图像和函数表达式

图像和函数表达式
图像和函数表达式

函数图像和函数表达式练习

1. 已知1

12)(--=x x x f 的图像经过)4,(p ,求出,p 并作出图像。

2. 作出下列函数图像

??

???≤≥--=x+2,x<0x<1-5x+2,01 x,2)(x x f

3. 作出下列函数图像。

①2)(=x f , ②)22,(-1)(≤≤-∈=x Z x x x f ③1||2)(2--=x x x f ④

|43|)(2-+=x x x f

4. )(,x f R x ∈是,22-=x y 与x y =这两个函数的较大者,则)(x f 的最小值__________

5. 下列4组函数,表示同一函数的是___________ A, 33)(-?+=x x x f 9)(2-=x x g B.

,1)(=x f 0xg=)(x

C. x-1

x-2(x-1)=)(x f x-2g=)(x D 11)(2--=x x x f ,1)(+=x x g

6. 已知二次函数满足,569)13(2+-=+x x x f 则_____________)(=x f

7.

,46)13(+=+x x f 则_____________)(=x f

8.

,14)12(2+=-x x f 则_____________

)1(=+x f

9. ,12)1()(2+=+x x f x f 则_____________

)(=x f

10. ,11)11(2-=+

x x f 则_____________)(=x f

11. 不等式则,|1||2|a x x <-++的 解集为φ,则实数a 的范围__________

12. 讨论x 的方程a x x =+-|34|2的实数解的个数为__________________

高中数学函数解析式求法

函数解析式的表示形式及五种确定方式 函数的解析式是函数的最常用的一种表示方法,本文重点研究函数的解析式的表达形式与解析式的求法。 一、解析式的表达形式 解析式的表达形式有一般式、分段式、复合式等。 1、一般式是大部分函数的表达形式,例 一次函数:b kx y += )0(≠k 二次函数:c bx ax y ++=2 )0(≠a 反比例函数:x k y = )0(≠k 正比例函数:kx y = )0(≠k 2、分段式 若函数在定义域的不同子集上对应法则不同,可用n 个式子来表示函数,这种形式的函数叫做分段函数。 例1、设函数(]() ???+∞∈∞-∈=-,1,log 1,,2)(81x x x x f x ,则满足41)(=x f 的x 的值为 。 解:当(]1,∞-∈x 时,由4 12= -x 得,2=x ,与1≤x 矛盾; 当()+∞∈,1x 时,由4 1log 81=x 得,3=x 。 ∴ 3=x 3、复合式 若y 是u 的函数,u 又是x 的函数,即),(),(),(b a x x g u u f y ∈==,那么y 关于x 的函数[]()b a x x g f y ,,)(∈=叫做f 和g 的复合函数。 例2、已知3)(,12)(2 +=+=x x g x x f ,则[]=)(x g f ,[]=)(x f g 。 解:[]721)3(21)(2)(2 2+=++=+=x x x g x g f [][]4443)12(3)()(222 ++=++=+=x x x x f x f g 二、解析式的求法 根据已知条件求函数的解析式,常用待定系数法、换元法、配凑法、赋值(式)法、方程法等。 1待定系数法 若已知函数为某种基本函数,可设出解析式的表达形式的一般式,再利用已知条件求出系数。

三角函数公式及其图像

初等函数 1、基本初等函数及图形 基本初等函数为以下五类函数: (1) 幂函数μx y=,μ是常数; 1.当u为正整数时,函数的定义域为区间 ) , (+∞ -∞ ∈ x,他们的图形都经过原点,并当u>1时 在原点处与X轴相切。且u为奇数时,图形关于原点对称;u为偶数时图形关于Y轴对称; 2.当u为负整数时。函数的定义域为除去x=0的所有实数。 3.当u为正有理数m/n时,n为偶数时函数的定义域为(0, +∞),n为奇数时函数的定义域为(-∞+∞)。函数的图形均经过原点和(1 ,1). 如果m>n图形于x轴相切,如果m

(2) 指数函数 x a y = (a 是常数且01a a >≠,),),(+∞-∞∈x ; 1. 当a>1时函数为单调增,当a<1时函数为单调减. 2. 不论x 为何值,y 总是正的,图形在x 轴上方. 3. 当x=0时,y=1,所以他的图形通过(0,1)点.

(3) 对数函数 x y a log =(a 是常数且01a a >≠,),(0,)x ∈+∞; (4) 三角函数 正弦函数 x y sin =,),(+∞-∞∈x ,]1,1[-∈y , 余弦函数 x y cos =,),(+∞-∞∈x ,]1,1[-∈y , 1. 他的图形为于y 轴的右方.并通过点(1,0) 2. 当a>1时在区间(0,1),y 的值为负.图形位于x 的下方,在区 间(1, +∞),y 值为正,图形位于x 轴上方.在定义域是单调增函数.a<1在实用中很少用到/

三角函数公式及图像

锐角三角函数公式 sin α=∠α的对边 / 斜边 cos α=∠α的邻边 / 斜边 tan α=∠α的对边/ ∠α的邻边 cot α=∠α的邻边/ ∠α的对边 倍角公式 Sin2A=2SinA?CosA Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2) (注:SinA^2 是sinA的平方 sin2(A)) 三倍角公式 sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推导 sin3a =sin(2a+a) =sin2acosa+cos2asina 辅助角公式 Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) tant=B/A Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B

降幂公式 sin^2(α)=(1-cos(2α))/2=versin(2α)/2 cos^2(α)=(1+cos(2α))/2=covers(2α)/2 tan^2(α)=(1-cos(2α))/(1+cos(2α)) 推导公式 tanα+cotα=2/sin2α tanα-cotα=-2cot2α 1+cos2α=2cos^2α 1-cos2α=2sin^2α 1+sinα=(sinα/2+cosα/2)^2 =2sina(1-sin²a)+(1-2sin²a)sina =3sina-4sin³a cos3a =cos(2a+a) =cos2acosa-sin2asina =(2cos²a-1)cosa-2(1-sin²a)cosa =4cos³a-3cosa sin3a=3sina-4sin³a =4sina(3/4-sin²a) =4sina[(√3/2)²-sin²a] =4sina(sin²60°-sin²a) =4sina(sin60°+sina)(sin60°-sina) =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]

函数表达式的求法

第四讲 函数解析式的求法 重 点:求解析式的方法. 难 点:求复合函数的解析式. 教学目标:掌握求解析式的几种常用方法 教学过程: 一、导入新课 复习函数定义(重点是构成函数的三要素). 二、新课 1.求解析式的常用方法: (1)待定系数法: 例1.若)(x f 是二次函数,其图象过原点,且.5)1(,1)1(=-=f f 求:).(x f 练习:1.若一次函数)(x f 满足()[]{}.78+=x x f f f 求:).(x f 小结:①待定系数法适用于:已知所求函数解析式的一般形式; ②解法是:根据已知条件列出以所求系数为未知数的方程或方程组,解出系数的值,代回所设解析式. (2)换元法:(配凑) 例2.⑴2 ()1f x x =+,求(1)f x + ⑵2(1)22f x x x +=++,求()f x 练习:2(1)21f x x +=+,求()f x 例3.2(2)5f x x x -=+,求()f x 练习:1.1)f x =2.已知:,1 )1(22x x x x f +=+ 求).(x f 解法二:.2)(,2)1(1)1(2 222-=∴-+=+=+x x f x x x x x x f 小结:①应用换元法求解析式的题型特征是:题中没有给出函数最简的解析式 ②解法是:通过换元,找出原函数的解析式.(还可以用配凑) (3)函数方程法(消元法) 例4.已知:.2)(2)(x x f x f =-+求:).(x f 小结:①例4的解法相当于消元法. ②消元法的特点是在所给解析式中)(x f 与)(x f -中的自变量互为相反的数,或)(x f 与)1(x f 中的自变量互为倒数;得到相当于两个未知数的两个方程,求解。

2.4二次函数一般式的图像

二次函数c bx ax y ++=2的图像 知识点一:k h x a y +-=2)(图像性质 1.二次函数k h x a y +-=2)(的图像平移 2.二次函数k h x a y +-=2)(的图像性质 (1)当0>a 时,抛物线k h x a y +-=2 )(的开口方向向上,对称轴是直线h x =,顶点坐标是),(k h ;当h x >时,Y 随X 的增大而增大,当h x <时,Y 随X 的增大而减小,当h x =时,函数有最小值K (2)当0时,Y 随X 的增大而减小,当h x <时,Y 随X 的增大而增大,当h x =时,函数有最大值K 【例1】将抛物线2 2x y =如何平移可得到抛物线1)4(22 --=x y 3.求二次函数k h x a y +-=2)(的函数解析式或解析式中的待定系数 方法规律:(1)若点A ),(n m 在抛物线k h x a y +-=2 )(上,则点A 坐标满足 k h m a n +-=2)( (2) 求函数解析式中某个字母系数,常利用方程思想,注意解的验算。

练习: 1.把抛物线2 3x y =先向上平移2个单位,再向左平移3个单位,所得抛物线的解析式为 2.抛物线2)1(2-=x y 的对称轴为 ,顶点坐标为 ,函数最值为 当X 图像从左到右上升。 3.抛物线2 )2 1(+-=x y 可以看成是由抛物线 向 平移 个单位得到 4.2 )(h x a y -=的图像如图所示,对h a ,的符号判断正确的是 ( A 0.0>>h a B 0.0<h a D .0>=<时,分别确定自变量X 的取值范围 D C B A

函数解析式的求法

函数解析式的求法 鄢陵一高王连霞 教学目标: 使学生明确待定系数法、换元法、配凑法是求函数解析式常用的方法,并会用这些方法求函数解析式重点、难点: 重点:待定系数法求函数解析式。难点:换元法与配凑法求函数解析式 教学方法:讲练结合法 学情分析 学生已熟悉用待定系数法求一次、二次函数解析式,但用换元法和配凑法求函数解析式并不熟悉,特别是求出函数解析式后要注明函数定义域易被学生忽视,所以通过讲、练要解决好这些问题,特别要使学生明确函数定义域是函数概念中重要组成部分。 教学设计: 新课引入→用待定系数法求函数解析式→用换元法与配凑法求函数解析式→课时小结→随堂练习 教学过程: 1、新课引入: ①复习提问:求函数定义域的关键是什么?函数三要素是什么?(求函数定义域的关键是确定使函数有意义的条件。函数三要素是对应法则、定义域与值域) ②导入新课:如何根据条件,求出函数对应法则即函数解析式是函数又一重要问题。板书课题:《求函数解析式》 2、用待定系数法求函数解析式 例1:已知函数f(x)是一次函数,且满足关系式3f(x+1)-2f(x-1)=2x+17, 求f(x)的解析式。 例2:求一个一次函数f(x),使得f{f[f(x)]}=8x+7 分析:这两个例题的共同点,所求的函数类型已定,都是一次函数。这种函数解析式用什么方法来求?

(待学生回答后,老师继续讲)如何剥掉抽象的对应法则符号成了解答这两题的关键,如例1:若设f (x)=ax+b(a ≠0)则f(x+1)=? f(x-1)=? 如例2:设f(x)=ax+b(a ≠0)则f{f[f(x)]}=f{f[ax+b]}=f[a(ax+b)+b]=? 解答由学生作出解答) 例1.解:设f(x)=ax+b (a ≠0) 由条件得: 3[a(x+1)+b]-2[a (x-1)+b]=ax+5a+b=2x+17 ∴ ∴ ∴f(x)=2x+7 例2.解:设f(x)=ax+b (a ≠0) 依题意有a[a(ax+b)+b]+b=8x+7 ∴x a 3+b(2a +a+1)=8x+7 ∴ ∴ ∴f(x)=2x+1 评注:待定系数法是一种重要的数学方法,它适用于已知所求函数的类型,求此函数。 3、用换元法与配凑法求函数解析式 例3:已知f( x +1)=x+2x ,求f(x)的解析式 分析:是否知道所求函数f(x)的类型?(待学生回答后,老师继续讲) 若把x +1看作一个整体,该用什么方法作?(待学生回答,让学生作出解答) 解1:令t=x +1≥1 则x=2)1(-t ∴ f(t)= 2)1(-t +2(t-1)= 2t -1 ∴f(x)=2x -1 (x ≥1) 解2:由f(x +1)=x+2x =2)1(+x -1 ∴f(x)=2x -1 (x ≥1) 学生容易忽视函数的定义域,就此例题向学生发问: 师问:f(x)= 2x -1与f(x)= 2x -1 (x ≥1)是否是同一函数?那么求函数解析式后是否要注明函数定义域 评注:(1) f(t)与f(x)只是自变量所用字母不同,本质是一样的。 (2) 求出函数解析式时,一定要注明定义域,函数定义中包括定义域这一要素。 例4:已知f(x-1)= 2x -4x ,解方程f(x+1)=0 分析:如何由f(x-1),求出f(x+1)是解答此题的关键(由老师讲解) 解1:f(x-1)==2)1(-x -2(x-1)-3 ∴ f(x)= 2x -2x-3 f(x+1)= 2)1(+x -2(x+1)-3=2x -4 ∴ 2x -4=0 x=±2 解2:f(x-1)= 2x - 4x ∴f(x+1)=f[(x+2)-1]= 2)2(+x - 4(x+2)= 2x - 4 ∴2x - 4=0, x=±2 解3:令x-1= t+1 则x=t+2 ∴f(t+1)= 2)2(+t -4(t+2)= 2t - 4 ∴ f(x+1)= 2x - 4 ∴2x - 4=0 ∴ x= ±2 评注:只要抓住关键,采用不同方法都可以达到目的。解法1,采用配凑法;解法2,根据对应法则采用整体思想实现目的;解法3,采用换元法,这些不同的解法共同目的是将 f(x-1)的表达式转化为f(x+1)的表达式。

三角函数公式大全

三角函数 1. ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合): {} Z k k ∈+?=,360 |αββο ②终边在x 轴上的角的集合: {} Z k k ∈?=,180|οββ ③终边在y 轴上的角的集合:{ } Z k k ∈+?=,90180|ο οββ ④终边在坐标轴上的角的集合:{} Z k k ∈?=,90|οββ ⑤终边在y =x 轴上的角的集合:{} Z k k ∈+?=,45180|οοββ ⑥终边在x y -=轴上的角的集合:{} Z k k ∈-?=,45180|οοββ ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k ο360 ⑧若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+=οο180360k ⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k ο180 ⑩角α与角β的终边互相垂直,则角α与角β的关系:οο90360±+=βαk 2. 角度与弧度的互换关系:360°=2π 180°=π 1°= 1=°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. 、弧度与角度互换公式: 1rad =π 180°≈°=57°18ˊ. 1°=180 π≈(rad ) 3、弧长公式:r l ?=||α. 扇形面积公式:211||22 s lr r α==?扇形 4、三角函数:设α是一个任意角,在α 原点的)一点P (x,y )P 与原点的距离为r ,则 =αsin r x =αcos ; x y =αtan ; y x =αcot ; x r =αsec ;. αcsc 5、三角函数在各象限的符号:正切、余切 余弦、正割 正弦、余割 6、三角函数线 正弦线:MP; 余弦线:OM; 正切线: AT. SIN \COS 1、2、3、4表示第一、二、三、四象限一半所在区域

二次函数的图像及性质

《二次函数的图像及性质》教学案例及反思 教师:同学们,我们上一节课一起研究了二次函数的表达式,那么我们一起来回忆一下表达式是什么? 学生齐答:y=ax2+bx+c(a,b,c是常数,a不为0) 教师:好,那么请同学们在黑板上写出一些常数较简单的二次函数表达式. (学生表现很踊跃,一下写出了十多个) 教师:黑板上这些二次函数大致有几个类型? 学生:(讨论了3分钟)四大类!有y=ax2+bx+c;y=ax2+bx;y=ax2+c;y=ax2! 教师:太棒了!同学们归纳的很好,今天我们就一起来研究比较简单的一种y=ax2的图像及性质! 教师在学生板书的函数中选了四个,并把复杂的系数换成简单的常数,找到如下函数:y=x2;y=-x2;y=2x2;y=-2x2.(教师在这里让学生自己准备素材!) 教师启发学生利用函数中的“列表,描点,连线”的方法,把画上述四个函数的任务分配给A,B,C,D小组,一组一个在已画好的坐标系的小黑板上动手操作.生在自己提供的素材上进行再“加工”,兴趣很大,合作交流充分,课堂气氛活跃.教师到每组巡视、指导,在确认画图全部正确的情况下,提出了要求,开始了探究之旅. 教师:请同学们小组之间比较一下,你们画的图象位置一样吗? 学生;不一样. 教师:有什么不一样?(开始聚焦矛盾) 学生:开口不一样. 学生A:走向不一样. 学生B:经过的象限不一样. 学生C:我们的图象在原点的上方,他们的图象在原点的下方. 教师:看来是有些不一样,那么它们位置的不一样是由什么要素决定的?(教师指明了探究方向,但未指明具体的探究之路,这是明智的) 学生:是由二次项系数的取值确定的. 教师:好了,根据同学们的回答,能得到图象或函数的那些结论?(顺水推舟,放手让学生一搏) 热烈讨论后,学生D回答并板书,当a>0时,图象在原点的上方,当a<0时,图象在原点的下方。 学生E:当a>0时,图象开口向上;当a<0时,图象开口向下. 学生A站起来补充:还有顶点,顶点坐标(0,0),对称轴为y轴! (这个过程约用了十多分时间,学生体会非常充分,从学生的神情看,绝大多数学生已接受了这几个学生的板书,但教师未对结论进行优化。怎么没有一个学生说出二次函数的性质呢?短暂停顿后,教师确定了思路) 教师:刚才你们是研究图象的性质,你们能否由图象性质得出相应的函数的性质? 看着学生茫然的目光,我在思考是不是我的问题---- 教师:请看同学们的板书,能揣摩图象“走向”的意思吗? 学生:(七嘴八舌)当a>0时,图象从左上向下走到原点后在向右上爬;当a<0时,图象从左下向上爬到原点后在向右下走(未出现教师所预期的结论) 教师:好,你们从图象的直观形象来理解的图象性质,很贴切,你们能从自变量与函数值之间的变化角度来说明“向上爬”和“向下走”吗?

二次函数一般式的图像和性质

二次函数一般式的图像和性质 一?选择题(共11小题) 1. 用配方法解一元二次方程 2x 2-4x+仁0, 变形正确的是( ) A. ( x -丄)I 。 B . (x -丄) 2 =' 2 2 2 C. ( x - 1) 2=— D. (x - 1) 2=0 2 2. 把抛物线y=x 2向上平移3个单位,再向 右平移1个单位,则平移后抛物线的解析式 为( ) A. y= (x+3) 2+1 B. y= (x+3) 2 - 1 2 2 C. y= (x - 1) +3 D. y= ( x+1) +3 3. 方程x 2 - 2x=0的根是( ) A.x 1=X 2=0 B.x 1=X 2=2 C.X 1=0,x 2=2 D.X 1=0, X 2 = — 2 .. 2 4. 如图,抛物线y=ax +bx+c 的对称轴是经过 点(1,0)且平行于y 轴的直线,若点P (4, 2 . _ . y= - 2 (x - 3) +1的图象的顶 点坐标是( A. ( 3,1 ) B. (3, - 1) C. (- 3,1 ) D. (- 3, - 1) 6. —元二次方程x 2-?x+仁0的根的情况 是( ) A.无实数根B .有两个实数根 C.有两个不相等的实数根 D .无法确定 7. 抛物线y= - 3( x - 1) 2 - 2的顶点坐标为 ( ) A. (- 1, - 2) B. (1, - 2) C. (- 1,2 ) D . (1 , - 2) 8. 将抛物线y=3x 2向上平移3个单 位,再向 左平移2个单位,那么得到的抛物线的解析 式为( ) 2 2 A . y=3 (x+2) +3 B . y=3 (x - 2) +3 2 2 C. y=3 (x+2) - 3 D. y=3 (x - 2) - 3 9. 二次函数y=ax +bx+c 的图象如图所示, 对称轴是直线 x= - 1,有以下结论:①abc >0;②4ac v b 2;③2a+b=0;④a - b+c >2.其 中正确的结论的个数是( ) A . 1 B. 2 C. 3 D. 4 10. 关于x 的一元二次方程kx +2x - 1=0有两 个不相等的实数根,则 k 的取值范围是 ( ) A.k >- 1 B.k > 1 C.k 工 0 D. k >- 1 且k 工0 11. 一元二次方程 x 2+3x+2=0的两个根为 () A.1, - 2 B. - 1 , - 2 C. - 1 , 2 D . 1 , 2 二.填空题(共 9小题) 12 .如图,有一个抛物线型拱桥,其最大高 度为 C. 2 D. 4 5.二次函数 则4a - 2b+c 的值为(

经典函数解析式求法

求函数定义域的方法 一.已知函数解析式求函数的定义域 如果只给出函数解析式(不注明定义域),其定义域是指使函数解析式有意义的自变量的取值范围(称为自然定义域),这时常通过解不等式或不等式组求得函数的定义域。主要依据是:(1)分式的分母不为零,(2)偶次根式的被开方数为非负数,(3)零次幂的底数不为零,(4)对数的真数大于零,(5)指数函数和对数函数的底数大于零且不等于1,(6)三角函数中的正切函数y=tanx ,{x ︱x ∈R 且 x ≠2 k ππ+, k ∈z } 例1 求下列函数的定义域: (1) y=2)0+㏒(x —2)x 2 解:(1)欲使函数有意义,须满足 2≠0 x —1≥0 x —2>0 解得:x >2 且 x ≠3 ,x ≠5 x —2≠1 ∴ 函数的定义域为(2,3)∪(3,5)∪(5,+∞) x ≠0 二. 复合函数求定义域 求复合函数定义域应按从外向内逐层求解的方法。最外层的函数的定义域为次外层函数的值域,依次求,直到最内层函数定义域为止。多个复合函数的求和问题,是将每个复合函数定义域求出后取其交集。 例2 (1)已知函数f (x )的定义域为〔-2,2〕,求函数y=f (x 2-1)的定义域。 (2)已知函数y=f (2x+4)的定义域为〔0,1〕,求函数f (x )的定义域。 (3)已知函数f (x )的定义域为〔-1,2〕,求函数y=f (x+1)—f (x 2-1)的定义域。 分析:(1)是已知f (x )的定义域,求f 〔g (x )〕的定义域。其解法是:已知f (x )的定义域为〔a ,b 〕,求f 〔g (x )〕的定义域是解a ≤g (x )≤b ,即得所求的定义域。 (2)是已知f 〔g (x )〕的定义域,求f (x )的定义域。其解法是:已知f 〔g (x )〕的定义域为〔a ,b 〕,求f (x )的定义域的方法为:由a ≤x ≤b ,求g (x )的值域,即得f (x )的定义域。 解:(1)令-2≤X 2—1≤2 得-1≤X 2≤3,即 0≤X 2≤3,从而 x ∴函数y=f (x 2-1)的定义域为〔。 (2)∵y=f (2x+4)的定义域为〔0,1〕,指在y=f (2x+4)中x ∈〔0,1〕,令t=2x+4, x ∈〔0,1〕,则t ∈〔4,6〕,即在f (t )中,t ∈〔4,6〕∴f (x )的定义域为〔4,6〕。 (3)由 -1≤x +1≤2 -1≤X 2—1≤2 得 x ≤1

初三二次函数的图像与性质

龙文教育学科导学 教师:学生:年级:日期: 星期: 时段: 学情分析二次函数部分内容中考难度不大,所以本套教案注重于基础知识的准确掌握。 课题二次函数的图像与性质 学习目标与考点分析学习目标:1、理解二次函数的概念;会识别最基本的二次函数并利用二次函数的概念求解析式中的未知数; 2、熟练的画出各种抛物线的图像,根据解析式的变化判断图像的平移方法; 3、熟练的选用合适的解析式利用待定系数法求解析式。 学习重点图像的平移;待定系数法求解析式 学习方法讲练结合、师生讨论、启发引导 学习内容与过程 教学内容: 知识回顾 1.一般地,形如y=ax2 +bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数。其中,x 是自变量, a,b,c分别是函数解析式的二次项系数,一次项系数和常数项. 2.二次函数的解析式及其对称轴 (1)二次函数解析式的一般式(通式):,它的顶点坐标为(,),对称轴为;(2)二次函数解析式的顶点式(通式):,顶点坐标为(,)对称轴是;(3)二次函数解析式的交 点式:。此时抛物线的对称轴为。其中,(x 1,0)(x 2 ,0)是抛 物线与X轴的交点坐标。显然,与X轴没有交点的抛物线不能用此解析式表示的 3.二次函数y=a(x-h) 2+k的图像和性质 4.二次函数的平移问题 5. 二次函数y=ax2 +bx+c中a,b,c的符号与图像性质的关系: 6.抛物线y=ax2+bx+c与X轴的交点个数与一元二次方程的根的判别式△的符号之间的的关系

二次函数的常规解法: 一、若已知二次函数图象上的三个点的坐标或是x、y的对应数值时,可选用y=ax2+bx+c(a≠0)求解。我们称y=ax2+bx+c(a≠0)为一般式(三点式)。 例:二次函数图象经过A(1,3)、B(-1,5)、C(2,-1)三点,求此二次函数的解析式。 说明:因为坐标满足函数解析式的点一定在函数的图象上,反之函数图象上的点的坐标一定满足函数解析式。所以将已知三点的坐标分别代入y=ax2+bx+c (a≠0)构成三元一次方程组,解方程组得a、b、c的值,即可求二次函数解析式。 二、若已知二次函数的顶点坐标或对称轴或最值时,可选用y=a(x+m)2+k (a≠0)求解。我们称y =a(x+m)2+k (a≠0)为顶点式(配方式)。 例:若二次函数图像的顶点坐标为(-2,3),且过点(-3,5),求此二次函数的解析式。 说明:由于顶点式中要确定a、m、k的值,而已知顶点坐标即已知了-m、k的值。用顶点式只要确定a的值就可以求二次函数解析式。若已知这两点的坐标用一般式来解是不能确定a、b、c的值的,不妨让学生尝试一下加深印象。 三、若已知二次函数与X轴的交点坐标是A(x1,0) 、B(x2,0)时, 可选用y=a(x-x1)(x- x2 ) (a≠0)求解。我们称y=a(x-x1)(x- x2 ) (a≠0)为双根式(交点式)。 例:已知一个二次函数的图象经过点A(-1,0)、B(3,0)和C(0,-3)三点,求此二次函数的解析式。 说明:很多同学看到此例会想到使用一般式来解,将已知三点的坐标分别代入去求a、b、c的值来求此二次函数的解析式。往往忽略A、B两点的坐标就是二次函数图象与x轴的交点坐标,而用双根式来求解就相对比较简单容易。 四、若已知二次函数在X轴上截得的线段长为d时,可选用 或 例:抛物线y=2x2-mx-6在X轴截锝线段长为4,求此二次函数的解析式。 说明:对于此例主要让学生明白这两种二次函数解析式中线段长d的推导过程,记住公式套进去就行了。注意相互之间不要混淆。 总之,要求一个二次函数的解析式,可以根据不同的已知条件选择恰当的解题方法,使计算过程简单化,达到迅速解题的目的。当然,也只有在平时的练习中对基本解法的适用情况做到心中有数,才能在具体的问题中结合图形及二次函数的相关性质择优选取适当的解法,提高解题能力。 二次函数的概念 如果y=ax2+bx+c(a≠0,a,b,c为常数),那么y叫做x的二次函数 注意:二次函数的表达形式为整式,且二次项系数不为0,b ,c可分别为0,也可同时为0 自变量的取值范围是全体实数 练习:

复合函数的定义域-函数表达式的求法

复合函数的定义域-函数表达式的求法

个性化教学辅导教案 教案课题函数的单调性 教师姓名学生姓名××××上课日期2018.8.3 学科数学适用年级高一教材版本人教版A 学习目标1.掌握用定义法求函数的单调性 2.掌握函数最值的求法 重难点重点:函数的单调性及其几何意义,函数的最大(小)值及其几何意义. 难点:利用函数的单调性定义判断、证明函数的单调性,利用函数的单调性求函数的最大(小)值. 课前检查作业完成情况:优□良□中□差□建议: 第5 讲复合函数的定义域函数表达式的求法 & 一.复合函数的定义域 1.复合函数的定义: 一般地:若)(u f y=,又)(x g u=,则函数)]([x g f y=叫x的复合函 数,其中)(u f y=叫外层函数,)(x g u=叫内层函数,简言之:复合函数就是:把一个函数中的自变量替换成另一个函数所得的新函数.

例如: 2 ()35,()1 f x x g x x =+=+; 复合函数(())f g x 即把()f x 里面的x 换成()g x , 2 2(())3()53(1)538 f g x g x x x =+=++=+ 2.复合函数的定义域 函数))((x g f 的定义域还是指x 的取值范围,而不是)(x g 的取值范围. ① 已知)(x f 的定义域,求复合函数()][x g f 的定义域 由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可得其方法为:若)(x f 的定义域为()b a x ,∈,求出)]([x g f 中b x g a <<)(的解x 的范围,即为)]([x g f 的定义域。 ② 已知复合函数()][x g f 的定义域,求)(x f 的定义域 方法是:若()][x g f 的定义域为()b a x ,∈,则由b x a <<确定)(x g 的范围即为)(x f 的定义域 ③ 已知复合函数[()]f g x 的定义域,求[()]f h x 的定义域 结合以上一、二两类定义域的求法,我们可以得到此类

二次函数图像与性质总结

二次函数的图像与性质 一、二次函数的基本形式 1.二次函数基本形式:2 =的性质: y ax 2.2 =+的性质: y ax c 上加下减。 =-的性质: y a x h 左加右减。

4.()2 y a x h k =-+的性质: 1.平移步骤: 方法一:⑴将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标 ()h k ,; ⑵保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2.平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.

概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 三、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者 通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ?? ?,其中2424b ac b h k a a -=-= ,. 四、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确 定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我 们选取的五点为:顶点、与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对 称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 五、二次函数2y ax bx c =++的性质 1.当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值244ac b a -. 2.当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,.当2b x a <- 时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a =-时,y 有最大值2 44ac b a -. 六、二次函数解析式的表示方法 1.一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); 2.顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);

二次函数的图像与性质知识点及练习

第二节 二次函数的图像与性质 1.能够利用描点法做出函数y =ax 2,y=a(x-h)2,y =a(x-h)2+k 和c bx ax y ++=2图象,能根据图象认识和理解二次函数的性质; 2.理解二次函数c bx ax y ++=2中a 、b 、c 对函数图象的影响。 一、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口 方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为: 顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x , ,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 例1. 在同一平面坐标系中分别画出二次函数y =x 2 y =2(x-1)2 的图像。 一、二次函数的基本形式 1. y =ax 2的性质: 2. y =ax 2+k 的性质: (k 上加下减) 3. y =a (x -h )2的性质: (h 左加右减)

4. y =a (x -h)2+k 的性质: 5. y =ax 2+bx+c 的性质: 二、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式() 2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如 下: 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字 “左加右减,上加下减”. 方法二:

二次函数解析式的8种求法

二次函数解析式的8种求法 二次函数的解析式的求法是数学教学的难点,学不易掌握.他的基本思想方法是待定系数法,根据题目给出的具体条件,设出不同形式的解析式,找出满足解析式的点,求出相应的系数.下面就不同形式的二次函数解析式的求法归纳如下,和大家共勉: 一、定义型: 此类题目是根据二次函数的定义来解题,必须满足二个条件:1、a ≠0; 2、x 的最高次数为2次. 例1、若 y =( m 2+ m )x m 2 – 2m -1是二次函数,则m = . 解:由m 2+ m ≠0得:m ≠0,且 m ≠- 1 由m 2–2m –1 = 2得m =-1 或m =3 ∴ m = 3 . 二、开放型 此类题目只给出一个条件,只需写出满足此条件的解析式,所以他的答案并不唯一. 例2、(1)经过点A (0,3)的抛物线的解析式是 . 分析:根据给出的条件,点A 在y 轴上,所以这道题只需满足c b a y ++=χχ2中的C =3,且a ≠0即可∴32++=χχy (注:答案不唯一) 三、平移型: 将一个二次函数的图像经过上下左右的平移得到一个新的抛物线.要借此类题目,应先将已知函数的解析是写成顶点式y = a ( x – h )2 + k ,当图像向左(右)平移n 个单位时,就在x – h 上加上(减去)n ;当图像向上(下)平移m 个单位时,就在k 上加上(减去)m .其平移的规律是:h 值正、负,右、左移;k 值正负,上下移.由于经过平移的图像形状、大小和开口方向都没有改变,所以a 得值不变. 例3、二次函数 253212++=χχy 的图像是由22 1χ=y 的图像先向 平移 个 单位,再向 平移 个单位得到的.

二次函数的图像和性质总结

二次函数的图像和性质 1.二次函数的图像与性质: 解析式 a 的取值 开口方向 函数值的增减 顶点坐标 对称轴 图像与y 轴的交点 时当0>a ;开口向上;在对称轴的左侧y 随x 的增大而减小,在对称轴的 右侧y 随x 的增大而增大。 时当0k 时向上平移;当0>k 时向下平移。 (2)抛物线2 )(h x a y +=的图像是由抛物线2 y ax =的图像平移h 个单位而得到 的。当0>h 时向左平移;当0k 时向上平移;当0>k 时向下平移;当0>h 时向左平移;当0

3.二次函数的最值公式: 形如 c bx ax y ++=2 的二次函数。时当0>a ,图像有最低点,函数有最小值 a b ac y 442-= 最小值 ;时当0?时抛物线与x 轴有两个交点;当0=?抛物线与x 轴有一个交点;当 0

函数表达式(例题+练习题)

函数表达式 【教学目标】 1. 让学生充分掌握求函数解析式的方法 2. 学生能够独立解题 【重点难点】求函数表达式的方法 【教学内容】求函数解析式的常用方法 一、 待定系数法:在已知函数解析式的构造时,可用待定系数法。 例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f 解:设b ax x f +=)( )0(≠a ,则 b ab x a b b ax a b x af x f f ++=++=+=2 )()()]([ ∴???=+=342b ab a ∴? ????? =-===3212b a b a 或 32)(12)(+-=+=∴x x f x x f 或 1.设)(x f 是一元二次函数, )(2)(x f x g x ?=,且2 12)()1(x x g x g x ?=-++, 求)(x f 与)(x g . 变式训练.设二次函数)(x f 满足)2()2(--=-x f x f ,且图象在y 轴上截距为1,在x 轴上截得的线段长为22,求)(x f 的表达式.

二、 配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式 容易配成()g x 的运算形式时,常用配凑法。但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。 例2 已知22 1 )1 (x x x x f + =+ )0(>x ,求 ()f x 的解析式 解:2 )1()1(2-+=+x x x x f , 21 ≥+x x 2 )(2 -=∴x x f )2(≥x 三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。与 配凑法一样,要注意所换元的定义域的变化。 例3 已知x x x f 2)1(+=+,求)1(+x f 解:令1+=x t ,则1≥t ,2 )1(-=t x x x x f 2)1(+=+ ∴,1)1(2)1()(2 2-=-+-=t t t t f 1 )(2 -=∴x x f )1(≥x x x x x f 21)1()1(2 2+=-+=+∴ )0(≥x 1.已知f(3x+1)=4x+3, 求f(x)的解析式. 变式训练.若x x x f -=1)1(,求)(x f .

相关文档
最新文档