第十四章整式乘法与因式分解练习题

第十四章整式乘法与因式分解练习题
第十四章整式乘法与因式分解练习题

14.1.4整式的乘法练习题

1、计算下列各式结果等于

的是( ) A 、225x x ? B 、225x x + C 、x x +35 D 、x x 354

+

2、计算(a-b+c)2(b-a-c)3 等于( )

A 、(a-b+c)5

B 、(b-a-c)5

C 、-(a-b+c)5

D 、-(b-a-c)5

3、化简2

)2()2(a a a --?-的结果是( )

A .0

B .22a

C .26a -

D .2

4a -

4、计算(32

)2003×1.52002×(-1)2004的结果是( ) A 、32

B 、23

C 、-32

D 、-23

5、(-5x)2 ·52

xy 的运算结果是( )

A 、10y x 3

B 、-10y x 3

C 、-2x 2y

D 、2x 2y

6、若6

3m 222=?,则m 的值是( )

A 、8

B 、6

C 、4

D 、3

7、

2552)a ()a (-+-的结果是( ) A 、0

B 、210a

C 、-210a

D 、27

a

8、一种计算机每秒可做4×108次运算。它工作3×103秒运算的次数为( ) A 、12×1024 B 、1.2×1012 C 、12×1012 D 、12×108

9、1405=a ,2103=b ,2802=c ,则a 、b 、c 的大小关系是( )

A 、c b a <<

B 、c a b <<

C 、b a c <<

D 、a b c <<

10、若三角形的三边长分别为a 、b 、c ,满足0c a b a 2

2=-,则这个三角形是( )

A 、直角三角形

B 、等边三角形

C 、锐角三角形

D 、等腰三角形 11.已知(3x+1)(x-1)-(x+3)(5x-7)=x 2-10x+m,则m=_____.

45x

12.已知ax 2+bx+1与2x 2-3x+1的积不含x 3的项,也不含x 的项,那么a=?_______,b=_____.

13、

()

=-4

n x 342)2(b a -= 523)()(m m m ?-?-=

14、若代数式1322++a a 的值为6,则代数式5962

++a a 的值为 . 15、3=x a ,则=x

a 2 .

16、若n

n n )ab (81

b 4a ,则,=== .

17、若单项式5b a 3y x 3--与b

a 3y x 3+是同类项,则这两个单项式的积为 . 18、若20

4n 825255=?,则=n .

19、已知

,252=n

34=n ,则=n 610 . 20、计算

(1)2)2(+-x (2))2)(2()3(a a a a +---

(3) (-5x n+1

y)·(-2x) (4)(-4a)·(2a 2

+3a-1)

(5)(3m-n)(-m-2n). (6)(-x+2y)(5a-3b).

21、先化简,再求值:

(1))1(2)1(+----x x x x ,其中2-=x

(2))4)(2()3)(2(y x y x y x y x ----+--,其中1-=x ,2=y 22、已知ab 2= -4,求ab 2 - ab (a 2 b 5-b ) 值.

23、已知x+3y=0,求

32

326x x y x y +--的值.

14.2 乘法公式练习题

一、判断正误:对的画“√”,错的画“×”.

(1)(a-b)(a+b)=a 2-b 2

; ( ) (2)(b+a)(a-b)=a 2-b 2; ( ) (3)(b+a)(-b+a)=a 2-b 2; ( ) (4)(b-a)(a+b)=a 2-b 2; ( ) (5)(a-b)(a-b)=a 2-b 2. ( ) (6)(a+b)2=a 2+b 2; ( ) (7)(a-b)2=a 2-b 2; ( ) (8) (a-b)2=(b-a)2. ( ) 二、填空题

1.______________)3)(32(=-+y x y x ;2.

_______________)52(2

=+y x ; 3.______________)23)(32(=--y x y x ; 4.______________)32)(64(=-+y x y x ;

5.________________)221

(2=-y x 6.____________)9)(3)(3(2

=++-x x x ;

7.___________1)12)(12(=+-+x x ; 8.4))(________2(2

-=+x x ; 9._____________)3)(3()2)(1(=+---+x x x x ;10.____________)2()12(22=+--x x ; 11.224)__________)(__2(y x y x -=-+; 12.______________))(1)(1)(1(4

2=++-+x a x x x ; 13. 如果多项式92

+-mx x 是一个完全平方式,则m 的值是 。 14.如果多项式k x x ++82

是一个完全平方式,则k 的值是 。 15.

()()_________2

2=--+b a b a ()__________2

22-+=+b a b a

16.已知

________,60,172

=+==+y x xy y x 2则 17.计算 若

13

a a +

=,则

221

a a +的值是 。 三、用乘法公式计算

(1) (-m+5n)(-m-5n) (2) (3x-1)(3x+1) (3) (y-5)2

(4)(-2x+5)2 (5) (

34x-2

3

y)2 (6) (y+3x)(3x-y)

(7) (-2+ab)(2+ab) (8) (2x-3)2 (9) (-2x+3y)(-2x-3y)

(10) (12m-3)(12m+3) (11) (13

x+6y)2 (12)、(y+2)(y-2)-(y-1)(y+5)

(13)(x+1)(x-3)-(x+2)2+(x+2)(x-2) (14)(a+2b-1)2

(15) (2x+y+z)(2x-y-z) (16)22)2()2()2)(12(+---+-x x x x

(17)1241221232?- (18)(2x +3)(2x -3)-(2x-1)2

(((

(19)、(2x +y +1)(2x +y -1) (20))3)(12(--x x

四、已知12,3-==+ab b a ,求下列各式的值.(1)22b ab a +- (2) 2)(b a -.

五、图a 是一个长为2 m 、宽为2 n 的长方形, 沿图中虚线用剪刀均分成四块小长方形, 然后按图b 的形状拼成一个正方形。

图a

图b

(1)你认为图b 中的阴影部分的正方形的边长等于 。 (2)请用两种不同的方法求图b 中阴影部分的面积。 方法1: 方法2: (3)观察图b 你能写出下列三个代数式之间的等量关系吗? 代数式: ()(). , ,2

2

mn n m n m -+ (4)根据(3)题中的等量关系,解决如下问题: 若5,7==+ab b a ,求2)(b a -的值。

14.3 因式分解练习题

1.将下列各式分解因式

(1)3p2﹣6pq (2)2x2+8x+8

2.将下列各式分解因式

(1)x3y﹣xy (2)3a3﹣6a2b+3ab2.

3.分解因式

(1)a2(x﹣y)+16(y﹣x)(2)(x2+y2)2﹣4x2y2

4.分解因式:

(1)2x2﹣x (2)16x2﹣1

(3)6xy2﹣9x2y﹣y3 (4)4+12(x﹣y)+9(x﹣y)2

5.因式分解:

(1)2am2﹣8a (2)4x3+4x2y+xy2

6.将下列各式分解因式:

(1)3x﹣12x3(2)(x2+y2)2﹣4x2y2

7.因式分解:(1)x 2y ﹣2xy 2+y 3 (2)(x+2y )2﹣y 2

8.对下列代数式分解因式:

(1)n 2(m ﹣2)﹣n (2﹣m ) (2)(x ﹣1)(x ﹣3)+1

(3)a 2﹣4a+4﹣b 2 (4)a 2﹣b 2﹣2a+1

9.多项式))(())((x b x a ab b x x a a --+---的公因式是( ) A 、-a 、 B 、))((b x x a a --- C 、)(x a a - D 、)(a x a --

10.下列名式:4

422222222,)()(,,,y x y x y x y x y x --+---+--中能用平方差公式

分解因式的有( )

A 、1个

B 、2个

C 、3个

D 、4个

11.下列式子:(1)x 2+y 2(2)-2xy -x 2-y 2(3)a 2+ab+b 2(4)x 2-y 2(5)4x 2-4x -1中能用完全平方公式分解因式的有( ) A 、1个 B 、2个 C 、3个 D 、4个 12.分解因式:

(1)x 2+12x+36 (2)-2xy -x 2-y 2 (3)a 2+2a+1

(4)ax 2+2a 2x+a 3 (5)-3x 2+6xy -3y 2 (6)81182

4+-x x

13.(1)若x 2+x+m=(x-n)2,则m =___ _n =__ __ (2)x 2+6x+( )=(x+3)2, x 2+( )+9=(x-3)2 (3)若9x 2+k+y 2是完全平方式,则k=____ ___。

14. 分解因式x 2+4x=_______,猜想方程042

=+x x 的解是__ _

第十四章 整式的乘法与因式分解单元测试

一、选择题(每题3分,共15分)

(1)下列式子中,正确的是..............................( ) A.3x+5y=8xy

B.3y 2-y 2=3

C.15a b-15a b=0

D.29x 3-28x 3=x

(2)当a =-1时,代数式(a +1)2+ a (a +3)的值等于………………( ) A.-4

B.4

C.-2

D.2

(3)若-4x 2y 和-2x m y n 是同类项,则m ,n 的值分别是…( ) A.m=2,n=1 B.m=2,n=0

C.m=4,n=1

D.m=4,n=0

(4)化简(-x)3·(-x)2的结果正确的是……………( ) A.-x 6

B.x 6

C.x 5

D.-x 5

(5)若x 2+2(m-3)x+16是完全平方式,则m 的值等于( ) A.3

B.-5

C.7.

D.7或-1

二、填空(每题3分,共15分)

(1)化简:a 3·a 2b= . (2)计算:4x 2+4x 2= (3)计算:4x 2

·(-2xy)= .(4)分解因式:a 2

-25=

(5)按图15-4所示的程序计算,若开始输入的x 值为3,则最后输出的结果是 .

三、解答题(共70分)

1.计算(直接写出结果,共10分)

a m ·a n = , (a m )n = , (a b)n =

①a ·a 3= ②(m+n)2·(m+n)3= ③(103)5= ④(b 3)4= ⑤(2b)3= ⑥(2a 3)2= ⑦(-3x)4= 2.计算与化简.(共18分)

(1)3x 2y ·(-2xy 3); (2)2a 2(3a 2-5b);

(3)(-2a 2)(3a b 2-5a b 3). (4)(5x+2y)(3x-2y).

(5)(3y+2)(y-4)-3(y-2)(y-3); (6)(-3)2008·(31

)2009

3.先化简,再求值(7分)

(a+b)(a-2b)-(a+2b)(a-b),其中a=2, b=-1

4.把下列各式分解因式.(共18分)

(1)xy+a y-by; (2)3x(a-b)-2y(b-a); (3)m2-6m+9;

(4) 4x2-9y2 (5)x4-1;(6) x2-7x+10;

5.解下列方程与不等式(每题5分,共10分)

(1)3x(7-x)=18-x(3x-15);

(2) (x+3)(x-7)+8>(x+5)(x-1).

6.已知x-y=1,xy=3,求x3y-2x2y2+xy3的值.(7分)

因式分解--十字相乘法练习题

十字相乘法分解因式练习题 1. 如果))((2b x a x q px x ,那么p 等于() A.ab B.a +b C.-ab D.-(a +b) 2. 如果 305)(22x x b x b a x ,则b 为() A.5 B.-6 C.-5 D.6 3. 多项式a x x 32可分解为(x -5)(x -b),则a ,b 的值分别为( ) A.10和-2 B.-10和2 C.10和2 D.-10和-2 4. 不能用十字相乘法分解的是 () A.22x x B.x x x 310322C.242x x D.2 2865y xy x [5. 分解结果等于(x +y -4)(2x +2y -5)的多项式是 () A. 20)(13)(22y x y x B.20)(13)22(2y x y x C.20)(13)(22y x y x D.20)(9)(22y x y x 6. 将下述多项式分解后,有相同因式 x -1的多项式有( ) ①672x x ;②1232x x ;③652x x ;④9542x x ;⑤823152x x ;⑥12 1124x x A.2个 B.3个 C.4个 D.5个7.10 32x x .8.6 52m m (m +a)(m +b).a =_____,b =__________. 9.3522x x (x -3)(). 10.2x ____22y (x -y)(__________). 11.1522x x =______________. 12. 当k =______时,多项式k x x 732有一个因式为__________. 13. 若x -y =6,3617 xy ,则代数式3 2232xy y x y x 的值为__________. 14. 把下列各式分解因式:

因式分解之十字相乘法专项练习的题目

十字相乘法进行因式分解 学生姓名:刘家艺 【基础知识精讲】 (1)理解二次三项式的意义; (2)理解十字相乘法的根据; (3)能用十字相乘法分解二次三项式; (4)重点是掌握十字相乘法,难点是首项系数不为1的二次三项式的十字相乘法. 【重点难点解析】 1.二次三项式 多项式c bx ax ++2,称为字母x 的二次三项式,其中2 ax 称为二次项,bx 为一次项,c 为常数项.例如,322--x x 和652 ++x x 都是关于x 的二次三项式. 在多项式2 2 86y xy x +-中,如果把y 看作常数,就是关于x 的二次三项式;如果把x 看作常数,就是关于y 的二次三项式. 在多项式3722 2+-ab b a 中,把ab 看作一个整体,即3)(7)(22 +-ab ab ,就是 关于ab 的二次三项式.同样,多项式12)(7)(2 ++++y x y x ,把x +y 看作一个整体,就是关于x +y 的二次三项式. 十字相乘法是适用于二次三项式的因式分解的方法. 2.十字相乘法的依据和具体内容 利用十字相乘法分解因式,实质上是逆用(ax +b )(cx +d )竖式乘法法则.它的一般 规律是: (1)对于二次项系数为1的二次三项式q px x ++2 ,如果能把常数项q 分解成两个因数a ,b 的积,并且a +b 为一次项系数p ,那么它就可以运用公式 ))(()(2b x a x ab x b a x ++=+++

分解因式.这种方法的特征是“拆常数项,凑一次项”.公式中的x 可以表示单项式,也可以表示多项式,当常数项为正数时,把它分解为两个同号因数的积,因式的符号与一次项系数的符号相同;当常数项为负数时,把它分解为两个异号因数的积,其中绝对值较大的因数的符号与一次项系数的符号相同. (2)对于二次项系数不是1的二次三项式c bx ax ++2 (a ,b ,c 都是整数且a ≠0)来说,如果存在四个整数2121,,,c c a a ,使a a a =?21,c c c =?21,且b c a c a =+1221, 那么c bx ax ++2 ))(()(22112112212 21c x a c x a c c x c a c a x a a ++=+++=它的特征 是“拆两头,凑中间”,这里要确定四个常数,分析和尝试都要比首项系数是1的情况复杂,因此,一般要借助“画十字交叉线”的办法来确定.学习时要注意符号的规律.为了减少尝试次数,使符号问题简单化,当二次项系数为负数时,先提出负号,使二次项系数为正数,然后再看常数项;常数项为正数时,应分解为两同号因数,它们的符号与一次项系数的符号相同;常数项为负数时,应将它分解为两异号因数,使十字连线上两数之积绝对值较大的一组与一次项系数的符号相同.用十字相乘法分解因式,还要注意避免以下两种错误出现:一是没有认真地验证交叉相乘的两个积的和是否等于一次项系数;二是由十字相乘写出的因式漏写字母.如: )45)(2(86522-+=-+x x y xy x 3.因式分解一般要遵循的步骤 多项式因式分解的一般步骤:先考虑能否提公因式,再考虑能否运用公式或十字相乘法,最后考虑分组分解法.对于一个还能继续分解的多项式因式仍然用这一步骤反复进行.以上步骤可用口诀概括如下:“首先提取公因式,然后考虑用公式、十字相乘试一试,分组分解要合适,四种方法反复试,结果应是乘积式”. 【典型热点考题】 例1 把下列各式分解因式: (1)1522 --x x ;(2)2 2 65y xy x +-. 点悟:(1)常数项-15可分为3 ×(-5),且3+(-5)=-2恰为一次项系数; (2)将y 看作常数,转化为关于x 的二次三项式,常数项2 6y 可分为(-2y )(-3y ),而

《-整式乘除与因式分解》知识点归纳及经典例题

第十五章 整式乘除与因式分解 知识点归纳: 一、幂的运算: 1、同底数幂的乘法法则:n m n m a a a +=?(n m ,都是正整数) 同底数幂相乘,底数不变,指数相加。注意底数可以是多项式或单项式。 如:532)()()(b a b a b a +=+?+ 2、幂的乘方法则:mn n m a a =)((n m ,都是正整数) 幂的乘方,底数不变,指数相乘。如:10253)3(=- 幂的乘方法则可以逆用:即m n n m mn a a a )()(== 如:23326)4()4(4== 3、积的乘方法则:n n n b a ab =)((n 是正整数)。积的乘方,等于各因数乘方的积。 如:(523)2z y x -=5101555253532)()()2(z y x z y x -=???- 4、同底数幂的除法法则:n m n m a a a -=÷(n m a ,,0≠都是正整数,且)n m φ 同底数幂相除,底数不变,指数相减。如:3334)()()(b a ab ab ab ==÷ 5、零指数; 10=a ,即任何不等于零的数的零次方等于1。 二、单项式、多项式的乘法运算: 6、单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。如:=?-xy z y x 3232 。 7、单项式乘以多项式,就是用单项式去乘多项式的每一项,再把所得的积相加, 即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式)。如:)(3)32(2y x y y x x +--= 。 8、多项式与多项式相乘,用多项式的每一项乘以另一个多项式的每一项,再把所的的积相加。 9、平方差公式:22))((b a b a b a -=-+注意平方差公式展开只有两项 公式特征:左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数。右边是相同项的平方减去相反项的平方。 如:))((z y x z y x +--+ = 10、完全平方公式:2222)(b ab a b a +±=± 完全平方公式的口诀:首平方,尾平方,首尾2倍中间放,符号和前一个样。

十字相乘法因式分解练习题#精选、

因式分解详解——注意中间项的符号!最后的符号同十字相乘列式的符号~ 定义:利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法. 有()()()b x a x ab x b a x+ + = + + + 2 注意:这里常数项是2,只有1×2。当常数项不是质数时,要通过多次拆分的尝试,直到符合要求为止。通常是拆分常数项,验证一次项 例1 把2x2-7x+3分解因式。 分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数。 分解二次项系数(只取正因数): 2=1×2=2×1; 分解常数项: 3=1×3=3×1=(-3)×(-1)=(-1)×(-3)。 用画十字交叉线方法表示下列四种情况: 1 1 1 3 1 -1 1 -3 2 × 3 2 × 1 2 × -3 2 × -1 1×3+2×1 1×1+2×3 1×(-3)+2×(-1) 1×(-1)+2×(-3) =5 =7 =-5 =-7 经过观察,第四种情况是正确有。这是因为交叉相乘后,两项代数和恰等于一次项系数-7。 解 2x2-7x+3=(x-3)(2x-1)。 一般地,对于二次三项式ax2+bx+c(a≠0),如果二次项系数a可以分解成两个因数之 积,即a=a 1a 2 ,常数项c可以分解成两个因数之积,即c=c 1 c 2 ,把a 1 ,a 2 ,c 1 ,c 2 排列如下: a 1 c 1 a 2× c 2 a 1c 2 + a 2 c 1 按斜线交叉相乘,再相加,得到a 1c 2 +a 2 c 1 ,若它正好等于二次三项式ax2+bx+c的一次项系 数b,即a 1c 2 +a 2 c 1 =b,那么二次三项式就可以分解为两个因式a 1 x+c 1 与a 2 x+c 2 之积,即 ax2+bx+c=(a 1x+c 1 )(a 2 x+c 2 )。 像这种借助开十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法。 例2把6x2-7x-5分解因式。 分析:按照例1的方法,分解二次项系数6及常数项-5,把它们分别排列,可有8种不同的排列方法,其中的一种 2 1 3 × -5 2×(-5)+3×1=-7 是正确的,因此原多项式可以用直字相乘法分解因式。 解 6x2-7x-5=(2x+1)(3x-5)。 指出:通过例1和例2可以看到,运用十字相乘法把一个二镒项系数不是1的二次三贡式因式分解,往往要经过多次观察,才能确定是否可以用十字相乘法分解因式。 对于二次项系数是1的二次三贡式,也可以用十字相乘法分解因式,这时只需考虑如何把常数项分解因数。例如把x2+2x-15分解因式,十字相乘法是 1 -3 1 × 5 1×5+1×(-3)=2 所以x2+2x-15=(x-3)(x+5)。 例3把5x2+6xy-8y2分解因式。 分析:这个多项式可以看作是关于x的二次三项式,把-8y2看作常数项,在分解二次项及常数项系数时,只需分解5与-8,用十字交叉线分解后,经过观察,选取合适的一组,即 1 2 5 × -4 1×(-4)+5×2=6 解 5x2+6xy-8y2=(x+2y)(5x-4y)。 指出:原式分解为两个关于x,y的一次式。 例4把(x-y)(2x-2y-3)-2分解因式。 分析:这个多项式是两个因式之积与另一个因数之差的形式,只有先进行多项式的乘法运算,把变形后的多项式再因式分解。 问:两个乘积的历式有什么特点,用什么方法进行多项式的乘法运算最简便? 答:第二个因式中的前两项如果提出公因式2,就变为2(x-y),它是第一个因式的二倍,然后把(x-y)看作一个整体进行乘法运算,可把原多项式变形为关于(x-y)的二次三项式,就可以用址字相乘法分解因式了。 解(x-y)(2x-2y-3)-2 =(x-y)[2(x-y)-3]-2 1 -2 =2(x-y)2-3(x-y)-2 2 × +1 =[(x-y)-2][2(x-y)+1] 1×1+2×(-2)=-3 =(x-y-2)(2x-2y+1)。 指出:把(x-y)看作一个整体进行因式分解,这又是运用了数学中的“整体”思想方法。

整式的乘法与因式分解培优

第二章 整式的乘法 【知识点归纳】 1.同底数幂相乘, 不变, 相加。a n.a m = (m,n 是正整数) 2.幂的乘方, 不变, 相乘。(a n )m = (m,n 是正整数) 3.积的乘方,等于把 ,再把所得的幂 。 (ab)n = (n 是正整数) 4.单项式与单项式相乘,把它们的 、 分别相乘。 5.单项式与多项式相乘,先用单项式 ,再把所得的积 ,a (m+n )= 6.多项式与多项式相乘,先用一个多项式的每一项分别乘 ,再把所得的积 ,(a+b )(m+n )= 。 7.平方差公式,即两个数的 与这两个数的 的积等于这两个数的平方差(a+b )(a-b )= 8.完全平方公式,即两数和(或差)的平方,等于它们的 ,加(或减)它们的积的 。(a+b )2= ,(a-b )2= 。 9.公式的灵活变形: (a+b )2+(a-b )2= ,(a+b )2-(a-b )2= , a 2+b 2=(a+b )2- , a 2+ b 2=(a-b )2+ ,(a+b )2=(a-b )2+ , (a-b )2=(a+b )2- 。 【例1】若代数式22(26)(2351)x ax y bx x y +-+--+-的值与字母x 的取值无关,求代数 式234a -+2221 2(3)4b a b --的值 【例2】已知两个多项式A 和B , 43344323,321,n n n A nx x x x B x x x nx x +-+=+-+-=-++--试判断是否存在整数n ,使A B -是五次六项式?

【例3】已知,,x y z 为自然数,且x y <,当1999,2000x y z x +=-=时,求x y z ++的所有值中最大的一个是多少? 【例4】如果代数式535ax bx cx ++-当2x =-时的值为7,那么当2x =时,该式的值是 . 【例5】已知a 为实数,且使323320a a a +++=,求199619971998(1)(1)(1)a a a +++++的值. 【例6】(1)已知2x+2=a ,用含a 的代数式表示2x ; (2)已知x=3m +2,y=9m +3m ,试用含x 的代数式表示y . 【例7】我们知道多项式的乘法可以利用图形的面积进行解释,如(2a+b )(a+b )=2a 2+3ab+b 2就能用图1或图2等图形的面积表示: (1)请你写出图3所表示的一个等式: . (2)试画出一个图形,使它的面积能表示:(a+b )(a+3b )=a 2+4ab+3b 2.

《因式分解-分组分解与十字相乘法》知识点归纳

《因式分解-分组分解与十字相乘法》知 识点归纳 ★★ 知识体系梳理 ◆ 分组分解法: 用分组分解法来分解的多项式一般至少有四项,分组不是盲目的,要有预见性.也就是说,分组后每组之间必须要有公因式可提取,或者分组后可直接运用公式。 、分组后能提公因式; 2、分组后能运用公式 ◆ 十字相乘法: 、型的二次三项式因式分解: (其中,) 、二次三项式的分解: 如果二次项系数分解成、,常数项分解成、;并且等于一次项系数,那么二次三项式: 借助于画十字交叉线排列如下:

◆ 因式分解的一般步骤:一提二代三分组 ①、如果多项式的各项有公因式,那么先提取公因式; ②、提取公因式以后或没有公因式,再考虑公式法或十字相乘法; ③、对二次三项式先考虑能否用完全平方公式,再考虑能否用十字相乘法; ④、用以上方法不能分解的三项以上的多项式,考虑用分组分解法。 ◆ 因式分解几点注意与说明: ①、因式分解要进行到不能再分解为止; ②、结果中相同因式应写成幂的形式; ③、根据不同多项式的特点,灵活的综合应用各种方法分解因式是本章的重点和难点,因此掌握好因式分解的概念、方法、步骤是学好本章的关键。 ★★ 典型例题、解法导航 ◆ 考点一:十字相乘法 、型三项式的分解 【例1】计算:

(1) (2) (3) (4) 运用上面的结果分解因式: ①、 ②、 ③、 ④、 方法点金:型三项式关键是把常数分解为两个数之积(),而这两个数的和正好等于一次项的系数()。 ◎变式议练一: 、 2、已知能分解成两个整系数的一次因式的乘积,则符合条的整数的个数为( ) 、个 、个 、个 、个 3、把下列各式分解因式: ①、

整式的乘法与因式分解专题训练

整式的乘法和因式分解 一、整式的运算 1、已知a m =2,a n =3,求a m +2n 的值; 2、若32=n a ,则n a 6= . 3、若125512=+x ,求x x +-2009)2(的值。 4、已知2x +13x 1=144,求x ; 5.2005200440.25?= . 6、( 23 )2002×(1.5)2003÷(-1)2004 =________。 7、如果(x +q )(3x 4)的结果中不含x 项(q 为常数),求结果中的常数项 8、设m 2+m 1=0,求m 3+2m 2+2010的值 二、乘法公式的变式运用 1、位置变化,x y y x 2、符号变化,x y x y 3、指数变化,x 2y 2x 2y 24 4、系数变化,2a b 2a b 5、换式变化,xy z m xy z m 6、增项变化,x y z x y z 7、连用公式变化,x y x y x 2y 2

8、逆用公式变化,x y z 2 x y z 2 三、乘法公式基础训练: 1、计算 (1)1032 (2)1982 2、计算 (1)a b c 2 (2)3x y z 2 3、计算 (1)a 4b 3c a 4b 3c (2)3x y 23x y 2 4、计算 (1)19992-2000×1998 (2)2 2007 200720082006 -?. 四、乘法公式常用技巧 1、已知a 2b 213,ab 6,求a b 2,a b 2的值。 变式练习:已知a b 27,a b 24,求a 2b 2,ab 的值。 2、已知2=+b a ,1=ab ,求22b a +的值。 变式练习:已知8=+b a ,2=ab ,求2)(b a -的值。

因式分解之十字相乘法专项练习题

十字相乘法进行因式分解 【基础知识精讲】 【重点难点解析】 1.二次三项式 多项式c bx ax ++2,称为字母x 的二次三项式,其中2 ax 称为二次项,bx 为一次项,c 为常数项.例如,322--x x 和652 ++x x 都是关于x 的二次三项式. 在多项式2286y xy x +-中,如果把y 看作常数,就是关于x 的二次三项式;如果把x 看作常数,就是关于y 的二次三项式. 在多项式3722 2+-ab b a 中,把ab 看作一个整体,即3)(7)(22+-ab ab ,就是关于ab 的二次三项式.同样,多项式12)(7)(2++++y x y x ,把x +y 看作一个整体,就是关于x +y 的二次三项式. 十字相乘法是适用于二次三项式的因式分解的方法. 【典型热点考题】 例1 把下列各式分解因式: (1)1522 --x x ; (2)2 265y xy x +-. 例2 把下列各式分解因式: (1)3522 --x x ;(2)3832 -+x x .

例3 把下列各式分解因式: (1)9102 4 +-x x ; (2))(2)(5)(723y x y x y x +-+-+; (3)120)8(22)8(222++++a a a a . 点悟:(1)把2 x 看作一整体,从而转化为关于2 x 的二次三项式; (2)提取公因式(x +y )后,原式可转化为关于(x +y )的二次三项式; (3)以)8(2a a +为整体,转化为关于)8(2a a +的二次三项式. 因式分解之十字相乘法专项练习题 (1) a 2-7a+6; (2)8x 2+6x -35;

整式的乘法与因式分解能力培优

第十四章 整式的乘法与因式分解 14.1整式的乘法 专题一 幂的性质 1.【2012·湛江】下列运算中,正确的是( ) A .3a 2-a 2=2 B .(a 2)3=a 9 C .a 3?a 6=a 9 D .(2a 2)2=2a 4 2.【2012·泰州】下列计算正确的是( ) A .3x · 622x x = B .4x ·82x x = C .632)(x x -=- D .523)(x x = 3.【2012·衢州】下列计算正确的是( ) A .2a 2+a 2=3a 4 B .a 6÷a 2=a 3 C .a 6·a 2=a 12 D .( -a 6)2=a 12 专题二 幂的性质的逆用 4.若2a =3,2b =4,则23a+2b 等于( ) A .7 B .12 C .432 D .108 5.若2m=5,2n=3,求23m+2n的值. 6.计算:(1)(-0.125)2014×(-2)2014×(-4)2015; (2)(-19 )2015×811007. 专题三 整式的乘法 7.下列运算中正确的是( ) A .2325a a a += B .22(2)()2a b a b a ab b +-=-- C .23622a a a ?= D .222(2)4a b a b +=+ 8.若(3x 2-2x +1)(x +b )中不含x 2项,求b 的值,并求(3x 2-2x +1)(x +b )的值.

9.先阅读,再填空解题: (x +5)(x +6)=x 2+11x +30; (x -5)(x -6)=x 2-11x +30; (x -5)(x +6)=x 2+x -30; (x +5)(x -6)=x 2-x -30. (1)观察积中的一次项系数、常数项与两因式中的常数项有何关系?答:________. (2)根据以上的规律,用公式表示出来:________. (3)根据规律,直接写出下列各式的结果:(a +99)(a -100)=________;(y -80)(y -81)=________. 专题四 整式的除法 10.计算:(3x 3y -18x 2y 2+x 2y )÷(-6x 2y )=________. 11.计算:2362743 19132 )()(ab b a b a -÷-. 12.计算:(a -b )3÷(b -a )2+(-a -b )5÷(a +b )4. 状元笔记 【知识要点】 1.幂的性质 (1)同底数幂的乘法:n m n m a a a +=? (m ,n 都是正整数),即同底数幂相乘,底数不变,指数相加. (2)幂的乘方:()m n mn a a =(m ,n 都是正整数),即幂的乘方,底数不变,指数相乘. (3)积的乘方:()n n n ab a b =(n 都是正整数),即积的乘方,等于把积中的每一个因式分别 乘方,再把所得的幂相乘. 2.整式的乘法 (1)单项式与单项式相乘:把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式. (2)单项式与多项式相乘:就是用单项式去乘单项式的每一项,再把所得的积相加. (3)多项式与多项式相乘:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.

十字相乘法分解因式经典例题和练习

用十字相乘法分解因式 十字相乘法: 一.2()x p q x pq +++型的因式分解 这类式子在许多问题中经常出现,其特点是: (1) 二次项系数是1;(2) 常数项是两个数之积;(3) 一次项系数是常数项的两个因数之和.2()()()x p q x pq x p x q +++=++ 例1把下列各式因式分解: (1) 276x x -+ (2) 21336x x ++ 变式 1、22215a b ab -- 2、422318a b a b -- 例2把下列各式因式分解: ⑴2243a ab b -+ ⑵222()8()12x x x x +-++ 变式 1、22215x xy y -- 2.、2256x xy y +- 例3把下列各式因式分解 ⑴ 223310x y x y y -- ⑵2234710a b ab b -+ 变式 ⑴222(3)2(3)8x x x x +-+- ⑵22(2)(22)3x x x x ----

二.一般二次三项式2ax bx c ++型的因式分解 例4把下列各式因式分解: (1) 21252x x -- (2) 22568x xy y +- 练习: 1、.因式分解:1、6732-+x x 2、 3832-+x x 例5把下列各式因式分解: (1)422416654y y x x +-; (2) 633687b b a a --; 练习:234456a a a --; 422469374b a b a a +-. 例6把下列各式因式分解 2222-+--+y y x xy x 练习: 233222++-+-y y x xy x 变式:分解因式:22 2456x xy y x y +--+- 变式:. 若x y mx y 2256-++-能分解为两个一次因式的积,求m 的值

(完整版)整式的乘法与因式分解知识点

整式乘除与因式分解 一.知识点 (重点) 1.幂的运算性质: a m ·a n =a m +n (m 、n 为正整数) 同底数幂相乘,底数不变,指数相加. 2.() n m a = a mn (m 、n 为正整数) 幂的乘方,底数不变,指数相乘. 3. ()n n n b a ab = (n 为正整数) 积的乘方等于各因式乘方的积. 练习: (1)y x x 2325? (2))4(32 b ab -?- (3)a ab 23? (4)222z y yz ? (5))4()2(2 32xy y x -? (6)22253)(63 1ac c b a b a -?? 4.n m a a ÷= a m -n (a ≠0,m 、n 都是正整数,且m >n ) 同底数幂相除,底数不变,指数相减. 例:(1)x 8÷x 2 (2)a 4÷a (3)(a b )5÷(a b )2 (4)(-a )7÷(-a )5 (5) (-b ) 5÷(-b )2 5.零指数幂的概念: a 0=1 (a ≠0) 任何一个不等于零的数的零指数幂都等于l . 例:若1)32(0=-b a 成立,则b a ,满足什么条件? 6.负指数幂的概念: a -p =p a 1 (a ≠0,p 是正整数) 任何一个不等于零的数的-p (p 是正整数)指数幂,等于这个数的p 指数幂的倒数. 也可表示为:p p n m m n ? ?? ??=? ? ? ??-(m ≠0,n ≠0,p 为正整数)

单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式. 例:(1)223123abc abc b a ?? (2)4233)2()2 1 (n m n m -?- 8.单项式与多项式的乘法法则: 单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加. 例:(1))35(222b a ab ab + (2)ab ab ab 2 1)232(2?- (3))32()5(-2 2 n m n n m -+? (4)xyz z xy z y x ?++)(23 2 2 9.多项式与多项式的乘法法则: 多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加. 例:(1))6.0(1x x --)( (2)))(2(y x y x -+ (3) 2)2n m +-( 练习: 1.计算2x 3·(-2xy)(- 1 2 xy) 3的结果是 2.(3×10 8)×(-4×10 4)= 3.若n 为正整数,且x 2n =3,则(3x 3n ) 2的值为 4.如果(a n b ·ab m ) 3=a 9b 15,那么mn 的值是 5.-[-a 2(2a 3-a)]= 6.(-4x 2+6x -8)·(- 12 x 2 )= 7.2n(-1+3mn 2 )= 8.若k(2k -5)+2k(1-k)=32,则k = 9.(-3x 2)+(2x -3y)(2x -5y)-3y(4x -5y)= 10.在(ax 2+bx -3)(x 2-1 2 x +8)的结果中不含x 3和x 项,则a = ,b = 11.一个长方体的长为(a +4)cm ,宽为(a -3)cm ,高为(a +5)cm ,则它的表面积为 ,体积为 。 12.一个长方形的长是10cm ,宽比长少6cm ,则它的面积是 ,若将长方 形的长和都扩大了2cm ,则面积增大了 。

因式分解之十字相乘法专项练习题

十字相乘法进行因式分解 1.二次三项式 多项式c bx ax ++2,称为字母x 的二次三项式,其中2ax 称为二次项,bx 为一次项,c 为常数项.例如,322--x x 和652++x x 都是关于x 的二次三项式. 在多项式2286y xy x +-中,如果把y 看作常数,就是关于x 的二次三项式;如果把x 看作常数,就是关于y 的二次三项式. 在多项式37222+-ab b a 中,把ab 看作一个整体,即3)(7)(22+-ab ab ,就是关于ab 的二次三项式.同样,多项式12)(7)(2++++y x y x ,把x +y 看作一个整体,就是关于x +y 的二次三项式. 2.十字相乘法的依据和具体内容 利用十字相乘法分解因式,实质上是逆用(ax +b )(cx +d )竖式乘法法则.它的一般规律是: (1)对于二次项系数为1的二次三项式q px x ++2,如果能把常数项q 分解成两个因数a ,b 的积,并且a +b 为一次项系数p ,那么它就可以运用公式 ))(()(2b x a x ab x b a x ++=+++ 分解因式.这种方法的特征是“拆常数项,凑一次项”.公式中的x 可以表示单项式,也可以表示多项式,当常数项为正数时,把它分解为两个同号因数的积,因式的符号与一次项系数的符号相同;当常数项为负数时,把它分解为两个异号因数的积,其中绝对值较大的因数的符号与一次项系数的符号相同. (2)对于二次项系数不是1的二次三项式c bx ax ++2(a ,b ,c 都是整数且a ≠0)来说,如果存在四个整数2121,,,c c a a ,使a a a =?21,c c c =?21,且b c a c a =+1221, 3.因式分解一般要遵循的步骤 多项式因式分解的一般步骤:先考虑能否提公因式,再考虑能否运用公式或十字相乘法,最后考虑分组分解法.对于一个还能继续分解的多项式因式仍然用这一步骤反复进行.以上步骤可用口诀概括如下:“首先提取公因式,然后考虑用公式、十字相乘试一试,

整式的乘法与因式分解知识点

整式乘除与因式分解 专项复习 一.知识点 (重点) 幂的运算性质: a m ·a n =a m +n (m 、n 为正整数) 同底数幂相乘,底数不变,指数相加. 例1:(-2a )2(-3a 2)3=________. 2.()n m a = a mn (m 、n 为正整数) 幂的乘方,底数不变,指数相乘. 例2: (-a 5)5=____________. 3. ()n n n b a ab = (n 为正整数) 积的乘方等于各因式乘方的积. 例3:(-a 2b )3=___________. 练习: (1)y x x 2325? (2))4(32b ab -?- (3)a ab 23? (4)222z y yz ? (5))4()2(232xy y x -? 4.n m a a ÷= a m -n (a ≠0,m 、n 都是正整数,且m >n ) 同底数幂相除,底数不变,指数相减. 例:(1)x 8÷x 2 (2)a 4÷a (3)(a b )5÷(a b )2 (4)(-a )7÷(-a )5 5.零指数幂的概念: a 0=1 (a ≠0) 任何一个不等于零的数的零指数幂都等于l .

例4:若1)32(0=-b a 成立,则b a ,满足什么条件? 6.负指数幂的概念: a -p =p a 1 (a ≠0,p 是正整数) 任何一个不等于零的数的-p (p 是正整数)指数幂,等于这个数的p 指数幂的倒数. 也可表示为:p p n m m n ??? ??=??? ??-(m ≠0,n ≠0,p 为正整数) 7.单项式的乘法法则: 单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式. 例5:(1)223123abc abc b a ?? (2 423)2()n m n -? 8.单项式与多项式的乘法法则: 单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加. 例6:(1))35(222b a ab ab + (2)ab ab ab 2 1)232(2?- 9.多项式与多项式的乘法法则: 多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加. 例7:(1) )6.0(1x x --)( (2)))(2(y x y x -+ (3)2)2n m +-( 练习: 1.计算2x 3·(-2xy)(-12 xy) 3的结果是 2.(3×10 8)×(-4×10 4)= 3.若n 为正整数,且x 2n =3,则(3x 3n ) 2的值为

整式乘法与因式分解专题复习

整式的乘法与因式分解专题复习 一、知识点总结: 1、 单项式的概念:由数与字母的乘积构成的代数式叫做单项式。单独的一个数或一个字母也是单项式。单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。 如:bc a 22-的系数为2-,次数为4,单独的一个非零数的次数是0。 2、 多项式:几个单项式的和叫做多项式。多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。 如:122++-x ab a ,项有2a 、ab 2-、x 、1,二次项为2a 、ab 2-,一次项为x ,常数项为1,各项次数分别为2,2,1,0,系数分别为1,-2,1,1,叫二次四项式。 3、 整式:单项式和多项式统称整式。 注意:凡分母含有字母代数式都不是整式。也不是单项式和多项式。 4、 同底数幂的乘法法则:m n m n a a a +=(n m ,都是正整数) 同底数幂相乘,底数不变,指数相加。注意底数可以是多项式或单项式。 如:235()()()a b a b a b ++=+ 5、 幂的乘方法则:mn n m a a =)((n m ,都是正整数) 幂的乘方,底数不变,指数相乘。如:10253)3(=- 幂的乘方法则可以逆用:即m n n m mn a a a )()(== 如:23326)4()4(4== 6、 积的乘方法则:n n n b a ab =)((n 是正整数) 积的乘方,等于各因数乘方的积。 如:(523)2z y x -=5 101555253532)()()2(z y x z y x -=???- 7、 同底数幂的除法法则:n m n m a a a -=÷(n m a ,,0≠都是正整数,且)n m 同底数幂相除,底数不变,指数相减。如:3 334)()()(b a ab ab ab ==÷ 8、 零指数和负指数; 10=a ,即任何不等于零的数的零次方等于1。 p p a a 1=-(p a ,0≠是正整数),即一个不等于零的数的p -次方等于这个数的p 次方的倒数。

十字相乘法分解因式

十字相乘法分解因式 同学们都知道,型的二次三项式是分解因式中的常见题型,那么此类多项式该如何分解呢? 观察=,可知=。 这就是说,对于二次三项式,如果常数项b可以分解为p、q的积,并且有p+q=a,那么=。这就是分解因式的十字相乘法。 下面举例具体说明怎样进行分解因式。 例1、因式分解。 分析:因为 7x + (-8x) =-x 解:原式=(x+7)(x-8) 例2、因式分解。 分析:因为 -2x+(-8x)=-10x 解:原式=(x-2)(x-8) 例3、因式分解。 分析:该题虽然二次项系数不为1,但也可以用十字相乘法进行因式分解。 因为 9y + 10y=19y 解:原式=(2y+3)(3y+5) 例4、因式分解。 分析:因为 21x + (-18x)=3x 解:原式=(2x+3)(7x-9) 例5、因式分解。 分析:该题可以将(x+2)看作一个整体来进行因式分解。

因为 -25(x+2)+[-4(x+2)]= -29(x+2) 解:原式=[2(x+2)-5][5(x+2)-2] =(2x-1)(5x+8) 例6、因式分解。 分析:该题可以先将()看作一个整体进行十字相乘法分解,接着再套用一次十字相乘。 因为 -2+[-12]=-14 a + (-2a)=-a 3a +(-4a)=-a 解:原式=[-2][ -12] =(a+1)(a-2)(a+3)(a-4) 从上面几个例子可以看出十字相乘法对于二次三项式的分解因式十分方便,大家一定要熟练掌握。但要注意,并不是所有的二次三项式都能进行因式分解,如在实数范围内就不能再进一步因式分解了 因式分解的一点补充——十字相乘法 宜昌九中尤启平 教学目标 1.使学生掌握运用十字相乘法把某些形如ax2+bx+c的二次三项式因式分解; 2.进一步培养学生的观察力和思维的敏捷性。 教学重点和难点 重点:正确地运用十字相乘法把某些二次项系数不是1的二次三项式因式分解。 难点:灵活运用十字相乘法因分解式。 教学过程设计 一、导入新课 前一节课我们学习了关于x2+(p+q)x+pq这类二次三项式的因式分解,这类式子的特点是:二次项系数为1,常数项是两个数之积,一次项系数是常数项的两个因数之和。 因此,我们得到x2+(p+q)x+pq=(x+p)(x+q).

整式的乘除与因式分解知识点归纳

整 式 的 乘 除 及 因 式 分 解 知识点归纳: 1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。单独的一个数或一个字母也是单项式。单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。 如:bc a 22-的 系数为2-,次数为4,单独的一个非零数的次数是0。 2、多项式:几个单项式的和叫做多项式。多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。 如:122++-x ab a ,项有2a 、ab 2-、x 、1,二次项为2a 、ab 2-,一次项为x ,常数项为1,各项次数分别为2,2,1,0,系数分别为1,-2,1,1,叫二次四项式。 3、整式:单项式和多项式统称整式。 注意:凡分母含有字母代数式都不是整式。也不是单项式和多项式。 5、同底数幂的乘法法则:n m n m a a a +=?(n m ,都是正整数) 同底数幂相乘,底数不变,指数相加。注意底数可以是多项式或单项式。如:________3=?a a ;________32=??a a a 532)()()(b a b a b a +=+?+,逆运算为: 6、幂的乘方法则:mn n m a a =)((n m ,都是正整数) 幂的乘方,底数不变,指数相乘。如:10253)3(=- 幂的乘方法则可以逆用:即m n n m mn a a a )()(== 如:23326)4()4(4== 例如:_________)(32=a ;_________)(25=x ;()334)()(a a = 7、积的乘方法则:n n n b a ab =)((n 是正整数)

积的乘方,等于各因数乘方的积。 如:(523)2z y x -=5101555253532)()()2(z y x z y x -=???- ________)(3=ab ;________)2(32=-b a ;________)5(223=-b a 8、同底数幂的除法法则:n m n m a a a -=÷(n m a ,,0≠都是正整数,且)n m 同底数幂相除,底数不变,指数相减。 如:3334)()()(b a ab ab ab ==÷ ________3=÷a a ;________210=÷a a ;________55=÷a a 9、零指数和负指数; 10=a ,即任何不等于零的数的零次方等于1。 p p a a 1=-(p a ,0≠是正整数),即一个不等于零的数的p -次方等于这个数的p 次方的倒数。 如:8 1)21(233==- 10、科学记数法:如:0.00000721=7.21610-?(第一个不为零的数前面有几个零就是负几次方) 11、单项式的乘法法则:单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。 注意: ①积的系数等于各因式系数的积,先确定符号,再计算绝对值。 ②相同字母相乘,运用同底数幂的乘法法则。 ③只在一个单项式里含有的字母,则连同它的指数作为积的一个因式 ④单项式乘以单项式,结果仍是一个单项式。 如:=?-xy z y x 3232

(完整版)十字相乘法因式分解练习题

十字相乘法因式分解练习题 1、=++232 x x 2、=+-672 x x 3、=--2142 x x 4、=-+1522 x x 5 、 =++8624x x 6、=++-+3)(4)(2 b a b a 7、=+-22 23y xy x 9、=++342 x x 10、 =++1072a a 11、 =+-1272y y 12 =+-862q q 13、=-+202 x x 14 =-+1872m m 15、=--3652p p 16、=--822 t t 17、=--2024 x x 18、=-+8722 ax x a 19、=+-22 149b ab a 20、=++22 1811y xy x 21、=--2222 65x y x y x 22、=+--a a a 12423 23、=++101132 x x 24、=+-3722 x x 25、=--5762x x 26、=-+22 865y xy x 27、=++71522 x x 28、=+-4832 a a 29、=-+6752x x 30、=-+1023522 ab b a 31、=+-2222 10173y x abxy b a 32、=--22224 954y y x y x 33、=-+15442 n n 34、=-+3562 l l 35、=+-22 22110y xy x 36、=+-22 15228n mn m 一元二次方程的解法 1、()()513+=-x x x x 2、x x 5322=- 3、 2260x y -+= 4、01072=+-x x 5、 ()()623=+-x x 6、()()03342 =-+-x x x

整式的乘法与因式分解

知识点的回顾 1、单项式: 都是数与字母的乘积的代数式叫做单项式(单独的一个数或一个字 母也是单项式)。 2、多项式: 几个单项式的和叫做多项式。 3、整式: 单项式和多项式统称整式。 4、一个单项式中,所有字母的指数 和叫做这个单项式的 次数 ;一个多项式 中, 次数最高的项的次数 叫做这个多项式的次数。 (单独一个非零数的次数是 0) 5、整式的加减运算法则 : 练一练: 23 x y z 2、( 1)单项式 的系数是 ,次数是 2 2)π的次数是 3) 3ab 2c 2a 2b ab 2是单项式 的和,次数最高的项是 它是 次 项式,二次项是 ,常数项是 3、一个多项式加上 -2x 3+4x 2y+5y 3 后,得 x 3-x 2y+3y 3,求这个多项式, 并求当 x=- 21 ,y= 12 时, 这个多项式的值。 整式的加减 去括号法则 合并同类项法 个,多项式共有 个。 12 2 3 2 1 - a , 5 a b , 2 , ab , (x y), 3 4 a x 2 1, x y 7 , π 1、下列代数式中,单项式共有 1 2(a b), a ,

提示: ①三个或三个以上的同底数幂相乘,法则也适用,即 a m a n a p a ( m,n, p 都是正整数); ② 不要忽视指数为一的因数; ③ 底数不一定是一个数或者一个字母,也可以是单项式或多项式; ④ 注意法则的逆用,即 a m n a m a n 2、幂的乘方 3、积的乘方 1、同底数幂的乘法 第一讲 . 整式的乘法 同底数幂的乘法, 底数不变,指数相加。即:a m a n a m n ,(m , n 都是正整数) 例1 (1) 35 36 2)b 2m b m 1 23 (3)( y) y 2 ( y)3 幂的乘方,底数不变,指数相乘。即: a m n a mn , (m , n 都是正整数) 例2 1) 232 = 2) b 5 3) 2n 1 3 x 4)(x 3x m ) 3=

相关文档
最新文档