数值分析模拟试题03

数值分析模拟试题03
数值分析模拟试题03

数值分析试题及答案汇总

数值分析试题 一、 填空题(2 0×2′) 1. ?? ????-=? ?????-=32,1223X A 设x =是精确值x *=的近似值,则x 有 2 位 有效数字。 2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 , f [20,21,22,23,24,25,26,27,28]= 0 。 3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____, ‖AX ‖∞≤_15_ __。 4. 非线性方程f (x )=0的迭代函数x =?(x )在有解区间满足 |?’(x )| <1 ,则使用该迭代 函数的迭代解法一定是局部收敛的。 5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。 6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差商 公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。 7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=n i i x a 0)( 1 ;所以当 系数a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。 8. 要使 20的近似值的相对误差小于%,至少要取 4 位有效数字。 9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…)收 敛于方程组的精确解x *的充分必要条件是 ?(B)<1 。 10. 由下列数据所确定的插值多项式的次数最高是 5 。 11. 牛顿下山法的下山条件为 |f(xn+1)|<|f(xn)| 。 12. 线性方程组的松弛迭代法是通过逐渐减少残差r i (i =0,1,…,n )来实现的,其中的残差 r i = (b i -a i1x 1-a i2x 2-…-a in x n )/a ii ,(i =0,1,…,n )。 13. 在非线性方程f (x )=0使用各种切线法迭代求解时,若在迭代区间存在唯一解,且f (x )

数值分析学期期末考试试题与答案(A)

期末考试试卷(A 卷) 2007学年第二学期 考试科目: 数值分析 考试时间:120 分钟 学号 姓名 年级专业 一、判断题(每小题2分,共10分) 1. 用计算机求 1000 1000 1 1 n n =∑时,应按照n 从小到大的顺序相加。 ( ) 2. 为了减少误差,进行计算。 ( ) 3. 用数值微分公式中求导数值时,步长越小计算就越精确。 ( ) 4. 采用龙格-库塔法求解常微分方程的初值问题时,公式阶数越高,数值解越精确。( ) 5. 用迭代法解线性方程组时,迭代能否收敛与初始向量的选择、系数矩阵及其演变方式有 关,与常数项无关。 ( ) 二、填空题(每空2分,共36分) 1. 已知数a 的有效数为0.01,则它的绝对误差限为________,相对误差限为_________. 2. 设1010021,5,1301A x -????????=-=-????????-???? 则1A =_____,2x =______,Ax ∞ =_____. 3. 已知5 3 ()245,f x x x x =+-则[1,1,0]f -= ,[3,2,1,1,2,3]f ---= . 4. 为使求积公式 1 1231 ()()(0)33 f x dx A f A f A f -≈- ++? 的代数精度尽量高,应使1A = ,2A = ,3A = ,此时公式具有 次的代数精度。 5. n 阶方阵A 的谱半径()A ρ与它的任意一种范数A 的关系是 . 6. 用迭代法解线性方程组AX B =时,使迭代公式(1) ()(0,1,2,)k k X MX N k +=+=产 生的向量序列{ }() k X 收敛的充分必要条件是 . 7. 使用消元法解线性方程组AX B =时,系数矩阵A 可以分解为下三角矩阵L 和上三角矩

数值分析模拟试题

数值分析模拟试题 一、填空题(每小题3分,共30分) 1、已知近似值* 2.4560x =是由真值x 经四舍五入得到,则相对误差限为 。 2 、为减少舍入误差的影响,应将10改写成 。 3、设(1,1,2,3)T x =-,则12_______,_______,_______x x x ∞===。 4、设1123A -??=????,则1________,________F A A ==,A 的谱半径()A ρ=。 5、用Gauss-Seidel 迭代法解方程组1212423 x ax ax x +=??+=-?,其中a 为实数,则该方法收敛的充要 条件是a 满足 。 6、迭代法12213k k k x x x +=+收敛于*x =,此迭代格式是 阶收敛的。 7、设01(),(),,()n l x l x l x 是以01,, ,n x x x 为节点的Lagrange 插值基函数,则0()n i i l x ==∑。 8、设3()321f x x x =++,则差商[0,1,2,3]_____,[0,1,2,3,4]_____f f ==。 9、数值积分的辛普森公式为()b a f x dx ≈?。 10、数值积分公式0()()n b k k a k f x dx A f x =≈∑?中,0n k k A ==∑。 二、设函数2()(3)x x a x ?=+-,由迭代公式1()k k x x ?+=产生的序列为{}k x ,试讨论 ⑴当a 为何值时,序列{}k x 收敛; ⑵当a 取何值时,收敛速度最快,并指出迭代法收敛的阶。(12分) 三、设4()[0,2]f x C ∈,且(0)2,(1)1,(2)0,'(1)0f f f f ==-==,试求函数()f x 的三次 插值多项式()P x ,并求余项表达式。(14分) 四、用矩阵的直接三角分解法(即LU 分解)解方程组Ax b =,其中

数值分析期末考试复习题及其答案.doc

数值分析期末考试复习题及其答案 1. 已知325413.0,325413* 2* 1==X X 都有6位有效数字,求绝对误差限。(4分) 解: 由已知可知,n=6 5.01021 ,0,6,10325413.0016*1=?= =-=?=ε绝对误差限n k k X 2分 620* 21021,6,0,10325413.0-?=-=-=?=ε绝对误差限n k k X 2分 2. 已知?????=001A 220 - ???? ?440求21,,A A A ∞ (6分) 解: {},88,4,1max 1==A 1分 {},66,6,1max ==∞A 1分 () A A A T max 2λ= 1分 ?????=001A A T 420 ?? ?? ? -420?????001 220 - ?????440=?????001 080 ???? ?3200 2分 {}3232,8,1max )(max ==A A T λ 1分 24322==A 3. 设3 2 )()(a x x f -= (6分) ① 写出f(x)=0解的Newton 迭代格式 ② 当a 为何值时,)(1k k x x ?=+ (k=0,1……)产生的序列{}k x 收敛于2 解: ①Newton 迭代格式为: x a x x x a x a x x a x x x f x f x x k k k k k k k k k k 665)(665)(6)()(')(2 2 32 1 += +=---=-=+? 3分

②时迭代收敛即当222,112 10)2(',665)('2<<-<-=-=a a x a x ?? 3分 4. 给定线性方程组Ax=b ,其中:? ??=1 3A ??? 22,??????-=13b 用迭代公式)()()()1(k k k Ax b x x -+=+α(k=0,1……)求解Ax=b ,问取什么实数α,可使迭代收 敛 (8分) 解: 所给迭代公式的迭代矩阵为?? ? --? ??--=-=ααααα21231A I B 2分 其特征方程为 0) 21(2)31(=----= -αλα ααλλB I 2分 即,解得αλαλ41,121-=-= 2分 要使其满足题意,须使1)(

最新数值分析历年考题

数值分析A 试题 2007.1 第一部分:填空题10?5 1.设3112A ?? = ??? ,则A ∞=___________ 2()cond A =___________ 2.将4111A ??= ??? 分解成T A LL =,则对角元为正的下三角阵L =___________ ,请用线性最小二乘拟合方法确定拟合函数()bx f x ae =中的参数:a = ___________ b =___________ 4.方程13 cos 2044x x π--=在[0,1]上有 个根,若初值取00.95x =,迭代方法 113 cos 244 k k x x π+=-的收敛阶是 5.解方程2 210x x -+=的Newton 迭代方法为___________,其收敛阶为___________ 6.设()s x = 323 2 323,[0,1]31,[1,2] ax x x x x x bx x +-+∈--+∈为三次样条函数,则a = ___________ b =___________ 7.要想求积公式: 1 121 ()(()f x dx A f f x -≈+? 的代数精度尽可能高,参数1A = ___________ 2x =___________此时其代数精度为:___________ 8.用线性多步法2121(0.50.5)n n n n n y y h f f f ++++-=-+来求解初值问题 00'(,),(),y f x y y x y ==其中(,)n n n f f x y =,该方法的局部截断误差为___________,设 ,0,f y μμ=?其绝对稳定性空间是___________ 9.用线性多步法 2121()n n n n n y ay by h f f ++++-+=-来求解初值问题 00'(,),(),y f x y y x y ==其中(,)n n n f f x y =,希望该方法的阶尽可能高,那么a = ___________ b =___________,此时该方法是几阶的:___________

2014-2015数值分析考试试题卷

太原科技大学硕士研究生 2014/2015学年第1学期《数值分析》课程试卷 一、填空题(每空4分,共32分) 1、设?????≤≤-++<≤+=2 1,1321 0,)(2 323x x bx x x x x x s 是以0,1,2为节点三次样条函数,则b=__-2___ 2、解线性方程组12312312388 92688 x x x x x x x x x -++=-?? -+=??-+-=? 的Jacobi 迭代格式(分量形式)为 ?? ???+--=++-=++=+++)(2)(1)1(3) (3)(1)1(2) (3)(2)1(1882/)96(88k k k k k k k k k x x x x x x x x x ,其相应的迭代矩阵为??????????-0812/102/9810。 3、方程03 =-a x 的牛顿法的迭代格式为__3 12 3k k k k x a x x x +-=-__________,其收敛的阶为 2 。 4、已知数x 的近似值0.937具有三位有效数字,则x 的相对误差限是310534.0-? 解:x 1≈0.937, 31102 1 )(-?≤ x ε 3 31111 10(x )2 (x )0.53410x 0.937 r εε--?=≤=? 5、用列主元高斯消去法解线性方程组 ??? ??=--=++=++2333220221 321321x x x x x x x x 作第1次消元后的第2,3个方程分别为? ? ?=+--=-5.35.125 .15.03232x x x x 6、设???? ??-=3211A ,则=∞)(A Cond __4____.

2019年云南昆明理工大学数值分析考研真题

2019年云南昆明理工大学数值分析考研真题 一、判断题:(10题,每题2分,合计20分) 1. 有一种广为流传的观点认为,现代计算机是无所不能的,数学家们已经摆脱了与问题的数值解有关的麻烦,研究新的求解方法已经不再重要了。 ( ) 2. 问题求解的方法越多,越难从中作出合适的选择。 ( ) 3. 我国南宋数学家秦九韶提出的多项式嵌套算法比西方早500多年,该算法能大大减少运算次数。 ( ) 4. 误差的定量分析是一个困难的问题。 ( ) 5. 无论问题是否病态,只要算法稳定都得到好的近似值。 ( ) 6. 高斯求积公式系数都是正数,故计算总是稳定的。 ( ) 7. 求Ax =b 的最速下降法是收敛最快的方法。 ( ) 8. 非线性方程(或方程组)的解通常不唯一。 ( ) 9. 牛顿法是不动点迭代的一个特例。 ( ) 10. 实矩阵的特征值一定是实的。 ( ) 二、填空题:(10题,每题4分,合计40分) 1. 对于定积分105n n x I dx x = +?,采用递推关系115n n I I n -=-对数值稳定性而言是 。 2. 用二分法求方程()55 4.2720f x x x ≡-+=在区间[1 , 1.3]上的根,要使误差不超过10 - 5,二分次数k 至少为 。 3. 已知方程()x x ?=中的函数()x ?满足()31x ?'-<,利用()x ?递推关系构造一个收敛的简单迭代函数()x φ= ,使迭代格式()1k k x x φ+=(k = 0 , 1 , …)收敛。 4. 设序列{}k x 收敛于*x ,*k k e x x =-,当12 lim 0k k k e c e +→∞=≠时,该序列是 收敛的。

数值分析第五版全答案chap1

第一章 绪 论 1.设0x >,x 的相对误差为δ,求ln x 的误差。 解:近似值*x 的相对误差为* **** r e x x e x x δ-=== 而ln x 的误差为()1ln *ln *ln **e x x x e x =-≈ 进而有(ln *)x εδ≈ 2.设x 的相对误差为2%,求n x 的相对误差。 解:设()n f x x =,则函数的条件数为'()||() p xf x C f x = 又1'()n f x nx -= , 1 ||n p x nx C n n -?∴== 又((*))(*)r p r x n C x εε≈? 且(*)r e x 为2 ((*))0.02n r x n ε∴≈ 3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字:*1 1.1021x =,*20.031x =, *3385.6x =, *456.430x =,*5 7 1.0.x =? 解:*1 1.1021x =是五位有效数字; *20.031x =是二位有效数字; *3385.6x =是四位有效数字; *456.430x =是五位有效数字; *57 1.0.x =?是二位有效数字。 4.利用公式(2.3)求下列各近似值的误差限:(1) *** 124x x x ++,(2) ***123x x x ,(3) **24 /x x . 其中****1234,,,x x x x 均为第3题所给的数。 解:

*4 1*3 2*13*3 4*1 51 ()102 1()102 1()102 1()102 1()102x x x x x εεεεε-----=?=?=?=?=? ***124***1244333 (1)() ()()() 111101010222 1.0510x x x x x x εεεε----++=++=?+?+?=? ***123*********123231132143 (2)() ()()() 1111.10210.031100.031385.610 1.1021385.610222 0.215 x x x x x x x x x x x x εεεε---=++=???+???+???≈ **24****24422 *4 33 5 (3)(/)()() 110.0311056.430102256.43056.430 10x x x x x x x εεε---+≈??+??=?= 5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少? 解:球体体积为343V R π= 则何种函数的条件数为 2 3 '4343 p R V R R C V R ππ=== (*)(*)3(*)r p r r V C R R εεε∴≈= 又(*)1r V ε=

华南理工大学数值分析试题-14年下-C

华南理工大学研究生课程考试 《数值分析》试卷C (2015年1月9日) 1. 考前请将密封线内各项信息填写清楚; 所有答案请按要求填写在本试卷上; 课程代码:S0003004; 4. 考试形式:闭卷; 5. 考生类别:硕士研究生; 本试卷共八大题,满分100分,考试时间为150分钟。 一、(12分)解答下列问题: 1)设近似值0x >,x 的相对误差为δ,试证明ln x 的绝对误差近似为δ。 2)利用秦九韶算法求多项式 542()681p x x x x x =-+-+ 在3x =时的值(须写出计算形式),并统计乘法次数。 (12分)解答下列问题: 1)设()235f x x =+,求[]0,1,2f 和[]0,1,2,3f 。 2)利用插值方法推导出恒等式: 33220,0[]j j i i x j i x i j =≠=-=-∑∏ 。

(1)设{}∞ =0)(k k x q 是区间[]1,0上带权1=ρ而最高次项系数为1的正交多项式族,其中1)(0=x q ,求1()q x 和2()q x 。 (2)求形如2y a bx =+的经验公式,使它与下列数据拟合: 四、(14分)对积分()10I f x dx = ?,试 (1)构造一个以012113,,424 x x x ===为节点的插值型求积公式; (2)指出所构造公式的代数精度; (3)用所得数值求积公式计算积分1 203x dx ?的精确值; (4)指出所得公式与一般的Newton-Cotes 型公式在形式上的重要区别。

(1)设?? ????=4321A ,计算1A 、()Cond A ∞和()A ρ。 (2)用列主元Gauss 消去法解方程组: 12312315410030.112x x x ????????????=????????????-?????? 六、(13分)对2阶线性方程组 11112212112222 a x a x b a x a x b +=??+=? (11220a a ≠ ) (1)证明求解此方程组的Jacobi 迭代与Gauss-Seidel 迭代同时收敛或同时发散; (2)当同时收敛时,试比较它们的收敛速度。

北航2010-2011年研究生数值分析期末模拟试卷1-3

数值分析模拟试卷1 一、填空(共30分,每空3分) 1 设??? ? ??-=1511A ,则A 的谱半径=)(a ρ______,A 的条件数=________. 2 设 ,2,1,0,,53)(2==+=k kh x x x f k ,则],,[21++n n n x x x f =________, ],,[321+++n n n n x x x x f ,=________. 3 设?????≤≤-++≤≤+=2 1,121 0,)(2 323x cx bx x x x x x S ,是以0,1,2为节点的三次样条函数,则b=________,c=________. 4 设∞=0)]([k k x q 是区间[0,1]上权函数为x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x q ,则 ?=1 )(dx x xq k ________,=)(2 x q ________. 5 设???? ??????=11001a a a a A ,当∈a ________时,必有分解式,其中L 为下三角阵,当 其对角线元素)3,2,1(=i L ii 满足条件________时,这种分解是唯一的. 二、(14分)设4 9,1,41,)(2102 3 === =x x x x x f , (1)试求)(x f 在]4 9,41[上的三次Hermite 插值多项式)(x H 使满足 2,1,0),()(==i x f x H i i ,)()(11x f x H '='. (2)写出余项)()()(x H x f x R -=的表达式. 三、(14分)设有解方程0cos 2312=+-x x 的迭代公式为n n x x cos 3 2 41+ =+, (1) 证明R x ∈?0均有? ∞ →=x x n x lim (? x 为方程的根); (2) 取40=x ,用此迭代法求方程根的近似值,误差不超过,列出各次迭代值; (3)此迭代的收敛阶是多少?证明你的结论. 四、(16分) 试确定常数A ,B ,C 和,使得数值积分公式 有尽可能高的代数精度. 试问所得的数值积分公式代数精度是多少?它是否为Gauss 型的?

数值分析考题

李津 2004.6.21 1、给定2阶RK基本公式,求相容阶数,判断是否收敛,考虑稳定性后对h的要求 yn+1=yn+h/2*(k1+k2) k1=f(tn,yn) k2=f(tn+3/5*h,yn+3/5*h*k1) 2、给定一个分段函数,求全函数为1区间[0,2]的最佳二次平方逼近 3、给定对称正定矩阵(3*3),判断SOR收敛性(w=1.2)、给定初值算一步、估计5次迭代误差 4、给定求积表达式,要求有最大的代数精度,确定参数和代数精度 f(x)从0积到2= r1*f(x1)+r2*f(x2) 5、给定两个矩阵A、A1(均为3*3),将A变化为三对角阵,用QR方法对A1算一步求A2 6、(1)以前试题的变形,设B奇异,证明(||A-B||/||A||)〉=1/(||inv(A)||||A||),其中|| 为算子范数 (2)证明最佳n次平方逼近函数奇偶性与f(x)相同 别的题目记不太清了 第一题有些错误,正确的题目好像是: Y(n+1)=Y(n)+h*(k1+5*k2)/6 k1=f(tn,Y(n)) k2=f(tn+3/5*h,y(n)+3/5*k1) 偶算出来的是二阶相容 第四题的矩阵A好像是: [10 -1 -2;-1 10 -2;0 -2 10] 2002.12 1.三点高斯-勒让得积分公式 最佳平方逼近,f(x)=|x|,(-1,1)分别在span{1,x^2}和span{x,x^3}中求 2.书上P236第31题第2小问原题,只是没告诉α的范围,要你求 3.书上P257原题 加了两问,证明收敛,再算一步 4.householder变换 Givens做QR分解 5.Y(n+2)=Y(n)+h(fn+f(n+2)) 求局部TE,相容,根条件,绝对稳定区间 6.定理1.12和推论,以及P167式3.4的应用 ||A-B||<1/||inv(A)|| 要证B可逆,||inv(B)||<=||inv(A)||/(1-||A-B||*||inv(A)||) ||inv(A)-inv(B)||<=(||inv(A)||)^2*||A-B||/(1-||A-B||*||inv(A)||) ft,没做完,第4题的矩阵太难算了

数值分析期末试卷

数值分析2006 — 2007学年第学期考试 课程名称:计算方法 A 卷 考试方式:开卷[] 闭卷[V ] 半开卷[] IV 类 充要条件是a 满足 二、(18分)已知函数表如下 1?设 f(0) = 0, f (1) =16 , f( 2) =46,则 f [0,1]= ,f[0,1,2]二 2 ?设 AJ <2 -3 -1 ,则X ,A := A 1 1 j — 3 ?计算积分 xdx ,取4位有效数字。用梯形公式求得的近似值为 "0.5 (辛普森)公式求得的近似值为 ,用 Spsn 4?设f (x )二xe x -3,求方程f (x ) =0近似根的牛顿迭代公式是 ,它的收 敛阶是 5 ?要使求积公式 1 1 [f (x)dx 拓一(0) + A , f (x 1)具有2次代数精度,则 捲= _________________ , 0 4 6 ?求解线性方程组 x 1 ax 2 = 4 , 12_3 (其中a 为实数)的高斯一赛德尔迭代格式收敛的 10 11 12 13 In x 2.3026 2.3979 2.4849 2.5649

三、(20分)构造如下插值型求积公式,确定其中的待定系数,使其代数精度尽可能高, 并指出所得公式的代数精度。 2 f (x)dx : A o f (0) A f (1) A2f(2) o

X 2 4 6 8 y 2 11 28 40 五、(14分)为求方程X ’ -X 2 -1 =0在X o =1.5附近的一个根,将方程改写为下列等价 形式,并建立相应的迭代公式: 试问上述两种迭代公式在 x 0 =1.5附近都收敛吗?为什么?说明理由。 (1)X =1 ?丄,迭代公式 X 1 X k 1 = 1 - X k (2) X 2二1 ,迭代公式 X —1 2 (X k ); X k 1

数值计算原理部分试题

标题: 还是出个回忆版吧,师弟师妹小心了(高数分,小白的) 发信站: 水木社区(Tue Jan 10 17:46:47 2006), 站内 唔,后天还要考门数学,释放一下内存,不然等会就忘光了. 小题很一般了: 1.(1,1/2;1/2,1)求2范数和cond2 2.上题的QR分解 后面是几题判断题,要求写出对错和原因.题不记得了,但不难,与往年差不多(本来准备做完后将题录下来的,可是实在没时间了:() 以下的小题顺序不一定对: du/dt=(u-u+)(u-u-) u+>u-,问哪个是稳态的哪个不是. 矩阵如果可以相似对角化,就一定可以求解特征值,其条件数等于求矩阵解的条件数cond (判断) 多重网格是解椭圆方程的最优方案,其特点是用粗网格消去高频分量,细网格消去低频分量.(判断) f (x) = f(x1,x2,x3)=x1x2-x2x3-x3^2-x2-x3临界点\临界值\正则点\正则值 不完全LU分解用于用Gauss消去法求解稀疏阵.(判断) 就记得这么多了. 大题: 1.(4,1,1;1,2,1;1,1,3)用初值q1=(1/3,2/3,2/3)进行lanczos分解.(数据是回忆的,不一定对)2.一个函数F(x),表达示不记得了.问(1)证明x=(...,...)'是其解(送分的,代入就行)(2)写出Newton法迭代式(很容易写)(3)写出当x0=(...,...)'时用newton法的x1.(总体很常规,不难) 3.A=(4,1;1,1;1,2)问(1)svd分解(2)求A+(3)求r(A),(送分的) 4.证明题:zm属于krylov空间Km(r0,Ar0,A^2r0....),Lm=AKm(Ar0,A^2r0,A^3r0...), 证明(r0-Azm,v)=0,v属于Lm<==>||r0-Azm||=min||r0-Az||其中z属于Km. (比较简单,书上有的.) 5.一题变分的,要求证明两个问题等价,好像是d4u/dx4=f(x),变分为一个边值和一阶边值为零的问题.具体记不清了,因为没时间,只看了看,但也不是太难.可用分部积分算算.应该可以做出来. 【在armroe (光明使徒(鐵甲無敵阿姆羅高達第一)) 的大作中提到: 】 : 题量大,计算难.光lanczos和svd分解就计算一个多小时.最后十分钟才证明了倒数第二题.最后一道简单的证明题看着做不了.svd还没全算出来,一共才做了80多分的题,唉. 小结: 考试时间基本不够用,至少没有人能提前交卷.一些计算技巧可以节省时间. 如第一小题,对于对称阵的2范数不必算A'A,因为A'=A所以A'A的特征值是A特征值平方.如此题为3/2和1/2,所以2范数就是sqrt(p(A'A))=3/2,A-1的2范数就是A特征值的倒数的P,这里为1/2的倒数,所以是2。cond2=2*3/2=3。也就是只求A的特征值就够解两个问题了。 QR分解在这二阶情况下用Givens要比Household容易。 对于一般分解如lanczos和svd,假设参数后代入原始方程计算,往往能从数据的比较中快速求解若干参数,对解题有很大好处。不一定按部就班按书上推的公式做,那是给老实又死板机器做的,人要聪明一些^_^.

最新数值分析课程第五版课后习题答案(李庆扬等)1

第一章 绪论(12) 1、设0>x ,x 的相对误差为δ,求x ln 的误差。 [解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=* ****1)()(ln )(ln x x x x x , 相对误差为* * ** ln ln ) (ln )(ln x x x x r δ εε= = 。 2、设x 的相对误差为2%,求n x 的相对误差。 [解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而n x 的误差为n n x x n x n x x n x x x ** 1 *** %2%2) ()()()(ln * ?=='=-=εε, 相对误差为%2) () (ln )(ln *** n x x x n r == εε。 3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字: 1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5 ?=x 。 [解]1021.1*1 =x 有5位有效数字;0031.0* 2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56* 4 =x 有5位有效数字;0.17*5?=x 有2位有效数字。 4、利用公式(3.3)求下列各近似值的误差限,其中* 4*3*2*1,,,x x x x 均为第3题所给 的数。 (1)* 4*2*1x x x ++; [解]3 334* 4*2*11** *4*2*1*1005.1102 1 10211021)()()()()(----=?=?+?+?=++=? ??? ????=++∑x x x x x f x x x e n k k k εεεε; (2)* 3*2 *1x x x ;

数值分析模拟试题

1、 方程组中,,则求解方程组的Jacobi 迭代与Gauss-Seidel 迭代均收敛的a 的范围是___________。 2、,则A 的LDL T 分解中,。 3、,则__________,_______________. 4、已 知,则用复合梯形公式计算求 得,用三点式求得____________. 5、,则_________ ,三点高斯求积公式______________. 6设* 2.40315x =是真值 2.40194x =的近似值,则* x 有________位有效数字。 7 3()1,[0,1,2,3]f x x x f =+-=设 则差商(均差)_____________,[0,1,2,3,4]f =________________。 8 求方程()x f x =根的牛顿迭代格式是__________________。 9.梯形求积公式和复化梯形公式都是插值型求积公式_____(对或错)。 10.牛顿—柯特斯求积公式的系数和()0n n k k C ==∑__________________。 11.用二次拉格朗日插值多项式2()sin0.34L x 计算的值。插值节点和相应的函数值是(0,0),(0.30,0.2955),(0.40,0.3894)。 12.用二分法求方程3()10[1.0,1.5]f x x x =--=在 区间内的一个根,误差限 210ε-=。 13.用列主元消去法解线性方程组 1231231 232346,3525,433032.x x x x x x x x x ++=??++=??++=? 14. 确定求积公式

012()()(0)()h h f x dx A f h A f A f h -≈-++? 。 中待定参数i A 的值(0,1,2)i =,使求积公式的代数精度尽量高;并指出此时求积公式的代数精度。 15、 试求使求积公式的代数精度 尽量高,并求其代数精度。 16.证明区间[a,b]上带权()x ρ的正交多项式(),1,2,n P x n = 的n 个根都是单根,且位于区间(a,b)内。 17.设()()[,],max ()n n a x b f x C a b M f x ≤≤∈=,若取 21cos ,1,2,,222k a b a b k x k n n +--=+= 作节点,证明Lagrange 插值余项有估计式21()max ()!2n n n a x b M b a R x n -≤≤-≤ 18用n=10的复化梯形公式计算时, (1)试用余项估计其误差 (2)用n=10的复化梯形公式计算出该积分的近似值。 19已知方程组AX =f,其中 (1)列出Jacobi 迭代法和Gauss-Seidel 迭代法的分量形式。 (2)求出Jacobi 迭代矩阵的谱半径,SOR 迭代法的最佳松弛参数 和SOR 法 的谱半径(可直接用现有结论) 20试确定常数A ,B ,C 和,使得数值积分公式 有尽可能高的代数精度。试问所得的数值积分公式代数精度是多少? 21证明方程=)(x f x 2-x -3=0在区间(2,3)内有且仅有一个根,并用迭代法求方程在区间(2,3)内的根,精确到小数点后4位。 22设f (1)=2,f (3)=4,f (4)=6,用拉格朗日插值法求f (x )的二次插值多项式P 2(x ),并求f (2)的近似值。

数值分析期末试题

数值分析期末试题 一、填空题(20102=?分) (1)设??? ? ? ??? ??---=28 3 012 251A ,则=∞ A ______13_______。 (2)对于方程组?? ?=-=-3 4101522121x x x x ,Jacobi 迭代法的迭代矩阵是=J B ?? ? ? ??05.25.20。 (3)3*x 的相对误差约是*x 的相对误差的 3 1倍。 (4)求方程)(x f x =根的牛顿迭代公式是) ('1)(1n n n n n x f x f x x x +-- =+。 (5)设1)(3 -+=x x x f ,则差商=]3,2,1,0[f 1 。 (6)设n n ?矩阵G 的特征值是n λλλ,,,21 ,则矩阵G 的谱半径=)(G ρi n i λ≤≤1max 。 (7)已知?? ? ? ??=1021 A ,则条件数=∞ )(A Cond 9 (8)为了提高数值计算精度,当正数x 充分大时,应将)1ln(2 -- x x 改写为 )1ln(2 ++ -x x 。 (9)n 个求积节点的插值型求积公式的代数精确度至少为1-n 次。 (10)拟合三点))(,(11x f x ,))(,(22x f x ,))(,(33x f x 的水平直线是)(3 1 3 1 ∑== i i x f y 。 二、(10分)证明:方程组? ?? ??=-+=++=+-1 211 2321321321x x x x x x x x x 使用Jacobi 迭代法求解不收敛性。 证明:Jacobi 迭代法的迭代矩阵为 ???? ? ?????---=05 .05 .01015.05.00J B J B 的特征多项式为

武汉大学硕士2014级数值分析期末考题

武 汉 大 学 2014~2015学年第一学期硕士研究生期末考试试题 科目名称:数值分析 学生所在院: 学号: 姓名: 一、(12分)已知方程0410=-+x e x 在]4.0,0[内有唯一根。 (1)迭代格式A :)104ln(1n n x x -=+;迭代格式B :)4(10 11n x n e x -=+ 试分析这两个迭代格式的收敛性; (2)写出求解此方程的牛顿迭代格式。 二、(12分)用Doolittle 分解法求线性方程组Ax b =的解,并求行列式A 。 其中 244378112A ?? ?= ? ???, 386018b ?? ?= ? ??? 三、(14分)设方程组 11223300a c x d c b a x d a c x d 轾轾轾犏犏犏犏犏犏=犏犏犏犏犏犏臌臌臌 , 且0abc 1 (1) 分别写出Jacobi 迭代格式及Gauss-Seidel 迭代格式; (2) 导出Gauss-Seidel 迭代格式收敛的充分必要条件。 四、(12分)已知 )(x f y = 的数据如下: 求)(x f 的Hermite 插值多项式)(3x H 及其余项。 五、(12

求常数a , b , 使 3 220[]min i i i i ax bx y =+-=? 六、(12分)确定常数 a ,b 的值,使积分 1 20()x I a bx e dx =+-ò 取得最小值。 七、(14分)设)(x f 在],[b a 上二阶导数连续。将],[b a n 等分,分点为 b x x x a n =<<<= 10,步长n a b h -= (1)证明中矩形公式 11()()2i i x i i x x x f x dx hf --+?ò ………………(*) 的误差为: 311()[,]24i i i i R h f x x h h -ⅱ= ? (2)公式(*)是否为高斯型求积公式? (3)写出求 ?b a dx x f )( 的复化中矩形公式及其误差。 八、(12分)对于下面求解常微分方程初值问题 ?????==0 0)(),(y x y y x f dx dy 的改进欧拉法: 112121()2(,)(,)n n n n n n h y y k k k f x y k f x h y hk +ì??=++????=í???=++???? (1)确定此方法的绝对稳定域; (2)用此方法求解如下初值问题: 22(0)1 y x y y ì¢?=+?í?=?? ]1,0[∈x 。(取步长5.0=h )

数值分析试题及答案汇总

数值分析试题及答案汇 总 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

数值分析试题 一、填空题(2 0×2′) 1. ?? ????-=? ?????-=32,1223X A 设x =是精确值x *=的近似值,则x 有 2 位有效数字。 2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 , f [20,21,22,23,24,25,26,27,28]= 0 。 3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____, ‖AX ‖∞≤_15_ __。 4. 非线性方程f (x )=0的迭代函数x =(x )在有解区间满足 |’(x )| <1 ,则使用该迭代函数 的迭代解法一定是局部收敛的。 5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。 6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差 商公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。 7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=n i i x a 0)( 1 ;所以当系数 a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。 8. 要使 20的近似值的相对误差小于%,至少要取 4 位有效数字。 9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…) 收敛于方程组的精确解x *的充分必要条件是 (B)<1 。 10. 由下列数据所确定的插值多项式的次数最高是 5 。

数值分析期末试题

一、(8分)用列主元素消去法解下列方程组: ??? ??=++-=+--=+-11 2123454 321321321x x x x x x x x x 二、(10分)依据下列数据构造插值多项式:y(0)=1,y(1)= —2,y '(0)=1, y '(1)=—4 三、(12分)分别用梯形公式和辛普生公式构造 复化的梯形公式、复化的辛普生公式并利用复化的梯形公式、复化的辛普生公式计算下列积分: ? 9 1dx x n=4 四、(10分)证明对任意参数t ,下列龙格-库塔方法是二阶的。 五、(14分)用牛顿法构造求c 公式,并利用牛顿法求115。保留有效数字五位。 六、(10分)方程组AX=B 其中A=????????? ?10101a a a a 试就AX=B 建立雅可比迭代法和高斯-赛德尔迭代法,并讨论a 取何值时 迭代收斂。 七、(10分)试确定常数A,B,C,a,使得数值积分公式?-++-≈2 2 ) (}0{)()(a Cf Bf a Af dx x f 有尽可能多的 代数精确度。并求该公式的代数精确度。 八、{6分} 证明: A ≤ 其中A 为矩阵,V 为向量. 第二套 一、(8分)用列主元素消去法解下列方程组: ??? ??=++=+-=+3 2221 43321 32132x x x x x x x x 二、(12分)依据下列数据构造插值多项式:y(0)=y '(0)=0, y(1)=y '(1)= 1,y(2)=1 三、(14分)分别用梯形公式和辛普生公式构造 复化的梯形公式、复化的辛普生公式,并利用复化的梯形公式、 复化的辛普生公式及其下表计算下列积分: ?2 /0 sin πxdx ????? ? ? -+-+=++==++=+1 3121231)1(,)1(() ,(),()(2 hk t y h t x f k thk y th x f k y x f k k k h y y n n n n n n n n