半导体基础知识和半导体器件工艺

半导体基础知识和半导体器件工艺
半导体基础知识和半导体器件工艺

半导体基础知识和半导

体器件工艺

Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

半导体基础知识和半导体器件工艺

第一章半导体基础知识

通常物质根据其导电性能不同可分成三类。第一类爲导体,它可以很好的传导电流,如:金属类,铜、银、铝、金等;电解液类:NaCl水溶液,血液,普通水等以及其他一些物体。第二类爲绝缘体,电流不能通过,如橡胶、玻璃、陶瓷、木板等。第三类爲半导体,其导电能力介於导体和绝缘体之间,如四族元素Ge锗、Si矽等,三、五族元素的化合物GaAs砷化镓等,二、六族元素的化合物氧化物、硫化物等。

物体的导电能力可以用电阻率来表示。电阻率定义爲长1厘米、截面积爲1平方厘米的物质的电阻值,单位爲欧姆*厘米。电阻率越小说明该物质的导电性能越好。通常导体的电阻率在10-4欧姆*厘米以下,绝缘体的电阻率在109欧姆*厘米以上。

半导体的性质既不象一般的导体,也不同于普通的绝缘体,同时也不仅仅由於它的导电能力介於导体和绝缘体之间,而是由於半导体具有以下的特殊性质:

(1) 温度的变化能显着的改变半导体的导电能力。当温度升高时,电阻率会降低。比如Si在200℃时电阻率比室温时的电阻率低几千倍。可以利用半导体的这个特性制成自动控制用的热敏元件(如热敏电阻等),但是由於半导体的这一特性,容易引起热不稳定性,在制作半导体器件时需要考虑器件自身産生的

热量,需要考虑器件使用环境的温度等,考虑如何散热,否则将导致器件失效、报废。

(2) 半导体在受到外界光照的作用是导电能力大大提高。如硫化镉受到光照後导电能力可提高几十到几百倍,利用这一特点,可制成光敏三极管、光敏电阻等。

(3) 在纯净的半导体中加入微量(千万分之一)的其他元素(这个过程我们称爲掺杂),可使他的导电能力提高百万倍。这是半导体的最初的特徵。例如在原子密度爲5*1022/cm3的矽中掺进大约5X1015/cm3磷原子,比例爲10-7(即千万分之一),矽的导电能力提高了几十万倍。

物质是由原子构成的,而原子是由原子核和围绕它运动的电子组成的。电子很轻、很小,带负电,在一定的轨道上运转;原子核带正电,电荷量与电子的总电荷量相同,两者相互吸引。当原子的外层电子缺少後,整个原子呈现正电,缺少电子的地方産生一个空位,带正电,成爲电洞。物体导电通常是由电子和电洞导电。

前面提到掺杂其他元素能改变半导体的导电能力,而参与导电的又分爲电子和电洞,这样掺杂的元素(即杂质)可分爲两种:施主杂质与受主杂质。

将施主杂质加到矽半导体中後,他与邻近的4个矽原子作用,産生许多自由电子参与导电,而杂质本身失去电子形成正离子,但不是电洞,不能接受电子。这时的半导体叫N型半导体。施主杂质主要爲五族元素:锑、磷、砷等。

将施主杂质加到半导体中後,他与邻近的4个矽原子作用,産生许多电洞参与导电,这时的半导体叫p型半导体。受主杂质主要爲三族元素:铝、镓、铟、硼等。

电洞和电子都是载子,在相同大小的电场作用下,电子导电的速度比电洞快。电洞和电子运动速度的大小用迁移率来表示,迁移率愈大,截流子运动速度愈快。\

假如把一些电洞注入到一块N型半导体中,N型就多出一部分少数载子――电洞,但由於N型半导体中有大量的电子存在,当电洞和电子碰在一起时,会发生作用,正负电中和,这种现象称爲复合。

单个N型半导体或P型半导体是没有什麽用途的。但使一块完整的半导体的一部分是N型,另一部分爲P型,并在两端加上电压,我们会发现有很奇怪的现象。如果将P型半导体接电源的正极,N型半导体接电源的负极,然後缓慢地加电压。当电压很小时,一般小於时基本没有电流流过,但大於以後,随电压的增加电流增加很快,当电压增加到一定值後电流几乎就不变化了。这样的连接方法爲正向连接,所加的电压称爲正向电压。将N型半导体接电源的正极,P 型半导体接电源的负极,当电压逐渐增大时,电流开始会有少量的增加,但达到一定值後电流就保持不变,并且电流值很小,这个电流叫反向饱和电流、反向漏电流。当电压继续加到一定程度时,电流会迅速增加,这时的电压称爲反向击穿电压。这是由於载子(电子和电洞)的扩散作用,在P型和N型半导体的交界面附近,由於电子和电洞的扩散形成了一个薄层(阻挡层),这个薄层称作PN接面。在没有外加电压时,PN接面本身建立起一个电场,电场的方向是由N区指向P区,从而阻止了电子和电洞的继续扩散。当外加正电压时,削弱了原来存在於PN接面中的电场,在外加电场的作用下,N 区的电子不断地走向P区,P区的电洞不断地走向N区,使电流流通。当外加反向电压时,加强了电场阻止电子和电洞流通的作用,因此电流很难通过。这就是PN接面的单向导电性。

半导体二极体是由一个PN接面组成,而三极管由两个PN接面组成:射极接面和集极接面。这两个接面把电晶体分成三个区域:发射区、基区和集电区。由於这三个区域的电类型不同,又可分爲PNP电晶体和NPN电晶体。PNP电晶体和NPN电晶体虽然形式不同,但工作原理是一样的,都可以用PN接面论来说明。

第二章半导体器件和工艺

第一节半导体器件的发展过程

1947年发明了电晶体,有了最简单的点接触电晶体和接面型电晶体。五十年代初期才开始出现市售的电晶体産品。在1959年世界上第一块积体电路问世,由於当时工艺手段的缺乏,例如采用化学方法选择的腐蚀台面、蒸发时采用金属掩模板来形成引线,使得线宽限制在100um左右,集成度很低。在1961年出现了矽平面工艺後,利用氧化、扩散、光刻、外延、蒸发等平面工艺,在一块矽片上集成多个元件,因而诞生了平面型积体电路。六十年代初,实现了平面积体电路的商品化,这时的积体电路是由二极体、三极管和电阻互连所组成的简单逻辑门电路。随後在1964年出现MOS积体电路,从此双极型和MOS型积体电路并行发展,积体电路也由最初的小规模积体电路发展到中规模集成、大规模集成甚至於超大型积体电路。

第二节半导体器件的分类

大多数半导体器件可以分成四组:双极器件、单极器件、微波器件和光子器件。

双极器件可分成PN接面二极体、双极电晶体即三极管、晶体闸流管(又称晶闸管、可控硅)。单极器件可分成接面型场效应电晶体(JFET)、金属—半导体场效应电晶体(MESFET)、MIS、金属—氧化物—半导体场效应电晶体(MOSFET)。

微波器件和光子器件各方面要求比较高,生産比较困难。目前本公司主要生産双极器件(三极管和积体电路),另外还有少量的单极器件(场效应电晶体)和可控硅、芯片等。

第三节半导体器件生産工艺概述

半导体器件制造技术是一门新兴的电子工业技术,它是发展电子电脑、宇航、通讯、工业自动化和家用电器等电子技术的基础。半导体技术的发展是与半导体器件的发展紧密相连的。如用合金技术制成的合金管,然後又相继出现了合金扩散管、台面管等。1960年左右矽平面工艺和外延技术的诞生,半导体器件的制造工艺获得了重大突破,使得半导体器件向微型化、低功耗和高可靠性方向发展。

平面电晶体具有许多优点:

(一) 由于平面管在整个制造过程中硅片表面及最後的管芯表面都覆盖有一层二氧化矽薄膜。使P—N结面始终不直接裸露在外面,因此一方面可减少生産过程中受到污染,同时也可避免在管子制成後环境中水汽、各种离子和气体分子对P—N接面状态的影响,从而有效地提高了平面管的可靠性和稳定性。

(二) 提高了电晶体的参数性能,主要是三项:1.噪音低。电晶体的低频噪音与接面状态关系非常密切,而平面管P—N结面有二氧化矽保护,表面非常稳定,

所以比其他类型的电晶体都要小。2.反向电流特别小。由於二氧化矽的保护,使接面比较洁净,因此表面漏电流非常小,使得反向电流特别小。3.高频大功率特性好。通过光刻和选择扩散可以得到电极图形十分精致复杂的电晶体,使电晶体的高频大功率性能有了很大的提高。

(三)特别适合於大量的成批生産且参数一致性好。平面管管芯是用选择扩散、蒸发电极等工艺制成,在矽片上可同时生産许多管芯,而且平面工艺比较稳定,重复性好,所以一致性也比其他类型的电晶体好。

第四节矽外延平面管制造工艺

以NPN管爲例矽外延平面管的结构如图其主要工艺流程如下所示:

(1)切、磨、抛衬底(2)外延(3)一次氧化(4)基区光刻(5)硼扩散/硼注入、退火(6)发射区光刻(7)磷扩散(磷再扩)(8)低氧(9)刻引线孔(10)蒸铝(11)铝反刻(12)合金化(13)CVD(14)压点光刻(15)烘焙(16)机减(17)抛光(18)蒸金(19)金合金(20)中测。

下面对上述各工序进行简单说明。

(1)切、磨、抛:根据管子的性能选择相应的单晶矽,按要求的厚度沿(111)面进行切割,然後用金刚砂进行研磨,最後用抛光粉进行抛光,使表面光亮,无伤痕。

(2)外延:在低电阻率的矽片上外延生长一层电阻率较高的矽单晶,这样高电阻率的外延层可提高集电极的击穿电压,低电阻率的衬底矽片可降低集电极的串联电阻,减少饱和压降。

(3)一次氧化(基区氧化):将矽片放在高温炉中进行氧化使表面生长一层一定厚度的二氧化矽薄膜。

(4)一次光刻(基区光刻):在二氧化矽层上,按器件要求的基区图形刻出视窗,使杂质只能通过此视窗进入矽片,而不能进入有二氧化矽覆盖的矽片其他区域。基区光刻要求窗口、边缘平整,无小凸起和针孔。

(5)硼扩散/硼注入、退火:采用扩散或注入的方法在N型的外延层中形成P型的导电区—基区。采用注入的方法需使用退火来恢复注入对晶格的破坏以及启动注入进的硼原子。

(6)发射区光刻:爲发射区磷扩散刻出一定图形的视窗。要求同基区光刻。

(7)磷扩散(磷再扩):形成发射区的过程。改变再扩条件来改变参数β值和BVCEO的值。

(8)低氧:在整个矽片上生长一层氧化层以进行引线光刻,同时也可进行放大系数β的微调。

(9)引线孔光刻:刻出电极引线接触窗口。要求引线孔不刻偏,减少针孔。

(10)蒸铝:用真空蒸发的方法将铝蒸发到矽片表面。

(11)反刻铝:刻蚀掉电极引线以外的铝层,留下电极窗口处的铝作爲电极内引线。

(12)合金化:蒸发在矽表面的铝和矽之间的接触不是欧姆接触,必须通过合金化使其变成欧姆接触。

(13)CVD:在矽片表面淀积一层二氧化矽,作爲布线的最後钝化层,作爲电极间绝缘,消除有害缺陷。

(14)压点光刻:刻蚀出压焊点。

(15)烘焙:改变矽片的表面状况,减小小电流不好。

(16)机减:根据矽片功率耗散的要求,减薄至所要求的厚度。

(17)抛光:使减薄後的表面更加平整。

(18)蒸金:在矽片背面蒸上一薄层高纯度金,提高电路的开关速度,而且便於以後晶片烧结。

(19)金合金:使金与矽形成更好的接触,防止在烧结时金脱落。

(20)中测:将参数不合格的管芯剔除。

半导体积体电路制造工艺基本与平面电晶体差不多。具体流程如下:(1)衬底制备 (2)埋层氧化 (3)埋层光刻 (4)埋层扩散 (5)外延 (6)隔离氧化 (7) 隔离光刻 (8)隔离扩散 (9)基区氧化 (10)基区光刻 (11)硼扩散/硼注入、退火 (12)发射区光刻(13)磷扩散(磷再扩) (14)低氧 (15)刻引线孔 (16)蒸铝 (17)铝反刻 (18)合金化 (19)CVD(20)压点光刻 (21)烘培 (22)中测。

积体电路制造工艺所特有的工艺:

(1) 埋层扩散:在衬底上形成高浓度的N+扩散区。这是由於积体电路是各电晶体的集电极引出线是从矽片正面引出的,这样从集电极到发射极的电流必须从高阻的外延层流过,这相当於串联了一个很大的电阻,使电晶体的饱和压降增大,所以增加了一道埋层扩散从而降低串联电阻,减小电晶体饱和压降。

(2) 隔离扩散:由於积体电路由若干个电晶体构成,因此有若干个集电极区,电路工作时它们并不处在同一电位下,因此必须从电学上将它们隔离开。隔离扩散的目的是形成穿透外延层的P+隔离槽,把外延层分割成若干个彼此独立的隔离岛。

下面对主要工艺程序进行敍述。

第五节单晶拉制和衬底制备

半导体单晶是制造半导体器件的基础材料。单晶材料是由多晶材料经过提纯、掺杂和拉制等工序而制得的。单晶材料还要经过切片、研磨、倒角、腐蚀和抛

光等工序的加工,以获得符合一定标准(厚度、晶向、平整度和损伤层)的单晶薄片,才可以供给外延或管芯制造使用。这种单晶材料的加工过程称爲衬底制备。

先由石英砂和一定纯度的碳生成工业用矽,纯度约98%。工业用矽经过加工变成多晶矽,纯度达到六七个“9”。多晶矽采用直拉法或悬浮区熔法来拉制单晶棒,在拉制的过程中根据需要掺入微量的杂质,形成一定电阻率的P型单晶棒或N型单晶棒。单晶棒沿一定的晶向切割成大圆片。大圆片现在有3寸、4寸、5 寸、6寸、8寸、12寸等几种类。所有大圆片都有一个主参考面。工业上主要使用两种晶面,即〈111〉和〈100〉,又加上第二参考面既能识别大圆片是〈111〉,还是〈100〉面,又能区分是N型还是P型。沿平行或垂直於参考面的方向,分割器件管芯比较容易裂开,晶片的碎屑对铝条的划伤和划片中管芯的损坏率,也能满足自动化作业的要求。在经过研磨、倒角、腐蚀和抛光,消除晶片表面的损伤和切片操作时産生的应力;使矽片有很好的清洁度和平整度,这时矽片就可用於外延或生産了。由於衬底材料的型号、晶向和电阻率的不同,所以当片子串了时很容易导致报废。

第六节外延工艺

在一定的条件下,在一块经过仔细制备的单晶衬底上沿着原来的结晶轴方向,生长出一层导电类型、电阻率、厚度和晶格结构、完整性等都符合要求的新单晶层的过程,称爲外延。这层单晶层叫做外延层。

由於许多半导体器件是直接制作在外延层上的,外延层质量的好坏,将直接影响器件的性能。外延层的质量通常是应满足下列要求:完整性的晶体结构、精确而均匀的电阻率,均匀的外延层厚度、表面应光洁、无氧化、无云雾、表面

无缺陷(一般指角锥体、亮点和星型缺陷等)和体内缺陷(一般指位错、层错和滑移线等)要少,对於积体电路的隐埋层还要求无图形畸变现象等。

目前在生産中常见的外延质量有角锥体,常说的矽渣,严重影响光刻质量,影响産品的合格率;电阻率不均匀,影响産品参数的控制,很容易导致参数不合格报废。需要外延前注意矽片表面的清洗,减少缺陷,控制好外延的均匀性不是特别的好,所以串片很容易导致参数不合格。

第七节氧化工艺

一、化工艺的种类

在半导体生産中有许多种氧化工艺,比较常用的氧化工艺爲热氧化。

矽的热氧化按下面化学反应式进行

气体种类反应式速度

O2(乾) Si+O2→SiO2 慢

H2O或(H2+O2) Si+2H2O→SiO2+2H2 快

在氧化过程中要消耗一定量的矽生成一定厚度的二氧化矽。乾氧氧化的速度比较慢适合生长比较薄的氧化层。湿氧氧化速度比较快适合生长比较厚的氧化膜,但氧化层致密性不好,光刻容易産生浮胶现象,因此在做湿氧氧化工艺时,通常采用乾氧—湿氧—乾氧的氧化工艺方法生长二氧化矽薄膜。

二、氧化矽薄膜的作用

二氧化矽薄膜最重要的应用是作爲杂质选择扩散的掩蔽膜,因此需要一定的厚度来阻挡杂质扩散到矽中。二氧化矽还有一个作用是对器件表面保护和钝化。

二氧化矽薄膜还可作爲某些器件的组成部分:(1)用作器件的电绝缘和隔离。(2)用作电容器的介质材料。(3)用作MOS电晶体的绝缘栅介质。

三、氧化矽薄膜常见的问题

1、厚度均匀性问题。造成不均匀的主要原因是氧化反应管中的氧气和水汽的蒸汽压不均匀,此外氧化炉温度不稳定、恒温区太短、水温变化或矽片表面状态不良等也会造成氧化膜厚度不均匀。膜厚不均匀会影响氧化膜对扩散杂质的掩蔽作用和绝缘作用,而且在光刻腐蚀时容易造成局部钻蚀。

2、表面斑点。造成斑点的原因有:(1)氧化前表面处理不好。(2)氧化石英管长期处於高温下,産生一些白色薄膜落在矽片表面上。(3)水蒸汽凝聚在管口形成水珠溅在矽片表面上或水浴瓶中的水太满造成水珠射入石英管内,或清洗残留的水迹。出现斑点後斑点处的薄膜对杂质的掩蔽能力比较低,从而造成器件性能变坏,突出的大斑点会影响光刻的对准精度。

3、氧化膜针孔。当矽片存在位错和层错时就会形成针孔,它能使扩散杂质在该处穿透,使掩蔽失效,引起漏电流增大,耐压降低,甚至穿透,还能造成金属电极引线和氧化膜下面的区域短路造成失效。

4、反型现象。由於表面玷污,氧化膜中存在大量的可移动的正电荷,如钠离子、氢离子、氧空位等使P型矽一侧感应出负电荷,从而出现了反型。

5、热氧化层错。産生的原因有:(1)矽片本身的微缺陷。(2)磨抛或离子注入造成的表面损伤,表面玷污。(3)高温氧化中産生的热缺陷和热应力。

四、厚度的检查

测量厚度的方法很多,有双光干涉法、电容—压电法、椭圆偏振光法、腐蚀法和比色法等。在精度不高时,可用比色法来简单判断厚度。比色法是利用不同

厚度的氧化膜在白光垂直照射下会呈现出不同顔色的干涉条纹,从而大致判断氧化层的厚度。

顔色氧化膜厚度(埃)

灰 100

黄褐 300

蓝 800

紫 1000 2750 4650 6500

深蓝 1500 3000 4900 6800

绿 1850 3300 5600 7200

黄 2100 3700 5600 7500

橙 2250 4000 6000

红 2500 4350 6250

第八节扩散工艺

扩散技术是在高温条件下,将杂质原子以一定的可控量掺入到半导体中,以改变半导体基片(或已扩散过的区域)的导电类型或表面杂质浓度。

一、扩散工艺的优点

扩散工艺具有以下几方面的优越性:

(1)可以通过对温度、时间等工艺条件的准确调节,来控制PN接面的深度和电晶体的基区宽度,并能获得均匀平坦的接面。

(2)可以通过对扩散工艺条件的调节与选择,来控制扩散层表面的杂质浓度及其杂质分布,以满足不同器件的要求。

(3)与氧化、光刻和真空镀膜等技术相组合形成的矽平面工艺有利於改善电晶体和积体电路的性能。

(4)重复性好,均匀性好,适合与大批量生産。

二、扩散方法

在电晶体和积体电路的制造中,虽然采用的扩散工艺各不同,但是可分成一步法扩散和两步法扩散。两步法扩散分预淀积和再分布两步进行。一步法与两步法中的预淀积一样属於恒定表面源扩散,而两步法中的再分布属於限定表面源扩散。由於恒定源和限定源两者的边界和初始条件不同,杂质在矽中的分布状况也各不相同。

在恒定源扩散过程中,矽片表面与浓度始终不变的杂质(气体或固体)相接触,即在整个扩散过程中矽片表面浓度NS不变,但与扩散杂质的种类、杂质在矽中的固溶度和扩散温度有关。矽片内部的杂质浓度随时间的增加而增加,随离矽片表面距离的增加而减少。

在限定源扩散过程中,矽片内的杂质总量保持不变,没有外来杂质的补充,只依靠淀积在矽片表面上的那一层数量有限的杂质原子,向矽片体内继续进行扩散,在扩散温度恒定时,随扩散时间的增加,一方面矽片表面的杂质浓度将不断地下降。

三、扩散参数

扩散工序不论是预淀积还是再扩散,至少需要两个参数来进行检测:(1)薄层电阻RS(Ω/ □);(2) 扩散结深X j(um)。

薄层电阻Rs又称方块电阻R□,它表示表面爲正方形的扩散薄层在电流方向(电流方向平行于正方形的边)上所呈现的电阻。薄层电阻的大小与薄层的长度无关,而与薄层的平均电导率成反比,与薄层厚度(即接面深度)成反比。

扩散接面Xj就是PN接面所在的几何位置,也可以说是P型杂质浓度与N型衬底杂质相等的地方到矽片表面的距离(或者N型杂质浓度与P型衬底杂质相等的地方到矽片表面的距离)。

四、扩散常见的质量问题

(1) 合金点和破坏点:在扩散後有时可观察到扩散窗口的矽片表面上有一层白雾状的东西或有些小的突起,用显微镜观察时前者是一些黑色的小圆点,後者是一些黄亮点、透明的突起,小圆点称爲合金点,透明突起称爲破坏点。杂质在这些缺陷处的扩散速度特别快,造成结平面不平坦,PN接面低击穿或分段击穿。

(2) 表面玻璃层。硼和磷扩散之後,往往在矽片表面形成一层硼矽玻璃或磷矽玻璃,这是由於扩散温度过高或扩散时间过长産生的,此玻璃层与光刻胶的粘附性极差,光刻腐蚀时容易脱胶或産生钻蚀,而且该玻璃层不易腐蚀。(3) 白雾。这种现象在固一固扩散及液态源磷扩散经常发生。主要原因是淀积二氧化矽层(含杂质源)时就産生了,或在磷扩散时磷杂质浓度过高以及石英管中偏磷酸産生大量的烟雾喷射在矽片表面,在快速冷却过程中産生。光刻时容易造成脱胶或钻蚀。

(4) 方块电阻偏大或偏小。方块电阻的变化反映了扩散到矽中的杂质总量的多少,容易造成管芯数不易控制。

第九节光刻工艺

光刻是一种图形复印和化学腐蚀相结合的精密表面加工技术。光刻的目的就是按照器件设计的要求,在二氧化矽薄膜或金属薄膜上面,刻蚀出与掩摸版完全对应的几何图形,以实现选择性扩散和金属薄膜布线的目的。

光刻工艺流程一般分爲涂胶、前烘、曝光、显影、坚膜、腐蚀和去胶等步骤。光刻质量要求:(1)刻蚀的图形完整、尺寸准确、边缘整齐、线条陡直。(2)图形内无小凸起、无针孔、不染色、刻蚀乾净。(3)矽片表面清洁、发花、没有残留的被腐蚀物质。(4)图形套合十分准确。

第三章销售需知

1. 我司目前晶片主要销售的品种有TR\SCR\TRIAC\JEFT。(指UTC)

2. 客户询问时多会问成品名称,一种成品名称可能对应一种版图的晶片,也可能对应多个版图晶片(如9012对应9611—*和2002——*),很多客户爲了降低成本原意选择小版图晶片(因小版图晶片单只管芯成本较低),但也有客户担心小版图晶片特性会出问题,同样的成品名称可能有大小功率之分,如客户问8050,则需确认爲大功率(晶片9604NA)的还是小功率的(晶片9611N)。

3. 晶片名称爲我们自己起的名称,多与此品种光刻板的名称对应,9611PB ——9611爲版号,P表示此晶片爲P型晶片(对应N型晶片),B多表示档位,即Hfe值或放大倍数β,一种晶片可能对应多个成品,如9611PB对应成品爲9012或小功率8050,又如X601NP对应的成品可叫X1225又可叫PCR406。

4. 管芯步距与整个晶片的有效图形有反向对应关系,在晶片大小一定的前提下,步距越大(即单个管芯越大),有效图形越少,而合格管芯数=有效图形*合格率。对於封装商客户来说,小管芯好做,大管晶片不好做而且成本高,一般有客户要用大功率、大电流参数会选用大管芯,大管芯成品单价高。对於中测来讲,大管芯晶片好测,测试较快些,如772/882晶片,1个多小时测1片,小管芯晶片要3个小时测1片。

5. 放大倍数HFE爲TR重要参数,一般我们公司提供的HFE上限=下限*2,即120-240、150-300、200-400、500-1000,档位过窄则生産有困难,而现在市场上对HFE的要求越来越窄。

6. 晶片价格:版图小、成品率又较高的晶片可提供免测片,安顺现在给我们的免测片合格率>96%,现在可出免测片的有:2007N/P、9603N/P、

9611N/P、9901N、601NP,测试时如合格率不足96%则全片点测,免测片按片报价,点测片按只报价。一般点测片都给予2-4个点的备品数量,即100PCS只收98PCS-96PCS的货款,新客户多给2个点备品。

7. 背蒸:一般晶片尺寸大於的爲背银片,小於爲背金片,等於爲背金或背银。背金晶片可以直接与框架焊接在一起,称为共晶,背银晶片则需银浆(导电胶、非导电胶、铅锡银)来贴合。

8. 共晶:是装片方式的一种,利用机台的高温使金属熔化结合,主要针对小功率産品,晶片背面成份爲金,共晶与导电胶比,有牢度好散热快,热阻小,饱和压降低的优点,但基本局限於晶片尺寸以下的管芯。背金只能做共晶。

金、铝层加厚:金层加厚,主要用在小功率的品种上(9000系列的),起到金属共熔的作用。铝层加厚,指在用铜线焊接时,因铜很硬,而且焊接较深(牢固),因此爲了不损伤金铝层内的晶片,需将铝层加厚。

半导体器件工艺基础知识

半导体基础知识和半导体器件工艺 第一章半导体基础知识  通常物质根据其导电性能不同可分成三类。第一类为导体,它可以很好的传导电流,如:金属类,铜、银、铝、金等;电解液类:NaCl水溶液,血液,普通水等以及其它一些物体。第二类为绝缘体,电流不能通过,如橡胶、玻璃、陶瓷、木板等。第三类为半导体,其导电能力介于导体和绝缘体之间,如四族元素Ge锗、Si硅等,三、五族元素的化合物GaAs砷化镓等,二、六族元素的化合物氧化物、硫化物等。 物体的导电能力可以用电阻率来表示。电阻率定义为长1厘米、截面积为1平方厘米的物质的电阻值,单位为欧姆*厘米。电阻率越小说明该物质的导电性能越好。通常导体的电阻率在10-4欧姆*厘米以下,绝缘体的电阻率在109欧姆*厘米以上。 半导体的性质既不象一般的导体,也不同于普通的绝缘体,同时也不仅仅由于它的导电能力介于导体和绝缘体之间,而是由于半导体具有以下的特殊性质: (1) 温度的变化能显著的改变半导体的导电能力。当温度升高时,电阻率会降低。比如Si在200℃时电阻率比室温时的电阻率低几千倍。可以利用半导体的这个特性制成自动控制用的热敏组件(如热敏电阻等),但是由于半导体的这一特性,容易引起热不稳定性,在制作半导体器件时需要考虑器件自身产生的热量,需要考虑器件使用环境的温度等,考虑如何散热,否则将导致器件失效、报废。 (2) 半导体在受到外界光照的作用是导电能力大大提高。如硫化镉受到光照后导电能力可提高几十到几百倍,利用这一特点,可制成光敏三极管、光敏电阻等。 (3) 在纯净的半导体中加入微量(千万分之一)的其它元素(这个过程我们称为掺杂),可使他的导电能力提高百万倍。这是半导体的最初的特征。例如在原子密度为5*1022/cm3的硅中掺进大约5X1015/cm3磷原子,比例为10-7(即千万分之一),硅的导电能力提高了几十万倍。 物质是由原子构成的,而原子是由原子核和围绕它运动的电子组成的。电子很轻、很小,带负电,在一定的轨道上运转;原子核带正电,电荷量与电子的总电荷量相同,两者相互吸引。当原子的外层电子缺少后,整个原子呈现正电,缺少电子的地方产生一个空位,带正电,成为电洞。物体导电通常是由电子和电洞导电。 前面提到掺杂其它元素能改变半导体的导电能力,而参与导电的又分为电子和电洞,这样掺杂的元素(即杂质)可分为两种:施主杂质与受主杂质。 将施主杂质加到硅半导体中后,他与邻近的4个硅原子作用,产生许多自由电子参与导电,而杂质本身失去电子形成正离子,但不是电洞,不能接受电子。这时的半导体叫N型半导体。施主杂质主要为五族元素:锑、磷、砷等。 将施主杂质加到半导体中后,他与邻近的4个硅原子作用,产生许多电洞参与导电,这时的半导体叫p型半导体。受主杂质主要为三族元素:铝、镓、铟、硼等。 电洞和电子都是载子,在相同大小的电场作用下,电子导电的速度比电洞

《半导体制造工艺及设备》课程教学大纲

《半导体制造工艺及设备》课程教学大纲 课程类别:技术基础必修课课程代码:BT1410_2 总学时:总学时48 (双语讲授48) 适用专业:微电子制造工程 先修课程:大学物理、半导体物理、微电子制造基础 一、课程的地位、性质和任务 本课程是微电子制造工程专业的一门必修的专业技术基础课。其作用与任务是:使学生对集成电路制造工艺及其设备有一个比较系统、全面的了解和认识,初步掌握硅材料制备、氧化、淀积、光刻、刻蚀、离子注入、金属化、化学机械平坦化等工艺及其设备,工艺集成以及CMOS工艺的基础理论。 二、课程教学的基本要求 1.初步掌握半导体工艺流程的基本理论与方法; 2.掌握半导体制造技术的基本工艺(硅材料制备、氧化、淀积、光刻、刻蚀、离子注 入、金属化、化学机械平坦化)及其设备; 3.初步掌握工艺集成与当前最新的CMOS工艺流程。 三、课程主要内容与学时分配 1、半导体制造概述3学 时 半导体制造在电子制造工程中的地位与概述、基本概念、基本内容 2、硅材料制备3学 时 直拉法、区熔法 3、氧化4学时 氧化物作用、氧化原理、氧化方法、氧化工艺、氧化炉 4、淀积5学 时 物理淀积与化学气相淀积(CVD)、淀积工艺、CVD淀积系统 5、光刻8学 时 光刻胶、光刻原理、光刻工艺、光刻设备、先进光刻技术、光学光刻与软光刻。 6、刻蚀4学 时 刻蚀方法、干法刻蚀、湿法刻蚀、等离子刻蚀、刻蚀反应器 7、离子注入3学 时 扩散、离子注入原理、离子注入工艺、离子注入机 8、金属化4学时 金属类型、金属化方案、金属淀积系统、铜的双大马士革金属化工艺 9、化学机械平坦化(CMP)2学时 传统平坦化技术、化学机械平坦化CMP工艺、CMP应用

半导体工艺流程

1清洗 集成电路芯片生产的清洗包括硅片的清洗和工器具的清洗。由 于半导体生产污染要求非常严格,清洗工艺需要消耗大量的高纯水; 且为进行特殊过滤和纯化广泛使用化学试剂和有机溶剂。 在硅片的加工工艺中,硅片先按各自的要求放入各种药液槽进行表面化学处理,再送入清洗槽,将其表面粘附的药液清洗干净后进入下一道工序。常用的清洗方式是将硅片沉浸在液体槽内或使用液体喷雾清洗,同时为有更好的清洗效果,通常使用超声波激励和擦片措施,一般在有机溶剂清洗后立即米用无机酸将其氧化去除,最后用超纯水进行清洗,如图1-6所示。 图1-6硅片清洗工艺示意图 工具的清洗基本米用硅片清洗同样的方法。 2、热氧化 热氧化是在800~1250C高温的氧气氛围和惰性携带气体(N2)下使硅片表面的硅氧化生成二氧化硅膜的过程,产生的二氧化硅用以作为扩散、离子注入的阻挡层,或介质隔离层。典型的热氧化化学反应为: Si + O2 T SiO2

3、扩散 扩散是在硅表面掺入纯杂质原子的过程。通常是使用乙硼烷(B2H6)作为N —源和磷烷(PH3)作为P+源。工艺生产过程中通常 分为沉积源和驱赶两步,典型的化学反应为: 2PH3 —2P+3H2 4、离子注入 离子注入也是一种给硅片掺杂的过程。它的基本原理是把掺杂物质(原子)离子化后,在数千到数百万伏特电压的电场下得到加速,以较高的能量注入到硅片表面或其它薄膜中。经高温退火后,注入离子活化,起施主或受主的作用。 5、光刻 光刻包括涂胶、曝光、显影等过程。涂胶是通过硅片高速旋转在硅片表面均匀涂上光刻胶的过程;曝光是使用光刻机,并透过光掩膜版对涂胶的硅片进行光照,使部分光刻胶得到光照,另外,部分光刻胶得不到光照,从而改变光刻胶性质;显影是对曝光后的光刻胶进行去除,由于光照后的光刻胶 和未被光照的光刻胶将分别溶于显影液和不溶于显影液,这样就使光刻胶上 形成了沟槽。 6、湿法腐蚀和等离子刻蚀 通过光刻显影后,光刻胶下面的材料要被选择性地去除,使用的方法就

半导体工艺及芯片制造技术问题答案(全)

常用术语翻译 active region 有源区 2.active ponent有源器件 3.Anneal退火 4.atmospheric pressure CVD (APCVD) 常压化学气相淀积 5.BEOL(生产线)后端工序 6.BiCMOS双极CMOS 7.bonding wire 焊线,引线 8.BPSG 硼磷硅玻璃 9.channel length沟道长度 10.chemical vapor deposition (CVD) 化学气相淀积 11.chemical mechanical planarization (CMP)化学机械平坦化 12.damascene 大马士革工艺 13.deposition淀积 14.diffusion 扩散 15.dopant concentration掺杂浓度 16.dry oxidation 干法氧化 17.epitaxial layer 外延层 18.etch rate 刻蚀速率 19.fabrication制造 20.gate oxide 栅氧化硅 21.IC reliability 集成电路可靠性 22.interlayer dielectric 层间介质(ILD) 23.ion implanter 离子注入机 24.magnetron sputtering 磁控溅射 25.metalorganic CVD(MOCVD)金属有机化学气相淀积 26.pc board 印刷电路板 27.plasma enhanced CVD(PECVD) 等离子体增强CVD 28.polish 抛光 29.RF sputtering 射频溅射 30.silicon on insulator绝缘体上硅(SOI)

半导体器件物理及工艺

?平时成绩30% + 考试成绩70% ?名词解释(2x5=10)+ 简答与画图(8x10=80)+ 计算(1x10=10) 名词解释 p型和n型半导体 漂移和扩散 简并半导体 异质结 量子隧穿 耗尽区 阈值电压 CMOS 欧姆接触 肖特基势垒接触 简答与画图 1.从能带的角度分析金属、半导体和绝缘体之间的区别。 2.分析pn结电流及耗尽区宽度与偏压的关系。 3.什么是pn结的整流(单向导电)特性?画出理想pn结电流-电压曲线示意图。 4.BJT各区的结构有何特点?为什么? 5.BJT有哪几种工作模式,各模式的偏置情况怎样? 6.画出p-n-p BJT工作在放大模式下的空穴电流分布。 7.MOS二极管的金属偏压对半导体的影响有哪些? 8.MOSFET中的沟道是多子积累、弱反型还是强反型?强反型的判据是什么? 9.当VG大于VT且保持不变时,画出MOSFET的I-V曲线,并画出在线性区、非线 性区和饱和区时的沟道形状。 10.MOSFET的阈值电压与哪些因素有关? 11.半导体存储器的详细分类是怎样的?日常使用的U盘属于哪种类型的存储器,画出 其基本单元的结构示意图,并简要说明其工作原理。 12.画出不同偏压下,金属与n型半导体接触的能带图。 13.金属与半导体可以形成哪两种类型的接触?MESFET中的三个金属-半导体接触分 别是哪种类型? 14.对于一耗尽型MESFET,画出VG=0, -0.5, -1V(均大于阈值电压)时的I-V曲线示 意图。 15.画出隧道二极管的I-V曲线,并画出电流为谷值时对应的能带图。 16.两能级间的基本跃迁过程有哪些,发光二极管及激光器的主要跃迁机制分别是哪 种? 计算 Pn结的内建电势及耗尽区宽度

半导体的生产工艺流程

半导体的生产工艺流程 微机电制作技术,尤其是最大宗以硅半导体为基础的微细加工技术 (silicon-basedmicromachining),原本就肇源于半导体组件的制程技术,所以必须先介绍清楚这类制程,以免沦于夏虫语冰的窘态。 一、洁净室 一般的机械加工是不需要洁净室(cleanroom)的,因为加工分辨率在数十微米以上,远比日常环境的微尘颗粒为大。但进入半导体组件或微细加工的世界,空间单位都是以微米计算,因此微尘颗粒沾附在制作半导体组件的晶圆上,便有可能影响到其上精密导线布局的样式,造成电性短路或断路的严重后果。为此,所有半导体制程设备,都必须安置在隔绝粉尘进入的密闭空间中,这就是洁净室的来由。洁净室的洁净等级,有一公认的标准,以class10为例,意谓在单位立方英呎的洁净室空间内,平均只有粒径0.5微米以上的粉尘10粒。所以class后头数字越小,洁净度越佳,当然其造价也越昂贵。为营造洁净室的环境,有专业的建造厂家,及其相关的技术与使用管理办法如下: 1、内部要保持大于一大气压的环境,以确保粉尘只出不进。所以需要大型 鼓风机,将经滤网的空气源源不绝地打入洁净室中。 2、为保持温度与湿度的恒定,大型空调设备须搭配于前述之鼓风加压系统 中。换言之,鼓风机加压多久,冷气空调也开多久。 3、所有气流方向均由上往下为主,尽量减少突兀之室内空间设计或机台摆 放调配,使粉尘在洁净室内回旋停滞的机会与时间减至最低程度。 4、所有建材均以不易产生静电吸附的材质为主。 5、所有人事物进出,都必须经过空气吹浴(airshower)的程序,将表面粉尘 先行去除。 6、人体及衣物的毛屑是一项主要粉尘来源,为此务必严格要求进出使用人 员穿戴无尘衣,除了眼睛部位外,均需与外界隔绝接触(在次微米制程技术的工厂内,工作人员几乎穿戴得像航天员一样。)当然,化妆是在禁绝之内,铅笔等也禁止使用。 7、除了空气外,水的使用也只能限用去离子水(DIwater,de-ionizedwater)。 一则防止水中粉粒污染晶圆,二则防止水中重金属离子,如钾、钠离子污染金氧半(MOS)晶体管结构之带电载子信道(carrierchannel),影响半导体组件的工作特性。去离子水以电阻率(resistivity)来定义好坏,一般要求至 17.5MΩ-cm以上才算合格;为此需动用多重离子交换树脂、RO逆渗透、与 UV紫外线杀菌等重重关卡,才能放行使用。由于去离子水是最佳的溶剂与清洁剂,其在半导体工业之使用量极为惊人! 8、洁净室所有用得到的气源,包括吹干晶圆及机台空压所需要的,都得使 用氮气(98%),吹干晶圆的氮气甚至要求99.8%以上的高纯氮!以上八点说明是最基本的要求,另还有污水处理、废气排放的环保问题,再再需要大笔

半导体制造工艺流程

半导体制造工艺流程 N型硅:掺入V族元素--磷P、砷As、锑Sb P型硅:掺入III族元素—镓Ga、硼B PN结: 半导体元件制造过程可分为 前段(FrontEnd)制程 晶圆处理制程(WaferFabrication;简称WaferFab)、 晶圆针测制程(WaferProbe); 後段(BackEnd) 构装(Packaging)、 测试制程(InitialTestandFinalTest) 一、晶圆处理制程 晶圆处理制程之主要工作为在矽晶圆上制作电路与电子元件(如电晶体、电容体、逻辑闸等),为上述各制程中所需技术最复杂且资金投入最多的过程,以微处理器(Microprocessor)为例,其所需处理步骤可达数百道,而其所需加工机台先进且昂贵,动辄数千万一台,其所需制造环境为为一温度、湿度与含尘(Particle)均需控制的无尘室(Clean-Room),虽然详细的处理程序是随著产品种类与所使用的技术有关;不过其基本处理步骤通常是晶圆先经过适当的清洗(Cleaning)之後,接著进行氧化(Oxidation)及沈积,最後进行微影、蚀刻及离子植入等反覆步骤,以完成晶圆上电路的加工与制作。 二、晶圆针测制程 经过WaferFab之制程後,晶圆上即形成一格格的小格,我们称之为晶方或是晶粒(Die),在一般情形下,同一片晶圆上皆制作相同的晶片,但是也有可能在同一片晶圆上制作不同规格的产品;这些晶圆必须通过晶片允收测试,晶粒将会一一经过针测(Probe)仪器以测试其电气特性,而不合格的的晶粒将会被标上记号(InkDot),此程序即称之为晶圆针测制程(WaferProbe)。然後晶圆将依晶粒为单位分割成一粒粒独立的晶粒 三、IC构装制程 IC構裝製程(Packaging):利用塑膠或陶瓷包裝晶粒與配線以成積體電路目的:是為了製造出所生產的電路的保護層,避免電路受到機械性刮傷或是高溫破壞。 半导体制造工艺分类 半导体制造工艺分类 一双极型IC的基本制造工艺: A在元器件间要做电隔离区(PN结隔离、全介质隔离及PN结介质混合隔离)ECL(不掺金)(非饱和型)、TTL/DTL(饱和型)、STTL(饱和型)B在元器件间自然隔离 I2L(饱和型) 半导体制造工艺分类 二MOSIC的基本制造工艺: 根据栅工艺分类 A铝栅工艺 B硅栅工艺

半导体器件工艺与物理期末必考题材料汇总综述

半导体期末复习补充材料 一、名词解释 1、准费米能级 费米能级和统计分布函数都是指的热平衡状态,而当半导体的平衡态遭到破坏而存在非平衡载流子时,可以认为分就导带和价带中的电子来讲,它们各自处于平衡态,而导带和价带之间处于不平衡态,因而费米能级和统计分布函数对导带和价带各自仍然是适用的,可以分别引入导带费米能级和价带费米能级,它们都是局部的能级,称为“准费米能级”,分别用E F n、E F p表示。 2、直接复合、间接复合 直接复合—电子在导带和价带之间直接跃迁而引起电子和空穴的直接复合。 间接复合—电子和空穴通过禁带中的能级(复合中心)进行复合。 3、扩散电容 PN结正向偏压时,有空穴从P区注入N区。当正向偏压增加时,由P区注入到N区的空穴增加,注入的空穴一部分扩散走了,一部分则增加了N区的空穴积累,增加了载流子的浓度梯度。在外加电压变化时,N扩散区内积累的非平衡空穴也增加,与它保持电中性的电子也相应增加。这种由于扩散区积累的电荷数量随外加电压的变化所产生的电容效应,称为P-N结的扩散电容。用CD表示。 4、雪崩击穿 随着PN外加反向电压不断增大,空间电荷区的电场不断增强,当超过某临界值时,载流子受电场加速获得很高的动能,与晶格点阵原子发生碰撞使之电离,产生新的电子—空穴对,再被电场加速,再产生更多的电子—空穴对,载流子数目在空间电荷区发生倍增,犹如雪崩一般,反向电流迅速增大,这种现象称之为雪崩击穿。 1、PN结电容可分为扩散电容和过渡区电容两种,它们之间的主要区别在于 扩散电容产生于过渡区外的一个扩散长度范围内,其机理为少子的充放 电,而过渡区电容产生于空间电荷区,其机理为多子的注入和耗尽。 2、当MOSFET器件尺寸缩小时会对其阈值电压V T产生影响,具体地,对 于短沟道器件对V T的影响为下降,对于窄沟道器件对V T的影响为上升。 3、在NPN型BJT中其集电极电流I C受V BE电压控制,其基极电流I B受V BE 电压控制。 4、硅-绝缘体SOI器件可用标准的MOS工艺制备,该类器件显著的优点是 寄生参数小,响应速度快等。 5、PN结击穿的机制主要有雪崩击穿、齐纳击穿、热击穿等等几种,其中发

半导体基础知识和半导体器件工艺

半导体基础知识和半导 体器件工艺 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

半导体基础知识和半导体器件工艺 第一章半导体基础知识 通常物质根据其导电性能不同可分成三类。第一类爲导体,它可以很好的传导电流,如:金属类,铜、银、铝、金等;电解液类:NaCl水溶液,血液,普通水等以及其他一些物体。第二类爲绝缘体,电流不能通过,如橡胶、玻璃、陶瓷、木板等。第三类爲半导体,其导电能力介於导体和绝缘体之间,如四族元素Ge锗、Si矽等,三、五族元素的化合物GaAs砷化镓等,二、六族元素的化合物氧化物、硫化物等。 物体的导电能力可以用电阻率来表示。电阻率定义爲长1厘米、截面积爲1平方厘米的物质的电阻值,单位爲欧姆*厘米。电阻率越小说明该物质的导电性能越好。通常导体的电阻率在10-4欧姆*厘米以下,绝缘体的电阻率在109欧姆*厘米以上。 半导体的性质既不象一般的导体,也不同于普通的绝缘体,同时也不仅仅由於它的导电能力介於导体和绝缘体之间,而是由於半导体具有以下的特殊性质: (1) 温度的变化能显着的改变半导体的导电能力。当温度升高时,电阻率会降低。比如Si在200℃时电阻率比室温时的电阻率低几千倍。可以利用半导体的这个特性制成自动控制用的热敏元件(如热敏电阻等),但是由於半导体的这一特性,容易引起热不稳定性,在制作半导体器件时需要考虑器件自身産生的

热量,需要考虑器件使用环境的温度等,考虑如何散热,否则将导致器件失效、报废。 (2) 半导体在受到外界光照的作用是导电能力大大提高。如硫化镉受到光照後导电能力可提高几十到几百倍,利用这一特点,可制成光敏三极管、光敏电阻等。 (3) 在纯净的半导体中加入微量(千万分之一)的其他元素(这个过程我们称爲掺杂),可使他的导电能力提高百万倍。这是半导体的最初的特徵。例如在原子密度爲5*1022/cm3的矽中掺进大约5X1015/cm3磷原子,比例爲10-7(即千万分之一),矽的导电能力提高了几十万倍。 物质是由原子构成的,而原子是由原子核和围绕它运动的电子组成的。电子很轻、很小,带负电,在一定的轨道上运转;原子核带正电,电荷量与电子的总电荷量相同,两者相互吸引。当原子的外层电子缺少後,整个原子呈现正电,缺少电子的地方産生一个空位,带正电,成爲电洞。物体导电通常是由电子和电洞导电。 前面提到掺杂其他元素能改变半导体的导电能力,而参与导电的又分爲电子和电洞,这样掺杂的元素(即杂质)可分爲两种:施主杂质与受主杂质。 将施主杂质加到矽半导体中後,他与邻近的4个矽原子作用,産生许多自由电子参与导电,而杂质本身失去电子形成正离子,但不是电洞,不能接受电子。这时的半导体叫N型半导体。施主杂质主要爲五族元素:锑、磷、砷等。 将施主杂质加到半导体中後,他与邻近的4个矽原子作用,産生许多电洞参与导电,这时的半导体叫p型半导体。受主杂质主要爲三族元素:铝、镓、铟、硼等。

半导体器件物理与工艺复习题(2012)

半导体器件物理复习题 第二章: 1) 带隙:导带的最低点和价带的最高点的能量之差,也称能隙。 物理意义:带隙越大,电子由价带被激发到导带越难,本征载流子浓度就越低,电导率也就越低 2)什么是半导体的直接带隙和间接带隙? 其价带顶部与导带最低处发生在相同动量处(p =0)。因此,当电子从价带转换到导带时,不需要动量转换。这类半导体称为直接带隙半导体。 3)能态密度:能量介于E ~E+△E 之间的量子态数目△Z 与能量差△E 之比 4)热平衡状态:即在恒温下的稳定状态.(且无任何外来干扰,如照光、压力或电场). 在恒温下,连续的热扰动造成电子从价带激发到导带,同时在价带留下等量的空穴.半导体的电子系统有统一的费米能级,电子和空穴的激发与复合达到了动态平衡,其浓度是恒定的,载流子的数量与能量都是平衡。即热平衡状态下的载流子浓度不变。 5)费米分布函数表达式? 物理意义:它描述了在热平衡状态下,在一个费米粒子系统(如电子系统)中属于能量E 的一个量子态被一个电子占据的概率。 6 本征半导体价带中的空穴浓度: 7)本征费米能级Ei :本征半导体的费米能级。在什么条件下,本征Fermi 能级靠近禁带的中央:在室温下可以近似认为费米能级处于带隙中央 8)本征载流子浓度n i : 对本征半导体而言,导带中每单位体积的电子数与价带每单位体积的空穴数相同, 即浓度相同,称为本征载流子浓度,可表示为n =p =n i . 或:np=n i 2 9) 简并半导体:当杂质浓度超过一定数量后,费米能级进入了价带或导带的半导体。 10) 非简并半导体载流子浓度: 且有: n p=n i 2 其中: n 型半导体多子和少子的浓度分别为: p 型半导体多子和少子的浓度分别为:

下一代新型半导体器件及工艺基础研究

下一代新型半导体器件及工艺基础研究 微电子技术无论是从其发展速度和对人类社会生产、生活的影响,都可以说是科学技术史上空前的,微电子技术已经成为整个信息产业的基础和核心。 自1958年集成电路发明以来,为了提高电子集成系统的性能,降低成本,集成电路的特征尺寸不断缩小,制作工艺的加工精度不断提高,同时硅片的面积不断增大。40多年来,集成电路芯片的发展基本上遵循了摩尔定律,即每隔三年集成度增加4倍,特征尺寸缩小√2倍。集成电路芯片的特征尺寸已经从1978年的10/xm发展到现在的0.13-0.10txm;硅片的直径也逐渐由2英寸、3英寸、4英寸、6英寸、8英寸发展到12英寸。在这期间,虽然有很多人预测这种发展趋势将减缓,但微电子产业发展的事实证实了Moore的预言,而且根据预测,微电子技术的这种发展趋势至少在今后10多年内还将继续下去,这是其它任何产业都无法与之比拟的。 现在,0.13lam的CMOS工艺技术已进人大生产,0.04微米乃至0.01微米的器件已在实验室中制备成功,研究工作已进入亚0.1lam技术阶段,相应的栅氧化层厚度只有2.0-1.0nm。预计到2014年,特征尺寸为0.035lam的电路将投入批量生产。 2000年以来,虽然世界微电子产业进入低谷,即使如此,但从微电子技术发展方面来讲,微电子却进入了一个快速发展的阶段。自1999年以来,原来集成电路工艺每3年提升一代的规律在进入21世纪后变为两年提升一代,这说明全球的微电子产业正在借这一轮微电子产业不景气的空隙做技术上的储备,为迎接新一轮微电子产业的快速发展作着积极的准备。 近年来,虽然国际微电子产业处于低谷,但中国的微电子产业却一枝独秀,仍然保持着每年30%以上的递增速度。特别是随着中芯国际、华虹NEC、天津Motorola等一批大规模、高水平集成电路制造企业的建成,国际上先进的半导体工艺正被迅速地直接引入到我国,制造工艺技术达到了0.25、0.18甚至0.13lam工艺水平,因此可以说我国微电子产业已经进入了一个跳跃式发展阶段。 为了加强我国微电子产业的竞争力,北京大学、中国科学院微电子中心、清华大学、中国科学院半导体研究所、中国科学院上海微系统与信息技术研究所等单位共同提出了973项目"系统芯片(SystemOn a Chip)中新器件新工艺基础研究",致力研究下一代SOC发展过程中遇到的半导体新器件新工艺领域的基础科学问题。本文介绍的主要内容就是我们在该973项目研究中取得的部分新器件、新工艺方面的研究成果。 MILC平面双栅器件 双栅器件独特的优点已被公认为纳米量级器件的优选结构,平面双栅器件由于白对准双栅技术的问题一直处于探索之中,虽然已提出一些方法,如激光退火,选择外延生长,侧向外延生长等,但都非常复杂,成本也很高,而得到的器件的寄生电阻比预期高很多。在平面双栅器件工艺集成技术方面一直是一个研究热点。我们利用MILC和高温退火技术提出了一种新的简单的自对准双栅MOS晶体管制备技术,为平面双栅器件的实现提供了新的思路。 图1为我们得到的单晶自对准双栅MOS晶体管的电流电压特性曲线。为比较起见,我们在同一工艺过程中,制作了常规单栅SOl MOS晶体管。双栅器件的沟道长度、沟道宽度、栅氧化层厚度以及沟道区硅膜的厚度分别为0.36μm、0.72μm、lOnm和40nm,测量得到的有效电子迁

半导体基础知识和半导体器件工艺

半导体基础知识和半导体器件工艺 第一章半導體基礎知識 通常物質根據其導電性能不同可分成三類。第一類爲導體,它可以很好的傳導電流,如:金屬類,銅、銀、鋁、金等;電解液類:NaCl 水溶液,血液,普通水等以及其他一些物體。第二類爲絕緣體,電流不能通過,如橡膠、玻璃、陶瓷、木板等。第三類爲半導體,其導電能力介於導體和絕緣體之間,如四族元素Ge鍺、Si矽等,三、五族元素的化合物GaAs砷化鎵等,二、六族元素的化合物氧化物、硫化物等。 物體的導電能力可以用電阻率來表示。電阻率定義爲長1 釐米、截面積爲1 平方釐米的物質的電阻值,單位爲歐姆*釐米。電阻率越小說明該物質的導電性能越好。通常導體的電阻率在10-4 歐姆*釐米以下,絕緣體的電阻率在109 歐姆*釐米以上。 半導體的性質既不象一般的導體,也不同于普通的絕緣體,同時也不僅僅由於它的導電能力介於導體和絕緣體之間,而是由於半導體具有以下的特殊性質: (1) 溫度的變化能顯著的改變半導體的導電能力。當溫度升高時,電阻率會降低。 比如Si在200C時電阻率比室溫時的電阻率低幾千倍。可以利用半導體的這個特性製成自動控制用的熱敏元件 (如熱敏電阻等),但是由於半導體的這一特性,容易引起熱不穩定性,在製作半導體器件時需要考慮器件自身産生的熱量,需要考慮器件使用環境的溫度等,考慮如何散熱,否則將導致器件失效、報廢。 (2)半導體在受到外界光照的作用是導電能力大大提高。如硫化鎘受到光照後導電能力可提高幾十到幾百倍,利用這一特點,可製成光敏三極管、光敏電阻等。

(3)在純淨的半導體中加入微量(千萬分之一)的其他元素(這個過程我們稱爲摻雜),可使他的導電能力提高百萬倍。這是半導體的最初的特徵。例如在原子密度爲 5*1022/cm3 的矽中摻進大約5X1015/cm3 磷原子,比例爲10-7(即千萬分之一),矽的導電能力提高了幾十萬倍。 物質是由原子構成的,而原子是由原子核和圍繞它運動的電子組成的。電子很輕、很小,帶負電,在一定的軌道上運轉;原子核帶正電,電荷量與電子的總電荷量相同,兩者相互吸引。當原子的外層電子缺少後,整個原子呈現正電,缺少電子的地方産生一個空位,帶正電,成爲電洞。物體導電通常是由電子和電洞導電。 前面提到摻雜其他元素能改變半導體的導電能力,而參與導電的又分爲電子和電洞,這樣摻雜的元素(即雜質)可分爲兩種:施主雜質與受主雜質。 將施主雜質加到矽半導體中後,他與鄰近的4個矽原子作用,産生許多自由電子參與導電,而雜質本身失去電子形成正離子,但不是電洞,不能接受電子。這時的半導體叫N 型半導體。施主雜質主要爲五族元素:銻、磷、砷等。將施主雜質加到半導體中後,他與鄰近的4 個矽原子作用,産生許多電洞參與導電,這時的半導體叫p 型半導體。受主雜質主要爲三族元素:鋁、鎵、銦、硼等。電洞和電子都是載子,在相同大小的電場作用下,電子導電的速度比電洞快。電洞和電子運動速度的大小用遷移率來表示,遷移率愈大,截流子運動速度愈快。\ 假如把一些電洞注入到一塊N型半導體中,N型就多出一部分少數載子一一電洞, 但由於N型半導體中有大量的電子存在,當電洞和電子碰在一起時,會發生作用, 正負電中和,這種現象稱爲複合 單個N型半導體或P型半導體是沒有什麽用途的。但使一塊完整的半導體的一部分是N 型,另一部分爲P型,並在兩端加上電壓,我們會發現有很奇怪的現象。如果將P型半導體接電源的正極,N型半導體接電源的負極,然後緩慢地加電壓。當電壓很小時,一般小

模拟电子技术基础-第1章 常用半导体器件题解

第一章 常用半导体器件 自 测 题 一、判断下列说法是否正确,用“√”和“×”表示判断结果填入空内。 (1)在N 型半导体中如果掺入足够量的三价元素,可将其改型为P 型半导体。( ) (2)因为N 型半导体的多子是自由电子,所以它带负电。( ) (3)PN 结在无光照、无外加电压时,结电流为零。( ) (4)处于放大状态的晶体管,集电极电流是多子漂移运动形成的。 ( ) (5)结型场效应管外加的栅-源电压应使栅-源间的耗尽层承受反向电压,才能保证其R G S 大的特点。( ) (6)若耗尽型N 沟道MOS 管的U G S 大于零,则其输入电阻会明显变小。( ) 解:(1)√ (2)× (3)√ (4)× (5)√ (6)× 二、选择正确答案填入空内。 (1)PN 结加正向电压时,空间电荷区将 。 A. 变窄 B. 基本不变 C. 变宽 (2)设二极管的端电压为U ,则二极管的电流方程是 。 A. I S e U B. T U U I e S C. )1e (S -T U U I (3)稳压管的稳压区是其工作在 。 A. 正向导通 B.反向截止 C.反向击穿 (4)当晶体管工作在放大区时,发射结电压和集电结电压应为 。 A. 前者反偏、后者也反偏 B. 前者正偏、后者反偏 C. 前者正偏、后者也正偏 (5)U G S =0V 时,能够工作在恒流区的场效应管有 。 A. 结型管 B. 增强型MOS 管 C. 耗尽型MOS 管 解:(1)A (2)C (3)C (4)B (5)A C

三、写出图T1.3所示各电路的输出电压值,设二极管导通电压U D=0.7V。 图T1.3 解:U O1≈1.3V,U O2=0,U O3≈-1.3V,U O4≈2V,U O5≈1.3V, U O6≈-2V。 四、已知稳压管的稳压值U Z=6V,稳定电流的最小值I Z mi n=5mA。求图T1.4所示电路中U O1和U O2各为多少伏。 图T1.4 解:U O1=6V,U O2=5V。

半导体器件物理与工艺复习题

半导体器件物理复习题 第二章: 1) 带隙:导带的最低点和价带的最高点的能量之差,也称能隙。 物理意义:带隙越大,电子由价带被激发到导带越难,本征载流子浓度就越低,电导率也就越低 2)什么是半导体的直接带隙和间接带隙? 其价带顶部与导带最低处发生在相同动量处(p=0)。因此,当电子从价带转换到导带时,不需要动量转 换。这类半导体称为直接带隙半导体。 3)能态密度:能量介于E~E +△E 之间的量子态数目△Z 与能量差△E 之比 4)热平衡状态:即在恒温下的稳定状态.(且无任何外来干扰,如照光、压力或电场). 在恒温下,连续的热扰动造成电子从价带激发到导带,同时在价带留下等量的空穴.半导体的电子系统有统一的费米能级,电子和空穴的激发与复合达到了动态平衡,其浓度是恒定的,载流子的数量与能量都是平衡。即热平衡状态下的载流子浓度不变。 5)费米分布函数表达式? 物理意义:它描述了在热平衡状态下,在一个费米粒子系统(如电子系统)中属于能量E 的一个量子态被一个电子占据的概率。 6)本征半导体导带的电子浓度 本征半导体价带中的空穴浓度: 7)本征费米能级E i:本征半导体的费米能级。在什么条件下,本征F erm i能级靠近禁带的中央: 在室温下可以近似认为费米能级处于带隙中央 8)本征载流子浓度n i: 对本征半导体而言,导带中每单位体积的电子数与价带每单位体积的空穴数相同,即浓度相同,称为本征载流子浓度,可表示为n=p=n i. 或:np=n i2 9) 简并半导体:当杂质浓度超过一定数量后,费米能级进入了价带或导带的半导体。 10) 非简并半导体载流子浓度: 且有: n p=n i 2 其中: n p型半导体多子和少子的浓度分别为: 第三章: 1)迁移率:是指载流子(电子和空穴)在单位电场作用下的平均漂移速度,即载流子在电场作用下运动速度的快慢的量度,运动得越快, 迁移率越大。定义为: 2)漂移电流: 载流子在热运动的同时,由于电场作用而产生的沿电场力方向的定向运动称作漂移运动。所构成的电流为漂移电流。定向运动的平均速度叫做漂移速度。在弱电场下,载流子的漂移速度v 与电场强度E成正比, 定义为: m q c τμ=

半导体制造工艺期末考试重点复习资料

1、三种重要的微波器件:转移型电子晶体管、碰撞电离雪崩渡越时间二极管、MESFET。 2、晶锭获得均匀的掺杂分布:较高拉晶速率和较低旋转速率、不断向熔融液中加高纯 度多晶硅,维持熔融液初始掺杂浓度不变。 3、砷化镓单晶:p型半导体掺杂材料镉和锌,n型是硒、硅和锑 硅:p型掺杂材料是硼,n型是磷。 4、切割决定晶片参数:晶面结晶方向、晶片厚度(晶片直径决定)、晶面倾斜度(从 晶片一端到另一端厚度差异)、晶片弯曲度(晶片中心到晶片边缘的弯曲程度)。5、晶体缺陷:点缺陷(替位杂质、填隙杂质、空位、Frenkel,研究杂质扩散和氧化 工艺)、线缺陷或位错(刃型位错和螺位错,金属易在线缺陷处析出)、面缺陷(孪晶、晶粒间界和堆垛层错,晶格大面积不连续,出现在晶体生长时)、体缺陷(杂质和掺杂原子淀积形成,由于晶体固有杂质溶解度造成)。 6、最大面为主磨面,与<110>晶向垂直,其次为次磨面,指示晶向和导电类型。 7、半导体氧化方法:热氧化法、电化学阳极氧化法、等离子化学汽相淀积法。 8、晶体区别于非晶体结构:晶体结构是周期性结构,在许多分子间延展,非晶体结构 完全不是周期性结构。 9、平衡浓度与在氧化物表面附近的氧化剂分压值成正比。在1000℃和1个大气压下, 干氧的浓度C0是5.2x10^16分子数/cm^3,湿氧的C0是3x10^19分子数/cm^3。

10、当表面反应时限制生长速率的主要因素时,氧化层厚度随时间呈线性变化 X=B(t+)/A线性区(干氧氧化与湿氧氧化激活能为2eV,);氧化层变厚时,氧化剂必须通过氧化层扩散,在二氧化硅界面与硅发生反应,并受扩散过程影响,氧化层厚度与氧化时间的平方根成正比,生长速率为抛物线X^2=B(t+)抛物线区(干氧氧化激活能是1.24Ev,湿氧氧化是0.71eV)。 11、线性速率常数与晶体取向有关,因为速率常数与氧原子进入硅中的结合速率和 硅原子表面化学键有关;抛物线速率常数与晶体取向无关,因为它量度的是氧化剂穿过一层无序的非晶二氧化硅的过程。 12、较薄的氧化层MOSFET栅氧化层用干氧氧化,较厚的用湿氧氧化,如MOS集成 电路中的场氧化层和双极型器件,以获得适当隔离和保护,20nm为界限。 13、给定氧化条件下,在<111>晶面衬底上生成的氧化层厚度大于<100>晶面衬底, 因为<111>方向线性速率常数更大。值得注意的是温度和时间相同时,湿氧氧化厚度是干氧的5~10倍。 14、氧化掩膜厚度一般用实验测量方法获得,主要取决于特定温度和时间下,不能 使低掺杂硅衬底发生反型,典型厚度为0.5um~1.0um。 15、二氧化硅中各掺杂杂质扩散常数依赖氧的密度、性能和结构。 16、MOS器件受氧化层中的电荷和位于二氧化硅-硅界面处势阱影响。 17、势阱和电荷的基本类别:界面势阱电荷Qit(由于二氧化硅-硅界面特性产生, 取决于这个界面的化学组分,势阱位于二氧化硅-硅界面处,能态在硅禁带中,界

半导体制造工艺流程

半导体制造工艺流程集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

半导体制造工艺流程 N型硅:掺入V族元素--磷P、砷As、锑Sb P型硅:掺入III族元素—镓Ga、硼B PN结: 半导体元件制造过程可分为 前段(FrontEnd)制程 晶圆处理制程(WaferFabrication;简称WaferFab)、 晶圆针测制程(WaferProbe); 後段(BackEnd) 构装(Packaging)、 测试制程(InitialTestandFinalTest) 一、晶圆处理制程 晶圆处理制程之主要工作为在矽晶圆上制作电路与电子元件(如电晶体、电容体、逻辑闸等),为上述各制程中所需技术最复杂且资金投入最多的过程,以微处理器(Microprocessor)为例,其所需处理步骤可达数百道,而其所需加工机台先进且昂贵,动辄数千万一台,其所需制造环境为为一温度、湿度与含尘(Particle)均需控制的无尘室(Clean-Room),虽然详细的处理程序是随着产品种类与所使用的技术有关;不过其基本处理步骤通常是晶圆先经过适当的清洗(Cleaning)之後,接着进行氧化(Oxidation)及沈积,最後进行微影、蚀刻及离子植入等反覆步骤,以完成晶圆上电路的加工与制作。 二、晶圆针测制程

经过WaferFab之制程後,晶圆上即形成一格格的小格,我们称之为晶方或是晶粒(Die),在一般情形下,同一片晶圆上皆制作相同的晶片,但是也有可能在同一片晶圆上制作不同规格的产品;这些晶圆必须通过晶片允收测试,晶粒将会一一经过针测(Probe)仪器以测试其电气特性,而不合格的的晶粒将会被标上记号(InkDot),此程序即称之为晶圆针测制程(WaferProbe)。然後晶圆将依晶粒为单位分割成一粒粒独立的晶粒 三、IC构装制程 IC构装制程(Packaging):利用塑胶或陶瓷包装晶粒与配线以成积体电路 目的:是为了制造出所生产的电路的保护层,避免电路受到机械性刮伤或是高温破坏。 半导体制造工艺分类 半导体制造工艺分类 一双极型IC的基本制造工艺: A在元器件间要做电隔离区(PN结隔离、全介质隔离及PN结介质混合隔离) ECL(不掺金)(非饱和型)、TTL/DTL(饱和型)、STTL(饱和型)B在元器件间自然隔离 I2L(饱和型) 半导体制造工艺分类 二MOSIC的基本制造工艺:

半导体制造工艺流程

半导体制造工艺流程 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

半导体制造工艺流程 半导体相关知识 本征材料:纯硅9-10个 250000Ω.cm3 N型硅:掺入V族元素--磷P、砷As、锑Sb P型硅:掺入III族元素—镓Ga、硼B PN结: 半导体元件制造过程可分为 前段(FrontEnd)制程 晶圆处理制程(WaferFabrication;简称WaferFab)、 晶圆针测制程(WaferProbe); 后段(BackEnd) 构装(Packaging)、 测试制程(InitialTestandFinalTest) 晶圆边缘检测系统 一、晶圆处理制程 晶圆处理制程之主要工作为在矽晶圆上制作电路与电子元件,为各制程中所需技术最复杂且资金投入最多的过程,以微处理器(Microprocessor)为例,其所需处理步骤可达数百道,而其所需加工机台先进且昂贵,有时可达数千万一台,其所需制造环境为为一温度、湿度与含尘(Particle)均需控制的无尘室(Clean-Room),虽然详细的处理程序是随着产品种类与所使用的技术有关;不过其基本处理步骤通常是晶圆先经过适当的清洗(Cleaning)之后,接着进行氧化(Oxidation)及沉积,最后进行微影、蚀刻及离子植入等反覆步骤,以完成晶圆上电路的加工与制作。 晶圆与晶片的区别 制造半导体前,必须将硅转换为晶圆片。这要从硅锭的生长开始。单晶硅是原子以三维空间模式周期形成的固体,这种模式贯穿整个材料。多晶硅是很多具有不同晶向的小单晶体单独形成的,不能用来做半导体电路。多晶硅必须融化成单晶体,才能加工成半导体应用中使用的晶圆片。晶片由晶圆切割成,直径和晶圆相同,厚度为300μm 由于硅很硬,要用金刚石锯来准确切割晶圆片,以得到比要求尺寸要厚一些的晶片。激光锯也有助于减少对晶圆片的损伤、厚度不均、弯曲以及翘曲缺陷。      切割晶圆片后,开始进入研磨工艺。研磨晶圆片以减少正面和背面的锯痕和表面损伤。同时打薄晶圆片并帮助释放切割过程中积累的硬力。研磨后,进入刻蚀和清洗工艺,使用氢氧化钠、乙酸和硝酸的混合物以减轻磨片过程中产生的损伤和裂纹。关键的倒角工艺是要将晶圆片的边缘磨圆,彻底消除将来电路制作过程中破损的可能性。倒角后,要按照最终用户的要求,经常需要对边缘进行抛光,提高整体清洁度以进一步减少破损。

半导体制造工艺流程

半导体制造工艺流程 Revised by Petrel at 2021

半导体制造工艺流程 半导体相关知识 本征材料:纯硅9-10个 250000Ω.cm3 N型硅:掺入V族元素--磷P、砷As、锑Sb P型硅:掺入III族元素—镓Ga、硼B PN结: 半导体元件制造过程可分为 前段(FrontEnd)制程 晶圆处理制程(WaferFabrication;简称WaferFab)、 晶圆针测制程(WaferProbe); 后段(BackEnd) 构装(Packaging)、 测试制程(InitialTestandFinalTest) 晶圆边缘检测系统 一、晶圆处理制程 晶圆处理制程之主要工作为在矽晶圆上制作电路与电子元件,为各制程中所需技术最复杂且资金投入最多的过程,以微处理器(Microprocessor)为例,其所需处理步骤可达数百道,而其所需加工机台先进且昂贵,有时可达数千万一台,其所需制造环境为为一温度、湿度与含尘(Particle)均需控制的无尘室(Clean-Room),虽然详细的处理程序是随着产品种类与所使用的技术有关;不过其基本处理步骤通常是晶圆先经过适当的清洗(Cleaning)之后,接着进行氧化(Oxidation)及沉积,最后进行微影、蚀刻及离子植入等反覆步骤,以完成晶圆上电路的加工与制作。 晶圆与晶片的区别 制造半导体前,必须将硅转换为晶圆片。这要从硅锭的生长开始。单晶硅是原子以三维空间模式周期形成的固体,这种模式贯穿整个材料。多晶硅是很多具有不同晶向的小单晶体单独形成的,不能用来做半导体电路。多晶硅必须融化成单晶体,才能加工成半导体应用中使用的晶圆片。晶片由晶圆切割成,直径和晶圆相同,厚度为300μm 由于硅很硬,要用金刚石锯来准确切割晶圆片,以得到比要求尺寸要厚一些的晶片。激光锯也有助于减少对晶圆片的损伤、厚度不均、弯曲以及翘曲缺陷。      切割晶圆片后,开始进入研磨工艺。研磨晶圆片以减少正面和背面的锯痕和表面损伤。同时打薄晶圆片并帮助释放切割过程中积累的硬力。研磨后,进入刻蚀和清洗工艺,使用氢氧化钠、乙酸和硝酸的混合物以减轻磨片过程中产生的损伤和裂纹。关键的倒角工艺是要将晶圆片的边缘磨圆,彻底消除将来电路制作过程中破损的可能性。倒角后,要按照最终用户的要求,经常需要对边缘进行抛光,提高整体清洁度以进一步减少破损。

相关文档
最新文档