数学建模算法大全线性规划

数学建模算法大全线性规划
数学建模算法大全线性规划

第一章 线性规划

§1 线性规划

在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。自从1947年G. B. Dantzig 提出求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。

1.1 线性规划的实例与定义

例1某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000元与3000元。生产甲机床需用B A 、机器加工,加工时间分别为每台2小时和1小时;生产乙机床需用C B A 、、三种机器加工,加工时间为每台各一小时。若每天可用于加工的机器时数分别为A 机器10小时、B 机器8小时和C 机器7小时,问该厂应生产甲、乙机床各几台,才能使总利润最大?

上述问题的数学模型:设该厂生产1x 台甲机床和2x 乙机床时总利润最大,则2

1,x x 应满足

(目标函数)2134m ax x x z += (1)

s.t.(约束条件)???????≥≤≤+≤+0

,781022122

121x x x x x x x (2)

这里变量21,x x 称之为决策变量,(1)式被称为问题的目标函数,(2)中的几个不等式

是问题的约束条件,记为s.t.(即subject to)。由于上面的目标函数及约束条件均为线性函数,故被称为线性规划问题。

总之,线性规划问题是在一组线性约束条件的限制下,求一线性目标函数最大或最小的问题。

在解决实际问题时,把问题归结成一个线性规划数学模型是很重要的一步,但往往也是困难的一步,模型建立得是否恰当,直接影响到求解。而选适当的决策变量,是我们建立有效模型的关键之一。

1.2 线性规划的Matlab 标准形式

线性规划的目标函数可以是求最大值,也可以是求最小值,约束条件的不等号可以是小于号也可以是大于号。为了避免这种形式多样性带来的不便,Matlab 中规定线性规划的标准形式为

b Ax x

c x

T ≤ that such min beq x Aeq =? ub x lb ≤≤

其中c 和x 为n 维列向量,A 、Aeq 为适当维数的矩阵,b 、beq 为适当维数的列向

量。

例如线性规划

b Ax x

c x

T ≥ that such max

的Matlab 标准型为

b Ax x

c x

T -≤-- that such min 1.3 线性规划问题的解的概念 一般线性规划问题的标准型为

∑==n

j j j x c z 1

max

(3)

s.t.

n

j x m

i b x a j n

j i

j ij

,,2,10

,,2,11

ΛΛ=≥==∑=(4)

可行解 满足约束条件(4)的解),,,(21n x x x x Λ=,称为线性规划问题的可行解,而使目标函数(3)达到最小值的可行解叫最优解。

可行域 所有可行解构成的集合称为问题的可行域,记为R 。

求解例1。对于每一固定的值z ,使目标函数值等于z 的点构成的直线称为目标函数等位线,当z 变动时,我们得到一族平行直线。对于例1,显然等位线越趋于右上方,其上的点具有越大的目标函数值。不难看出,本例的最优解为T

x )6,2(*=,最优目标值

26*=z 。

从上面的图解过程可以看出并不难证明以下断言:

(1)可行域R 可能会出现多种情况。R 可能是空集也可能是非空集合,当R 非空时,它必定是若干个半平面的交集(除非遇到空间维数的退化)。R 既可能是有界区域,也可能是无界区域。

(2)在R 非空时,线性规划既可以存在有限最优解,也可以不存在有限最优解(其目标函数值无界)。

(3)若线性规划存在有限最优解,则必可找到具有最优目标函数值的可行域R 的“顶点”。

上述论断可以推广到一般的线性规划问题,区别只在于空间的维数。在一般的n 维空间中,满足一线性等式

∑==n

i i

i b x

a 1

的点集被称为一个超平面,而满足一线性不等式

∑=≤n

i i

i b x

a 1

(或∑=≥n

i i i b x a 1

)的点集被称为一个半空间(其中),,(1n a a Λ为一n 维行

向量,b 为一实数)。若干个半空间的交集被称为多胞形,有界的多胞形又被称为多面体。易见,线性规划的可行域必为多胞形(为统一起见,空集Φ也被视为多胞形)。 在一般n 维空间中,要直接得出多胞形“顶点”概念还有一些困难。二维空间中的顶点可以看成为边界直线的交点,但这一几何概念的推广在一般n 维空间中的几何意义并不十分直观。为此,我们将采用另一途径来定义它。

定义 1 称n 维空间中的区域R 为一凸集,若R x x ∈?2

1

,及)1,0(∈?λ,有

R x x ∈-+21)1(λλ。

定义2 设R 为n 维空间中的一个凸集,R 中的点x 被称为R 的一个极点,若不

存在R x x ∈2

1、及)1,0(∈λ,使得21)1(x x x λλ-+=。

定义1 说明凸集中任意两点的连线必在此凸集中;而定义2 说明,若x 是凸集R 的一个极点,则x 不能位于R 中任意两点的连线上。不难证明,多胞形必为凸集。同样也不难证明,二维空间中可行域R 的顶点均为R 的极点(R 也没有其它的极点)。

1.5 求解线性规划的Matlab 解法

单纯形法是求解线性规划问题的最常用、最有效的算法之一。这里我们就不介绍单纯形法,有兴趣的读者可以参看其它线性规划书籍。下面我们介绍线性规划的Matlab 解法。

Matlab 中线性规划的标准型为

b Ax x

c T x

≤ such that min

beq x Aeq =?

ub x lb ≤≤

基本函数形式为linprog(c,A,b),它的返回值是向量x 的值。还有其它的一些函数调用形式(在 Matlab 指令窗运行 help linprog 可以看到所有的函数调用形式),如:

[x,fval]=linprog(c,A,b,Aeq,beq,LB,UB,X 0,OPTIONS) 这里fval 返回目标函数的值,LB 和UB 分别是变量x 的下界和上界,0x 是x 的初始值,OPTIONS 是控制参数。

例2 求解下列线性规划问题 321532m ax x x x z -+=

???

??≥≥+-=++0,,105273

21321321x x x x x x x x x 解 (i )编写M 文件 c=[2;3;-5];

a=[-2,5,-1]; b=-10; aeq=[1,1,1]; beq=7;

x=linprog(-c,a,b,aeq,beq,zeros(3,1)) value=c'*x

(ii )将M 文件存盘,并命名为example1.m 。

(iii )在Matlab 指令窗运行example1即可得所求结果。 例3 求解线性规划问题

32132 m in x x x z ++=

???

??≥≥+≥++0,,6

238243

2121321x x x x x x x x 解 编写Matlab 程序如下: c=[2;3;1];

a=[1,4,2;3,2,0]; b=[8;6];

[x,y]=linprog(c,-a,-b,[],[],zeros(3,1))

1.6 可以转化为线性规划的问题

很多看起来不是线性规划的问题也可以通过变换变成线性规划的问题来解决。如: 例4 规划问题为

b

Ax x x x n ≤+++ t.s.|

|||||min 21Λ

其中T

n x x x ][1Λ=,A 和b 为相应维数的矩阵和向量。

要把上面的问题变换成线性规划问题,只要注意到事实:对任意的i x ,存在

0,>i i v u 满足

i i i v u x -=,i i i v u x +=||

事实上,我们只要取2||i i i x x u +=,2||i

i i x x v -=就可以满足上面的条件。

这样,记T n u u u ][1Λ=,T

n v v v ][1Λ=,从而我们可以把上面的问题

变成

∑=+n

i i i

v u

1

)(min

??

?≥≤-0

,)( t.s.v u b

v u A 例5 |}|max {min i y x i

i

ε

其中i i i y x -=ε。

对于这个问题,如果我们取||max 0i y i

x ε=,这样,上面的问题就变换成

0min

x

0011,, t.s.x y x x y x n n ≤-≤-Λ

此即我们通常的线性规划问题。 §2 运输问题(产销平衡)

例6 某商品有m 个产地、n 个销地,各产地的产量分别为m a a ,,1Λ,各销地的需求量分别为n b b ,,1Λ。若该商品由i 产地运到j 销地的单位运价为ij c ,问应该如何调运才能使总运费最省?

解:引入变量ij x ,其取值为由i 产地运往j 销地的该商品数量,数学模型为

∑∑==m i n

j ij

ij x

c 11

min

s.t. ????

?????≥====∑∑==0,,2,1,,,1,1

1ij m

i j ij n

j i ij x n j b x m i a x ΛΛ

显然是一个线性规划问题,当然可以用单纯形法求解。

对产销平衡的运输问题,由于有以下关系式存在:

∑∑∑∑∑∑=======??? ??=???? ??=m

i i n

j n j m i ij m

i n j ij j a x x b 1

11111

其约束条件的系数矩阵相当特殊,可用比较简单的计算方法,习惯上称为表上作业法(由

康托洛维奇和希奇柯克两人独立地提出,简称康—希表上作业法)。 §3 指派问题

3.1 指派问题的数学模型

例7拟分配n 人去干n 项工作,每人干且仅干一项工作,若分配第i 人去干第j 项工作,需花费ij c 单位时间,问应如何分配工作才能使工人花费的总时间最少?

容易看出,要给出一个指派问题的实例,只需给出矩阵)(ij c C =,C 被称为指派问题的系数矩阵。

引入变量ij x ,若分配i 干j 工作,则取1=ij x ,否则取0=ij x 。上述指派问题的数学模型为

∑∑==n i n

j ij

ij x

c 11

min

s.t.

1 0111

1????

?????===∑∑==或ij n

i ij n

j ij x x x (5)

(5)的可行解既可以用一个矩阵表示,其每行每列均有且只有一个元素为1,其余元素均为0,也可以用n ,,1Λ中的一个置换表示。

(5)的变量只能取0或1,从而是一个0-1规划问题。一般的0-1规划问题求解极为困难。但指派问题并不难解,其约束方程组的系数矩阵十分特殊(被称为全单位模矩阵,其各阶非零子式均为1±),其非负可行解的分量只能取0或1,故约束10或=ij x 可改写为0≥ij x 而不改变其解。此时,指派问题被转化为一个特殊的运输问题,其中n m =,

1==j i b a 。

3.2求解指派问题的匈牙利算法

由于指派问题的特殊性,又存在着由匈牙利数学家Konig 提出的更为简便的解法—匈牙利算法。算法主要依据以下事实:如果系数矩阵)(ij c C =一行(或一列)中每一元素都加上或减去同一个数,得到一个新矩阵)(ij b B = ,则以C 或B 为系数矩阵的指派问题具有相同的最优指派。

例8 求解指派问题,其系数矩阵为

?

?

??

?????

???=16221917171822241819211722191516C

解 将第一行元素减去此行中的最小元素15,同样,第二行元素减去17,第三行元素减去17,最后一行的元素减去16,得

?

?

??

?

????

???=0631

0157124074011B

再将第3列元素各减去1,得

?????

???????=**

**20531005711407301B 以2B 为系数矩阵的指派问题有最优指派 ???

? ??43124321 由等价性,它也是例7的最优指派。 有时问题会稍复杂一些。

例9 求解系数矩阵C 的指派问题

???????

?????????=61071041066141512141217766698979712C

解:先作等价变换如下

∨????????

?????

???→????????????????----- 2636040*08957510*00*0032202*05610710410661415121412177666989797124

6767 容易看出,从变换后的矩阵中只能选出四个位于不同行不同列的零元素,但5=n ,最优指派还无法看出。此时等价变换还可进行下去。步骤如下:

(1) 对未选出0元素的行打∨; (2) 对∨行中0元素所在列打∨;

(3) 对∨列中选中的0元素所在行打∨; 重复(2)、(3)直到无法再打∨为止。

可以证明,若用直线划没有打∨的行与打∨的列,就得到了能够覆盖住矩阵中所有零元素的最少条数的直线集合,找出未覆盖的元素中的最小者,令∨行元素减去此数,∨列元素加上此数,则原先选中的0元素不变,而未覆盖元素中至少有一个已转变为0,且新矩阵的指派问题与原问题也等价。上述过程可反复采用,直到能选取出足够的0元素为止。例如,对例5变换后的矩阵再变换,第三行、第五行元素减去2,第一列元素加上2,得

???

??

?

?

?

????????04140400811353800003420207

现在已可看出,最优指派为?

??

?

??5314254321。 §4 对偶理论与灵敏度分析

4.1原始问题和对偶问题

考虑下列一对线性规划模型:

x c T max

s.t. 0,≥≤x b Ax (P) 和

y b T min

s.t. 0,≥≥y c y A T (D)

称(P )为原始问题,(D )为它的对偶问题。

不太严谨地说,对偶问题可被看作是原始问题的“行列转置”:

(1) 原始问题中的第j 列系数与其对偶问题中的第j 行的系数相同; (2) 原始目标函数的各个系数行与其对偶问题右侧的各常数列相同; (3) 原始问题右侧的各常数列与其对偶目标函数的各个系数行相同; (4) 在这一对问题中,不等式方向和优化方向相反。 考虑线性规划:

0,s.t.m in

≥=x b Ax x

c T

把其中的等式约束变成不等式约束,可得

0, s.t. min ≥??

?

???-≥??????-x b b x A A x c T

它的对偶问题是

[

][

]

c y y A A y y b b T

T T

T

≤??

?

???-?

?

?

???-2121 s.t.max

其中1y 和2y 分别表示对应于约束b Ax ≥和b Ax -≥-的对偶变量组。令21y y y -=,

则上式又可写成

c y A y b T T ≤ s.t. m ax

原问题和对偶的对偶约束之间的关系:

min max

???

??≤≥无限制变量

00?????=≥≤000行约束 ??

?

??=≤≥000行约束

??

?

??≤≥无限制变量00 4.2 对偶问题的基本性质

1o 对称性:对偶问题的对偶是原问题。

2o 弱对偶性:若x 是原问题的可行解,y 是对偶问题的可行解。则存在

y b x c T T ≤。

3o 无界性:若原问题(对偶问题)为无界解,则其对偶问题(原问题)无可行解。

4o 可行解是最优解时的性质:设x

?是原问题的可行解,y ?是对偶问题的可行解,当y b x

c T

T ??=时,y x ?,?是最优解。 5o 对偶定理:若原问题有最优解,那么对偶问题也有最优解;且目标函数值相同。

6o 互补松弛性:若y x

?,?分别是原问题和对偶问题的最优解,则 0)?(?,0)?(?=-=-c y A x

b x A y T T T 例10 已知线性规划问题

5432132532m in

x x x x x ++++=ω

43254321≥++++x x x x x 33254321≥+++-x x x x x 5,,2,1,

0Λ=≥j x j

已知其对偶问题的最优解为5;5

3

,54*2*

1===z y y 。试用对偶理论找出原问题的最优解。

解 先写出它的对偶问题

2134m ax y y z +=

2221≤+y y ①

321≤-y y ② 53231≤+y y ③ 221≤+y y ④ 3321≤+y y ⑤ 0,21≥y y

将*

2*1,y y 的值代入约束条件,得②,③,④为严格不等式;由互补松弛性得

0*4*3*2===x x x 。因 0,*2*1>y y ;原问题的两个约束条件应取等式,故有

43*

5*1=+x x

32*5*1=+x x

求解后得到1,1*

5*1==x x ;故原问题的最优解为

5;]'10001[**==ωX 。

4.3 灵敏度分析

在以前讨论线性规划问题时,假定j i ij c b a ,,都是常数。但实际上这些系数往往是估计值和预测值。如市场条件一变,j c 值就会变化;ij a 往往是因工艺条件的改变而改变;

i b 是根据资源投入后的经济效果决定的一种决策选择。因此提出这样两个问题:当这

些系数有一个或几个发生变化时,已求得的线性规划问题的最优解会有什么变化;或者这些系数在什么范围内变化时,线性规划问题的最优解或最优基不变。这里我们就不讨论了。

4.4 参数线性规划

参数线性规划是研究j i ij c b a ,,这些参数中某一参数连续变化时,使最优解发生变化的各临界点的值。即把某一参数作为参变量,而目标函数在某区间内是这参变量的线性函数,含这参变量的约束条件是线性等式或不等式。因此仍可用单纯形法和对偶单纯形法进行分析参数线性规划问题。

习 题一

1.试将下述问题改写成线性规划问题:

????

????? ??∑∑∑===m

i i in m i i i m i i i x x a x a x a i

11211,,,min max Λ ???=≥=+++m i x x x x i

m ,,1,01st.21ΛΛ

2.试将下列问题改写成线性规划问题:

∑==n

j j j x c z 1

||max

?????==∑=取值无约束j

n

j i j ij x m i b x a 1),,2,1(st.Λ

3.线性回归是一种常用的数理统计方法,这个方法要求对图上的一系列点),(,),,(),,(2211n n y x y x y x Λ选配一条合适的直线拟合。方法通常是先定直线方程为

bx a y +=,然后按某种准则求定b a ,。通常这个准则为最小二乘法,但也可用其他准

则。试根据以下准则建立这个问题的线性规划模型:

∑=+-n

i i i

bx a y

1

|)(|min

4.某厂生产三种产品I ,II ,III 。每种产品要经过B A ,两道工序加工。设该厂有两种规格的设备能完成A 工序,它们以21,A A 表示;有三种规格的设备能完成B 工序,它们以321,,B B B 表示。产品I 可在B A ,任何一种规格设备上加工。产品II 可在任何规格的A 设备上加工,但完成B 工序时,只能在1B 设备上加工;产品III 只能在2A 与2B 设备上加工。已知在各种机床设备的单件工时,原材料费,产品销售价格,各种设备有效台时以及满负荷操作时机床设备的费用如下表,要求安排最优的生产计划,使该厂利

6.某战略轰炸机群奉命摧毁敌人军事目标。已知该目标有四个要害部位,只要摧毁其中之一即可达到目的。为完成此项任务的汽油消耗量限制为48000升、重型炸弹48枚、轻型炸弹32枚。飞机携带重型炸弹时每升汽油可飞行2千米,带轻型炸弹时每升汽油可飞行3千米。又知每架飞机每次只能装载一枚炸弹,每出发轰炸一次除来回路程汽油消耗(空载时每升汽油可飞行4千米)外,起飞和降落每次各消耗100升。有关

题的线性规划模型。

7.用Matlab 求解下列线性规划问题: 3213m ax x x x z --=

s.t. ???????≥=+-≥++-≤+-0

,,12324112321313

21321x x x x x x x x x x x

8.用Matlab 求解下列规划问题:

||4||3||2||m in

4421x x x x z +++=

s.t. ???

?

???

-

=+--=-+-=+--2132130432143214321x x x x x x x x x x x x

第二章 整数规划

§1 概论

1.1 定义 规划中的变量(部分或全部)限制为整数时,称为整数规划。若在线性规划模型中,变量限制为整数,则称为整数线性规划。目前所流行的求解整数规划的方法,往往只适用于整数线性规划。目前还没有一种方法能有效地求解一切整数规划。

1.2 整数规划的分类

如不加特殊说明,一般指整数线性规划。对于整数线性规划模型大致可分为两类: 1o 变量全限制为整数时,称纯(完全)整数规划。 2o 变量部分限制为整数的,称混合整数规划。 1.2 整数规划特点

(i )原线性规划有最优解,当自变量限制为整数后,其整数规划解出现下述情况: ①原线性规划最优解全是整数,则整数规划最优解与线性规划最优解一致。 ②整数规划无可行解。 例1 原线性规划为 21m in x x z +=

0,0,5422121≥≥=+x x x x

其最优实数解为:4

5

min ,45,021===z x x 。

③有可行解(当然就存在最优解),但最优解值变差。

例2 原线性规划为 21m in x x z +=

0,0,6422121≥≥=+x x x x

其最优实数解为:2

3

min ,23,021===z x x 。

若限制整数得:2m in ,1,121===z x x 。

(ii )整数规划最优解不能按照实数最优解简单取整而获得。 1.3 求解方法分类:

(i )分枝定界法—可求纯或混合整数线性规划。 (ii )割平面法—可求纯或混合整数线性规划。 (iii )隐枚举法—求解“0-1”整数规划: ①过滤隐枚举法; ②分枝隐枚举法。

(iv )匈牙利法—解决指派问题(“0-1”规划特殊情形)。 (v )蒙特卡洛法—求解各种类型规划。

下面将简要介绍常用的几种求解整数规划的方法。 §2 分枝定界法

对有约束条件的最优化问题(其可行解为有限数)的所有可行解空间恰当地进行系统搜索,这就是分枝与定界内容。通常,把全部可行解空间反复地分割为越来越小的子集,称为分枝;并且对每个子集内的解集计算一个目标下界(对于最小值问题),这称为定界。在每次分枝后,凡是界限超出已知可行解集目标值的那些子集不再进一步分枝,这样,许多子集可不予考虑,这称剪枝。这就是分枝定界法的主要思路。

分枝定界法可用于解纯整数或混合的整数规划问题。在本世纪六十年代初由Land Doig 和Dakin 等人提出的。由于这方法灵活且便于用计算机求解,所以现在它已是解整数规划的重要方法。目前已成功地应用于求解生产进度问题、旅行推销员问题、工厂选址问题、背包问题及分配问题等。

设有最大化的整数规划问题A ,与它相应的线性规划为问题B ,从解问题B 开始,若其最优解不符合A 的整数条件,那么B 的最优目标函数必是A 的最优目标函数*

z 的上界,记作z ;而A 的任意可行解的目标函数值将是*

z 的一个下界z 。分枝定界法就是将B 的可行域分成子区域的方法。逐步减小z 和增大z ,最终求到*

z 。现用下例来说明:

例3 求解下述整数规划 219040Max x x z +=

???

??≥≤+≤+且为整数0,70

20756792

12121x x x x x x 解 (i )先不考虑整数限制,即解相应的线性规划B ,得最优解为:

355.8779,8168.1,8092.421===z x x

可见它不符合整数条件。这时z 是问题A 的最优目标函数值*

z 的上界,记作z 。而

0,021==x x 显然是问题A 的一个整数可行解,这时0=z ,是*

z 的一个下界,记作z ,

即3560*

≤≤z 。

(ii )因为21,x x 当前均为非整数,故不满足整数要求,任选一个进行分枝。设选1

x 进行分枝,把可行集分成2个子集:

44.8092][1=≤x ,514.8092][1=+≥x

因为4与5之间无整数,故这两个子集的整数解必与原可行集合整数解一致。这一步称为分枝。这两个子集的规划及求解如下:

问题1B : 219040Max x x z +=

??

?

??≥≤≤≤+≤+0

,40702075679212121x x x x x x 最优解为:349,1.2,0.4121===z x x 。

问题2B : 219040Max x x z += ???

??≥≥≤+≤+0

,570207567921

2121x x x x x x 最优解为:4.341,57.1,0.5121===z x x 。

再定界:3490*

≤≤z 。

(iii )对问题1B 再进行分枝得问题11B 和12B ,它们的最优解为

340,2,4:112111===z x x B

327.14,00.3x 1.43,:122112===z x B

再定界:341340*

≤≤z ,并将12B 剪枝。

(iv )对问题2B 再进行分枝得问题21B 和22B ,它们的最优解为

083,00.1x 5.44,:222121===z x B 22B 无可行解。

将2221,B B 剪枝。

于是可以断定原问题的最优解为:

340,2,4*21===z x x

从以上解题过程可得用分枝定界法求解整数规划(最大化)问题的步骤为:

开始,将要求解的整数规划问题称为问题A ,将与它相应的线性规划问题称为问题B 。

(i )解问题B 可能得到以下情况之一:

(a )B 没有可行解,这时A 也没有可行解,则停止.

(b )B 有最优解,并符合问题A 的整数条件,B 的最优解即为A 的最优解,则停止。

(c )B 有最优解,但不符合问题A 的整数条件,记它的目标函数值为z 。

(ii )用观察法找问题A 的一个整数可行解,一般可取n j x j ,,1,0Λ==,试探,求得其目标函数值,并记作z 。以*

z 表示问题A 的最优目标函数值;这时有

z z z ≤≤*

进行迭代。

第一步:分枝,在B 的最优解中任选一个不符合整数条件的变量j x ,其值为j b ,以][j b 表示小于j b 的最大整数。构造两个约束条件

][j j b x ≤ 和 1][+≥j j b x

将这两个约束条件,分别加入问题B ,求两个后继规划问题1B 和2B 。不考虑整数条件求解这两个后继问题。

定界,以每个后继问题为一分枝标明求解的结果,与其它问题的解的结果中,找出最优目标函数值最大者作为新的上界z 。从已符合整数条件的各分支中,找出目标函数值为最大者作为新的下界z ,若无作用z 不变。

第二步:比较与剪枝,各分枝的最优目标函数中若有小于z 者,则剪掉这枝,即以后不再考虑了。若大于z ,且不符合整数条件,则重复第一步骤。一直到最后得到

z z =*为止。得最优整数解n j x j ,,1

,*Λ=。 §3 10-型整数规划

10-型整数规划是整数规划中的特殊情形,它的变量j x 仅取值0或1。这时j x 称为10-变量,或称二进制变量。j x 仅取值0或1这个条件可由下述约束条件:

10≤≤j x ,整数

所代替,是和一般整数规划的约束条件形式一致的。在实际问题中,如果引入 10-变量,就可以把有各种情况需要分别讨论的线性规划问题统一在一个问题中讨论了。我们先介绍引入10-变量的实际问题,再研究解法。

3.1 引入10-变量的实际问题

3.1.1投资场所的选定——相互排斥的计划

例4某公司拟在市东、西、南三区建立门市部。拟议中有7个位置(点))7,,2,1(Λ=i A i 可供选择。规定

在东区。由321,,A A A 三个点中至多选两个; 在西区。由54,A A 两个点中至少选一个;

在南区,由76,A A 两个点中至少选一个。

如选用i A 点,设备投资估计为i b 元,每年可获利润估计为i c 元,但投资总额不能超过B 元。问应选择哪几个点可使年利润为最大?

解题时先引入10-变量)7,,2,1(Λ=i x i 令

?

??=.0,1点没被选中当点被选中当,,i A i A i x 7,,2,1Λ=i .

于是问题可列写成:

i i i x c z ∑==7

1

Max

?????

????=≥+≥+≤++≤∑=10,

11

2765

43217

1或i i i i x x x x x x x x B x b

3.1.2相互排斥的约束条件

有两个相互排斥的约束条件

244521≤+x x 或 453721≤+x x 。

为了统一在一个问题中,引入10-变量y ,则上述约束条件可改写为:

??

?

??=-+≤++≤+10)1(453724452121或y M y x x yM x x 其中M 是充分大的数。

约束条件

01=x 或 8005001≤≤x 可改写为

?

?

?=≤≤108005001或y y

x y 如果有m 个互相排斥的约束条件:

m i b x a x a i

n in i ,,2,111ΛΛ=≤++

为了保证这m 个约束条件只有一个起作用,我们引入m 个10-变量),,2,1(m i y i Λ=和一个充分大的常数M ,而下面这一组1+m 个约束条件

m i M y b x a x a i i n in i ,,2,111ΛΛ=+≤++(1)

11-=++m y y m Λ(2)

就合于上述的要求。这是因为,由于(2),m 个i y 中只有一个能取0值,设0*=i y ,代入(1),就只有*

i i =的约束条件起作用,而别的式子都是多余的。

3.1.3 关于固定费用的问题(Fixed Cost Problem )

在讨论线性规划时,有些问题是要求使成本为最小。那时总设固定成本为常数,并在线性规划的模型中不必明显列出。但有些固定费用(固定成本)的问题不能用一般线性规划来描述,但可改变为混合整数规划来解决,见下例。

例5 某工厂为了生产某种产品,有几种不同的生产方式可供选择,如选定的生产方式投资高(选购自动化程度高的设备),由于产量大,因而分配到每件产品的变动成本就降低;反之,如选定的生产方式投资低,将来分配到每件产品的变动成本可能增加。所以必须全面考虑。今设有三种方式可供选择,令

j x 表示采用第j 种方式时的产量;

j c 表示采用第j 种方式时每件产品的变动成本;

j k 表示采用第j 种方式时的固定成本。

为了说明成本的特点,暂不考虑其它约束条件。采用各种生产方式的总成本分别为

?????=>+= 0

,00,j j j j j j x x x c k P 当当3,2,1=j .

在构成目标函数时,为了统一在一个问题中讨论,现引入10-变量j y ,令

??

??

?==>.00,0,1时种生产方式,即当不采用第时,

种生产方式,即当采用第j x j j x j j y (3) 于是目标函数

)()()(m in 333322221111x c y k x c y k x c y k z +++++=

(3)式这个规定可表为下述3个线性约束条件:

3,2,1,=≤≤j M y x y j j j ε(4)

其中ε是一个充分小的正常数,M 是个充分大的正常数。(4)式说明,当0>j x 时j y 必须为1;当0=j x 时只有j y 为0时才有意义,所以(4)式完全可以代替(3)式。 3.2 10-型整数规划解法之一(过滤隐枚举法)

解10-型整数规划最容易想到的方法,和一般整数规划的情形一样,就是穷举法,即检查变量取值为0或1的每一种组合,比较目标函数值以求得最优解,这就需要检查变量取值的n 2个组合。对于变量个数n 较大(例如10>n ),这几乎是不可能的。因此常设计一些方法,只检查变量取值的组合的一部分,就能求到问题的最优解。这样的方法称为隐枚举法(Implicit Enumeration ),分枝定界法也是一种隐枚举法。当然,对有些问题隐枚举法并不适用,所以有时穷举法还是必要的。

下面举例说明一种解10-型整数规划的隐枚举法。 例6321523Max x x x z +-=

?????

????=≤+≤+≤++≤-+1

0,,6

43

44223213

221321321或x x x x x x x x x x x x x 求解思路及改进措施:

(i ) 先试探性求一个可行解,易看出)0,0,1(),,(321=x x x 满足约束条件,故为一个可行解,且3=z 。

(ii )因为是求极大值问题,故求最优解时,凡是目标值3

(iii )改进过滤条件。

(iv )由于对每个组合首先计算目标值以验证过滤条件,故应优先计算目标值z

大的组合,这样可提前抬高过滤门槛,以减少计算量。 §4 蒙特卡洛法(随机取样法)

前面介绍的常用的整数规划求解方法,主要是针对线性整数规划而言,而对于非线性整数规划目前尚未有一种成熟而准确的求解方法,因为非线性规划本身的通用有效解法尚未找到,更何况是非线性整数规划。

然而,尽管整数规划由于限制变量为整数而增加了难度;然而又由于整数解是有限个,于是为枚举法提供了方便。当然,当自变量维数很大和取值范围很宽情况下,企图用显枚举法(即穷举法)计算出最优值是不现实的,但是应用概率理论可以证明,在一定的计算量的情况下,完全可以得出一个满意解。

例7 已知非线性整数规划为:

5

43212

5

242322212328 243Max x x x x x x x x x x z -----++++=

?????

????≤++≤++≤++++≤++++=≤≤200

5200

62800622400)5,,1(9905433

215432154321x x x x x x x x x x x x x x x x i x i Λ 对该题,目前尚无有效方法求出准确解。如果用显枚举法试探,共需计算

10510)100(=个点,其计算量非常之大。然而应用蒙特卡洛去随机计算610个点,便可

找到满意解,那么这种方法的可信度究竟怎样呢?

下面就分析随机取样采集6

10个点计算时,应用概率理论来估计一下可信度。 不失一般性,假定一个整数规划的最优点不是孤立的奇点。

假设目标函数落在高值区的概率分别为0.01,0.00001,则当计算6

10个点后,有任一个点能落在高值区的概率分别为

多位)100(9999.099.011000000Λ≈-,

999954602.099999.011000000≈-。

解 (i )首先编写M 文件mente.m 定义目标函数f 和约束向量函数g ,程序如下: function [f,g]=mengte(x);

f=x(1)^2+x(2)^2+3*x(3)^2+4*x(4)^2+2*x(5)-8*x(1)-2*x(2)-3*x(3)... -x(4)-2*x(5); g(1)=sum(x)-400;

g(2)=x(1)+2*x(2)+2*x(3)+x(4)+6*x(5)-800; g(3)=2*x(1)+x(2)+6*x(3)-200; g(4)=x(3)+x(4)+5*x(5)-200;

(ii )编写如下程序求问题的解:

rand('state',sum(clock)); p0=0; tic

for i=1:10^5

x=99*rand(5,1);

x1=floor(x);x2=ceil(x); [f,g]=mengte(x1); if sum(g<=0)==4 if p0<=f

x0=x1;p0=f; end end

[f,g]=mengte(x2); if sum(g<=0)==4 if p0<=f

x0=x2;p0=f; end end end

x0,p0 toc

§5 整数规划的计算机解法

整数规划问题的求解可以使用Lingo 等专用软件。对于一般的整数规划问题,无法直接利用Matlab 的函数,必须利用Matlab 编程实现分枝定界解法和割平面解法。但对于指派问题等10-整数规划问题,可以直接利用Matlab 的函数bintprog 进行求解。

例8 求解下列指派问题,已知指派矩阵为

???????

????

??

???109

6

10

9532485724679278310

283 解:编写Matlab 程序如下:

c=[3 8 2 10 3;8 7 2 9 7;6 4 2 7 5 8 4 2 3 5;9 10 6 9 10]; c=c(:);

a=zeros(10,25); for i=1:5

a(i,(i-1)*5+1:5*i)=1; a(5+i,i:5:25)=1; end

b=ones(10,1);

[x,y]=bintprog(c,[],[],a,b); x=reshape(x,[5,5]),y

求得最优指派方案为151********=====x x x x x ,最优值为21。

习 题 二

1. 用分枝定界法解:

21Max x x z +=

???

?

?

?

???≥≤+-≤+整数21212121,,0,3121451149x x x x x x x x 2. 试将下述非线性的10-规划问题转换成线性的10-规划问题 3211m ax x x x x z -+=

??

?==≤++-)3,2,1(103

32321j x x x x j

,或 3. 某钻井队要从以下10个可供选择的井位中确定5个钻井探油,使总的钻探费

用为最小。若10个井位的代号为1021,,,s s s Λ,相应的钻探费用为1021,,,c c c Λ,并且井位选择上要满足下列限制条件:

(1) 或选择1s 和7s ,或选择钻探9s ;

(2) 选择了3s 或4s 就不能选5s ,或反过来也一样;

(3) 在8765,,,s s s s 中最多只能选两个;试建立这个问题的整数规划模型。

数学建模算法动态规划

第四章动态规划 §1 引言 1.1 动态规划的发展及研究内容 动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。20世纪50年代初R. E. Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优性原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类过程优化问题的新方法—动态规划。1957年出版了他的名著《Dynamic Programming》,这是该领域的第一本著作。 动态规划问世以来,在经济管理、生产调度、工程技术和最优控制等方面得到了广泛的应用。例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动态规划方法比用其它方法求解更为方便。 虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。 应指出,动态规划是求解某类问题的一种方法,是考察问题的一种途径,而不是一种特殊算法(如线性规划是一种算法)。因而,它不象线性规划那样有一个标准的数学表达式和明确定义的一组规则,而必须对具体问题进行具体分析处理。因此,在学习时,除了要对基本概念和方法正确理解外,应以丰富的想象力去建立模型,用创造性的技巧去求解。 例1 最短路线问题 下面是一个线路网,连线上的数字表示两点之间的距离(或费用)。试寻求一条由A 到G距离最短(或费用最省)的路线。 例2 生产计划问题 工厂生产某种产品,每单位(千件)的成本为1(千元),每次开工的固定成本为3(千元),工厂每季度的最大生产能力为6(千件)。经调查,市场对该产品的需求量第一、二、三、四季度分别为2,3,2,4(千件)。如果工厂在第一、二季度将全年的需求都生产出来,自然可以降低成本(少付固定成本费),但是对于第三、四季度才能上市的产品需付存储费,每季每千件的存储费为0.5(千元)。还规定年初和年末这种产品均无库存。试制定一个生产计划,即安排每个季度的产量,使一年的总费用(生产成本和存储费)最少。 1.2 决策过程的分类 根据过程的时间变量是离散的还是连续的,分为离散时间决策过程(discrete-time decision process)和连续时间决策过程(continuous-time decision process);根据过程的演变是确定的还是随机的,分为确定性决策过程(deterministic decision process)和随

数学建模优秀论文模板(全国一等奖模板)

Haozl觉得数学建模论文格式这么样设置 版权归郝竹林所有,材料仅学习参考 版权:郝竹林 备注☆ ※§等等字符都可以作为问题重述左边的。。。。。一级标题 所有段落一级标题设置成段落前后间距13磅 图和表的标题采用插入题注方式题注样式在样式表中设置居中五号字体 Excel中画出的折线表字体采用默认格式宋体正文10号 图标题在图上方段落间距前0.25行后0行 表标题在表下方段落间距前0行后0.25行 行距均使用单倍行距 所有段落均把4个勾去掉 注意Excel表格插入到word的方式在Excel中复制后,粘贴,word2010粘贴选用使用目标主题嵌入当前 Dsffaf 所有软件名字第一个字母大写比如E xcel 所有公式和字母均使用MathType编写 公式编号采用MathType编号格式自己定义

农业化肥公司的生产与销售优化方案 摘 要 要求总分总 本文针对储油罐的变位识别与罐容表标定的计算方法问题,运用二重积分法和最小二乘法建立了储油罐的变位识别与罐容表标定的计算模型,分别对三种不同变位情况推导出的油位计所测油位高度与实际罐容量的数学模型,运用matlab 软件编程得出合理的结论,最终对模型的结果做出了误差分析。 针对问题一要求依据图4及附表1建立积分数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm 的罐容表标定值。我们作图分析出实验储油罐出现纵向倾斜 14.时存在三种不同的可能情况,即储油罐中储油量较少、储油量一般、储油量较多的情况。针对于每种情况我们都利用了高等数学求容积的知识,以倾斜变位后油位计所测实际油位高度为积分变量,进行两次积分运算,运用MATLAB 软件推导出了所测油位高度与实际罐容量的关系式。并且给出了罐体倾斜变位后油位高度间隔为1cm 的罐容标定值(见表1),最后我们对倾斜变位前后的罐容标定值残差进行分析,得到样本方差为4103878.2-?,这充分说明残差波动不大。我们得出结论:罐体倾斜变位后,在同一油位条件下倾斜变位后罐容量比变位前罐容量少L 243。 表 1.1 针对问题二要求对于图1所示的实际储油罐,试建立罐体变位后标定罐容表的数学模型,即罐内储油量与油位高度及变位参数(纵向倾斜角度α和横向偏转角度β)之间的一般关系。利用罐体变位后在进/出油过程中的实际检测数据(附件2),根据所建立的数学模型确定变位参数,并给出罐体变位后油位高度间隔为10cm 的罐容表标定值。进一步利用附件2中的实际检测数据来分析检验你们模型的正确性与方法的可靠性。我们根据实际储油罐的特殊构造将实际储油罐分为三部分,左、右球冠状体与中间的圆柱体。运用积分的知识,按照实际储油罐的纵向变位后油位的三种不同情况。利用MATLAB 编程进行两次积分求得仅纵向变位时油量与油位、倾斜角α的容积表达式。然后我们通过作图分析油罐体的变位情况,将双向变位后的油位h 与仅纵向变位时的油位0h 建立关系表达式01.5(1.5)cos h h β=--,从而得到双向变位油量与油位、倾斜角α、偏转角β的容积表达式。利用附件二的数据,采用最小二乘法来确定倾斜角α、偏转角β的值,用matlab 软件求出03.3=α、04=β α=3.30,β=时总的平均相对误差达到最小,其最小值为0.0594。由此得到双向变位后油量与油位的容积表达式V ,从而确定了双向变位后的罐容表(见表2)。 本文主要应用MATLAB 软件对相关的模型进行编程求解,计算方便、快捷、准确,整篇文章采取图文并茂的效果。文章最后根据所建立的模型用附件2中的实际检测数据进行了误差分析,结果可靠,使得模型具有现实意义。 关键词:罐容表标定;积分求解;最小二乘法;MATLAB ;误差分

数学建模(教案)第一章--线性规划

数学建模 第一章 线性规划 §1 线性规划 在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。自从1947年G. B. Dantzig 提出求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。 1.1 线性规划的实例与定义 例1 某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000元与3000元。生产甲机床需用B A 、机器加工,加工时间分别为每台2小时和1小时;生产乙机床需用C B A 、、三种机器加工,加工时间为每台各一小时。若每天可用于加工的机器时数分别为A 机器10小时、B 机器8小时和C 机器7小时,问该厂应生产甲、乙机床各几台,才能使总利润最大? 上述问题的数学模型:设该厂生产1x 台甲机床和2x 乙机床时总利润最大,则21,x x 应满足 (目标函数) 2134m ax x x z += (1) s.t. ( 约 束 条 件 ) ?????? ?≥≤≤+≤+0 ,781022122 121x x x x x x x (2) 这里变量21,x x 称之为决策变量,(1)式被称为问题的目标函数,(2)中的几个不等式是问题的约束条件,记为s.t.(即subject to)。

上述即为一规划问题数学模型的三个要素。由于上面的目标函数及约束条件均为线性函数,故被称为线性规划问题。 总之,线性规划问题是在一组线性约束条件的限制下,求一线性目标函数最大或最小的问题。 在解决实际问题时,把问题归结成一个线性规划数学模型是很重要的一步,但往往也是困难的一步,模型建立得是否恰当,直接影响到求解。而选取适当的决策变量,是我们建立有效模型的关键之一。 1.2 线性规划的Matlab 标准形式 线性规划的目标函数可以是求最大值,也可以是求最小值,约束条件的不等号可以是小于号也可以是大于号。为了避免这种形式多样性带来的不便,Matlab 中规定线性规划的标准形式为 b Ax x c x T ≤ that such min 其中c 和x 为n 维列向量,b 为m 维列向量,A 为n m ?矩阵。 例如线性规划 b Ax x c x T ≥ that such max 的Matlab 标准型为 b Ax x c x T -≤-- that such min 1.3 线性规划问题的解的概念 一般线性规划问题的标准型为 ∑==n j j j x c z 1min (3) ∑==≤n j i j ij m i b x a 1,,2,1 s.t.Λ (4) 可行解 满足约束条件(4)的解),,,(21n x x x x Λ=,称为线性规划问题的可行解,而使目标函数(3)达到最小值的可行解叫最优解。

LINGO线性规划数学建模论文-工作人员的最优时间分配问题的研究

工作人员的最优时间分配问题的研究 【摘要】 由于每个人的工作效率不同,导致不同的分配方式会有不同的时间开销。本文建立了0-1规划模型对最少时间成本下的工作人员分配问题进行了研究。 本问题中首先确定第i人做或者不做第j工作将问题定量化,再以全部的工作时间为目标函数,最后使用Lingo对目标函数求最优解得出最终结果。 关键词:最少时间最优解时间分配 0-1模型 Lingo 线性规划

一、问题重述 设有人员12个,工作10件,且一人做一个工作,第i人做第j件工作的时间(或费用)c(取值见表1.1),问:如何分派可使工作时间(或总费用)最少。 为 ij 表1.1 c ij 二、问题假设 1.每个人都能在自己的花销时间内完成工作。 2.每个人只能做一个工作,即既不能同时做两个工作,也不能在一个工作做完后再做其他工作。 3.每件工作都必须有人做,且只能由一个人独立完成。 4.各个工作之间没有相互联系。即一个工作的完成与否,不受另一个工作的制约。 三、符号说明 z:完成所有工作的总时间 x:第i人做第j件工作的时间 ij 四、问题分析、模型的建立与求解 1.问题的分析 最少时间(即人力资源成本)是最大利润一个很有参考价值的数据,往往需要利用数学建模的方法对其进行定量的分析,首先确定第i人做或者不做第j工作将问题定量化,再以全部的工作时间为目标函数,最后对目标函数求最优解得出最终结果。 2.模型的建立 设:

10...3,2,112...3,2,1{.1.0=== j i x ij j i j i ,件工作 人做第第件工作人不做第第 则工作时间为: ∑∑===12110 1z i ij j ij x c 限定条件为: 12...3,2,11101=≤∑=i x j ij ,(即每个人只能做一个工作(假设2) ,可以小于1是因为人比工作多,允许有人空闲) 10...3,2,11121i ==∑=j x ij ,(即每个工作都要有人做,且只能由一个人做 (假设3)) 10or x ij = 不能完成任务的人: ,, , ,,,,, , ,, ,,,, 4 ,122,129,1099989610,77865575110,448474326=x x x x x x x x x x x x x x x x 3.模型的求解 化为标准形式如下: ∑∑===12110 1 z Min i ij j ij x c s.t. 12...3,2,11101=≤∑=i x j ij , 10...3,2,11121i ==∑=j x ij , 10or x ij =

一般线性规划数学模型

一般线性规划问题 1. 线性规划的条件: ① 决策变量有没有---------------------必须有 ② 目标函数和约束条件是不是决策变量的线性表达式------------------必须是 ③ 决策变量非负条件是否满足-------------必须满足 ④ 目标函数是否表现出极大化或极小化------必须表现 2. 线性规划的表达式 目标函数: x c x c x c n n z Max Min +???++=2211)( 约束条件: b x a x a x a n n 112 12 1 11 )(≤≥+???++ b x a x a x a n n 222 2 21 21 )(≤≥+???++ b x a x a x a n n 332 2 31 31 )(≤≥+???++ ..............

b x a x a x a n n nn n )(2 2 1 n1 ≤≥+???++ 非负性约束: 0,,0,02 1 ≥???≥≥x x x n 问题重述 某储蓄所每天的营业时间是上午9时到下午5时。根据经验,每天不同时间段所需要的服务员数量如表17所示。储蓄所可以雇用全时和半时两类服务员。全时服务员每天报酬100元,从上午9时到下午5时工作,但中午12时到下午2时之间必须安排1h 的午餐时间。储蓄所每天可以雇用不超过3名的半时服务员,每个半小时服务员必须连续工作4h ,报酬40元。(1)问该储蓄所应如何雇用全时和半时两类服务员。(2)如果不能雇用半时服务员,每天至少增加多少费用。(3)如果雇用半时服务员的数量没有限制,每天可以减少多少费用? 表16 每天不同时间段所需要的服务员数量

数学建模 线性规划模型

数学建模线性规划模型 数学建模教案,线性规划模型 一、问题的提出 在生产管理和经营活动中经常提出一类问题,即如何合理地利用有限的人力、物力、财力等资源,以便得到最好的经济效果。 例1 若需在长为4000mm的圆钢上,截出长为698mm和518mm两种毛坯,问怎样截取才能使残料最少, 初步分析可以先考虑两种“极端”的情况: (1)全部截出长为698mm的甲件,一共可截出 EQ F(4000,698) ?5件,残料长为510mm。 (2)全部截出长为518mm的乙件,一共可截出 EQ F(4000,518) ?7件,残料长为374mm。由此可以想到,若将 x个甲件和y 个乙件搭配起来下料,是否可能使残料减少,把截取条件数学化地表示出来就是: 698 x + 518y ? 4000 x ,y都是非负整数 目标是使:z = EQ F(698x + 518y,4000) (材料利用率)尽可能地接近或等于1。(尽可能地大) 该问题可用数学模型表示为: 目标函数 : max z = EQ F(698x + 518y,4000) 满足约束条件: 698 x + 518y ? 4000 , (1) x ,y都是非负整数 . (2) 例2 某工厂在计划期内要安排生产I 、II两种产品,已知生产单位产品所需的设备台数及A、B两种原料的消耗,如下表所示。

I II 设备 1 2 8台数 原材料A 4 0 16kg 原材料B 0 4 12kg 该工厂每生产一件产品I可获利 2 元,每生产一件产品II可获利 3 元,问应如何安排生产计划使工厂获利最多, 这问题可以用以下的数学模型来描述:设 x, x分别表示在计划期内产品I、II 的产量。 1 2 因为设备的有效台数为8 ,这是一个限制产量的条件,所以在确定I 、II的产量时,要考虑不超过设备的有效台数,即可用不等式表示为: x + 2x ? 8 . 1 2同理,因原材料A 、B的限量,可以得到以下不等式: 4 x ? 16 1 4 x ? 12. 2 该工厂的目标是在不超过所有资源限量的条件下,如何确定产量x、x以得到最大 1 2的利润。若用 z 表示利润,这时z = 2x + 3 x。综上所述,该计划问题可用数学模型表 1 2 示为: 目标函数 : max z = 2x + 3 x 1 2 满足约束条件: x + 2x ? 8 1 2 4 x ? 16 1 4 x ? 12. 2

数学建模算法分类

数学模型按照不同的分类标准有许多种类: 1.按照模型的数学方法分,有几何模型,图论模型,微分方程模型。概率模型,最优控制模型,规划论模型,马氏链模型。 2.按模型的特征分,有静态模型和动态模型,确定性模型和随机模型,离散模型和连续性模型,线性模型和非线性模型。 3.按模型的应用领域分,有人口模型,交通模型,经济模型,生态模型,资源模型。环境模型。 4.按建模的目的分,有预测模型,优化模型,决策模型,控制模型等。 5.按对模型结构的了解程度分,有白箱模型,灰箱模型,黑箱模型。 数学建模的十大算法: 蒙特卡洛算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,比较好用的算法。) 数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用matlab作为工具。) 线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用lingo、lingdo软件实现)图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。) 动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题时用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需谨慎使用) 网格算法和穷举法(当重点讨论模型本身而情史算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具) 一些连续离散化方法(很多问题都是从实际来的,数据可以是连续的,而计算机只认得是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。) 图像处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用matlab来处理问题。) 数学建模方法 统计:1.预测与预报2.评价与决策3.分类与判别4.关联与因果 优化:5.优化与控制 预测与预报 ①灰色预测模型(必须掌握) 满足两个条件可用: a数据样本点个数少,6-15个 b数据呈现指数或曲线的形式 ②微分方程预测(备用) 无法直接找到原始数据之间的关系,但可以找到原始数据变化速度之间的关系,通过公式

数学建模线性规划论文1

红十字会善款投资优化设计 摘要 作为慈善机构,某省红十字会为救助四川灾区患病儿童,打算将救灾的剩余善款存入银行或购买国库券,为了充分利用这笔善款,必须要做出合理的分配方案来提高每年的救助金额,并且保证在n年末仍保留原有善款数额,才能最大限度使用剩余善款。 为了给红十字会提供一种最优方案,本文本着为红十字会设计一种能最大限度使用善款存款本息且n年末仍保留原有善款数额的原则,以n年内用于存款或购买国库券的利息额之和的最大值为目标函数,运用线性规划的相关知识,并通过LINGO软件对模型进行求解,递出了一种符合题目要求的最优分配方案。 关键词:线性规划,LINGO软件

某省红十字会打算将四川特大地震后全国人民捐款救灾的剩余善款存入银行或购买国库券。 红十字会计划在n年内用此剩余善款的部分本息救助患病儿童,并使每年的救助金额大致相同,且在n年内仍保留原有善款数额。 通过设计最佳的使用方案,提高每年的救助金额,帮助红十字会在如下情况下,设计这笔剩余善款的使用方案,并对5000 n=年给出具体结果。 M=万元,10 (1)只在银行存款而不购买国库券; (2)既可存款也可以购买国库券; (3)红十字会在剩余的善款到位后的第三年要举行成立30周年庆典,红十字会希望这一年的救助金额比其他年度多20%。 二、模型的假设 1、假设存款期间不出现紧急用钱的情况,只有在每年的最后一天,才从银行中取出钱用于捐款,且在整个存款周期中银行利率不变; 2、假设存款的银行采用单利的形式进行利息的结算; 3、假设每次使用于救助的金额都为投资所获得的利息,即用于各种投资类型的本金金额不变,然后再次将用于原投资类型的本金金额继续该种投资方式; 4、假设每年的救助金额大致相同; 5、红十字会在n年内的各种开支忽略不记; 6、假设投资不出现亏损状况。 三、符号的说明

数学建模线性规划

线性规划 1.简介: 线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源. 线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.规划问题。一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。 (x)都是线性函数,则该模型称为在优化模型中,如果目标函数f(x)和约束条件中的g i 线性规划。 2.线性规划的3个基本要素 (1)决策变量 (2)目标函数f(x) (x)≤0称为约束条件) (3)约束条件(g i 3.建立线性规划的模型 (1)找出待定的未知变量(决策变量),并用袋鼠符号表示他们。 (2)找出问题中所有的限制或者约束,写出未知变量的线性方程或线性不等式。

(3)找到模型的目标或判据,写成决策变量的线性函数,以便求出其最大值或最小值。以下题为例,来了解一下如何将线性规划用与实际的解题与生活中。 生产计划问题 某工厂生产甲乙两种产品,每单位产品消耗和获得的利润如表 试拟订生产计划,使该厂获得利润最大 解答:根据解题的三个基本步骤 (1)找出未知变量,用符号表示: 设甲乙两种产品的生产量分别为x 1与x 2 吨,利润为z万元。 (2)确定约束条件: 在这道题目当中约束条件都分别为:钢材,电力,工作日以及生产量不能为负的限制 钢材:9x 1+5 x 2 ≤360, 电力:4x 1+5 x 2 ≤200, 工作日:3x 1+10 x 2 ≤300, x 1≥0 ,x 2 ≥0, (3)确定目标函数: Z=7x 1+12 x 2

插值拟合数学建模算法

1 20/"geometry.cfg" 20/"natbib.cfg" 20/"bblopts.cfg" 20/"english.cfg"20/"____________.aux"

插值算法February3,2020

需要根据已知的函数点进行数据,模型的处理和分析,有时候现有的数据是极少的,不足以分析支撑的比较,这时候需要数学的方法,模拟产生一些洗呢但又比较靠谱的值来满足需求。 一维插值问题多项式插值分段插值 拉格朗日插值多项式公式 L n(x)= n ∑ k=0 y k ωn+1(x) (x?x k)ω′ n+! (x k) 其中ωn+1(x)=(x?x0)(x?x1)....(x?x n) 龙格现象(runge phenomenon)高次插值会产生龙格现象,在两端处的波动计大,产生明显的震荡.在不熟悉曲线的运动趋势下,不要轻易使用高次插值. 采用分段低次插值的思路:在随便两个点之间,采用分段二次或者三次插值的方法/又叫分段抛物插值. 牛顿插值法:f(x)=f(x0)+f|x0,x1|(x?x0)+f|x0,x1,x2|(x?x0)(x?x1)+.....差商的定义:称f|x0,x k|=f(x k)?f(x0) x k?x0 两种插值的区别在于没有体现在导数的一致上 埃尔米特插值法:要求节点处的函数值相同,同时要求对应的导数值也相同分段三次埃尔米特插值法: matlab里有内存的函数pchip(x,y,new_w)x是已知样本点的横坐标,y是已知样本点的纵坐标,new_x是要插入的对应的横坐标 n维数据的插值了解:p=interpn(x1,x2,...xn,y,new_x1,newx_2,....newx_n,method) x1,x2,x3...是样本点的横坐标 y是样本点的纵坐标 输入的new是要输入点的横坐标 method是要插值的方法拟合算法 拟合和插值的区别:找到一个确定的曲线保证误差足够小,不要求曲线经过每一个样本点,只要足够接近就可以.

数学建模论文基本结构

数学建模论文基本结构 一、题目(突出问题和模型,即什么问题,哪类数学模型,要反映主题思想) 最优捕鱼策略模型 零件参数的优化设计 风险投资组合的线性规划模型 投资组合方案的模糊规划模型 灾情巡视路线的图论模型 关于洗衣机节水的数学模型 二、摘要(200-300字,包括研究的意义、模型的主要思想、特点、建模方法和 主要结果) 论文特色讲清楚,让人看到论文的新意. 全国评阅时将首先根据摘要和论文整体结构及概貌对论文优劣进行初步筛选 a. 模型的数学归类(在数学上属于什么类型); b. 建模的思想(思路); c. 算法思想(求解思路); d. 建模特点(模型优点,建模思想或方法,算法特点,结果检验,灵敏度分析, 模型检验……); e. 主要结果(数值结果,结论;回答题目所问的全部“问题”)。 ▲注意表述:准确、简明、条理清晰、务必认真校对。 三、关键词(求解问题、使用的方法中的重要术语3—5个) 四、正文 1、问题重述 2、问题分析 3、模型假设与符号说明 4、模型建立与求解 ①补充假设条件,明确概念,引进参数; ②模型形式(可有多个形式的模型); 5、模型检验(使用数据计算结果,进行分析与检验) 6、进一步讨论(参数的变化、假设改变对模型的影响) 7、模型优缺点(改进方向,推广新思想) 五、参考文献 参考文献 参考文献中书籍的表述方式为:序号,作者,书名,版本(第1版不标注) ,出版地:出版社,出版年,页码。 参考文献中期刊杂志论文的表述方式为:序号,作者,论文名,杂志名,卷期号:起止页码,出版年。 参考文献中网上资源的表述方式为:序号,作者,资源标题,网址,访问时间(年月日)。 六、附录 (计算程序,框图;各种求解演算过程,计算中间结果;各种图形、表格)

数学建模习题——线性规划

某银行经理计划用一笔资金进行有价证券的投资,可供购进的证券以及其信用等级、到期年限、收益如下表所示.按照规定,市政证券的收益可以免税,其他证券的收益需按50%的税率纳税.此 表四 问:(1)若该经理有1000万元资金,应如何投资? (2)如果能够以2.75%的利率借到不超过100万元资金,该经理应如何操作? (3)在1000万元资金情况下,若证券A的税前收益增加为4.5%,投资应否改变?若证券C的税前收益减少为4.8%,投资应否改变? 解:设利润函数为M(x),投资A、B、C、D、E五种类型的证券资金分别为

12345,,,,x x x x x 万元,则由题设条件可知 12345123452341234512345123451234512345()0.0430.0270.0250.0220.0451000400 225 1.4()9154325(),,,,0 M x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x =++++++++≤++≥++++≤++++++++≤++++≥ 利用MATLAB 求解最优解,代码如下: c=[-0.043 -0.027 -0.025 -0.022 -0.045]; A=[1 1 1 1 1;0 -1 -1 -1 0;0.6 0.6 -0.4 -0.4 3.6;4 10 -1 -2 -3]; b=[1000;-400;0;0]; Aeq=[]; beq=[]; vlb=[0;0;0;0;0]; vub=[]; [x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub) 运行结果如下:

数学建模-线性规划

-1- 第一章线性规划 §1 线性规划 在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济 效益的问题。此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。自从1947 年G. B. Dantzig 提出 求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性 规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。 1.1 线性规划的实例与定义 例1 某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000 元与3000 元。 生产甲机床需用A、B机器加工,加工时间分别为每台2 小时和1 小时;生产乙机床 需用A、B、C三种机器加工,加工时间为每台各一小时。若每天可用于加工的机器时 数分别为A 机器10 小时、B 机器8 小时和C 机器7 小时,问该厂应生产甲、乙机床各几台,才能使总利润最大? 上述问题的数学模型:设该厂生产1 x 台甲机床和2 x 乙机床时总利润最大,则1 2 x , x 应满足 (目标函数)1 2 max z = 4x + 3x (1) s.t.(约束条件) ?? ? ?? ? ? ≥ ≤ + ≤ + ≤ , 0 7 8 2 10 1 2 2 1 2 1 2 x x x x x x x (2) 这里变量1 2 x , x 称之为决策变量,(1)式被称为问题的目标函数,(2)中的几个不等式是问题的约束条件,记为s.t.(即subject to)。由于上面的目标函数及约束条件均为线性

数学建模算法大全排队论

第六章排队论模型 排队论起源于1909年丹麦电话工程师A. K.爱尔朗的工作,他对电话通话拥挤问题进行了研究。1917年,爱尔朗发表了他的著名的文章—“自动电话交换中的概率理论的几个问题的解决”。排队论已广泛应用于解决军事、运输、维修、生产、服务、库存、医疗卫生、教育、水利灌溉之类的排队系统的问题,显示了强大的生命力。 排队是在日常生活中经常遇到的现象,如顾客到商店购买物品、病人到医院看病常常要排队。此时要求服务的数量超过服务机构(服务台、服务员等)的容量。也就是说,到达的顾客不能立即得到服务,因而出现了排队现象。这种现象不仅在个人日常生活中出现,电话局的占线问题,车站、码头等交通枢纽的车船堵塞和疏导,故障机器的停机待修,水库的存贮调节等都是有形或无形的排队现象。由于顾客到达和服务时间的随机性。可以说排队现象几乎是不可避免的。 排队论(Queuing Theory)也称随机服务系统理论,就是为解决上述问题而发展的一门学科。它研究的内容有下列三部分: (i)性态问题,即研究各种排队系统的概率规律性,主要是研究队长分布、等待时间分布和忙期分布等,包括了瞬态和稳态两种情形。 (ii)最优化问题,又分静态最优和动态最优,前者指最优设计。后者指现有排队系统的最优运营。 (iii)排队系统的统计推断,即判断一个给定的排队系统符合于那种模型,以便根据排队理论进行分析研究。 这里将介绍排队论的一些基本知识,分析几个常见的排队模型。 §1 基本概念 1.1 排队过程的一般表示 下图是排队论的一般模型。 凡要求服务的对象统称为顾客,为顾客服务的人或物称为服务员,由顾客和服务员组成服务系统。对于一个服务系统来说,如果服务机构过小,以致不能满足要求服务的众多顾客的需要,那么就会产生拥挤现象而使服务质量降低。因此,顾客总希望服务机构越大越好,但是,如果服务机构过大,人力和物力方面的开支也就相应增加,从而会造成浪费,因此研究排队模型的目的就是要在顾客需要和服务机构的规模之间进行权衡决策,使其达到合理的平衡。 1.2 排队系统的组成和特征 一般的排队过程都由输入过程、排队规则、服务过程三部分组成,现分述如下: 1.2.1 输入过程 输入过程是指顾客到来时间的规律性,可能有下列不同情况: (i)顾客的组成可能是有限的,也可能是无限的。 (ii)顾客到达的方式可能是一个—个的,也可能是成批的。 (iii)顾客到达可以是相互独立的,即以前的到达情况对以后的到达没有影响;否则是相关的。 (iv)输入过程可以是平稳的,即相继到达的间隔时间分布及其数学期望、方差等数字特征都与时间无关,否则是非平稳的。

数学建模之线性规划

第一章 线性规划 §1 线性规划 在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。自从1947年G. B. Dantzig 提出求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。 1.1 线性规划的实例与定义 例1某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000元与3000元。生产甲机床需用B A 、机器加工,加工时间分别为每台2小时和1小时;生产乙机床需用C B A 、、三种机器加工,加工时间为每台各一小时。若每天可用于加工的机器时数分别为A 机器10小时、B 机器8小时和C 机器7小时,问该厂应生产甲、乙机床各几台,才能使总利润最大? 上述问题的数学模型:设该厂生产1x 台甲机床和2x 乙机床时总利润最大,则2 1,x x 应满足 (目标函数)2134m ax x x z += (1) s.t.(约束条件)???????≥≤≤+≤+0 ,781022122 121x x x x x x x (2) 这里变量21,x x 称之为决策变量,(1)式被称为问题的目标函数,(2)中的几个不等式 是问题的约束条件,记为s.t.(即subject to)。由于上面的目标函数及约束条件均为线性函数,故被称为线性规划问题。 总之,线性规划问题是在一组线性约束条件的限制下,求一线性目标函数最大或最小的问题。 在解决实际问题时,把问题归结成一个线性规划数学模型是很重要的一步,但往往也是困难的一步,模型建立得是否恰当,直接影响到求解。而选适当的决策变量,是我们建立有效模型的关键之一。 1.2 线性规划的Matlab 标准形式 线性规划的目标函数可以是求最大值,也可以是求最小值,约束条件的不等号可以是小于号也可以是大于号。为了避免这种形式多样性带来的不便,Matlab 中规定线性规划的标准形式为 b Ax x c x T ≤ that such min beq x Aeq =? ub x lb ≤≤ 其中c 和x 为n 维列向量,A 、Aeq 为适当维数的矩阵,b 、beq 为适当维数的列向 量。 例如线性规划 b Ax x c x T ≥ that such max

数学建模常用算法模型

数学模型的分类 按模型的数学方法分: 几何模型、图论模型、微分方程模型、概率模型、最优控制模型、规划论模型、马氏链模型等 按模型的特征分: 静态模型和动态模型,确定性模型和随机模型,离散模型和连续性模型,线性模型和非线性模型等 按模型的应用领域分: 人口模型、交通模型、经济模型、生态模型、资源模型、环境模型等。 按建模的目的分: 预测模型、优化模型、决策模型、控制模型等 一般研究数学建模论文的时候,是按照建模的目的去分类的,并且是算法往往也和建模的目的对应 按对模型结构的了解程度分: 有白箱模型、灰箱模型、黑箱模型等 比赛尽量避免使用,黑箱模型、灰箱模型,以及一些主观性模型。 按比赛命题方向分: 国赛一般是离散模型和连续模型各一个,2016美赛六个题目(离散、连续、运筹学/复杂网络、大数据、环境科学、政策) 数学建模十大算法 1、蒙特卡罗算法 (该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,比较好用的算法) 2、数据拟合、参数估计、插值等数据处理算法 (比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题 (建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现) 4、图论算法 (这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)

5、动态规划、回溯搜索、分治算法、分支定界等计算机算法 (这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法 (这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7、网格算法和穷举法 (当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法 (很多问题都是从实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法 (如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用) 10、图象处理算法 (赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的这些图形如何展示,以及如何处理就是需要解决的问题,通常使用Matlab进行处理) 算法简介 1、灰色预测模型(必掌握) 解决预测类型题目。由于属于灰箱模型,一般比赛期间不优先使用。 满足两个条件可用: ①数据样本点个数少,6-15个 ②数据呈现指数或曲线的形式 2、微分方程预测(高大上、备用) 微分方程预测是方程类模型中最常见的一种算法。近几年比赛都有体现,但其中的要求,不言而喻。学习过程中 无法直接找到原始数据之间的关系,但可以找到原始数据变化速度之间的关系,通过公式推导转化为原始数据的关系。 3、回归分析预测(必掌握) 求一个因变量与若干自变量之间的关系,若自变量变化后,求因变量如何变化; 样本点的个数有要求: ①自变量之间协方差比较小,最好趋近于0,自变量间的相关性小; ②样本点的个数n>3k+1,k为自变量的个数;

关于企业利益最大化的数学建模论文

《数学建模与数学实验综合实验》 课程设计任务书 一、设计目的 通过《数学建模与数学实验综合实验》课程设计,使学生能够将课堂上学到数学建模的理论知识与实际问题相联系,在提高学生学习兴趣的同时逐渐培养实际操作技能,强化对课程内容的了解。本课程设计不仅有助于学生提高学生的建模能力,而且也有助于培养学生门的创新意识和动手能力。 二、设计教学内容 本题要求运用数学建模知识解决人力资源管理中所遇到的问题。本论文针对各项工程对技术人员限制的实际需求,充分合理地对专业技术人员进行合理配置,最终给出了该模型下的最优解,使公司收益最大化。在模型求解过程中运用matlab软件得出模型中技术力量配置的最优解,最终解决了本题中的人力资源安排问题。 三、设计时间 2011—2012学年第1学期:第16周共计1周 教师签名: 2010年12月12日

摘要 随着现代企业的发展,企业之间的竞争力越来越大,如何尽量满足客户的要求并且符合公司的人力资源,使企业的收益最大,这就涉及人员的分配问题。 合理的人力资源配置应使人力资源的整体功能强化,使人的能力与岗位要求相对应。企业的岗位有层次与种类之分,它们占据着不同的位置,处于不同的能级水平。每个人也都具有不同水平的能力,在纵向上处于不同的能级位置。企业岗位人员的配置,应能做到能级对应,也就是说每一个人所具有的能级水平与所处的层次和岗位的能及要求相对应。 本文针对各项工程对技术人员限制的实际需求,充分合理地对专业技术人员进行合理配置,最终给出了该模型下的最优解,使公司收益最大化。 首先明确目标函数为公司最大收益,根据题目要求综合考虑了各项目客户对公司各专业技术人员人数的限制及总技术人员人数的限制,以及公司各类专业技术人员资源的限制等因素,将这些因素量化,即为本题的约束条件。再利用Matlab软件得出模型中技术力量配置的最优解,即得以解决了本题中的人力资源安排问题。 关键词:多目标规划,最优化模型,约束量化

线性规划与数学建模简介

第十三章线性规划与数学建模简介 【授课对象】理工类专业学生 【授课时数】6学时 【授课方法】课堂讲授与提问相结合 【基本要求】1、了解数学模型的基本概念、方法、步骤; 2、了解线性规划问题及其数学模型; 3、了解线性规划问题解的性质及图解法. 【本章重点】线性规划问题. 【本章难点】线性规划问题、线性规划问题解的性质、图解法. 【授课内容】 本章简要介绍数学建模的基本概念、方法、步骤,并以几个典型线性规划问题为例,介绍构建数学模型的方法及其解的性质。 §1 数学建模概述 一、数学建模 数学建模是构造刻划客观事物原型的数学模型并用以分析、研究和解决实际问题的一种科学方法。运用这种科学方法,必须从实际问题出发,遵循从实践到认识再实践的认识规律,围绕建模的目的,运用观察力、想象力的抽象概括能力,对实际问题进行抽象、简化,反复探索,逐步完善,直到构造出一个能够用于分析、研究和解决实际问题的数学模型。因此,数学建模是一种定量解决实际问题的创新过程。 二、数学模型的概念 模型是人们对所研究的客观事物有关属性的模拟。例如在力学中描述力、 量和加速度之间关系的牛顿第二定律F=ma就是一个典型的(数学)模型。一般地,可以给数学模型下这样的定义:数学模型是磁于以部分现实世界为一定目的而做的抽象、简化的数学结构。 通俗而言,数学模型是为了一定目的对原型所作的一种抽象模拟,它用数学 式子,数学符号以及程序、图表等描述客观事物的本质特征与内在联系。 三建立数学模型的方法和步骤 建立数学模型没有固定模式。下面介绍一下建立模型的大体过程: 1.建模准备 建模准备是确立建模课题的过程。这类课题是人们在生产和科研中为了使 认识和实践过一步发展必须解决的问题。因此,我们首先要发现这类需要解决的实际问题。其次要弄清所解决问题的目的要求并着手收集数据。进行建模筹划,组织必要的人力、物力等,确立建模课题。 2.模型假设 作为建模课题的实际问题都是错综复杂的、具体的。如果不对这些实际问题进行抽象简化,人们就无法准确把握它的本质属性,而模型假设就是根据建模的目的对原型进行抽象、简化,抓住反映问题本质属性的主要因素,简化掉那些非本质的

相关文档
最新文档