武汉工程大学电力电子技术实验报告

武汉工程大学电力电子技术实验报告
武汉工程大学电力电子技术实验报告

电力电子技术实验报告

专业班级电气自动化2011级02班

学号 2011700023

学生姓名

指导教师胡卫兵

学院名称电气信息学院

完成日期: 2013年 1月 2 日

实验一电力晶体管(GTR)驱动电路研究一.实验目的

1.掌握GTR对基极驱动电路的要求

2.掌握一个实用驱动电路的工作原理与调试方法

二.实验内容

1.连接实验线路组成一个实用驱动电路

2.PWM波形发生器频率与占空比测试

3.光耦合器输入、输出延时时间与电流传输比测试

4.贝克箝位电路性能测试

5.过流保护电路性能测试

三.实验线路

四.实验设备和仪器

1.MCL-07电力电子实验箱

2.双踪示波器

3.万用表

4.教学实验台主控制屏

五.实验方法

1.检查面板上所有开关是否均置于断开位置

2.PWM波形发生器频率与占空比测试

(1)开关S1、S2打向“通”,将脉冲占空比调节电位器RP顺时针旋到底,用示波器观察1和2点间的PWM波形,即可测量脉冲宽度、幅度与脉冲周期,并计算出频率f与占空比D

当S2通,RP右旋时:当S2断,RP右旋时:

当S2通,RP左旋时:当S2断,RP左旋时:

(2)将电位器RP左旋到底,测出f与D。

(3)将开关S2打向“断”,测出这时的f与D。

(4)电位器RP顺时针旋到底,测出这时的f与D。

(5)将S2打在“断”位置,然后调节RP,使占空比D=0.2左右。

3.光耦合器特性测试

(1)输入电阻为时的开门,关门延时时间测试

a.将GTR单元的输入“1”与“6”分别与PWM波形发生器的输出“1”与“2”相连,再分别连接GTR单元的“3”与“5”,“9”与“7”及“6”与“11”,即按照以下表格的说明连线。

b.GTR单元的开关S1合向“”,用双踪示波器观察输入“1”与“6”及输出“7”与“11”之间波形,记录开门时间ton(含延迟时间td和下降时间tf)以及关门时间toff(含储存时间ts和上升时间tr)

对应的图为:

(2)输入电阻为时的开门,关门延时时间测试

将GTR单元的“3”与“5”断开,并连接“4”与“5”,调节电位器RP顺时针旋到底(使RP短接),其余同上,记录开门、关门时间。

对应的图为:

(3)输入加速电容对开门、关门延时时间影响的测试

断开GTR单元的“4”和“5”,将“2”、“3”与“5”相连,即可测出具有加速电容时的开门、关门时间。

对应的图为:

(4)输入、输出电流传输比(CTR)测定

电流传输比定义为CTR=输出电流/输入电流

GTR单元的开关S1合向“5V”,S2打向“通”,连接GTR的“6”和PWM波形发生器的“2”,分别在GTR单元的“4”和“5”以及“9”与“7”之间串入直流毫安表,电位器RP左旋到底,测量光耦输入电流Iin、输出电流Iout。

改变RP(逐渐右旋),分别测量5-6组光耦输入,输出电流,填入表5—5。

4.驱动电路输入,输出延时时间测试

GTR单元的开关S1合向“”,将GTR单元的输入“1”与“6”分别与PWM波形发生器的输出“1”与“2”相连,再分别连接GTR单元的“3”与“5”,“9”与“7”及“6”与“11”、“8”,即按照以下表格的说明连线。

用双踪示波器观察GTR单元输入“1”与“6”及驱动电路输出“14”与“11”之间波形,记录驱动电路的输入,输出延时时间。

对应的图为:

5.贝克箝位电路性能测试

(1)不加贝克箝位电路时的GTR存贮时间测试。

GTR单元的开关S1合向“”,将GTR单元的输入“1”与“6”分别与PWM波形发生器的输出“1”与“2”相连,再分别连接GTR单元的”2“、“3”与“5”,“9”与“7”,“14”与“19”,“29”与“21”,以及GTR单元的“8”、“11”、“18”与主回路的“4”,GTR单元的“22”与主回路的“1”,即按照以下表格的说明连线。

用双踪示波器观察基极驱动信号ub(“19”与“18”之间)及集电极电流ic (“22”与“18”之间)波形,记录存贮时间ts

对应的图为:

(2)加上贝克箝位电路后的GTR存贮时间测试

在上述条件下,将20与14相连,观察与记录ts的变化。

对应的图为:

6.过流保护性能测试

在实验5接线的基础上接入过流保护电路,即断开“8”与“11”的连接,将“36”与“21”、“37”与“8”相连,开关S3放在“断”位置。

用示波器观察“19”与“18”及“21”与“18”之间波形,将S3合向“通”位置,(即减小比较器的比较电压,以此来模拟采样电阻R8两端电压的增大),此时过流指示灯亮,并封锁驱动信号。

将S3放到断开位置,按复位按钮,过流指示灯灭,即可继续进行试验。

实验二功率场效应晶体管(MOSFET)特性与驱动电路研究一.实验目的:

1.熟悉MOSFET主要参数的测量方法

2.掌握MOSEET对驱动电路的要求

3.掌握一个实用驱动电路的工作原理与调试方法

二.实验内容

1.MOSFET主要参数:开启阀值电压VGS(th),跨导gFS,导通电阻Rds输出特性ID=f (Vsd)等的测试

2.驱动电路的输入,输出延时时间测试.

3.电阻与电阻、电感性质载时,MOSFET开关特性测试

4.有与没有反偏压时的开关过程比较

5.栅-源漏电流测试

三.实验设备和仪器

1.MCL-07电力电子实验箱中的MOSFET与PWM波形发生器部分

2.双踪示波器

3.毫安表

4.电流表

5.电压表

四、实验线路见图

五.实验方法

1.MOSFET主要参数测试

(1)开启阀值电压VGS(th)测试

开启阀值电压简称开启电压,是指器件流过一定量的漏极电流时(通常取漏极电流ID=1mA) 的最小栅源电压。在主回路的“1”端与MOS 管的“25”端之间串入毫安表,测量漏极电流ID,将主回路的“3”与“4”端分别与MOS管的“24”与“23”相连,再在“24”与“23”端间接入电压表, 测量MOS管的栅源电压Vgs,并将主回路电位器RP左旋到底,使Vgs=0。

将电位器RP逐渐向右旋转,边旋转边监视毫安表的读数,当漏极电流ID=1mA时的栅源电压值即为开启阀值电压VGS(th)。

读取6—7组ID、Vgs,其中ID=1mA必测,

测的数据如图所示:

(2)跨导gFS测试

双极型晶体管(GTR)通常用hFE(β)表示其增益,功率MOSFET器件以跨导gFS

表示其增益。

跨导的定义为漏极电流的小变化与相应的栅源电压小变化量之比,即gFS=△ID/△VGS。

典型的跨导额定值是在1/2额定漏极电流和VDS=15V下测得,受条件限制,实验中只能测到1/5额定漏极电流值。

根据表5—6的测量数值,计算gFS。

(3)转移特性ID=f(VGS)

栅源电压Vgs与漏极电流ID的关系曲线称为转移特性。

根据表4—6的测量数值,绘出转移特性。

(4)导通电阻RDS测试

导通电阻定义为RDS=VDS/ID

将电压表接至MOS 管的“25”与“23”两端,测量UDS,其余接线同上。改变VGS从小到大读取ID与对应的漏源电压VDS,测量5-6组数值。

测得数据如图所示:

(5)ID=f(VSD)测试

ID=f(VSD)系指VGS=0时的VDS特性,它是指通过额定电流时,并联寄生二极管的正向压降。

a.在主回路的“3”端与MOS管的“23”端之间串入安培表,主回路的“4”端与MOS管的“25”端相连,在MOS管的“23”与“25”之间接入电压表,将RP右旋转到底,读取一组ID与VSD的值。

数据如图所示:

b.将主回路的“3”端与MOS管的“23”端断开,在主回路“1”端与MOS管的“23”端之间串入安培表,其余接线与测试方法同上,读取另一组ID与VSD的值。

数据如图所示:

c.将“1”端与“23”端断开,在在主回路“2”端与“23”端之间串入安培表,其余接线与测试方法同上,读取第三组ID与VSD的值。

数据如图所示:

2.快速光耦6N137输入、输出延时时间的测试

将MOSFET单元的输入“1”与“4”分别与PWM波形发生器的输出“1”与“2”相连,再将MOSFET单元的“2”与“3”、“9”与“4”相连,用双踪示波器观察输入波形(“1”与“4”)及输出波形(“5”与“9”之间),记录开门时间ton、关门时间toff。3.驱动电路的输入、输出延时时间测试

在上述接线基础上,再将“5”与“8”、“6”与“7”、“10”、“11”与“12”、“13”、“14”与“16”相连,用示波器观察输入“1”与“4”及驱动电路输出“18”与“9”之间波形,记录延时时间toff。

4.电阻负载时MOSFET开关特性测试

(1)无并联缓冲时的开关特性测试

在上述接线基础上,将MOSFET单元的“9”与“4”连线断开,再将“20”与“24”、“22”与“23”、“21”与“9”以及主回路的“1”与“4”分别和MOSFET单元的“25”与“21”相连。用示波器观察“22”与“21”以及“24”与“21”之间波形(也可观察“22”与“21”及“25”与“21”之间的波形),记录开通时间ton与存储时间ts。

(2)有并联缓冲时的开关特性测试

在上述接线基础上,再将“25”与“27”、“21”与“26”相连,测试方法同上。5.电阻、电感负载时的开关特性测试

(1)有并联缓冲时的开关特性测试

将主回路“1”与MOSFET单元的“25”断开,将主回路的“2”与MOSFET单元的“25”相连,测试方法同上。

(2)无并联缓冲时的开关特性测试

将并联缓冲电路断开,测试方法同上。

6.有与没有栅极反压时的开关过程比较

(1)无反压时的开关过程

上述所测的即为无反压时的开关过程。

(2)有反压时的开关过程

将反压环节接入试验电路,即断开MOSFET单元的“9”与“21”的相连,连接“9”与“15”,“17”与“21”,其余接线不变,测试方法同上,并与无反压时的开关过程相比较。

7.不同栅极电阻时的开关特性测试

电阻、电感负载,有并联缓冲电路

(1)栅极电阻采用R6=200Ω时的开关特性。

(2)栅极电阻采用R7=470Ω时的开关特性。

(3)栅极电阻采用R8=1.2kΩ时的开关特性。

8.栅源极电容充放电电流测试

电阻负载,栅极电阻采用R6,用示波器观察R6两端波形并记录该波形的正负幅值。9.消除高频振荡试验

当采用电阻、电感负载,无并联缓冲,栅极电阻为R6时,可能会产生较严重的高频振荡,通常可用增大栅极电阻的方法消除,当出现高频振荡时,可将栅极电阻用较大阻值的R8。

实验三绝缘栅双极型晶体管(IGBT)特性与驱动电路研究一.实验目的

1.熟悉IGBT主要参数与开关特性的测试方法。

2.掌握混合集成驱动电路EXB840的工作原理与调试方法。

二.实验内容

1.IGBT主要参数测试。

2.EXB840性能测试。

3.IGBT开关特性测试。

4.过流保护性能测试。

三.实验设备和仪器

1.MCL-07电力电子实验箱中的IGBT与PWM波形发生器部分。

2.双踪示波器。

3.毫安表

4.电压表

5.电流表

6.MCL系列教学实验台主控制屏

四、实验报告

1.IGBT主要参数测试

(1)开启阀值电压VGS(th)测试

在主回路的“1”端与IGBT的“18”端之间串入毫安表,将主回路的“3”与“4”端分别与IGBT管的“14”与“17”端相连,再在“14”与“17”端间接入电压表,并将主回路电位器RP左旋到底。

将电位器RP逐渐向右旋转,边旋转边监视毫安表,当漏极电流ID=1mA时的栅源电压值即为开启阀值电压VGS(th)。

在主回路的“2”端与IGBT的“18”端串入安培表,将RP左旋到底,其余接线同上。

(3)导通电阻R DS测试

将电压表接入“18”与“17”两端,其余同上,从小到大改变V GS,读取I D与对应的漏源电DS

2.EXB840性能测试

(1)输入输出延时时间测试

IGBT部分的“1”与“13”分别与PWM波形发生部分的“1”与“2”相连,再将IGBT部分的“10”与“13”、与门输入“2”与“1”相连,用示波器观察输入“1”与“13”及EXB840输出“12”与“13”之间波形,记录开通与关断延时时间。

ton= 1US ,toff=17US

五、思考题

1.试对由EXB840构成的驱动电路的优缺点作出评价。

2.在选用二极管V1时,对其参数有何要求?其正向压降大小对IGBT的过流保护功能有何影响?

3.通过MOSFET与IGBT器件的实验,请你对两者在驱动电路的要求,开关特性与开关频率,有、无反并联寄生二极管,电流、电压容量以及使用中的注意事项等方面作一分析比较。

答:

1、EXB40具有过流检测及切断电路的功能,并且对10μS以下的过流信号不予响应一旦确认出现过流,它就低速切断电路而慢速关断IGBT。

2、

3、MOSFET是栅极电压来控制栅极电流的,驱动电路简单,需要驱动功率小,IGBT 的驱动电路与MOSFET相似但是需要注意对过电流和过电压的保护。MOSFET的开关容量比IGBT的开关容量小,但开关频率高,且无反并联寄生二极管。MOSFET 的电流,电压容量小。

实验五三相桥式全控整流及有源逆变电路实验一.实验目的

1.熟悉MCL-18, MCL-33组件。

2.熟悉三相桥式全控整流及有源逆变电路的接线及工作原理。

3.了解集成触发器的调整方法及各点波形。

二.实验内容

1.三相桥式全控整流电路

2.三相桥式有源逆变电路

3.观察整流或逆变状态下,模拟电路故障现象时的波形。

三.实验线路及原理

实验线路如图4-12所示。主电路由三相全控变流电路及作为逆变直流电源的三相不控整流桥组成。触发电路为数字集成电路,可输出经高频调制后的双窄脉冲链。三相桥式整流及有源逆变电路的工作原理可参见“电力电子技术”的有关教材。

四.实验设备及仪器

1.MCL系列教学实验台主控制屏。

2.MCL—18组件(适合MCL—Ⅱ)或MCL—31组件(适合MCL—Ⅲ)。3.MCL—33(A)组件或MCL—53组件(适合MCL—Ⅱ、Ⅲ、Ⅴ)

4.MEL-03可调电阻器(或滑线变阻器1.8K, 0.65A)

5.MEL-02芯式变压器

6.二踪示波器

7.万用表

五.实验方法

1.按图接线,未上主电源之前,检查晶闸管的脉冲是否正常。

(1)打开MCL-18电源开关,给定电压有电压显示。

(2)用示波器观察MCL-33(或MCL-53,以下同)的双脉冲观察孔,应有间隔均匀,相互间隔60o的幅度相同的双脉冲。

(3)检查相序,用示波器观察“1”,“2”单脉冲观察孔,“1”脉冲超前“2”脉冲600,则相序正确,否则,应调整输入电源。

(4)用示波器观察每只晶闸管的控制极,阴极,应有幅度为1V—2V的脉冲。注:将面板上的Ublf(当三相桥式全控变流电路使用I组桥晶闸管VT1~VT6时)接地,将I组桥式触发脉冲的六个开关均拨到“接通”。

(5)将给定器输出Ug接至MCL-33面板的Uct端,调节偏移电压Ub,在Uct=0时,使=150o。

2.三相桥式全控整流电路

按图接线,S拨向左边短接线端,将Rd调至最大。

三相调压器逆时针调到底,合上主电源,调节主控制屏输出电压Uuv、Uvw、Uwu,从0V调至220V。

注:如您选购的产品为MCL—Ⅲ、Ⅴ,无三相调压器,直接合上主电源。以下均同

调节Uct,使在30o~90o范围内,用示波器观察记录=30O、60O、90O时,整流电压ud=f(t),晶闸管两端电压uVT=f(t)的波形,并记录相应的Ud和交流输入电压U2数值。

3.三相桥式有源逆变电路

断开电源开关后,将S拨向右边的不控整流桥,调节Uct,使仍为150O左右。三相调压器逆时针调到底,合上主电源,调节主控制屏输出电压Uuv、Uvw、Uwu,从0V调至220V合上电源开关。

调节Uct,观察=90O、120O、150O时, 电路中ud、uVT的波形,并记录相应的Ud、U2数值。

4.电路模拟故障现象观察。在整流状态时,断开某一晶闸管元件的触发脉冲开关,则该元件无触发脉冲即该支路不能导通,观察并记录此时的ud波形。

说明:如果采用的组件为MCL—53或MCL—33(A),则触发电路是KJ004集成电路,具体应用可参考相关教材。

实验处理:

U与V线电压的波形

U与W线电压的波形:

U与W线电压的波形:

U与V线电压波形(0度):

U与V线电压波形(60度):

U与V线电压波形(120度):

U与V线电压波形(180度):

U与V线电压波形(240度):

U与V线电压波形(300度):

Ud=109.12V的输出波形:

有源逆变的输出波形:

输入为15V直流时的逆变的输出波形:

武汉工程大学实验一Matlab软件使用

武汉工程大学数字信号处理实验报告一 专业班级:14级通信03班 学生姓名:秦重双 学号:1404201114 实验时间:2017年5月2日 实验地点:4B315 指导老师:杨述斌

实验一 MATLAB软件使用 一、实验目的 1、熟悉MATLAB软件环境; 2、熟悉MATLAB的常用运算符; 3、了解MATLAB的一些常用函数特别是信号处理常用的函数; 二、实验内容 1、浏览MATLAB软件的窗口和菜单。 2、在命令窗口输入help和要查询的函数名称,就可以得到相应的帮助信息;直接用菜单中 的help,可以查到更详细的信息。 2、MATLAB中的固定变量: ans:在没有定义变量名时,系统默认变量名为ans; pi:表示 。 exp:表示数学中的e。 3、复数表示:如a+i*b或a+j*b,虚数用i和j表示。 4、请用help查看以下运算操作符的功能: +- * / \ ^ ‘; .* ./ .\ .^ .’; & | ~ xor;~= 完成下列操作,记录运算结果,并说明具体的运算功能: 输入矩阵 x=[1,2],y=[3,4],x’*y,回车;

输入x.*y,回车; 输入x.^y,回车; 输入2^3,回车;

5、请建立一个4×4的矩阵,矩阵中的元数值自定。要求写下输入的指令并记录结果; 6、本课程实验中常用的基本函数: (1)输入a=3+4*j,b=abs(a),记录运算结果,说出函数abs()的功能; abs为取复数X的模 (2)输入a=3+3*j,b=angle(a),记录运算结果,说出函数angle()的功能; angle()为X的相位 (3)zeros(m,n),m和n为正整数,请输入参数并记录结果,然后确定该函数的功能; m=2,n=3,即为两行三列的零矩阵 (4)ones(m,n),m和n为正整数,请输入参数并记录结果,然后确定该函数的功能; m=3,n=2为两行三列的一矩阵 (5)y=conv(x1,h1),输入help conv查看该函数的功能,并用讲过的例题或作业题来验证,请写下指令程序并记录结果;

电力电子技术实验报告

实验一 SCR、GTO、MOSFET、GTR、IGBT特性实验 一、实验目的 (1)掌握各种电力电子器件的工作特性。 (2)掌握各器件对触发信号的要求。 二、实验所需挂件及附件 序 型号备注 号 1DJK01 电源控制屏该控制屏包含“三相电源输出”等几个模块。2DJK06 给定及实验器件该挂件包含“二极管”等几个模块。 3DJK07 新器件特性实验 DJK09 单相调压与可调负 4 载 5万用表自备 将电力电子器件(包括SCR、GTO、MOSFET、GTR、IGBT五种)和负载电阻R 串联后接至直流电源的两端,由DJK06上的给定为新器件提供触发电压信号,给定电压从零开始调节,直至器件触发导通,从而可测得在上述过程中器件的V/A特性;图中的电阻R用DJK09 上的可调电阻负载,将两个90Ω的电阻接成串联形式,最大可通过电流为1.3A;直流电压和电流表可从DJK01电源控制屏上获得,五种电力电子器件均在DJK07挂箱上;直流电源从电源控制屏的输出接DJK09上的单相调压器,然后调压器输出接DJK09上整流及滤波电路,从而得到一个输出可以由调压器调节的直流电压源。 实验线路的具体接线如下图所示: 四、实验内容 (1)晶闸管(SCR)特性实验。

(3)功率场效应管(MOSFET)特性实验。

(5)绝缘双极性晶体管(IGBT)特性实验。 五、实验方法 (1)按图3-26接线,首先将晶闸管(SCR)接入主电路,在实验开始时,将DJK06上的给定电位器RP1沿逆时针旋到底,S1拨到“正给定”侧,S2拨到“给定”侧,单相调压器逆时针调到底,DJK09上的可调电阻调到阻值为最大的位置;打开DJK06的电源开关,按下控制屏上的“启动”按钮,然后缓慢调节调压器,同时监视电压表的读数,当直流电压升到40V时,停止调节单相调压器(在以后的其他实验中,均不用调节);调节给定电位器RP1,逐步增加给定电压,监视电压表、电流表的读数,当电压表指示接近零(表示管子完全导通),停止调节,记录给定电压U

电力工程基础实验报告

电力工程基础 实验二:电力系统自动重合闸仿真分析

一、实验目的 1、了解电力系统自动重合闸的意义 2、熟悉matlab中电力元件库 3、了解matlab进行电力系统仿真的方法和步骤 二、实验原理 1电力系统的数学模型 电力系统一般由发电机、变压器、电力线路和电力负荷构成。电力系统的数学模型一般是由电力系统元件的数学模型组合构成。MATLAB为电力系统的建模提供了简洁的工具,通过电力系统的电路图绘制,可以自动生成数学模型。 1.1电力系统元件库 启动和退出电力系统元件库 启动电力系统元件库的方法有几种,下面介绍两种最简单的方法。 (1)利用指令窗口(Command Windows)启动:在指令窗口中键入powerlib单击回车,则MATLAB软件中弹出电力系统元件对话框(powerlib) (2)利用开始(Start)导航区启动: 单击开始按钮,选择仿真(Simulink)命令,再选择电力系统仿真命令(SimPowerSystem),在弹出的对话框中选择电力系统元件库(Block Library)命令即可 2.电力系统元件库简介 在电力系统元件库对话框中包含了10类库元件,分别是 电源元件(Electrical Sources) 演示教程(Demos)、 线路元件(Elements) 附加元件(Extras) 电力电子元件(Power Electronics)

电机元件(Machines) 电力图形用户接口(Powergui) 连接器元件(Connectors) 电力系统元件库模型(Powelib_models 电路测量仪器(Measurements) 1)电源元件 ●(1)直流电压源元件(DC Voltage Source) ●直流电压源元件在电力系统中可以用来实现一个直流的电压源,如操作电源 等。MATLAB软件提供的直流电源为理想的直流电压源。 ●(2)交流电压源元件(AC Voltage Source) ●交流电压源可以用来实现理想的单相正弦交流电压。 ●(3)交流电流源元件(AC Current Source) ●MATLAB软件提供的交流电流源为一理想电流源 ●(4)受控电压源元件(Controlled Voltage Source) ●MATLAB软件提供的受控电压源是由激励信号源控制的,激励源可以是交流激 励源也可以是直流激励源。 ●(5)受控电流源元件(Controlled Current Source) ●(6)三相电源元件(3-Phase Source) ●三相电源元件是电力系统设计中最常见的电路元件,也是最重要的元件,其 运行特性对电力系统的运行状态起到决定性的作用。三相电源元件提供了带有串联RL支路的三相电源。 ●(7)三相可编程电压源元件(3-Phase Programmable Voltage Source) ●三相可编程电压源是可以对其进行编程的三相电压源,它的幅值、相位、频 率、谐波均可随时间进行变化,应用非常灵活。其主要作用是提供一个幅值、相位、频率、基频分量进行实时变性编程的三相电压源;此外,还可以提供两个谐波分量,作用于基频信号。 2)线路元件 线路元件库包括各种线性网络电路元件和非线性网络电路元件,线路元件共有4类分别是: 支路元件(Elements) 断路器元件(Circuit Breakers) 变压器元件(Transformers) 输配电线路元件(Lines) (1)支路元件(Elements) 支路元件用来实现各种串并联支路或者负载元件,它包括12种元件

武汉大学计算机学院 嵌入式实验报告

武汉大学计算机学院 课程实验(设计)报告 课程名称:嵌入式实验 专业、班: 08级 姓名: 学号: 学期:2010-2011第1学期 成绩(教师填写) 实 一二三四五六七八九总评验 分数 分数 (百分制)

实验一80C51单片机P1口演示实验 实验目的: (1)掌握P1口作为I/O口时的使用方法。 (2)理解读引脚和读锁存器的区别。 实验内容: 用P1.3脚的状态来控制P1.2的LED亮灭。 实验设备: (1)超想-3000TB综合实验仪 1 台 (2)超想3000仿真器 1 台 (3)连线若干根 (4)计算机1台 实验步骤: (1)编写程序实现当P1.3为低电平时,发光管亮;P1.3为高电平时,发光管灭。 (2)修改程序在执行读P1.3之前,先执行CLR P1.3,观察结果是否正确,分析在第二种情况下程序为什 么不能正确执行,理解读引脚和读锁存器区别。 实验结果: (1)当P1.3为低电平时,发光管亮;P1.3为高电平时,发光管灭。 (2)不正确。因为先执行CLR P1.3之后,当读P1.3的时候它的值就一直是0,所以发光管会一直亮而不 会灭。单片机在执行从端口的单个位输入数据的指令(例如MOV C,P1.0)时,它需要读取引脚上的数据。此时,端口锁存器必须置为‘1’,否则,输出场效应管导通,回拉低引脚上的高输出电平。 系统复位时,会把所有锁存器置‘1’,然后可以直接使用端口引脚作为输入而无需再明确设置端口锁存器。但是,如果端口锁存器被清零(如CLR P1.0),就不能再把该端口直接作为输入口使用,除非先把对应的锁存器置为‘1’(如 SETB P1.0)。 (3)而在引脚负载很大的情况(如驱动晶体管)下,在执行“读——改——写”一类的指令(如CPL P1.0) 时,需要从锁存器中读取数据,以免错误地判断引脚电平。 实验二 80C51单片机RAM存储器扩展实验 实验目的: 学习RAM6264的扩展 实验内容: 往RAM中写入一串数据,然后读出,进行比较 实验设备: (1)超想-3000TB综合实验仪 1 台 (2)超想3000仿真器 1 台

武汉工程大学实验报告

实验名称:Matlab 的基本操作与编程 一、实验目的: 1)熟悉MATLAB 软件的运行环境和基本操作 2)掌握MATLAB 矩阵的输入方式、元素的提取与组合 3)掌握数值运算。 4)掌握MATLAB 软件的绘图功能 5)掌握M 函数的编写。 二、实验内容: 1)启动MATLAB 软件,观察其界面组成及操作方法,了解各部分的功能 2)使用基本的MATLAB 命令,并观察记录执行结果 帮助、查询信息类命令:Demo 、help 、who 、whos 显示、记录格式等命令:clc 、clear 、format 尝试一下其他的命令(dos 命令) 3)生成一个5阶魔方矩阵,并提取其第(3、4、5)行,第(2、3、4)列构成的新的矩阵 5)用命令行方式求解下式的值 4 2 cos lim 2 2x x e x -→(提示使用syms x 定义一个符号,使用limit 函数) 6)MATLAB 的绘图 (1) 二维绘图命令plot :画出,sin x y =在]2,0[π∈x 上的图形 (2) 三维绘图命令plot3: 画出三维螺旋线 ?? ? ??===t z t y t x cos sin ,]4,0[π∈t 的图形. mesh 命令:绘制) 2(22y x e z +-=,在]5,5[-∈x ,]5,5[-∈y 区间的曲面 7)编写M 函数 利用程序流程控制语句编写一个函数myfactorial (n ),实现n !(阶乘)。要求使用help 命令可以列出相关的帮助信息。

三、实验结果及分析

实验名称:典型闭环系统的数字仿真及计算机解题 一、实验目的: 1)熟悉典型闭环的仿真过程 2)掌握MATLAB 编程实现典型闭环环节仿真 3)利用典型闭环环节仿真程序解题。 4)掌握MATLAB 下对控制系统进行时域、频域和根轨迹的分析 二、实验内容: 1)编写典型环节阶跃响应函数 典型环节冲击响应函数function [yout,t] = my_step(num,den,v,t0,tf,h,R,n) 输入参数: num :传递函数的分子系数向量 den :传递函数的分母系数向量 v :反馈比例系数 t0:仿真起始时间 tf :仿真终止时间 h :仿真步长 R:阶跃幅值 n:系统阶次 输出参数: yout :响应输出 t :时间向量 2)用上述函数分析以下系统,同时用simulink 分析该系统,并比较其结果。 3)被控对象的传递函数为 )20030(400 )(2++= S S S s G ,用simulin 建模并分 析其单位阶跃响应。用MATLAB 命令绘出其伯德图和根轨迹图。

#电力电子技术实验报告答案

实验一锯齿波同步移相触发电路实验 一、实验目的 (1)加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。 (2)掌握锯齿波同步移相触发电路的调试方法。 三、实验线路及原理 锯齿波同步移相触发电路的原理图如图1-11所示。锯齿波同步移相触发电路由同步检测、锯齿波形成、移相控制、脉冲形成、脉冲放大等环节组成,其工作原理可参见1-3节和电力电子技术教材中的相关内容。 四、实验内容 (1)锯齿波同步移相触发电路的调试。 (2)锯齿波同步移相触发电路各点波形的观察和分析。 五、预习要求 (1)阅读本教材1-3节及电力电子技术教材中有关锯齿波同步移相 触发电路的内容,弄清锯齿波同步移相触发电路的工作原理。 (2)掌握锯齿波同步移相触发电路脉冲初始相位的调整方法。 六、思考题 (1)锯齿波同步移相触发电路有哪些特点? (2)锯齿波同步移相触发电路的移相范围与哪些参数有关? (3)为什么锯齿波同步移相触发电路的脉冲移相范围比正弦波同步移相触发电路的移相范围要大? 七、实验方法 (1)将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V(不能打到“交流调速”侧工作,因为DJK03-1的正常工作电源电压为220V 10%,而“交流调速”侧输出的线电压为240V。如果输入电压超出其标准工作范围,挂件的使用寿命将减少,甚至会导致挂件的损坏。在“DZSZ-1型电机及自动控制实验装置”上使用时,通过操作控制屏左侧的自藕调压器,将输出的线电压调到220V左右,然后才能将电源接入挂件),用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,这时挂件中所有的触发电路都开始工作,用双踪示波器观察锯齿波同步触发电路各观察孔的电压波形。 ①同时观察同步电压和“1”点的电压波形,了解“1”点波形形成的原因。 ②观察“1”、“2”点的电压波形,了解锯齿波宽度和“1”点电压波形的关系。 ③调节电位器RP1,观测“2”点锯齿波斜率的变化。 ④观察“3”~“6”点电压波形和输出电压的波形,记下各波形的幅值与宽度,并比较“3”点电压U3和“6”点电压U6的对应关系。 (2)调节触发脉冲的移相范围

电力系统实验报告

成绩 课程作业 课程名称电力系统分析 院部名称机电工程学院 专业电气工程及其自动化 班级13级2班 学生姓名祥 学号1304102047 课程考核地点2234 任课教师静 金陵科技学院教务处制

实验一电力系统分析计算 一.实验目的 1.掌握用Matlab软件编程计算电力系统元件参数的方法. 2.通过对不同长度的电力线路的三种模型进行建模比较,学会选取根据电路要求选取模 型。 3.掌握多级电力网络的等值电路计算方法。 4.理解有名制和标幺制。 二.实验容 1.电力线路建模 有一回220kV架空电力线路,导线型号为LGJ-120,导线计算外径为15.2mm,三相导线水平排列,两相邻导线之间的距离为4m。试计算该电力线路的参数,假设该线路长度分别为60km,200km,500km,作出三种等值电路模型,并列表给出计算值。 2.多级电力网络的等值电路计算 部分多级电力网络结线图如图1-1所示,变压器均为主分接头,作出它的等值电路模型,并列表给出用有名制表示的各参数值和用标幺制表示的各参数值。 线路额定电压电阻 (欧/km) 电抗 (欧/km) 电纳 (S/km) 线路长度 (km) L1(架空线)220kv 0.08 0.406 2.81*10-6 200 L2(架空线)110kV 0.105 0.383 2.81*10-6 60 L3(架空线)10kV 0.17 0.38 忽略15 变压器额定容量P k(kw) U k% I o% P o(kW) T1 180MVA 893 13 0.5 175 T2 63MVA 280 10.5 0.61 60 三.实验设备 1.PC一台 2.Matlab软件 四.实验记录 1.电力线路建模 画出模型图,并标出相应的参数值。将计算结果填入下表

武汉大学计算机网络实验报告 (2)

武汉大学教学实验报告 动力与机械学院能源动力系统及自动化专业2013 年11 月10 日

一、实验操作过程 1.在仿真软件packet tracer上按照实验的要求选择无线路由器,一般路由器和PC机构建一个无线局域网,局域网的网络拓扑图如下: 2.按照实验指导书上的表9.1(参数配置表)对路由器,DNS服务器,WWW服务器和PC机进行相关参数的配置: 服务器配置信息(子网掩码均为255.255.255.0) 主机名IP地址默认网关 DNS 202.2.2.1 202.2.2.2 WWW 202.3.3.1 202.3.3.3 路由器配置信息(子网掩码均为255.255.255.0) 主机名型号IP地址默认网关时钟频率ISP 2620XM e1/0:202.2.2.2 e1/1:202.3.3.3 s0/0:202.1.1.2 64000 Router2(Server) 2620XM f0/0:192.168.1.1 s0/0:202.1.1.1 Wireless Router Linksys WRT300N 192.168.1.2 192.168.1.1 202.2.2.1 备注:PC机的IP地址将通过无线路由器的设置自动分配 2.1 对router0(sever)断的配置: 将下列程序代码输到router0中的IOS命令行中并执行,对router0路由器进行设置。Router>en Router#conf t

2.3 WWW服务器的相关配置 对www服务器进行与DNS服务器相似的配置,包括它的IP地址,子网掩码,网关等,具体的相关配置图见下图: WWW服务器的相关配置图

电力电子技术实验报告

实验一 DC-DC 变换电路的性能研究 一、实验目的 熟悉Matlab 的仿真实验环境,熟悉Buck 电路、Boost 电路、Cuk 电路及单端反激变换(Flyback )电路的工作原理,掌握这几种种基本DC-DC 变换电路的工作状态及波形情况,初步了解闭环控制技术在电力电子变换电路中的应用。 二、实验内容 1.Buck 变换电路的建模,波形观察及相关电压测试 2.Boost 变换电路的建模,波形观察及相关电压测试; 3.Cuk 电路的建模,波形观察及电压测试; 4.单端反激变换(Flyback )电路的建模,波形观察及电压测试,简单闭环控制原理研究。 (一)Buck 变换电路实验 (1)电感电容的计算过程: V V 500=,电流连续时,D=0.4; 临界负载电流为I= 20 50 =2.5A ; 保证电感电流连续:)1(20D I f V L s -?= =5 .210002024.0-150????) (=0.375mH 纹波电压 0.2%= s s f LCf D V ?8-10) (,在由电感值0.375mH ,算出C=31.25uF 。 (2)仿真模型如下: 在20KHz 工作频率下的波形如下:

示波器显示的六个波形依次为:MOSFET的门极电压、流过电阻两端的电流、电感电流、输出电压、MOSFET电流及续流二极管电流的波形。 在50KHz工作频率下的波形如下: 示波器显示的六个波形一次为:MOSFET的门极电压、流过电阻两端的电流、电感电流、输出电压、MOSFET电流及续流二极管电流的波形; 建立仿真模型如下:

(3)输出电压的平均值显示在仿真图上,分别为49.85,49.33; (4)提高开关频率,临界负载电流变小,电感电流更容易连续,输出电压的脉动减小,使得输出波形应更稳定。 (二)Boost 变换电路实验 (1)电感电容的计算过程: 升压比M= S V V 0=D -11,0V =15V,S V =6V,解得D=60%; 纹波电压0.2%=s c f f D ? ,c f RC 1=,s f =40KHz,求得L=12uH,C=750uf 。 建立仿真模型如下:

武汉大学电力系统分析实验报告

电气工程学院 《电力系统分析综合实验》2017年度PSASP实验报告 学号: 姓名: 班级:

实验目的: 通过电力系统分析的课程学习,我们都对简单电力系统的正常和故障运行状态有了大致的了解。但电力系统结构较为复杂,对电力系统极性分析计算量大,如果手工计算,将花费 大量的时间和精力,且容易发生错误。而通过使用电力系统分析程序PSASP,我们能对电 力系统潮流以及故障状态进行快速、准确的分析和计算。在实验过程中,我们能够加深对电力系统分析的了解,并学会了如何使用计算机软件等工具进行电力系统分析计算,这对我们以后的学习和工作都是有帮助的。 潮流计算部分: 本次实验潮流计算部分包括使用牛顿法对常规运行方式下的潮流进行计算,以及应用PQ分解法规划运行方式下的潮流计算。在规划潮流运行方式下,增加STNC-230母线负荷的有功至1.5.p.u,无功保持不变,计算潮流。潮流计算中,需要添加母线并输入所有母线 的数据,然后再添加发电机、负荷、交流线、变压器、支路,输入这些元件的数据。对运行方案和潮流计算作业进行定义,就可以定义的潮流计算作业进行潮流计算。 因为软件存在安装存在问题,无法使用图形支持模式,故只能使用文本支持模式,所以 无法使用PSASP绘制网络拓扑结构图,实验报告中的网络拓扑结构图均使用Visio绘制, 请见谅。 常规潮流计算: 下图是常规模式下的网络拓扑结构图,并在各节点标注电压大小以及相位。 下图为利用复数功率形式表示的各支路功率(参考方向选择数据表格中各支路的i侧母

线至j侧),因为无法使用图形支持模式,故只能通过文本支持环境计算出个交流线功率,下图为计算结果。

电力工程基础实验报告

《电力工程基础课程实验》 实验报告 院-系:工学院 专业:电气工程及其自动化 年级: 2013级 学生姓名: 学号: 指导教师:谢鸿龄

三段式电流电压方向保护实验 一、实验目的 1.熟悉三段电流保护的原理。 2.掌握三段电流保护逻辑组态的方法。 二、实验原理及逻辑框图 三段式电流电压保护一般用于单电源出线上,对于双电源辐射线可以加入方向元件组成带方向的各段保护。反时限对于任何相间故障,包括接近电源的线路发生故障都可以在较短时间内切除,但保护的配合整定比较复杂,主要用于单电源供电的终端线路。 WXH-822装置设三段电流电压方向保护。每一段保护的电压闭锁元件及方向元件均可单独投退,通过分别设置保护软压板控制这三段保护的投退。其中电流电压方向Ⅰ段可以通过控制字选择是否闭锁重合闸。过流Ⅲ段可通过控制字YSFS 选择采用定时限还是反时限,(若为0,则过流Ⅲ段为定时限段,若为1~3,则过流Ⅲ段分别对应三种不同的反时限段),根据国际电工委员会(IEC255-4)和英国标准规范(BS142.1996)的规定,本装置采用下列三个标准反时限特性方程,分别对应延时方式的1~3。 反时限特性方程如下: 一般反时限: t I I t 1 )(0.14 0.02-= (1) 非常反时限: t I I t 1 )(13.5 -= (2) 极端反时限: p p t I I t 1 )(80 2 -= (3) 上式中,Ip 为电流基准值,取过流Ⅲ段定值Idz3;Tp 为时间常数,取过流Ⅲ段时间定值T3, 范围为0.05~1S 。其中反时限特性可由控制字YSFS 选择(1为一般反时限,2为非常反时限,3为极端反时限)。 方向元件采用90?接线,按相起动。为消除死区,方向元件带有记忆功能。动作的最大灵敏角可以通过控制字选择为-45?或者-30?,动作范围120?~-30?或者105?~-45?。方向元件动作区域如图2-1所示: 方向元件动作区域

武汉大学单级放大电路实验报告

武汉大学计算机学院教学实验报告 课程名称电路与电子技术成绩教师签名 实验名称单级放大电路(多人合作实验)实验序号06 实验日期2011-12-12 姓名学号专业年级-班 小题分: 一、实验目的及实验内容 (本次实验所涉及并要求掌握的知识;实验内容;必要的原理分析) 实验目的: 1.掌握放大器静态工作点的调试方法及其对放大器性能的影响。 2.学习测量放大器的静态工作点Q,Av,ri,ro的方法啊,了解共射极电路特性。 3.学习放大器的动态性能。 实验内容: 测量放大器的动态和静态工作状态结果填入相应表格当中,记录相应的β值,A值和等效的输入电阻ri与输出电阻r0。 二、实验环境及实验步骤 小题分: (本次实验所使用的器件、仪器设备等的情况;具体的实验步骤) 实验环境: 1.示波器 2.信号发生器 3.数字万用电表 4.TRE-A3模拟电路实验箱 实验步骤: 1.?值测量 (1)按图2.1所示连接电路,将Rp的阻值调到最大值。 (2)连线完毕仔细检查,确定无误后再接通电源。改变Rp,记录Ic分别为0.8mA,1mA, 1.2mA时三极管V的?值。

Ib(mA)0.05 0.06 0.066 Ic(mA) 0.8 1 1.2 ? 16 16.67 18.18 ?=Ic/Ib代入各式即可 2.Q点测量 信号源频率f=500Hz时,逐渐加大ui幅度,观察uo不失真时的最大输入ui值和最大输出uo值,并测量Ib,Ic,和VCE填入表2.2 表2.2 实测法估算法误差 IB (uA)IC (mA) Vce (V) IB’ (uA) IC’ (mA) V’ce (V) IB-I’B IC-I’C Vce-V’ 47.2 1.4 4.86 47.2 1.56 3 0 0.16 1.86 估算法:Ib=V1/(R1+R2)=12/(51k+200K)=47.2uA Ic= ?Ib=1.56mA Vce=V1-R3*Ic=3V 3.Av值测量 (1)将信号发生器调到频率f=500Hz,幅值为5mA,接到放大器输入端ui,观察ui和uo 端的波形,用示波器进行测量,并将测得的ui,uo和实测计算的Av值及理论估算的Av’值填入表2.3 表2.3 实测法估算法误差 Ui(mV)Uo(V) Av=uo/ui Av’Av’-Av 5 -1.3 -260 -31 .7 -55.7 估算法:Vbe=V1-Ib(R1+R2) Vce=V1-Ic*R3 Av’=Vce/Vbe=-315.7 (2)保持Vi=5mV不变,放大器接入负载RL,在改变Rc的数值情况下测量,并将计算结果填表2.4 表2.4 给定参数实 实测计 估算 Rc RL Vi(mV) V o(V) Av Av 2k 5k 5 0.83 165 177.89 2k 2k2 5 0.60 119 129.7 5k1 5k1 5 1.30 260 315.76 5k1 2k2 5 0.90 180 190.3

《电力电子技术》实验报告-1

河南安阳职业技术学院机电工程系电子实验实训室(2011.9编制) 目录 实验报告一晶闸管的控制特性及作为开关的应用 (1) 实验报告二单结晶体管触发电路 (3) 实验报告三晶闸管单相半控桥式整流电路的调试与分析(电阻负载) (6) 实验报告四晶闸管单相半控桥式整流电路的研究(感性、反电势负载) (8) 实验报告五直流-直流集成电压变换电路的应用与调试 (10)

实验报告一晶闸管的控制特性及作为开关的应用 一、实训目的 1.掌握晶闸管半控型的控制特点。 2.学会晶闸管作为固体开关在路灯自动控制中的应用。 二、晶闸管工作原理和实训电路 1.晶闸管工作原理 晶闸管的控制特性是:在晶闸管的阳极和阴极之间加上一个正向电压(阳极为高电位);在门极与阴极之间再加上一定的电压(称为触发电压),通以一定的电流(称为门极触发电流,这通常由触发电路发给一个触发脉冲来实现),则阳极与阴极间在电压的作用下便会导通。当晶闸管导通后,即使触发脉冲消失,晶闸管仍将继续导通而不会自行关断,只能靠加在阳极和阴极间的电压接近于零,通过的电流小到一定的数值(称为维持电流)以下,晶闸管才会关断,因此晶闸管是一种半控型电力电子元件。 2.晶闸管控制特性测试的实训电路 图1.1晶闸管控制特性测试电路 3.晶闸管作为固体开关在路灯自动控制电路中的应用电路 图1.2路灯自动控制电路 三、实训设备(略,看实验指导书)

四、实训内容与实训步骤(略,看实验指导书) 五、实训报告要求 1.根据对图1.1所示电路测试的结果,写出晶闸管的控制特点。记录BT151晶闸管导通所需的触发电压U G、触发电流I G及导通时的管压降U AK。 2.简述路灯自动控制电路的工作原理。

电力系统实验报告

电 力 系 统 实 验 报 告 班级:09050446X 学号:09050446X00 姓名:

实验一同步发电机准同期并列实验 一、实验目的 1.加深理解同步发电机准同期并列原理,掌握准同期并列条件; 2.掌握微机准同期控制器及模拟式综合整步表的使用方法; 3.熟悉同步发电机准同期并列过程; 4.观察、分析有关波形。 二、原理与说明 将同步发电机并入电力系统的合闸操作通常采用准同期并列方式。准同期并列要求在合闸前通过调整待并机组的电压和转速,当满足电压幅值和频率条件后,根据“恒定越前时间原理”,由运行操作人员手动或由准同期控制器自动选择合适时机发出合闸命令,这种并列操作的合闸冲击电流一般很小,并且机组投入电力系统后能被迅速拉入同步。根据并列操作的自动化程度不同,又分为手动准同期、半自动准同期和全自动准同期三种方式。 正弦整步电压是不同频率的两正弦电压之差,其幅值作周期性的正弦规律变化。它能反映两个待并系统间的同步情况,如频率差、相角差以及电压幅值差。线性整步电压反映的是不同频率的两方波电压间相角差的变化规律,其波形为三角波。它能反映两个待并系统间的频率差和相角差,并且不受电压幅值差的影响,因此得到广泛应用。 手动准同期并列,应在正弦整步电压的最低点(同相点)时合闸,考虑到断路器的固有合闸时间,实际发出合闸命令的时刻应提前一个相应的时间或角度。 自动准同期并列,通常采用恒定越前时间原理工作,这个越前时间可按断路器的合闸时间整定。准同期控制器根据给定的允许压差和允许频差,不断地检查准同期条件是否满足,在不满足要求时闭锁合闸并且发出均压均频控制脉冲。当所有条件均满足时,在整定的越前时刻送出合闸脉冲。

分析化学实验报告(武汉大学第五版)

分析化学实验报告 陈峻 (贵州大学矿业学院贵州花溪 550025) 摘要:熟悉电子天平得原理与使用规则,同时可以学习电子天平得基本操作与常用称量方法;学习利用HCl与NaOH相互滴定,便分别以甲基橙与酚酞为指示剂得 滴定终点;通过KHC 8H 4 O 4 标定NaOH溶液,以学习有机酸摩尔质量得测定方法、熟 悉常量法滴定操作并了解基准物质KHC 8H 4 O 4 得性质及应用;通过对食用醋总浓度 得测定,以了解强碱滴定弱酸过程中溶液pH得变化以及指示剂得选择。 关键词:定量分析;电子天平;滴定分析;摩尔质量;滴定;酸度,配制与标定 前言 实验就是联系理论与实际得桥梁,学好了各种实验,不仅能使学生掌握基本操作技能,提高动手能力,而且能培养学生实事求就是得科学态度与良好得实验习惯,促其形成严格得量得观念。天平就是大多数实验都必须用到得器材,学好天平得使用就是前提,滴定就是分析得基础方法,学好配制与滴定就是根本。 (一)、分析天平称量练习 一、实验目得: 1、熟悉电子分析天平得使用原理与使用规则。 2、学习分析天平得基本操作与常用称量法。 二、主要试剂与仪器 石英砂电子分析天平称量瓶烧杯小钥匙 三、实验步骤 1、国定质量称量(称取0、5000g 石英砂试样3份) 打开电子天平,待其显示数字后将洁净、干燥得小烧杯放在秤盘上,关好天平门。然后按自动清零键,等待天平显示0、0000 g。若显示其她数字,可再次按清零键,使其显示0、0000

g。 打开天平门,用小钥匙将试样慢慢加到小烧杯中央,直到天平显示0、5000 g。然后关好 天平门,瞧读数就是否仍然为0、5000g。若所称量小于该值,可继续加试样;若显示得量超过 该值,则需重新称量。每次称量数据应及时记录。 2、递减称量(称取 0、30~0、32 g石英砂试样 3 份) 按电子天平清零键,使其显示0、0000 g,然后打开天平门,将1个洁净、干燥得小烧杯 放在秤盘上,关好天平门,读取并记录其质量。 另取一只洁净、干燥得称量瓶,向其中加入约五分之一体积得石英砂,盖好盖。然后将 其置于天平秤盘上,关好天平门,按清零键,使其显示0、0000 g。取出称量瓶,将部分石英 砂轻敲至小烧杯中,再称量,瞧天平读数就是否在-0、30~-0、32 g 范围内。若敲出量不够, 则继续敲出,直至与从称量瓶中敲出得石英砂量,瞧其差别就是否合乎要求(一般应小于 0、4 mg)。若敲出量超过0、32 g,则需重新称量。重复上述操作,称取第二份与第三份试样。 四、实验数据记录表格 表1 固定质量称量 编号 1 2 3 m/g 0、504 0、500 0、503 表2 递减法称量 编号 1 2 3 m(空烧杯)/g 36、678 36、990 37、296 称量瓶倒出试样m1 -0、313 -0、303 -0、313 M(烧杯+试样)/g 36、990 37、296 37、607

飞鸽传书实验报告

武汉工程大学 计算机科学与工程学院认识实习报告 专业 计算机科学与技术(计算机工程方向) 班级 学号 学生姓名 指导教师 实习时间 实习成绩 武汉工程大学计算机科学与工程学院制

说明: 1、实习指导教师由学院校内教师担任,负责组织实习、学生管理、参加实 习答辩、实习成绩评定、给出实习评语等工作。 2、实习报告由武汉工程大学计算机科学与工程学院提供基本格式(适用于 学院各专业),各专业教研室和指导教师可根据本专业特点及实习内容做适当的调整,学生须按指导教师下达的实习报告格式认真进行填写。 3、实习成绩由指导教师根据学生的实习情况给出各项分值及总评成绩。 4、指导教师评语一栏由实习指导教师(校内教师)就学生在整个实习期间 的表现给出客观、全面的评价,包括实习期间的表现、实习报告的质量、实习答辩的情况等。 5、学生必须参加实习答辩,凡不参加实习答辩者,实习成绩一律按不及格 处理。实习答辩小组应由2人及以上教师组成,其中校内指导教师必须参加,否则视作无效答辩。 6、实习报告正文字数应不少于5000字,实习日记字数不少于200字/天。 7、实习报告正文中实习目的与任务、实习地点、实习内容和要求等项,可 由指导教师统一给出(自主实习除外)。学生自主实习的,可根据实习的情况自行填写以上内容。 8、自主实习的学生还应提供由实习单位出具的实习鉴定表(复印件),与实 习报告一起装订,作为参加实习答辩和评定成绩的依据。

学生姓名:学号:班级:

指导教师评语

一、实习目的与任务 计算机科学与技术专业认识实习是学生在完成基础课学习转入到专业课学习阶段的一个极其重要的实践教学环节。其目的是通过参观和听取专业报告等多种方式,使学生了解本专业相关领域的发展现状,相关产品的研发过程和管理手段。具体任务包括: 1、了解计算机、网络通信等相关领域的发展现状和最新科研成果,以及在生产科研中的应用; 2、巩固学生的理论知识,培养学生的实践能力、创新能力,拓宽学生视野,树立努力学习专业知识的信心,并为学习后续课程打下一定的实践基础; 3、增强劳动观念,树立正确的劳动观和价值观。 二、实习地点 东软软件股份有限公司大连分公司 三、实习内容和要求 1、参观武汉烽火集团有限公司展厅,听取基地指导教师的介绍,了解我国光信息及通信 产业的发展现状、产品的研发过程。 2、在武汉锐诺斯科技有限公司,了解国际宽幅打印机的开发流程及发展动态。 3、在鑫人达电子有限公司,参观自动化焊接生产线,波峰焊接设备和全自动源器件切片; 全自动回流焊接设备。 4、听取专家报告,了解计算机教育相关知识,了解计算机信息技术最新研究动态,了解 国家重点实验室相关技术。 5、实习期间,每天需记实习日记(最好手写),字数不少于200字/天,内容包括:时间、 地点、主要实习内容等。实习结束后,撰写认识实习报告(模版打印)。

电力系统分析实验报告

本科生实验报告 实验课程电力系统分析 学院名称核技术与自动化工程学院 专业名称电气工程及其自动化 学生姓名 学生学号 指导教师顾民 实验地点6C901 实验成绩 二〇一五年十月——二〇一五年十二月

实验一 MATPOWER软件在电力系统潮流计算中的应用实例 一、简介 Matlab在电力系统建模和仿真的应用主要由电力系统仿真模块(Power System Blockset简称PSB)来完成。Power System Block是由TEQSIM公司和魁北克水电站开发的。PSB是在Simulink环境下使用的模块,采用变步长积分法,可以对非线性、刚性和非连续系统进行精确的仿真,并精确地检测出断点和开关发生时刻。PSB程序库涵盖了电路、电力电子、电气传动和电力系统等电工学科中常用的基本元件和系统仿真模型。通过PSB可以迅速建立模型,并立即仿真。PSB程序块程序库中的测量程序和控制源起到电信号与Simulink程序之间连接作用。PSB程序库含有代表电力网络中一般部件和设备的Simulink程序块,通过PSB可以迅速建立模型,并立即仿真。 1)字段baseMVA是一个标量,用来设置基准容量,如100MVA。 2)字段bus是一个矩阵,用来设置电网中各母线参数。 ① bus_i用来设置母线编号(正整数)。 ② type用来设置母线类型, 1为PQ节点母线, 2为PV节点母线, 3为平衡(参考)节点母线,4为孤立节点母线。 ③ Pd和Qd用来设置母线注入负荷的有功功率和无功功率。 ④ Gs、Bs用来设置与母线并联电导和电纳。 ⑤ baseKV用来设置该母线基准电压。 ⑥ Vm和Va用来设置母线电压的幅值、相位初值。 ⑦ Vmax和Vmin用来设置工作时母线最高、最低电压幅值。 ⑧ area和zone用来设置电网断面号和分区号,一般都设置为1,前者可设置范围为1~100,后者可设置范围为1~999。 3)字段gen为一个矩阵,用来设置接入电网中的发电机(电源)参数。 ① bus用来设置接入发电机(电源)的母线编号。 ② Pg和Qg用来设置接入发电机(电源)的有功功率和无功功率。 ③ Pmax和Pmin用来设置接入发电机(电源)的有功功率最大、最小允许值。 ④ Qmax和Qmin用来设置接入发电机(电源)的无功功率最大、最小允许值。 ⑤ Vg用来设置接入发电机(电源)的工作电压。 1.发电机模型 2.变压器模型 3.线路模型 4.负荷模型 5.母线模型 二、电力系统模型 电力系统中输送和分配电能的部分称为电力网,它包括升降压变压器和各种电压等级的输电线路、动力系统、电力系统和电力网简单示意如图

武汉大学计算机学院教学实验报告

武汉大学计算机学院教学实验报告 课题名称:电工实验专业:计算机科学与技术2013 年11 月15 日 实验名称电路仿真实验实验台号实验时数3小时 姓名秦贤康学号2013301500100年级2013 班3班 一、实验目的及实验内容 (本次实验所涉及并要求掌握的知识点;实验内容;必要的原理分析) 实验目的: 熟悉multisim仿真软件的使用 用multisim进行电路仿真,并验证书上的理论知识的正确性 内容:用仿真软件进行实验 二、实验环境及实验步骤 (本次实验所使用的器件、仪器设备等的情况;具体的实验步骤) 实验环境: 一台微机 实验步骤: 用multisim先进行电路仿真,再记录下相关数据 三、实验过程与分析 (详细记录实验过程中发生的故障和问题,进行故障分析,说明故障排除的过程和方法。根据具体实验,记录、整理相应的数据表格、绘制曲线、波形图等)

实验内容及数据记录 1、简单直流电路 简单直流电路在有载状态下电源的电阻、电压和电路 简单直流电路在短路状态下电源的电阻、电压和电路 简单直流电 路在 开路状 态下电源的电阻、电压和电路 2、复杂直 流电路 复杂直流电路中各元件上的电压 复杂直流电路中各元件上的电流 复杂直流电路在E1作用下负载上的电压和电流 复杂直流电路在E2作用下的电压和电流 复杂直流电路在E1与E2作用下的电压和电流 复杂直 流电路 中的等效电阻 R (k Ω) 1 2 3 4 5 I (mA ) 24000 24000 24000 24000 24000 U (V ) 0.000024 0.000024 0.000024 0.000024 0.000024 R (k Ω) 1 2 3 4 5 I (mA ) 12 6.09 4.011 3.011 2.412 U (V ) 11.94 11.997 11.99 8 11.998 11.999 R (k Ω) 1 2 3 4 5 I (mA ) 0.000176 0.000176 0.000176 0.000176 0.000176 U (V ) 12 12 12 12 12 RL (k Ω) 1 2 3 4 5 URL (V ) 6.799 8.497 9.269 9.710 9.995 UR1(V ) 5.198 3.501 2.730 2.289 2.004 UR2(V ) -3.200 -1.502 -0.731 -0.290 -0.005286 UE1(V ) 11.997 11.998 11.999 11.999 11.999 UE2(V ) 9.999 10.000 10.000 10.000 10.000 RL (k Ω) 1 2 3 4 5 IRL (mA ) 6.807 4.258 3.100 2.437 2.209 IR1(mA ) 5.198 3.505 2.733 2.292 2.006 IR2(mA ) -1.603 2.499 --1.999 -1.666 -1.428 IE1(mA ) 5.198 3.505 2.733 2.292 2.006 IE2(mA ) -1.603 -2.501 -2.000 -1.666 -1.428 RL (k Ω) 1 2 3 4 5 UE1(V ) 4.798 5.996 6.540 6.851 7.053 IE1(mA ) 4.803 3.004 2.187 1.720 1.418 RL (k Ω) 1 2 3 4 5 UE2(V ) 2.002 2.501 2.729 2.858 2.942 IE2(mA ) 2.002 1.252 0.911 0.718 0.592 RL (k Ω) 1 2 3 4 5 URL (V ) 6.802 8.497 9.269 9.710 9.995 IRL (mA ) 6.807 4.258 3.100 2.437 2.209 R3(k Ω) 1 2 3 4 5 R6(k Ω) 2 3 4 5 6 R7(k Ω) 3 4 5 6 7 RL (k Ω) -1.603 2.499 --1.999 -1.666 -1.428 URL (V ) 5.198 3.505 2.733 2.292 2.006 IRL (A ) -1.603 -2.501 -2.000 -1.666 -1.428 R3(k Ω) 1 2 3 4 5

相关文档
最新文档