糖酵解生化作业

糖酵解生化作业
糖酵解生化作业

一、选择题

1、在厌氧条件下,下列哪一种化合物会在哺乳动物肌肉组织中积累?(C)

A、丙酮酸

B、乙醇

C、乳酸

D、CO2

2、磷酸戊糖途径的真正意义在于产生( )的同时产生许多中间物如核糖等。(A)

A、NADPH+H+

B、NAD+

C、ADP

D、CoASH

3、磷酸戊糖途径中需要的酶有(C)

A、异柠檬酸脱氢酶

B、6-磷酸果糖激酶

C、6-磷酸葡萄糖脱氢酶

D、转氨酶

4、下面哪种酶既在糖酵解又在葡萄糖异生作用中起作用?(B)

A、丙酮酸激酶

B、3-磷酸甘油醛脱氢酶

C、1,6-二磷酸果糖激酶

D、已糖激酶

5、生物体内ATP最主要的来源是(D)

A、糖酵解

B、TCA循环

C、磷酸戊糖途径

D、氧化磷酸化作用

6、在TCA循环中,下列哪一个阶段发生了底物水平磷酸化?(B)

A、柠檬酸→α-酮戊二酸

B、α-酮戊二酸→琥珀酸

C、琥珀酸→延胡索酸

D、延胡索酸→苹果酸

7、丙酮酸脱氢酶系需要下列哪些因子作为辅酶?(B)

A、NAD+

B、NADP+

C、FMN

D、CoA

8、在三羧酸循环中,由α-酮戊二酸脱氢酶系所催化的反应需要(C)

A、NAD+

B、NADP+

C、CoASH

D、ATP

9、糖酵解是在细胞的什么部位进行的。(B)

A、线粒体基质

B、胞液中

C、内质网膜上

D、细胞核内

10、糖异生途径中哪一种酶代替糖酵解的己糖激酶?(C)

A、丙酮酸羧化酶

B、磷酸烯醇式丙酮酸羧激酶

C、葡萄糖-6-磷酸酯酶

D、磷酸化酶

11、糖原分解过程中磷酸化酶催化磷酸解的键是(C)

A、a-1,6-糖苷键

B、b-1,6-糖苷键

C、a-1,4-糖苷键

D、b-1,4-糖苷键

12、丙酮酸脱氢酶复合体中最终接受底物脱下的2H的辅助因子是(C)

A、FAD

B、CoA

C、NAD+

D、TPP

二、是非题(在题后括号内打√或×)

1、每分子葡萄糖经三羧酸循环产生的ATP分子数比糖酵解时产生的ATP多一倍。(×)

2、哺乳动物无氧下不能存活,因为葡萄糖酵解不能合成ATP。(×)

3、6—磷酸葡萄糖转变为1,6-二磷酸果糖,需要磷酸己糖异构酶及磷酸果糖激酶催化。(√)

4、葡萄糖是生命活动的主要能源之一,酵解途径和三羧酸循环都是在线粒体内进行的。(×)

5、糖酵解反应有氧无氧均能进行。(√)

6、在缺氧的情况下,丙酮酸还原成乳酸的意义是使NAD+再生。(√)

7、三羧酸循环被认为是需氧途径,因为还原型的辅助因子通过电子传递链而被氧化,以使循环所需的载氢体再生。(√)

三、问答题

1、何谓三羧酸循环?它有何特点和生物学意义?

答:三羧酸循环是指在线粒体中,乙酰CoA首先与草酰乙酸缩合生成柠檬酸,然后经过一系列的代谢反应,最终重新生成草酰乙酸的循环反应过程。

特点是:①循环反应在线粒体(mitochondrion)中进行,为不可逆反应。

②柠檬酸循环中有两次脱羧反应,生成两分子CO2,但这两个C原子并不是进入

循环的乙酰CoA的两个C原子。

③循环中有四次脱氢反应,生成三分子NADH和一分子FADH2。

④循环中有一次底物水平磷酸化,生成一分子GTP。

⑤循环的中间产物既不能通过此循环反应生成,也不被此循环反应所消耗。

⑥柠檬酸循环的关键酶是柠檬酸合酶、异柠檬酸脱氢酶和 -酮戊二酸脱氢酶系。生物学意义:①三羧酸循环是机体将糖或者其他物质氧化而获得能量的最有效方式。

②三羧酸循环是糖,脂和蛋白质三大类物质代谢和转化的枢纽。

2、磷酸戊糖途径有何特点?其生物学意义何在?

答:特点:①1分子G-6-P全部氧化为6分子CO2,并产生12个具有强还原力NADPH。

②不需要ATP作为反应物,低ATP浓度情况下葡萄糖经过戊糖循环也可进行

氧化。

反应部位:胞浆

反应底物:6-磷酸葡萄糖

重要反应产物:NADPH、5-磷酸核糖

限速酶:6-磷酸葡萄糖脱氢酶(G-6-PD)

生理意义:①产生5-磷酸核糖

②产生NADPH

3、糖酵解和发酵有何异同?糖酵解过程需要那些维生素或维生素衍生物参与?

答:糖酵解:是酶将葡萄糖降解成丙酮酸,并伴随着生成ATP的过程。是好氧动物、植物和微生物细胞分解产生能量的共同代谢途径。

发酵:厌氧有机体(如酵母)把酵解产生的NADH中的H交给丙酮酸脱羧生成乙醛,乙醛还原形成乙醇。这个过程叫酒精发酵。若将H交给丙酮酸生成乳酸,则是

乳酸发酵。

相同点:①都要进行以下三个阶段:葡萄糖→1,6-二磷酸果糖;1,6-二磷酸果糖→3-磷酸甘油醛;3-磷酸甘油醛→丙酮酸。

②都在细胞质中进行。不同点:通常所说的糖酵解就是葡萄糖→丙酮酸阶段。

根据氢受体的不同可以把发酵分为两类:(1)丙酮酸接受来自3-磷酸甘油醛脱

下的一对氢生成乳酸的过程称为乳酸发酵。(2)丙酮酸脱羧后的产物乙醛接受

来自3-磷酸甘油醛脱下的一对氢生成乙醇的过程称为酒精发酵。

糖酵解过程需要的维生素或维生素衍生物有:NAD+。

4、试述糖异生与糖酵解代谢途径有哪些差异。

答:糖酵解途径是指细胞在细胞质中分解葡萄糖生成丙酮酸的过程。

糖异生是由非糖物质转变为葡萄糖或糖原的过程。

糖异生途径和酵解途径的关系是:①糖异生主要沿酵解途径逆行。②仅有三步不可逆的反应,需采取迂回措施绕道而行越过这三个“能障”。③需要跨越一个“膜障”。

四、名词解释

糖酵解:是酶将葡萄糖降解成丙酮酸,并伴随着生成ATP的过程。是好氧动物、植物和微生物细胞分解产生能量的共同代谢途径。

三羧酸循环:在线粒体中,乙酰CoA首先与草酰乙酸缩合生成柠檬酸,然后经过一系列的代谢反应,最终重新生成草酰乙酸的循环反应过程。

磷酸戊糖途径:以6-磷酸葡萄糖开始,在6-磷酸葡萄糖脱氢酶催化下形成6-磷酸葡萄糖酸,进而代谢生成磷酸戊糖为中间代谢物的过程。

糖的有氧分解:葡萄糖在有氧条件下彻底氧化成水和二氧化碳的反应过程。

糖的无氧分解:葡萄糖在无氧条件下分解成乙醇和二氧化碳或者乳酸的反应过程。

糖异生作用:由非糖物质转变为葡萄糖或糖原的过程称为糖异生。

生物化学王镜岩(第三版)课后习题解答

第一章糖类 提要 糖类是四大类生物分子之一,广泛存在于生物界,特别是植物界。糖类在生物体内不仅作为结构成分和主要能源,复合糖中的糖链作为细胞识别的信息分子参与许多生命过程,并因此出现一门新的学科,糖生物学。 多数糖类具有(CH2O)n的实验式,其化学本质是多羟醛、多羟酮及其衍生物。糖类按其聚合度分为单糖,1个单体;寡糖,含2-20个单体;多糖,含20个以上单体。同多糖是指仅含一种单糖或单糖衍生物的多糖,杂多糖指含一种以上单糖或加单糖衍生物的多糖。糖类与蛋白质或脂质共价结合形成的结合物称复合糖或糖复合物。 单糖,除二羟丙酮外,都含有不对称碳原子(C*)或称手性碳原子,含C*的单糖都是不对称分子,当然也是手性分子,因而都具有旋光性,一个C*有两种构型D-和L-型或R-和S-型。因此含n个C*的单糖有2n个旋光异构体,组成2n-1对不同的对映体。任一旋光异构体只有一个对映体,其他旋光异构体是它的非对映体,仅有一个C*的构型不同的两个旋光异构体称为差向异构体。 单糖的构型是指离羧基碳最远的那个C*的构型,如果与D-甘油醛构型相同,则属D系糖,反之属L 系糖,大多数天然糖是D系糖Fischer E论证了己醛糖旋光异构体的立体化学,并提出了在纸面上表示单糖链状立体结构的Fischer投影式。许多单糖在水溶液中有变旋现象,这是因为开涟的单糖分子内醇基与醛基或酮基发生可逆亲核加成形成环状半缩醛或半缩酮的缘故。这种反应经常发生在C5羟基和C1醛基之间,而形成六元环吡喃糖(如吡喃葡糖)或C5经基和C2酮基之间形成五元环呋喃糖(如呋喃果糖)。成环时由于羰基碳成为新的不对称中心,出现两个异头差向异构体,称α和β异头物,它们通过开链形式发生互变并处于平衡中。在标准定位的Hsworth式中D-单糖异头碳的羟基在氧环面下方的为α异头物,上方的为β异头物,实际上不像Haworth式所示的那样氧环面上的所有原子都处在同一个平面,吡喃糖环一般采取椅式构象,呋喃糖环采取信封式构象。 单糖可以发生很多化学反应。醛基或伯醇基或两者氧化成羧酸,羰基还原成醇;一般的羟基参与成脂、成醚、氨基化和脱氧等反应;异头羟基能通过糖苷键与醇和胺连接,形成糖苷化合物。例如,在寡糖和多糖中单糖与另一单糖通过O-糖苷键相连,在核苷酸和核酸中戊糖经N-糖苷键与心嘧啶或嘌呤碱相连。 生物学上重要的单糖及其衍生物有Glc, Gal,Man, Fru,GlcNAc, GalNAc,L-Fuc,NeuNAc (Sia),GlcUA 等它们是寡糖和多糖的组分,许多单糖衍生物参与复合糖聚糖链的组成,此外单糖的磷酸脂,如6-磷酸葡糖,是重要的代谢中间物。 蔗糖、乳糖和麦芽糖是常见的二糖。蔗糖是由α-Glc和β- Fru在两个异头碳之间通过糖苷键连接而成,它已无潜在的自由醛基,因而失去还原,成脎、变旋等性质,并称它为非还原糖。乳糖的结构是Gal β(1-4)Glc,麦芽糖是Glcα(1-4)Glc,它们的末端葡萄搪残基仍有潜在的自由醛基,属还原糖。环糊精由环糊精葡糖基转移酶作用于直链淀粉生成含6,7或8个葡萄糖残基,通过α-1,4糖苷键连接成环,属非还原糖,由于它的特殊结构被用作稳定剂、抗氧化剂和增溶剂等。 淀粉、糖原和纤维素是最常见的多糖,都是葡萄糖的聚合物。淀粉是植物的贮存养料,属贮能多糖,是人类食物的主要成分之一。糖原是人和动物体内的贮能多糖。淀粉可分直链淀粉和支链淀粉。直链淀粉分子只有α-1,4连键,支链淀粉和糖原除α-1,4连键外尚有α-1,6连键形成分支,糖原的分支程度比支链淀粉高。纤维素与淀粉、糖原不同,它是由葡萄糖通过β-1.4糖苷键连接而成的,这一结构特点使纤维素具有适于作为结构成分的物理特性,它属于结构多糖。 肽聚糖是细菌细胞壁的成分,也属结构多糖。它可看成由一种称胞壁肽的基本结构单位重复排列构成。胞壁肽是一个含四有序侧链的二糖单位,G1cNAcβ(1-4)MurNAc,二糖单位问通过β-1,4连接成多糖,链相邻的多糖链通过转肽作用交联成一个大的囊状分子。青霉素就是通过抑制转肽干扰新的细胞壁形成而起抑菌作用的。磷壁酸是革兰氏阳性细菌细胞壁的特有成分;脂多糖是阴性细菌细胞壁的特有成分。 糖蛋白是一类复合糖或一类缀合蛋白质。许多内在膜蛋白质和分泌蛋白质都是糖蛋白。糖蛋白和糖脂中的寡糖链,序列多变,结构信息丰富,甚至超过核酸和蛋白质。一个寡糖链中单糖种类、连接位置、异

(完整word版)生化上册作业.

一、问答题 1.食用油长时间放置后,为什么会有异味? 不饱和脂肪酸被氧化或水解的过程和现象,酸败的食物具有难闻气味和难吃味道。油脂长时间暴露于温热和潮湿的环境中,会产生所谓的臭油味。这些臭油味就是由于脂肪被氧化或水解而产生的:水解酸败从脂肪里的脂肪酸链中把甘油结构分解出来,并继续被水解或氧化。 2.为什么有的抑制剂虽不与底物结合部位结合,但仍表现出竞争性 抑制? 1.反竞争性抑制:抑制剂不能与游离酶结合,但可与ES复合物结合并阻止产物生成,使酶的催化活性降低,称酶的反竞争性抑制。其特点为:a.抑制剂与底物可同时与酶的不同部位结合;b.必须有底物存在,抑制剂才能对酶产生抑制作用;c.动力学参数:Km减小,Vm降低。 2. 非竞争性抑制:抑制剂既可以与游离酶结合,也可以与ES复合物结合,使酶的催化活性降低,称为非竞争性抑制。其特点为:a.底物和抑制剂分别独立地与酶的不同部位相结合;b.抑制剂对酶与底物的结合无影响,故底物浓度的改变对抑制程度无影响;c.动力学参数:Km值不变,Vm值降低。 3.肌红蛋白与血红蛋白的疏水侧链的比例有何不同? 4.DNA在纯水中为何易变性? 磷酸脊骨在中性pH 下,会带有许多负电荷,导致两股 DNA 相互排斥分离而变性,要加入镁离子稳定之,因此DNA 不能溶在纯水中。

真核细胞核中含带有强正电性的组织蛋白(histone),与DNA 结合成复杂结构,并中和掉核酸的负电荷。 5.蛋白质的酸水解通常只能检测到17种氨基酸,为什么? 因为有些氨基酸在酸性条件下不能稳定存在,比如天冬酰胺,谷氨酰胺 6.磷脂可作为细胞膜成分的分子特征是什么? 7.用哪两种简易的方法可以区别酶的可逆抑制和不可逆抑制? 透析和增加底物量 8.利用SDS电泳和分子筛层析测得的血红蛋白的分子量是不同的,为 什么?(一个变性,另一个未变性) 血红蛋白分子是四聚体,如果SDS电泳加了还原剂测出来的分子量(16-17KDa)就是一个多肽亚基的分子量,是血红蛋白分子量的四分之一。 9.从营养学的角度看,奇数碳原子的脂肪酸比偶数碳原子的脂肪酸 营养价值高,为什么? 10.一位生物化学家在对某酶分离纯化过程中得到以下实验结果.

生物化学作业及答案

蛋白质化学(答案) 一、填空题 1、天冬氨酸得pK1(α-COOH) = 2、09,pK2(α-NH2) = 9、82,pK R(R-基团) = 3、86,其pI值就是2、98 。 2、脯氨酸与茚三酮反应产生黄色物质,而其她α-氨基酸与茚三酮反应产生蓝紫色物质。 3、氨基酸序列自动分析仪就是根据Edman 反应原理设计得,该反应利用试剂PITC与肽链上得氨 基酸反应。 4、英国化学家Sanger用试剂2,4-二硝基氟苯首次测定了牛胰岛素得一级结构,并于1958年 获诺贝尔化学奖。 5、通常可以用紫外分光光度法测定蛋白质得含量,这就是因为蛋白质分子中得Phe 、Tyr 与Trp 三种氨基酸有紫外吸收得能力。 6、蛋白质在等电点时溶解度最小,净电荷为0 ,在电场中应不运动。 7、维持蛋白质得一级结构得化学键有肽键与二硫键;维持二级结构靠氢键;维系 蛋白质三四级结构得主要作用力就是次级键,其中以疏水作用力最重要。 8、球状蛋白分子中,一般疏水(非极)性氨基酸侧链位于分子内部,亲水(极)性氨基 酸侧链位于分子表面。 9、蛋白质几乎参与所有得生命活动过程,如胶原蛋白就就是皮肤中得结构蛋白,血红蛋白负责在血 液中__运输_氧气与CO2,免疫反应产生得抗体对脊椎动物具有重要得__保护_作用。 10、一个IgG分子由 2 条轻链与 2 条重链组成,不同得链之间通过二硫键连接,每条链都具 有可变区与恒定区。 11、肌红蛋白具有 1 条多肽链,其最高级结构为三级结构,血红蛋白具有 4 条多肽链,其最高 级结构为四级结构。 12、将肌红蛋白与血红蛋白得α链、β链进行对比,可以发现它们得结构相似,如70%得氨基酸在二级结 构上形成α-螺旋,每条链均含有一个血红素辅基,用以运输氧气。 13、现有分子量分别为12000(A),21000(B),30000(C)三种蛋白质,将它们得混合物进行凝胶过滤 柱层析,最先流出柱子得就是 C 蛋白,若进行SDS-PAGE,则最靠近胶底端得条带就是 A 蛋白。 二、选择题 1、下列氨基酸中除 a 外,都就是极性氨基酸。 a、 Leu b、Cys c、 Asp d、Ser 2、下列因素中,不影响α-螺旋形成得就是 d 、 a、碱性氨基酸相近排列 b、酸性氨基酸相近排列 c、脯氨酸得存在 d、丙氨酸得存在

王镜岩(第三版)生物化学下册课后习题答案

第19章代谢总论 ⒈怎样理解新陈代谢? 答:新陈代谢是生物体内一切化学变化的总称,是生物体表现其生命活动的重要特征之一。它是由多酶体系协同作用的化学反应网络。新陈代谢包括分解代谢和合成代谢两个方面。新陈代谢的功能可概括为五个方而:①从周围环境中获得营养物质。②将外界引入的营养物质转变为自身需要的结构元件。③将结构元件装配成自身的大分子。④形成或分解生物体特殊功能所需的生物分子。⑤提供机体生命活动所需的一切能量。 ⒉能量代谢在新陈代谢中占何等地位? 答:生物体的一切生命活动都需要能量。生物体的生长、发育,包括核酸、蛋白质的生物合成,机体运动,包括肌肉的收缩以及生物膜的传递、运输功能等等,都需要消耗能量。如果没有能量来源生命活动也就无法进行.生命也就停止。 ⒊在能量储存和传递中,哪些物质起着重要作用? 答:在能量储存和传递中,ATP(腺苷三磷酸)、GTP(鸟苷三磷酸)、UTP(尿苷三磷酸)以及CTP(胞苷三磷酸)等起着重要作用。 ⒋新陈代谢有哪些调节机制?代谢调节有何生物意义? 答:新陈代谢的调节可慨括地划分为三个不同水平:分子水平、细胞水平和整体水平。 分子水平的调节包括反应物和产物的调节(主要是浓度的调节和酶的调节)。酶的调节是最基本的代谢调节,包括酶的数量调节以及酶活性的调节等。酶的数量不只受到合成速率的调节,也受到降解速率的调节。合成速率和降解速率都备有一系列的调节机制。在酶的活性调节机制中,比较普遍的调节机制是可逆的变构调节和共价修饰两种形式。 细胞的特殊结构与酶结合在一起,使酶的作用具有严格的定位条理性,从而使代谢途径得到分隔控制。 多细胞生物还受到在整体水平上的调节。这主要包括激素的调节和神经的调节。高等真核生物由于分化出执行不同功能的各种器官,而使新陈代谢受到合理的分工安排。人类还受到高级神经活动的调节。 除上述各方面的调节作用外,还有来自基因表达的调节作用。 代谢调节的生物学意义在于代谢调节使生物机体能够适应其内、外复杂的变化环境,从而得以生存。 ⒌从“新陈代谢总论”中建立哪些基本概念? 答:从“新陈代谢总论”中建立的基本概念主要有:代谢、分解代谢、合成代谢、递能作用、基团转移反应、氧化和还原反应、消除异构及重排反应、碳-碳键的形成与断裂反应等。 ⒍概述代谢中的有机反应机制。 答:生物代谢中的反应大体可归纳为四类,即基团转移反应;氧化-还原反应;消除、异构化和重排反应;碳-碳键的形成或断裂反应。这些反应的具体反应机制包括以下几种:酰基转移,磷酰基转移,葡糖基基转移;氧化-还原反应;消除反应,分子内氢原子的迁移(异构化反应),分子重排反应;羟醛综合反应,克莱森酯综合反应,β-酮酸的氧化脱羧反应。

第十一章 糖类代谢--王镜岩《生物化学》第三版笔记(完美打印版)

第十一章糖类代谢 第一节概述 一、特点 糖代谢可分为分解与合成两方面,前者包括酵解与三羧酸循环,后者包括糖的异生、糖原与结构多糖的合成等,中间代谢还有磷酸戊糖途径、糖醛酸途径等。 糖代谢受神经、激素和酶的调节。同一生物体内的不同组织,其代谢情况有很大差异。脑组织始终以同一速度分解糖,心肌和骨骼肌在正常情况下降解速度较低,但当心肌缺氧和骨骼肌痉挛时可达到很高的速度。葡萄糖的合成主要在肝脏进行。不同组织的糖代谢情况反映了它们的不同功能。 二、糖的消化和吸收 (一)消化 淀粉是动物的主要糖类来源,直链淀粉由300-400个葡萄糖构成,支链淀粉由上千个葡萄糖构成,每24-30个残基中有一个分支。糖类只有消化成单糖以后才能被吸收。 主要的酶有以下几种: 1.α-淀粉酶哺乳动物的消化道中较多,是内切酶,随机水解链内α1,4糖苷键,产生α-构型的还原末端。产物主要是糊精及少量麦芽糖、葡萄糖。最适底物是含5个葡萄糖的寡糖。 2.β-淀粉酶在豆、麦种子中含量较多。是外切酶,作用于非还原端,水解α-1,4糖苷键,放出β-麦芽糖。水解到分支点则停止,支链淀粉只能水解50%。 3.葡萄糖淀粉酶存在于微生物及哺乳动物消化道内,作用于非还原端,水解α-1,4糖苷键,放出β-葡萄糖。可水解α-1,6键,但速度慢。链长大于5时速度快。 4.其他α-葡萄糖苷酶水解蔗糖,β-半乳糖苷酶水解乳糖。 二、吸收 D-葡萄糖、半乳糖和果糖可被小肠粘膜上皮细胞吸收,不能消化的二糖、寡糖及多糖不能吸收,由肠细菌分解,以CO2、甲烷、酸及H2形式放出或参加代谢。 三、转运 1.主动转运小肠上皮细胞有协助扩散系统,通过一种载体将葡萄糖(或半乳糖)与钠离子转运进入细胞。此过程由离子梯度提供能量,离子梯度则由Na-K-ATP酶维持。细菌中有些糖与氢离子协同转运,如乳糖。另一种是基团运送,如大肠杆菌先将葡萄糖磷酸化再转运,由磷酸烯醇式丙酮酸供能。果糖通过一种不需要钠的易化扩散转运。需要钠的转运可被根皮苷抑制,不需要钠的易化扩散被细胞松驰素抑制。 2.葡萄糖进入红细胞、肌肉和脂肪组织是通过被动转运。其膜上有专一受体。红细胞受体可转运多种D-糖,葡萄糖的Km最小,L型不转运。此受体是蛋白质,其转运速度决定肌肉和脂肪组织利用葡萄糖的速度。心肌缺氧和肌肉做工时转运加速,胰岛素也可促进转运,可能是通过改变膜结构。 第二节糖酵解 一、定义 1.酵解是酶将葡萄糖降解成丙酮酸并生成ATP的过程。它是动植物及微生物细胞中葡萄糖分解产生能量的共同代谢途径。有氧时丙酮酸进入线粒体,经三羧酸循环彻底氧化生成CO2和水,酵解生成的NADH则经呼吸链氧化产生ATP和水。缺氧时NADH把丙酮酸还原生成乳酸。 2.发酵也是葡萄糖或有机物降解产生ATP的过程,其中有机物既是电子供体,又是电子受体。根据产物不同,可分为乙醇发酵、乳酸发酵、乙酸、丙酸、丙酮、丁醇、丁酸、琥珀酸、丁二醇等。 二、途径 共10步,前5步是准备阶段,葡萄糖分解为三碳糖,消耗2分子ATP;后5步是放能阶段,

生化室作业指导书

生化室作业指导书 文件编号:ZTGRY-1-SH-01~61 第1版 审核: 批准:

生效日期:2014年1月1日 梓潼县工人医院检验科

目录

修订页

血清总胆红素(T-BIL)测定 1. 实验原理 血清中的胆红素分为直接(结合)胆红素和间接(未结合)胆红素。大多数方法是在1883年Ehrlich提出的重氮法胆红素测量法1,一些改良的方法已被用来增进反应。这些改良的方法是使直接胆红素直接和重氮化合物进行反应,生成一种有颜色的化合物,而间接胆红素需要一种溶剂,如表面活性剂后才能进行反应。 英诺华总胆红素试剂是钒酸氧化法,PH接近于3时,在钒酸盐及表面活性剂的作用下,总胆红素被氧化成胆绿素。此时,胆红素特有的黄色减少,通过测定钒酸作用前后的吸光度的差可求得样品中总胆红素的浓度。 胆红素钒酸胆绿素 2. 标本: 2.1 病人准备:无特殊要求。最好用禁食的标本以减少乳糜血的干扰。 2.2 类型:血清、肝素或EDTA血浆,应避光保存。 3. 标本存放:15~25℃保存可稳定2天;2~8℃保存可稳定7天;-20℃保存可稳定3个月,如冰冻保存,不可反复冻融!。 4. 标本运输:常温条件下避光保存运输。 5. 标本拒收标准:标本溶血、细菌污染、脂血、非避光保存运输的标本。 6. 实验材料 6.1 试剂:英诺华总胆红素试剂盒(试剂1: 4×32ml;试剂2:8ml) 6.1.1 试剂组成 试剂1: 柠檬酸缓冲液88mmol/L 试剂2: 磷酸盐缓冲液50mmol/L 偏钒酸钠3mmol/L SID 见瓶签 6.1.2 试剂准备:液体试剂,直接使用,无需配制。 6.1.3 试剂稳定性与贮存 试剂避光保存于2~8℃,若无污染,可稳定至失效期。试剂有效期为12个月。试剂2必需避光保存。试剂不可冰冻。

生化作业6

选择 1.关于三羧酸循环,下列的叙述哪条不正确 A.产生NADH和FADH2 B.有GTP生成C.氧化乙酰CoA D.提供草酰乙酸净合成E.在无氧条件下不能运转 2.大脑中1分子葡萄糖彻底氧化分解可净生成几分子A TP A.24 B.26 C.28 D.30 E.32 3.以NADP+作为氢受体形成NADPH的代谢途径是 A.糖酵解B.三羧酸循环C.磷酸戊糖途径D.糖异生E.脂代谢 4.下列关于三羧酸循环的叙述中,正确的是 A.循环一次可生成4分子NADH B.循环一次可直接使1分子ADP磷酸化成ATP C.乙酰CoA可经草酰乙酸进行糖异生D.丙二酸可抑制延胡索酸转变成苹果酸E.琥珀酰CoA是-酮戊二酸氧化脱羧的产物 5.1分子乙酰CoA经三羧酸循环氧化后的产物是 A.草酰乙酸B.草酰乙酸和CO2 C.2FADH2+2NADH D.2CO2+ GTP+ FADH2+3NADH 6.关于三羧酸循环过程的叙述,下列哪项是正确的 A.循环一周可生成4个NADH+H+ B.乙酰CoA经三羧酸循环转变为草酰乙酸后可进行糖异生 C.顺乌头酸是柠檬酸转变为异柠檬酸时的中间产物 D.循环一周有2次底物水平磷酸化 7.下列三羧酸循环的关键酶是 A.磷酸果糖激酶B.乳酸脱氢酶C.丙酮酸激酶D.异柠檬酸脱氢酶E.葡萄糖激酶 8.1mol乙酰CoA在线粒体内氧化成CO2及H2O的同时可生成A TP A.2 B.30 C.32 D.12.5 E.10 9.1分子葡萄糖彻底氧化分解可净生成几分子ATP A.22或24 B.26或28 C.28或30 D.34或36 E.36或38 10.经三羧酸循环及氧化磷酸化中能产生ATP最多的反应步骤是 A.苹果酸→草酰乙酸B.琥珀酸→延胡索酸C.α-酮戊二酸→琥珀酸D.异柠檬酸-酮戊二酸E.柠檬酸→异柠檬酸 11.1mol乳酸在体内彻底氧化分解产生的ATP的mol 数为 A.11或12 B.14或15 C.17或18 D.20或21 E.23或24 12.1mol丙酮酸彻底氧化分解将能够生成多少摩尔的ATP

生物化学第三版课后习题答案

1. 举例说明化学与生物化学之间的关系。 提示:生物化学是应用化学的理论和方法来研究生命现象,在分子水平上解释和阐明生命现象化学本质的一门学科. 化学和生物化学关系密切,相互渗透、相互促进和相互融合。一方面,生物化学的发展 依赖于化学理论和技术的进步,另一方面,生物化学的发展又推动着化学学科的不断进步和创新。 举例:略。 2.试解释生物大分子和小分子化合物之间的相同和不同之处。 提示:生物大分子一般由结构比较简单的小分子,即结构单元分子组合而成,通常具有特定的空间结构。常见的生物大分子包括蛋白质、核酸、脂类和糖类。 生物大分子与小分子化合物相同之处在丁: 1) 共价键是维系它们结构的最主要的键; 2)有一定的立休形象和空间大小; 3)化学和|物理性质主要决定于分子中存在的官能团。生物大分子与小分子化合物不同之处在于: (1) 生物大分子的分子量要比小分子化合物大得多,分子的粒径大小差异很大; (2) 生物大分子的空间结构婴复杂得多,维系空间结构 的力主要是各种非共价作用力; (3) 生物大分子特征的空间结构使其具有小分子化合物所不 具有的专性识别和结合位点,这些位点通过与相应的配体特异性结合,能形成超分子,这种特性是许多重要生理现象的分子基础。 3. 生物大分子的手性特征有何意义? 提示:生物大分子都是手性分子,这种结构特点在生物大分子的分子识别及其特殊的生理功能方面意义重大。主要表现在: (1) 分子识别是产生生理现象的重要基础,特异性识别对于 产生特定生物效应出关重要; (2) 生物大分了通过特征的三维手性空间环境能特异性识别前 手性的小分子配体,产生专一性的相互作用。 4.指出取代物的构型: 6.举例说明分子识别的概念及其意义。 提示: :分子识别是指分子间发生特异性结合的相互作用,如tRNA分子与氨酰tRNA合成醉的相互作用,抗体与抗原之间的相互作用等。分子识别是生命体产生各种生理现象的化学本质,是保证生命活动有序地进行的分子基础。 7. 什么是超分子?说明拆分超分子的方法和原理。 提示:在生物化学领域中,超分子是指生物分子问或生物分子与配体分子间相互作用和识别所形成的复合物。超分子的形成过程就是非共价键缔合的过程,是可逆的过程。该过程受介质极性和休系温度的影响,由于缔合是放热的过程,所以当介质极性增大和体系温度升高时,超分子就会被拆分。另外,强酸或强碱环境也可使这种非共价键作用遭到破坏,从而将超分子拆分。 8.缓冲溶液的缓冲能力与哪些因素有关? 提示: (1) 缓冲溶液总浓度:缓冲溶液的总浓度越大,溶液中所含的抗酸抗碱成分越多,缓 冲能力越强。(2) 缓冲比:对于同-缓冲休系的各缓冲溶液,当缓冲溶液的总浓度一定时,缓冲溶液的缓冲能力随缓冲比的改变而改变。

生化作业

1.有四种氨基酸,其解离常数分别为: 氨基酸pK1(α-COOH) pK2(α-NH3+) pK3(R) Cys 1.71 8.33 10.78 Glu 2.19 9.67 4.25 Arg 2.17 9.04 12.48 T yr 2.20 9.11 10.07 问:⑴四种氨基酸的等电点分别是多少? ⑵四种氨基酸在pH=7的电场中各向哪个方向移动? 2.一种氨基酸的可解离基团可以带电或中性状态存在,这取决于它的pK值和溶液的pH。已知: pK(α-COOH)=1.82; pK(α-NH3+)=9.17; pK3(R)=6.0 (a)组氨酸有3种可解离基团,写出相应于每个pK 值的3种解离状态的平衡方程式。每种解离状态下的组氨酸分子的净电荷是多少? (b)在pH1、4、8和12时,组氨酸的净电荷分别是多少?将每一pH下的组氨酸置于电场中,它们将向阴极还是阳极迁移?

3.胃液(pH=1.5)的胃蛋白酶的等电点约为1,远比其它蛋白质低。试问等电点如此低的胃蛋白酶必须存在有大量的什么样的官能团?什么样的氨基酸才能提供这样的基团? 4.利用阳离子交换层析分离下列每一对氨基酸,哪一种氨基酸首先被pH7缓冲液从离子交换柱上洗脱出来。 (a)Asp和Lys(b)Arg和Met 5.下列试剂和酶常用于蛋白质化学的研究中: CNBr 异硫氰酸苯酯丹黄酰氯脲6mol/LHCl β-巯基乙醇水合茚三酮过甲酸胰蛋白酶胰凝乳蛋白酶 其中哪一个最适合完成以下各项任务? (a)测定小肽的氨基酸序列。 (b)鉴定肽的氨基末端残基。 (c)不含二硫键的蛋白质的可逆变性。若有二硫键存在时还需加什么试剂? (d)在芳香族氨基酸残基羧基侧水解肽键。 (e)在蛋氨酸残基羧基侧水解肽键。 (f)在赖氨酸和精氨酸残基侧水解肽键。

生化作业3

选择题 1.下列有关酶的叙述,正确的是 A.生物体内的无机催化剂 B.催化活性都需要特异的辅酶 C.对底物都有绝对专一性 D.能显著地降低反应活化能 E.在体内发挥催化作用时,不受任何调控 2.辅酶和辅基的差别在于 A.辅酶为小分子有机物,辅基常为无机物 B.辅酶与酶共价结合,辅基则不是 C.经透析方法可使辅酶与酶蛋白分离,辅基则不能 D.辅酶参与酶反应,辅基则不参与 E.辅酶含有维生素成分,辅基则不含 3.关于酶活性中心的叙述,正确的是 A.酶原有能发挥催化作用的活性中心 B.由一级结构上相互邻近的氨基酸组成C.必需基团存在的唯一部位D.均由亲水氨基酸组成E.含结合基团和催化基团 4.辅酶在酶促反应中的作用是 A.起运载体的作用B.维持酶的空间构象 C.参加活性中心的组成D.促进中间复合物形成E.提供必需基团 5.关于酶竞争性抑制剂的叙述错误的是 A.抑制剂与底物结构相似 B.抑制剂与底物竞争酶的底物结合部位 C.增加底物浓度也不能达到最大反应速度 D.当抑制剂存在时Km值变大 E.抑制剂与酶非共价结合 6.有关竞争性抑制剂的论述,错误的是 A.结构与底物相似 B.与酶的活性中心相结合 C.与酶的结合是可逆的 D.抑制程度只与抑制剂的浓度有关 7.Km值是指 A.酶-底物复合物的解离常数 B.酶促反应达到最大速度时所需底物浓度的一半 C.达到1/2 Vmax时所需的底物浓度 D.酶促反应的底物常数 E.酶与底物的亲和常数

8.下列有关Km值说法正确的是 A.Km值等于酶促反应速度为最大反应速度一半时的底物浓度 B.Km表示酶对底物亲和力的大小 C.多底物反应的酶对不同的底物,有不同的Km值 D.Km是酶的特征性常数 E.以上都正确 9.关于Km值的意义,叙述不正确的是 A.Km是酶的特征常数B.Km值与酶的结构有关 C.Km值与酶的底物有关D.Km值与酶的浓度有关 E.Km值等于反应速度为最大速度一半时的底物浓度 10.酶的竞争性抑制剂具有的动力学特点是 A.Vmax不变,Km减小B.Vmax不变,Km增大 C.Vmax增大,Km不变D.Vmax减小,Km不变 E.Vmax和Km都不变 11.非竞争性抑制的动力学参数表现为 A.Km不变,Vmax变小B.Km不变,Vmax变大 C.Km变大,Vmax不变D.Km变小,Vmax不变 E.Km变小,Vmax变小 12.下图是几种抑制作用的双倒数作图,其中直线X代表无抑制剂时的作图,那么表示竞争 性抑制作用的是B A.A B.B C.C D.D E.E 13.已知某种酶的Km值为0.05 mol/L,试问要使此酶催化的反应速度达最大反应速度的80%,底物浓度应是多少? A.0.04 mol/l B.0.08 mol/l C.0.02 mol/l D.0.05 mol/l E.0.20 mol/l 14.某符合米氏方程的酶,当其反应速度达到最大速度的40% 时,其Km等于 A.[S] B.1.5 [S] C.2 [S] D.2.5 [S] E.3 [S] 15.要使酶所催化的反应速度达到最大反应速度的80%,底物的浓度应为 A.Km B.2 Km C.3 Km D.4 Km 16.某一符合米曼氏方程的酶,当[S]=Km时,其反应速度v等于 A.1/2 Vmax B.2/3 Vmax C.3/2 Vmax D.2 Vmax E.3 Vmax

《生物化学》第三版答案详解(上册部分)

3-1] 表3-1 氨基酸的简写符号 名称三字母符号单字母符号名称三字母符号单 字母符号丙氨酸(alanine) Ala A 亮氨酸(leucine) Leu L 精氨酸(arginine) Arg R 赖氨酸(lysine) Lys K 天冬酰氨(asparagines) Asn N 甲硫氨酸(蛋氨酸)(methionine) Met M 天冬氨酸(aspartic acid) Asp D 苯丙氨酸(phenylalanine) Phe F Asn和/或Asp Asx B 半胱氨酸(cysteine) Cys C 脯氨酸(praline) Pro P 谷氨酰氨(glutamine) Gln 丝氨酸(serine) Ser S 谷氨酸(glutamic acid) Glu E 苏氨酸(threonine) Thr T Gln和/或Glu Gls Z 甘氨酸(glycine) Gly G 色氨酸(tryptophan) Trp W 组氨酸(histidine) His H 酪氨酸(tyrosine) Tyr Y 异亮氨酸(isoleucine) Ile I 缬氨酸(valine) Val V 2、计算赖氨酸的εα-NH3+20%被解离时的溶液PH。[9.9] 解:pH = pKa + lg20% pKa = 10.53 (见表3-3,P133) pH = 10.53 + lg20% = 9.83 3、计算谷氨酸的γ-COOH三分之二被解离时的溶液pH。[4.6] 解:pH = pKa + lg2/3% pKa = 4.25

pH = 4.25 + 0.176 = 4.426 4、计算下列物质0.3mol/L溶液的pH:(a)亮氨酸盐酸盐;(b)亮氨酸钠盐;(c)等电亮氨酸。[(a)约1.46,(b)约11.5, (c)约6.05] 5、根据表3-3中氨基酸的pKa值,计算下列氨基酸的pI值:丙氨酸、半胱氨酸、谷氨酸和精氨酸。[pI:6.02;5.02;3.22;10.76] 解:pI = 1/2(pKa1+ pKa2) pI(Ala) = 1/2(2.34+9.69)= 6.02 pI(Cys) = 1/2(1.71+10.78)= 5.02 pI(Glu) = 1/2(2.19+4.25)= 3.22 pI(Ala) = 1/2(9.04+12.48)= 10.76 6、向1L1mol/L的处于等电点的甘氨酸溶液加入0.3molHCl,问所得溶液的pH是多少?

生物化学作业参考答案

1、营养不良的人饮酒,或者剧烈运动后饮酒,常出现低血糖。试分析酒精干预了体内糖代谢的哪些环节?(p1413题) 答:酒精对于糖代谢途径的影响主要有:肝脏的糖异生与糖原分解反应,也就是来源与去路的影响。1)研究认为,酒精可以诱导低血糖主要取决于体内糖原储备是否充足,然而在人营养不良或者剧烈运 动后,体内糖原过度消耗,酒精又能抑制肝糖原的分解,饮酒后容易出现低血糖。 2)抑制糖异生: ①酒精的氧化抑制了苹果酸/天冬氨酸转运系统,导致细胞间质中还原当量代谢紊乱,使丙酮酸浓度下降,从而抑制糖异生; ②酒精能影响糖异生关键酶活性-非活性的转换,酶总量,酶合成或降解,从而抑制糖异生,如果糖二磷酸酶-1活性的抑制,磷酸烯醇式丙酮酸羧基酶的表达降低等; 3)影响葡萄糖-6磷酸酶的活性,导致乳酸循环受阻,不利于血糖升高。 4)酒精使胰岛a细胞功能降低,促进胰岛素的分泌,抑制胰高血糖素的分泌,从而抑制糖原分解,促进糖酵解,造成低血糖。 5)酒精还会影响小肠对糖分的吸收,从而造成低血糖。 2、列举几种临床上治疗糖尿病的药物,想一想他们为什们有降低血糖的作用?(p141 4题) 答:1)胰岛素 它能增加组织对葡萄糖的摄取和利用,促进糖原的合成抑制糖异生,减少血糖来源,似血糖降低; 2)胰岛素促泌剂 ?磺脲类药物,格列苯脲等,通过刺激胰岛beta细胞分泌胰岛素,增加体内胰岛素水平而降低血糖;?格列奈类,如瑞格列奈,通过刺激胰岛素的早起合成分泌而降低餐后血糖。 3)胰岛素曾敏剂 如噻唑烷二酮类的罗格列酮可以通过增加靶细胞对胰岛素的敏感性而降低血糖。另外如双胍类药,如二甲双胍,它能降低血浆中脂肪酸的浓度而增加胰岛素的敏感性,增加周围组织对胰岛素的敏感性,增加胰岛素介导的葡萄糖的利用,也能增加非胰岛素依赖的组织对葡萄糖的摄取和利用。 4)a-糖苷酶抑制剂,如阿卡波糖,在肠道内竞争性的抑制葡萄糖苷水解酶,降低多糖或蔗糖分解成葡萄糖,抑制小肠对碳水化合物的吸收而降低餐后血糖。 3、治疗血浆胆固醇异常升高有哪些可能的措施?理论依据是什么?(p174 3题) 答:1)血浆胆固醇异常升高的治疗措施主要:有调整生活方式与饮食结构、降脂药物治疗、血浆净化治疗、外科治疗和基因治疗。具体的治疗方案则应根据患者的血浆LDL-胆固醇水平和冠心病的危险因素情况而决定。而且,降脂治疗的目标亦取决于患者的冠心病危险因素。一般而言,危险因素越多,则对其降脂的要求就越高(即目标血脂水平越低)。 2)但是继发型高脂血症的治疗主要是积极治疗原发病,并可适当地结合饮食控制和降脂药物治疗。 A. 控制理想体重。肥胖人群的平均血浆胆固醇和三酰甘油水平显着高于同龄的非肥胖者。除了体重指数(BMI)与血脂水平呈明显正相关外,身体脂肪的分布也与血浆脂蛋白水平关系密切。一般来说,中心型肥胖者更容易发生高脂血症。肥胖者的体重减轻后,血脂紊乱亦可恢复正常。 B. 运动锻炼体育运动不但可以增强心肺功能、改善胰岛素抵抗和葡萄糖耐量,而且还可减轻体重、降低血浆三酰甘油和胆固醇水平,升高HDL胆固醇水平。 C. 戒烟吸烟可升高血浆胆固醇和三酰甘油水平,降低HDL-胆固醇水平。停止吸烟1年,血浆HDL-胆固醇可上升至不吸烟者的水平,冠心病的危险程度可降低50%,甚至接近于不吸烟者。 D. 饮食治疗

生物化学第三版课后习题答案详解上册

第三章氨基酸 提要 a -氨基酸是蛋白质的构件分子,当用酸、碱或蛋白酶水解蛋白质时可获得它们。蛋白质中的氨基酸都是L 型的。但碱水解得到的氨基酸是D 型和L 型的消旋混合物。 参与蛋白质组成的基本氨基酸只有20 种。此外还有若干种氨基酸在某些蛋白质中存在,但它们都是在蛋白质生物合成后由相应是基本氨基酸(残基)经化学修饰而成。除参与蛋白质组成的氨基酸外,还有很多种其他氨基酸存在与各种组织和细胞中,有的是B -、丫-或5 -氨基酸,有些是D型氨基酸。 氨基酸是两性电解质。当pH接近1时,氨基酸的可解离基团全部质子化,当pH 在13左右时,则全部去质子化。在这中间的某一pH (因不同氨基酸而异),氨基酸以等电的兼性离子(H3N+CHRCOO状态存在。某一氨基酸处于净电荷为零的兼性离子状态时的介质pH 称为该氨基酸的等电点,用pI 表示。 所有的a -氨基酸都能与茚三酮发生颜色反应。a -NH2与2,4-二硝基氟苯(DNFB作用产生相应的DNP氨基酸(Sanger反应);a -NH2与苯乙硫氰酸酯(PITC)作用形成相应氨基酸的苯胺基硫甲酰衍生物(Edman 反应)。胱氨酸中的二硫键可用氧化剂(如过甲酸)或还原剂(如巯基乙醇)断裂。半胱氨酸的SH基在空气中氧化则成二硫键。这几个反应在氨基酸荷蛋白质化学中占有重要地位。 除甘氨酸外a -氨基酸的a -碳是一个手性碳原子,因此a -氨基酸具有光学活性。比旋是a-氨基酸的物理常数之一,它是鉴别各种氨基酸的一种根据。 参与蛋白质组成的氨基酸中色氨酸、酪氨酸和苯丙氨酸在紫外区有光吸收,这是

紫外吸收法定量蛋白质的依据。核磁共振(NMR波谱技术在氨基酸和蛋白质的化学表征方面起重要作用。 氨基酸分析分离方法主要是基于氨基酸的酸碱性质和极性大小。常用方法有离子交换柱层析、高效液相层析(HPLC等。 习题 1. 写出下列氨基酸的单字母和三字母的缩写符号:精氨酸、天冬氨酸、谷氨酰氨、谷氨酸、苯丙氨酸、色氨酸和酪氨酸。[ 见表3-1] 表3-1 氨基酸的简写符号 名称三字母符号单字母符号名称三字母符号单字母符号 丙氨酸(alanine)Ala A亮氨酸 (leucine)Leu L 精氨酸(arginine)Arg R赖氨 酸(lysine)Lys K 天冬酰氨(asparagines)Asn N甲

《生物化学》作业参考答案

四、名词解释: 1. 酶的活性中心必需基团在空间结构中彼此靠近,形成一个能与底物特异性结合并催化底物转化为产物的特定空间区域。 2.葡萄糖耐量:指人体对摄入的葡萄糖具有很大的耐受能力的现象。 3. 底物水平磷酸化底物分子内部原子重排,使能量集中而产生高能键,然后 将高能磷酸键转给ADP生成ATP的过程。 4. 糖异生由非糖物质转变为葡萄糖或糖原的过程称为糖异生。 5. 翻译以mRNA为模板指导蛋白质的合成过程称为翻译。 6.糖酵解:葡萄糖在无氧条件下分解为乳酸的过程。 7.氧化磷酸化:代谢物脱下的氢经呼吸链氧化的过程中,氧化与磷酸化相偶联称为氧化磷酸化。 8.同工酶:是指催化相同的化学反应,但酶蛋白的分子结构、理化性质乃至免疫学特性不同的一组酶。 9.电泳:带电粒子在电场中泳动的现象。 10.核小体:染色体的基本组成单位,由DNA与组蛋白缠绕而成。 五、写出下列酶促反应方程式的底物和产物 1、脂酰CoA合成酶脂肪酸+HSCoA+ATP------脂酰CoA+AMP+PPi 2、柠檬酸合成酶乙酰CoA+草酰乙酸------柠檬酸 3、氨甲酰磷酸合成酶Ⅰ NH3+CO2+H2O+2ATP----氨甲酰磷酸+2ADP+Pi 4、丙酮酸羧化酶丙酮酸+ CO2+ATP-----草酰乙酸+ADP+Pi 5、HMGCoA合成酶乙酰乙酰CoA+乙酰CoA-----HMGCoA+ HSCoA 6.柠檬酸合成酶乙酰CoA+草酰乙酸------柠檬酸 7.己糖激酶葡萄糖+ATP----6-磷酸-葡萄糖+ADP+Pi 8.氨基甲酰磷酸合成酶I NH 3+CO 2 +H 2 O+2ATP----氨甲酰磷酸+2ADP+Pi 9.葡萄糖6-磷酸酶 6-磷酸-葡萄糖------葡萄糖10.HMGCoA合成酶乙酰乙酰CoA+乙酰CoA-----HMGCoA+ HSCoA

生物化学(第三版)课后习题详细解答

生物化学(第三版)课后习题详细解答 第三章 氨基酸 提要 α-氨基酸是蛋白质的构件分子,当用酸、碱或蛋白酶水解蛋白质时可获得它们。蛋白质中的氨基酸都是L 型的。但碱水解得到的氨基酸是D 型和L 型的消旋混合物。 参与蛋白质组成的基本氨基酸只有20种。此外还有若干种氨基酸在某些蛋白质中存在,但它们都是在蛋白质生物合成后由相应是基本氨基酸(残基)经化学修饰而成。除参与蛋白质组成的氨基酸外,还有很多种其他氨基酸存在与各种组织和细胞中,有的是β-、γ-或δ-氨基酸,有些是D 型氨基酸。 氨基酸是两性电解质。当pH 接近1时,氨基酸的可解离基团全部质子化,当pH 在13左右时,则全部去质子化。在这中间的某一pH (因不同氨基 酸而异),氨基酸以等电的兼性离子(H 3N +CHRCOO -) 状态存在。某一氨基酸处于净电荷为零的兼性离子状态时的介质pH 称为该氨基酸的等电点,用pI 表示。 所有的α-氨基酸都能与茚三酮发生颜色反应。α-NH 2与2,4-二硝基氟苯(DNFB )作用产生相应的DNP-氨基酸(Sanger 反应);α-NH 2与苯乙硫氰酸酯(PITC )作用形成相应氨基酸的苯胺基硫甲酰衍生物( Edman 反应)。胱氨酸中的二硫键可用氧化剂(如过甲酸)或还原剂(如巯基乙醇)断裂。半胱氨酸的SH 基在空气中氧化则成二硫键。这几个反应在氨基酸荷蛋白质化学中占有重要地位。 除甘氨酸外α-氨基酸的α-碳是一个手性碳原子,因此α-氨基酸具有光学活性。比旋是α-氨基酸的物理常数之一,它是鉴别各种氨基酸的一种根据。 参与蛋白质组成的氨基酸中色氨酸、酪氨酸和苯丙氨酸在紫外区有光吸收,这是紫外吸收法定量蛋白质的依据。核磁共振(NMR )波谱技术在氨基酸和蛋白质的化学表征方面起重要作用。 氨基酸分析分离方法主要是基于氨基酸的酸碱性质和极性大小。常用方法有离子交换柱层析、高效液相层析(HPLC )等。 习题 1.写出下列氨基酸的单字母和三字母的缩写符号:精氨酸、天冬氨酸、谷氨酰氨、谷氨酸、苯丙氨酸、色氨酸和酪氨酸。[见表3-1] 3[9.9] 解:pH = pKa + lg20% pKa = 10.53 (见表3-3,P133) pH = 10.53 + lg20% = 9.83 3、计算谷氨酸的γ-COOH 三分之二被解离时的溶液pH 。[4.6] 解:pH = pKa + lg2/3% pKa = 4.25 pH = 4.25 + 0.176 = 4.426 4、计算下列物质0.3mol/L 溶液的p H :(a)亮氨酸盐酸盐;(b)亮氨酸钠盐;(c)等电亮氨酸。[(a)约1.46,(b)约11.5, (c)约6.05] 5、根据表3-3中氨基酸的pKa 值,计算下列氨基酸的pI 值:丙氨酸、半胱氨酸、谷氨酸和精氨酸。[pI:6.02;5.02;3.22;10.76] 解:pI = 1/2(pKa1+ pKa2) pI(Ala) = 1/2(2.34+9.69)= 6.02 pI(Cys) = 1/2(1.71+10.78)= 5.02 pI(Glu) = 1/2(2.19+4.25)= 3.22 pI(Ala) = 1/2(9.04+12.48)= 10.76 6、向1L1mol/L 的处于等电点的甘氨酸溶液加入0.3molH C l ,问所得溶液的pH 是多少?如果加入0.3mol N aOH 以代替H Cl 时,pH 将是多少?[pH :2.71;9.23] 7、将丙氨酸溶液(400ml )调节到pH 8.0,然后向该溶液中加入过量的甲醛,当所得溶液用碱反滴定至Ph 8.0时,消耗0.2mol/L NaOH 溶液250ml 。问起始溶液中丙氨酸的含量为多少克?[4.45g ] 8、计算0.25mol/L 的组氨酸溶液在pH 6.4时各种 离子形式的浓度(mol/L )。[H is 2+为1.78×10-4 ,H is + 为0.071,His 0为2.8×10-4 ] 9、说明用含一个结晶水的固体组氨酸盐酸盐(相对分子质量=209.6;咪唑基pKa=6.0)和1mol/L KOH 配制1L pH 6.5的0.2mol/L 组氨酸盐缓冲液的方法[取组氨酸盐酸盐41.92g(0.2mol),加入352ml 1mol/L KOH ,用水稀释至1L] 10、为什么氨基酸的茚三酮反映液能用测压法定量氨基酸? 解:茚三酮在弱酸性溶液中与α-氨基酸共热,引起氨基酸氧化脱氨脱羧反映,(其反应化学式见P139),其中,定量释放的CO 2可用测压法测量,从而计算出参加反应的氨基酸量。

3生化作业

3生化作业 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

A型题: 1. -酮酸的代谢途径()下列哪个不是 A.还原氨基化,合成非必需氨基酸 B.彻底氧化分解,生成CO2和H2O C.转化为糖或酮体 D.转化为脂类物质 E.转化为某些必需氨基酸 2. 脂肪大量动员时,肝内生成的乙酰CoA主要用于合成() A.胆固醇 B.酮体 C.蛋白质 D.糖原 E.脂肪酸 3. 下列关于RNA聚合酶和DNA聚合酶的叙述哪一项是正确的() A.均利用核糖核苷三磷酸合成多聚核糖核苷酸链 B.RNA聚合酶不需要引物,在新生链的5'-OH端 不断连接核苷酸 C.DNA聚合酶能同时在链两端连接核苷酸 D.RNA聚合酶只能在3'-OH端存在下合 成引物RNA E.RNA聚合酶和DNA聚合酶只能在核苷酸链3'-端而不是5'-端连接单核苷酸 4. 脂肪酸活化需要() A.NAD+ B.NADP+ C.CoASH + ATP D.UTP E.GTP 5. 不能氧化酮体的组织是() A.心 B.脑 C.肾 D.肝脏 E.肌肉 6. 需肠激酶激活后才有活性的是() A.胃蛋白酶原 B.弹性蛋白酶原 C.胰蛋白酶原 D.糜蛋白酶原 E.羧基肽酶原 7. 儿茶酚胺是由哪种氨基酸代谢转变而来的() A.丙氨酸 B.酪氨酸 C.色氨酸 D.甲硫氨酸 E.谷氨酸 8. 起始密码子位于mRNA分子的() A.5'-端 B.3'-端 C.中间 D.5'-端和3'-端 E.5'-端或3'-端 9. 血浆脂蛋白可用两种方法分类和命名,下列名称不属于同一脂蛋白的是() A.CM,CM B.VLDL,β-脂蛋白 C.LDL,β-脂蛋白 D.VLDL,前β-脂蛋白 E.HDL,α-脂蛋白 10. 关于嘧啶分解代谢的正确叙述是() A.产生尿酸 B.代谢异常可引起痛风症 C.需要黄嘌呤氧化酶 D.产生NH3、CO2与α-氨基 酸 E.产生NH3、CO2与β-氨基酸 11. 与mRNA中密码5'-GCU-3'对应的tRNA的反密码子是() A.5'-UCG-3' B.5'-UGC-3' C.5'-AGC-3' D.5'-CGA-3' E.5'-ACG-3' 12. 脂肪酸合成中的供氢体是() A.FADH2 B.NADH + H+ C.NADPH + H+ D.FMNH2 E.二氢硫辛酸 13. 测定下列哪种酶的活性可以帮助诊断急性肝炎() A.NAD+ B.ALT C.AST D.MAO E.FAD 14. 蛋白质生物合成过程中终止肽链延长的密码子有()

相关文档
最新文档