有机物属于何种类型,以及题中所给的条件与所要合成的有机物之 间的关系。 (2)以题中要求最终物质为起点,考虑这一有机物如何从另一有机物甲经过一步反应制得。 若甲不是所给已知原料,需再进一步考虑甲又是如何从另一有机物乙经一步反应制得,过程中需要利用给定(或隐藏)信息,一直推导到题目给定得原料为终点。 (3)在合成某产物时,可能会产生多种不同方法和途径,应当在兼顾原料省、产率高的前 提下选择最合理、最简单的方法和途径。 4.有机合成中官能团引入与转化的常见方法 A B C 反应物 反应条件 反应物 反应条件 …… D

基 引入双 键 例1.化合物H是合成药物盐酸沙格雷酯的重要中间体,其合成路线如下: 已知:。化合物是合成抗癌药物美发伦的中间体,请写出 以和为原料制备该化合物的合成路线流程图(无机试剂任用)。合成路线流程图示例如下: 【答案】:

1.敌草胺是一种除草剂。它的合成路线如下: 已知:,写出以苯酚和乙醇为原料制备 的合成路线流程图(无机试剂任用)。合成路线流程图例如下: 2.常见氨基酸中唯一不属于α-氨基酸的是脯氨酸。它的合成路线如下: HOOCCH2CH2CHCOOH NH2 C2H5OOCCH2CH2CHCOOH NH2N H COOH N H COOH·C6(OH)Cl5 乙醇、浓硫酸 KBH4、H2O 脯氨酸 25 ℃ A B C D 五氯酚氨水 ① N H COOH ② ③④C 已知:R-NO2Fe、HCl R-NH2,写出以甲苯和乙醇为原料制备 CH3 N CH2CH3 CH2CH3 的合成路线流程图(无机试剂任选)。合成路线流程图示例如下: HBr CH3CH2Br NaOH溶液 △ CH3CH2OH CH2CH2

关于工艺流程优化的分析

关于化工工艺流程优化的分析 摘要:工艺流程的优化属于化工系统工程学研究的范围,它主要是研究在一定的条件下,如何用最合适的生产路线和生产设备,以及最节省的投资和操作费用,合成最佳的工艺流程。工艺流程也是实现产品生产的技术路线,通过对工艺流程的研究及优化,能够尽可能的挖掘出设备的潜能,找到生产瓶颈,寻求解决的途径,以达到产量高、功耗低和效益高的生产目标。 关键字:工艺流程,优化 一、化学工艺、化工工艺流程基本概念 化学工艺,即化工技术或化学生产技术,指将原料物主要经过化学反应转变为产品的方法和过程,包括实现这一转变的全部措施。化学工艺在高等学校的课程设置中,有工业化学和化学工艺学,两种课程仅在名称上不同,其内容均与上述化学生产技术的一般内容大体相似。化学生产过程一般地可概括为三个主要步骤:①原料处理。为了使原料符合进行化学反应所要求的状态和规格,根据具体情况,不同的原料需要经过进化、提浓、混合、乳化或粉碎(对固体原料)等多种不同的预处理。②化学反应。这是生产的关键步骤。经过预处理的原料,在一定的温度、压力等条件下进行反应,以达到所要求的反应转化率和收率。反应类型是多样的,可以是氧化、还原、复分解、磺化、异构化、聚合、焙烧等。通过化学反应,获得目的产物或其混合物。③产品精制。将由化学反应得到的混合物进行分离,除去副产物或杂质,以获得符合组成规格的产品。以上每一步都需在特定的设备中,在一定的操作条件下完成所要求的化学的和物理的转变。 化工工艺流程是由若干个具有独立的化工过程的工序所组成的,其结构一般都比较复杂,如果对整个工艺流程寻优,则涉及的影响因素及变量的数目太多,而不容易做出优化结论,如果把流程分解成一若干化工过程表示的工序,先对每个单一的化工过程寻优,则可运用有关的化学工程理论进行优化分析。在生产过程控制中,工艺优化是以原有生产工艺为基础,通过对生产流程、工艺条件、原辅料的深入研究,针对生产关键、工艺薄弱环节,组织技术人员改进工艺,使生产成本降低,生产过程、工艺条件达到最优化。对生产工艺流程的优化,除了技术上的参数优化调整、设备优化改造外,要想获得更大的突破、尤其是解决瓶颈

草甘膦生产工艺路线比较

草甘膦生产工艺路线比较 中国行业咨询网 https://www.360docs.net/doc/d516023123.html, 核心提示: 草甘膦(英文通用名称Glyphosate)又称农达、农民乐等,属芽后内吸非选择性高效广谱除草剂,具有广谱、低毒和无残留的特点。草甘膦主要应用于转基因作物领域。20世纪90年代以来,转基因抗草甘膦作物如大豆、玉米等的创制和大面积种植,使全球对草甘膦的需求持续增加。为此,2006年底以来,草甘膦价格疯狂上涨,我国草甘膦及上游原材料公司业绩显著提高。 1.我国草甘膦生产能力 目前,我国草甘膦生产企业约有30余家,见表1。 2.我国草甘膦生产工艺概况 我国草甘膦的生产工艺主要分为甘氨酸法和二乙醇胺一亚氨基二乙酸(IDA)法(表1)。目前甘氨酸法草甘膦占到国内总产量的70%以上,每吨草甘膦需消耗甘氨酸0.96t,国产甘氨酸80%用于草甘膦生产,市场容量20万t/a左右。草甘膦生产工艺路线见图1。

国际的主流路线则是氢氰酸-IDA(路线2)。该方法生产简单、环境友好、操作方便,成本低廉。世界最大的草甘膦生产企业孟山都在全球的6套生产装置全部采用IDA路线,年

产量20万t以上。 我国草甘膦生产工艺,氯乙酸—甘氨酸法(路线4)和二乙醇胺-IDA法(路线1),这两种路线之所以成为国内主流,主要由国内特殊的行业环境以及技术壁垒造成。例如,国内缺乏稳定低廉的HCN来源,限制了下游IDA的发展,HCN制甘氨酸技术困难尚没有克服。二乙醇胺-IDA路线也受制于国内二乙醇胺短缺、进口二乙醇胺价格昂贵。在这种特殊国情之下,已在国外完全淘汰的落后的氯乙酸法才占据了国内主流地位。 氯乙酸-甘氨酸路线经过国内企业的多年摸索,通过优化生产工艺条件、采用先进的大型设备和DCS自控,产品收率、原材料消耗等方面不断提升,生产成本得以降低,副产物的综合利用(如新安股份的氯循环)也有明显进步。但该路线的弱点也非常明显,如工艺路线长(收率不高)、产品含杂质高(提纯步骤多)、副产物和三废多(环保压力大)等。 目前,制约国内HCN路线草甘膦的两个主要瓶颈(高质量的HCN原料和甘氨酸技术壁垒)均已经明显改善,拓展草甘膦市场优势得天独厚。我国天然气资源丰富,天然气制HCN 技术已经相对成熟。重庆紫光化工的亚氨基二乙腈纯度达到95%以上,销售价格13500-14000元/t,相比二乙醇胺有一定的价格优势,发展IDA路线草甘膦具备明显的经济价值。正在重庆筹建5万t/a亚氨基二乙腈,类似路线在其他企业实施也有传闻。由HCN合成IDA 收率较高(文献收率85%-90%),工艺过程适合连续化、大规模生产,三废低、副产物少,也是国际主流的草甘膦生产工艺。而三峡英力则是甘氨酸路线进步的代表。该路线的技术先进性非常明显:流程短,如无需氧化步骤;副产物少;产品质量好。一旦困扰该路线的甘氨酸生产技术得到突破,竞争力也非常突出。这两种天然气HCN路线也存在一定的竞争关系,从行业的角度,这种路线之争对于提高我国草甘膦行业技术水平、降低生产成本和环保压力大有好处。不同草甘膦路线的比较见表2。

(完整版)高考有机合成路线设计的常用方法资料

有机合成的文化的构成与训练 有机合成题,近几年的江苏高考题中,重现率几乎百分之百,从04年的“由丁二烯通过双烯合成,制备甲基环己烷”到05年的“以溴代甲基环己烷为原料合成6-羰基庚酸”,每年的命题方式、形式略有变化:04年重点在推断物质结构,书写结构简式和化学方程式;05年着重在设计合成流程图,具有新意,但难度太大;06年有所改进。 一、要讲技巧,更要讲思想。 ㈠有机合成的重要意义 有机合成是有机化学的核心。学习和研究有机化学的目的,最终是为了合成自然界已存在的和自然界并不存在而人为设计的具有特定结构,因而具有特定性能和用途的有机化合物以造福人类。现在已经发现的三千多万种物质中,绝大部分是科学家合成的有机物。 在1828年武勒开始有机合成直至本世纪60年代之前,人们一直是从原料开始,逐步经过碳链的连接和官能团的安装最后完成的。但由于没有通用的思维规范,其设计过程往往需要相当丰富的理论和实践经验,十分困难。1964年E.J.Corey首创用逆推的方式设计合成路线,由于他独特的操作方式,高度规范合成设计的程序,并使其具备了相对固定的逻辑思维推理模式,因而易学易用,大大推动了这一学科的发展。E.J.Corey也因此获得了1990年诺贝尔化学奖。 人们对有机产品的研究,已经达到一个较高的水准了。如果预测某种结构的有机物具有某项特殊用途,或特殊性质,接下来的问题就是如何寻找合适的原料,采用合理的合成路线,来合成该物质了,所以有机合成具有广阔前景。 ㈡有机合成路线的设计原则 ①原理正确、步骤简单(产率高) ②原料丰富、价格低廉 ③条件合适、操作方便 ④产物纯净、污染物少(易分离) 二、有机合成题的训练方法 首先要掌握“学情”,对症下药,进行针对性的讲解和训练;其次要用经典的例题,特别是近三年的高考题进行典型引导,以建构有机合成的“模型”;再次要充分利用各类有机框图题,进行逆向思维,即以这类题为“素材”,灵活地进行合成路线的训练。 ㈠学生中存在的问题 ①官能团的引入、消除“硬装斧头柄”。究其原因是学生有机基本反应类型掌握不扎实。 ②步骤先后随心所欲。究其原因是没有很好理解有关官能团的相互影响等知识。 ③合成“绕圈子”看不出是为了保护官能团。究其原因是思路狭窄,没有理解条件对反应进行的影响。 ④题给信息不能很好的吸收应用。究其原因是对题给信息解读不够,审题也不严密。当然,也和教师给学生相关的训练太少有关。不妨把经常出现的信息归纳整理给学生。 ㈡有机合成的常见题型 ①给定原料、指定目标分子,设计合成路线,要求书写化学方程式。 例如:以乙烯为初始反应物可制得正丁醇(CH3CH2CH2CH2OH),已知两个醛分子在一定条件下可以自身加成。下式中反应的中间产物(Ⅲ)可看成是由(Ⅰ)中的碳氧双键打开,分别跟(Ⅱ)中的2-位碳原子和2-位氢原子相连而得。(Ⅲ)是一种3-羟基醛,此醛不稳定,

草甘膦工艺介绍

草甘膦项目工艺介绍 一、亚磷酸二甲酯 1、反应原理及流程简图 (1) 主反应 3CH 3OH +PCl 3 (CH 3O )2POH +2HCl +CH 3Cl (2)副反应 PCl 3+3CH 3OH H 3 P O 3+3CH 3Cl (3)生产工艺流程简图 盐酸 配碱釜 亚磷酸二甲酯去草甘膦合成 氯甲烷去回收 2、生产工艺流程简述 (1)酯化岗位 三氯化磷和甲醇以一定的投料比经预冷器后投入酯化釜在55℃、负压下进行酯化反应,反应生成的氯甲烷,氯化氢气体(夹带少量甲醇等)经两级冷凝后,过量甲醇等组分重新回流到酯化釜继续反应,氯甲烷和氯化氢经气液分离器到吸收岗位。酯化反应产物在75℃下经过两级脱酸后,得到亚磷酸二甲酯的粗品(含亚磷酸)。脱酸釜出来的气体经冷凝后,一部分重新回流到酯化釜参加反应,其余气体经气液分离器到吸收岗位。 (2)吸收岗位 酯化反应产生的氯化氢、氯甲烷气体经高浓盐酸吸收器、浓盐酸吸收器、稀盐酸吸收塔和碱洗塔后,经除雾器、尾气缓冲罐和罗茨风机到氯甲烷回收工段。

(3)蒸馏岗位 在高真空条件下,酯化反应合成的亚磷酸二甲酯粗品经预热后进入蒸馏塔在140℃、-740mmHg下进行真空蒸馏,塔顶产物经两级冷凝后,一部分回流至蒸馏塔,其余进入酯受槽,供草甘膦生产;高沸物(亚磷酸)由再生器排入残液受槽,冷却到室温,亚磷酸包装出售。 (4)氯甲烷回收岗位 来自草甘膦、亚磷酸二甲酯的副产物氯甲烷,通过水洗、碱洗、干燥(酸洗)、压缩、冷却获得氯甲烷产品。 工艺流程简图 氯甲烷 工艺流程简述 来自草甘膦、亚磷酸二甲酯的氯甲烷尾气(氯甲烷含量为60%)经预洗塔水洗后(预洗)进入碱洗塔与从塔顶加入经碱冷凝器预冷至约-5℃的5-15%的碱液喷淋逆流吸收温度为35℃,以除去混合气中的残余的氯化氢,同时因气体被冷却,进一步脱水,15%的氢氧化钠水溶液,通过碱循环泵循环使用,当碱液浓度<5%时更换新碱,浓度小于5%的碱液送至配碱釜。 经过碱洗塔洗涤的混合气,从水洗塔下部进入,与从塔顶喷沸的水接触40℃下进行洗涤,除去气体中的氯化氢和甲醇,从塔底出来的洗涤液经过水冷凝器冷却后,水从塔顶喷淋洗涤,循环使用,水由循环水泵打循环。 出水洗塔的气体经除雾器除雾后进入第一干燥塔下部,与从塔顶喷淋的75%-93%的硫酸逆流接触温度为50℃,75%-93%的硫酸来自第二干燥塔塔底,并

有机合成路线设计专题复习学案

《有机合成路线设计》专题复习学案 杜来意 、【20仃年考纲】 根据信息能设计有机化合物的合成路线。 、【2016年真题】 三、【学习过程】 1?碳链不变,官能团的种类(个数、位置)改变。 例1.(2016新课标III卷)38(6)写出用2-苯基乙醇为原料(其他无机试剂任选) 制备化合物D 的合成路线: 题干:利用Glaser反应制备化合物E的一种合成路线: CHsCfCL AICI3 △ ① 光照 ② B C b Cf q 1)NaN% 』2)fO ③ ACH .As Glase反应 U D * C16H10

2?碳链增长,官能团的种类(个数、位置)改变。 例2.(2016新课标I 卷)38 (6)参照上述合成路线,以 仮,反)-2 , 4-己二烯和 C 2H 4为原料(无机试剂任选),设计制备对苯二甲酸的合成路线: 题干:以秸秆为原料合成聚酯类高分子化合物的路线: OH OH — I 例 3.(2016年北京卷)25 (7)已知: 2CH 3CHO CH ’CHCHQHO 始原料,选用必要的无机试剂合成 E ,写出合成路线(用结构简式表示有机物, 用箭头表示转化关系,箭头上注明试剂和反应条件)。 CH 3 -CH -CH — COOCH2^^>- NO 2 高分子P 2、补充完成合成路线 例4.(2016天津卷)8 (5)以D 为主要原料制备己醛(目标化合物),在方框中将 合成路线的后半部分补充完整。 秸秆 HOOC 5 COOH 1,4-丁二醇 催化剂 聚酯G H 2 Pd/C 生物催化r. HOOC — A (顺,顺)-2,4-己二 COO 宀 HOOC, (反,反)-2,4-己二烯二酸 COOH CH 3OH H + △ * C 8H 10O 4 C △ C 2H 4 PET *!化剂 H 3COOC-匚-C 。。泌燈 fOOCf Y COOCH 3 以乙烯为起 题干:功能高分子P 的合成路线如下:

逆合成分析法与合成路线设计

第 6 章 逆合成分析法与合成路线设计 20世纪60年代,Corey 在总结前人和他自己成功合成多种复杂有机分子的基础上,提出了合成路线设计及逻辑推理方法。创立了由合成目标逆推到合成用起始原料的方法—逆合成分析法。该方法现在已成为合成有机化合物特别是对复杂分子的合成具有独特体系的有效方法。 6.1 逆合成分析法 6.1.1 逆合成分析法概念 有机合成是利用一种或数种结构简单的原料经一步或数步有机化学反应得到既定目标产物的过程,可表示如下: 逆合成分析法是将合成目标经过多种逆合成操作转变成结构简单的前体,在将前体按同样方法进行简化,反复进行直到得出与市售原料结构相同为止,可表示如下: 图6-1 多路线逆合成分析示意图 1.合成子 Corey 的定义:合成子是指分子中可由相应的合成操作生成该分子或用反向操作使其降解的结构单元。一个合成子可以大到接近整个分子,也可以小到只含一个氢原子。分子的合成子数量和种类越多,问题就越复杂。例如: 原料 ( 产物 ) 目标分子 官能团转换另外的目标分子 逆合成转变 前体(合成子) 逆合成转变 前体的前体 原料 目 标 分 子A D E F B G H J C O L M N 多路线逆合成分析示意图

在这些结构单元中,只有(d)和(e)是有效的,叫有效合成子。因为(d)可以修饰为C 6H 5COC-HCOOCH 3,(e)可以修饰为 。识别这些有效合成子特别重要,因其与分子骨架的形成有直接关系。而识别的依据是有关合成的知识和反应,也就是说有效合成子的产生必须以某种合成的知识和反应为依据。 亲电体和亲核体相互作用可以形成碳-碳键、碳-杂键及环状结构等,从而建立起分子骨架。例如: 若将上述反应中的亲电体、亲核体提出来,反应简化为 再将上述式子反向,便得到将目标分子简化为亲电体、亲核体基本结构单元的方法,从而也就产生了相应的合成子。在这类合成子中,带负电的称为给予合成子(donor synthon ),简称为d 合成子;带正电的称为接受合成子(acceptor synthon ),即a 合成子。与合成子相应的化合物或能起合成子作用的化合物称为等价试剂。依照官能团和活性碳原子的相对位臵将合成子进行编号分类。 2CH 2COOCH 3 C 6H 5COCHCOOCH 3 (a) C 6H 5 (b) C 6H 5CO (c) COOCH 3 (d) C 6H 5COCHCOOCH 3 (g) OCH 3CH 3OCOCH 2 CH 2 3 (e) CH 2CH 2COOCH 3 (f)C M +C X C C +MX + C MgX O C C OH COOEt C OEt O O COOEt C +C C C :C C O C +C O :COOEt C O O COOEt CH 2CH 2COOCH 3

专题11有机合成路线的设计

专题11 有机合成路线的设计 【本讲任务】 掌握烃(烷烃、烯烃、炔烃和芳香烃)及其衍生物(卤代烃、醇、酚、醛、羧酸、酯)的组成、结构特点和主要性质。能利用不同类型有机化合物之间的转化关系设计合理路线合成简单有机化合物。 【考题解析】 例1、敌草胺是一种除草剂。它的合成路线如下: 已知:,写出以苯酚和乙醇为原料制备的合成路线流程图(无机试剂任用)。 答案 思路点拨本题是一道基础有机合成题,仅将敌草胺的合成过程列出,着力考查阅读有机合成方案、利用题设信息、解决实际问题的能力,也考查了学生对信息接受和处理的敏锐程度、思维的整体性和对有机合成的综合分析能力。本题涉及到有机物性质、有机官能 团、同分异构体推理和书写,合成路线流程图设计与表达,重点考查学生思维的敏捷性 和灵活性,对学生的信息获取和加工能力提出较高要求。 由A的结构简式可看出,A中含有酚羟基,易被空气中的氧气氧化;能与金属钠反应放出H2说明含有羟基,可发生水解反应,其中一种水解产物能发生银镜反应,说明是甲酸某酯。另一种水解产物分子中有5种不同化学环境的氢,说明水解产物苯环支链一定是对称的,且支链是一样的。由C和E的分子式可知,E是由A和C反应生成的。 例2、已知:,

写出由C()制备化合物的合成路线流程图(无机试剂任选)。 答案 思路点拨本题是一道综合性的有机物合成题,本题主要考察的是结构简式、同分异构体的书写、有机反应类型和根据条件进行有机合成,同时也要关注重要官能团的性质。 (1)比较容易,就是羟基上的B和Br进行取代,可知其结构为 (2)同样通过F的结构式分析可知由C、D合成化合物F仍然是卤素原子与H的取代反应(3)通过对其相对分质量的分析可知,出来发生取代反应外,又发生了消去反应,故其结 构为; (4)综上分析可知,在H分子结构中,有苯环、氨基、羧基、羟基,由此不难得出其分子 结构为和; (5)关注官能团种类的改变,搞清反应机理。 例3、化合物H是合成药物盐酸沙格雷酯的重要中间体,其合成路线如下: 已知:。化合物是合成抗癌药物美发伦的中间体,请写出以和为原料制备该化合物的合成路线流程图(无机试剂任用)。

62%草甘膦异丙胺盐合成工艺优化小试研究

62%草甘膦异丙胺盐合成工艺优化小试研究 李延博,方建明,沈 洁,刘凤羽 (广州创特技术有限公司,广东广州 510055) 摘 要:通过强化反应过程中异丙胺的分散,对工艺过程进行优化,提高了反应速率,降低了反应过程中冷却水和蒸汽的使用量,提高了装置利用率。 关键词:异丙胺;草甘膦异丙胺盐;优化 中图分类号:T E357 文献标识码:A 文章编号:1006—7981(2012)14—0039—01 草甘膦是目前广泛使用的一种光谱灭生性除草剂,随着抗草甘膦转基因作物品种的不断丰富和种植面积的不断扩大,对草甘膦的需求量将继续扩大[1] 。草甘膦异丙胺盐除有一般草甘膦具备的内吸传导型、光谱、灭生性等特性外,还具有除草药效好,水溶性更高的特点。草甘膦异丙胺盐水剂是目前市 场上的主导品种,全球销售超过几十万吨[2] 。 当前国内的62%草甘膦异丙胺盐水剂生产厂家普遍存在的主要问题是:装置利用率低、单釜产能小、能耗高、劳动条件差等一系列问题。通过对国内62%草甘膦异丙胺盐水剂厂家的生产过程分析,发现配置过程效率低、能耗高的主要原因在于装置的异丙胺分散较差,从而影响异丙胺的加入速度,在异丙胺加入速度加快后来不及反应的异丙胺挥发,造成操作环境差,现场有异丙胺的刺鼻气味,同时造成异丙胺消耗量过高。为了克服异丙胺挥发的问题,在异丙胺加入过程中需要通冷却水,而在草甘膦和异丙胺反应结束后为了保证62%草甘膦异丙胺盐水剂的稳定性,还要用蒸汽把物料升温到90℃,这种先冷却再加热的方式造成能耗较高,且反应速率较慢。 为了克服上述问题,采取强化传质的方式,加快异丙胺的加入速度,同时利用反应过程放出的热量对物料进行加热,加快了反应速率,提高了装置利用率、降低了能耗、改善了操作环境,为反应装置的放大奠定了基础。1 实验部分1.1 实验装置 实验用的反应器为玻璃材质的四口烧瓶,四个口分别为搅拌器入口,冷凝管接口、进料口和温度计接口,烧瓶外部采用棉花保温。1.2 反应物质量计算 草甘膦与异丙胺的化学反应方程式 : 假设反应后6%草甘膦异丙胺盐水剂的质量为 100g,则草甘膦异丙胺盐的质量为62g 。反应过程中为了保证草甘膦完全反应,异丙胺要适当过量,异丙胺与草甘膦的摩尔比为:1。 草甘膦的质量=62g 228g/mol ×169g/mol ÷0.95 =48.4g 异丙胺的质量= 62g 228g/mol ×1.2×59g/mol ÷ 0.99=19.8g 水的质量=100-48.4-19.8=31.8g 由上面的计算结果可知:得到100g62%草甘膦异丙胺盐所需的草甘膦、异丙胺和水的质量分别为48.4g 、19.8g 、31.8g 。1.3 实验过程 先搭建上图所示的实验装置,电机、搅拌器、四口烧瓶和冷凝管由铁架台固定,冷凝管的目的是冷凝挥发的异丙胺,从加料口加入一定量的水,调节温度计的高度,直至温度计的液泡完全浸在液面下,然后固定。打开搅拌器,草甘膦由加料口加入,调节搅拌器的转速至草甘膦与水能够充分混合,然后将异丙胺由加料口用滴液漏斗加入,可以通过滴液漏斗下面的旋塞控制异丙胺的加入速度。 39  2012年第14期 内蒙古石油化工 收稿日期55 作者简介李延博(—),男,工学硕士。 2:2012-0-2:1982

相关文档
最新文档