详解无线传感器网络定位技术

详解无线传感器网络定位技术
详解无线传感器网络定位技术

详解无线传感器网络定位技术

上述7 个性能指标不仅是评价无线传感器网络自身定位系统和算法的标准,也是其设计和实现的优化目标。为了实现这些目标的优化,有大量的研究工作需要完成。同时,这些性能指标相互关联,必须根据应用的具体需求做出权衡以设计合适的定位技术。

3 主要的WSN 定位方法

WSN 的定位方法较多,可以根据数据采集和数据处理方式的不同来进行分类。在数据采集方式上,不同的算法需要采集的信息有所侧重,如距离、角度、时间或周围锚节点的信息,其目的都是采集与定位相关的数据,并使其成为定位计算的基础。在信息处理方式上,无论是自身处理还是上传至其他处理器处理,其目的都是将数据转换为坐标,完成定位功能。目前比较普遍的分类方法有3 种:

1)依据距离测量与否可划分为:测距算法和非测距算法。其中测距法是对距离进行直接测量,非测距法依靠网络连通度实现定位,测距法的精度一般高于非测距法,但测距法对节点本身硬件要求较高,在某些特定场合,如在一个规模较大且锚节点稀疏的网络中,待定位节点无法与足够多的锚节点进行直接通信测距,普通测距方法很难进行定位,此时需要考虑用非测距的方式来估计节点之间的距离,两种算法均有其自身的局限性;2)依据节点连通度和拓扑分类可划分为:单跳算法和多跳算法。单跳算法较多跳算法来说更加的简便易行,但是存在着可测量范围过小的问题,多跳算法的应用更为广泛,当测量范围较广导致两个节点无法直接通信的情况较多时,需要多跳通信来解决;3)依据信息处理的实现方式可划分为:分布式算法和集中式算法。以监测和控制为目的算法因为其数据要在数据中心汇总和处理,大多使用集中式算法,其精度较高,但通信量较大。分布式算法是传感器节点在采集周围节点的信息后,在其自身的后台执行定位算法,该方法可以降低网络通信量,但目前节点的能量、计算能力及存储能力有限,复杂的算法难以在实际平台中实现。

普遍认为基于测距和非测距的算法分类更为清晰,本文以其为分类原则介绍主要的WSN 定位方法。此外,由于目前非测距算法大多为理论研究,且实用性较差,因此,本文将着重介绍基于测距的定位方法。

3.1 基于测距的算法

基于测距的算法通常分为2个步骤,首先利用某种测量方法测量距离(或角度),接着利用测得的距离(或角度)计算未知节点坐标。下面分别进行介绍。

3.1.1 距离的测量方法

本节将详细说明 3 种主流的测量方法,第一种是基于时间的方法,包括基于信号传输时间的方法(time of arrival,TOA)和基于信号传输时间差的方法(time difference of arrival,TDOA);第

二种是基于信号角度的方法(angle of arrival,AOA);第三种是基于信号接收信号强度的方法(received signal strengthindicator,RSSI)方法。下面分别进行介绍。

1)基于时间的方法

a. 基于信号传输时间的方法:

TOA 技术通过测量信号的传播时间来计算距离,该技术可分为单程测距和双程测距,单程测距即信号只传输一次,双程测距即信号到达后立即发回。前者需要两个通信节点之间具有严格的时间同步,后者则不需要时间同步,但是本地时钟的误差同样会造成很大的距离偏差。最典型的应用就是GPS 定位系统。

优点:测量方法简单且能取得较高的定位精度。

缺点:Ⅰ。精确计时难。通常传感节点之间通信都采用无线电信号,由于无线电的传输速度非常快,而传感节点之间的距离又较小,这使得计算发送节点和接收节点之间的信号传输时间非常困难。因此利用此技术定位的节点需要采用特殊硬件来产生用于发送和接收的慢速无线信号。Ⅱ。高精度同步难。

有些算法还需要接收节点和发送节点之间具有严格的时间同步,时间同步的问题现在也是无线传感器网络中的一个研究热点并且没有完全解决,这也限制了算法的实用性。Ⅲ。易受噪声影响。在空间传输的信号会受到各种噪声的影响,所以即使在不同的测量中得到了相同的信号传输时间也不能断定这两次测量中的发送节点和接收节点间的距离是相同的。

最早的TOA 距离估计算法是在非时间同步网络中利用对称双程测距协议进行测量的。之后,单边测距方法在后续的研究中被提出,如Harter 开发的Active Bat 定位系统[10],它由一系列固定在网格中的节点组成。固定节点从移动节点中接收超声波,并通过TOA 算法计算到移动节点的距离,在通信范围30 m 左右的情况下,其定位精度达到9 cm,相对精度9.3%。但TOA 只有在视距(line-of-sight,LOS)的情况下才比较精确,在非视距(none line-of-sight,NLOS)情况下,随着传播距离的增加测量误差也会相应增大。综述了在视距和非视距情况下多种TOA 距离估计方法所需要的复杂度,先验知识和实验结果等。Hangoo Kang 等人在多径环境下利用基于啁啾展频技术(chirp spread spectrum,CSS)和对称双边双向测距技术(symmetric double sided two-wayranging,SDS-TWR)的TOA 定位系统中提出了误差补偿算法,取得了较好的定位效果,在此基础上Andreas Lewandowski 等人提出了一种加权的TOA 算法,该算法应用于工业环境下,可提高系统容错性,降低自身对测距系统的干扰,在7 m×24.5 m 的范围内,测距误差小于3 m。

b. 基于信号传输时间差的方法:

TDOA 测距技术广泛应用于无线传感器网络的定位方案中。通常在节点上安装超声波收发器和射频收发器,测距时锚节点同时发送超声波和电磁波,接收节点通过两种信号到达时间差来计算两点之间距离。

优点:在LOS 情况下能取得较高的定位精度。

缺点:Ⅰ。硬件需求较高。传感节点上必须附加特殊的硬件声波或超声波收发器,这会增加传感节点的成本;Ⅱ。传输信号易受环境影响。声波或者超声波在空气中的传输特性和一般的无线电波不同,空气的温度、湿度或风速都会对声波的传输速度产生较大的影响,这就使得距离的估计可能出现一定的偏差,使用超声波与RF 到达时间差的测距范围为5~7 m,实用性不强,且超声波传播方向单一,不适合面向多点传播;Ⅲ。应用场合单一。测距的前提是发送节点和接收节点之间没有障碍物阻隔,在有障碍物的情况下会出现声波的反射、折射和衍射,此时得到的实际传输时间将变大,在这种传输时间下估算出的距离也将出现较大的误差。

由MIT 开发出的Cricket 室内定位系统最早采用了RF 信号与超声波信号组合的TDOA测距技术,在2 m×2 m×2.5 m 的范围内,该系统定位精度在10 cm以下,现已成为Crossbow 的商业化产品。加利福尼亚大学洛杉矶分校的Medusa 节点在AHLos定位系统之间传输距离为3 m 左右时,测距精度能够达到厘米级别。加州大学伯克利分校开发的Calamari定位系统均采用TDOA 超声波测距,在144 m2 的区域部署49 个节点,平均定位误差达到0.78 m,文献对于声波收发器的方向单一性问题,给出了两种解决方法:一是将多个传感器调整成向外发射的形状;二是在节点的平面上使用金属圆锥来均匀地传播和收集声波能量。结合TDOA 测距机制和NTP 协议时间同步原理,一些学者提出了时间同步与节点测距混合算法,结合基于到达时间差的测距机制和网络时间协议中的时钟同步机制,通过逆推时间非同步情况下相互测距的意义,不仅能实现时间同步,还可以实现相对测距甚至绝对测距。

基于时间的定位方法的定位精度虽高,但从上面的例子中可以看出其测距距离较短,且附加的硬件将增加节点的体积和功耗,不适于实际应用。

2)基于信号到达角度的方法

AOA 测距技术依靠在节点上安装天线阵列来获得角度信息。由于大部分节点的天线都是全向的,无法区分信号来自于哪个方向。因此该技术需要特殊的硬件设备如天线阵列或有向天线等来支持。

优点:能够取得不错的精度。

缺点:传感节点最耗能的部分就是通信模块,所以装有天线阵列的节点的耗能、尺寸以及价格都要超过普通的传感节点,与无线传感器网络低成本和低能耗的特性相违背,所以实用性较差。

关于AOA 定位的文献比较少,最早提出在室内采集方向信息,并以此实现定位的方法,它的硬件部分包括微控制器、RF 接收器、5 个排成“V”型的超声波接收器,其测量误差精度为5°。随后,一些学者提出了在只有部分节点有定位能力的情况下确定所有节点的方向和位置信息的算法。

3)基于接收信号强度的方法

RSSI 是在已知发射功率的前提下,接收节点测量接收功率,计算传播损耗,并使用信号传播模型将损耗转化为距离。

优点:低成本。每个无线传感节点都具有通信模块,获取RSSI 值十分容易,无需额外硬件。

缺点:1)锚节点数量需求多。由于RSSI 值在实际应用中的规律性较差,使得利用RSSI 信息进行定位的算法在定位精度以及实用性上存在缺陷。所以为了达到较高的定位精度,利用RSSI 信息进行定位的算法通常需要较多数量的锚节点。2)多路径反射、非视线问题等因素都会影响距离测量的精度。

早期的RSSI 距离测量方法有Hightower 等人设计的室内定位SpotON tags 系统,通过RSSI 方法来估计两点间的距离,通过节点间的相互位置来进行定位,在边长3 m 的立方体内,其定位精度在1 m 以内。目前,基于RSSI 值的距离测量方法可以分为2 种,一种是需要预先测试环境信息的方法,即在实验开始前,对定位的区域进行大量的RSSI 值测试,将不同点得到的RSSI 值保存到数据库中,建成场强图或拟合曲线,在实际测试时查询和调用。另外一种是无需预先测试环境信息的方法,直接在定位区域进行节点布置和定位,如双曲线模型法,迭代的分布式算法,结合露珠洪泛思想引入RSSI 机制的HCRL(hop-count-ratio based localization)算法等。

总体来说,需要预先测试环境参数的方法在实际定位中计算量小,这类方法只需要简单的查表或根据拟合曲线进行计算,其缺点是实验前需要做大量的准备工作,而且一旦环境改变则预先建立的模型将不再适用。无需预先测试环境参数的方法需要定位引擎的计算操作,往往具有复杂的计算过程,但适应性较强。

以上几种测距方法各有利弊,以2009 年发表的基于测距法的文献来看,研究RSSI 方法的大约占了以上几种方法总数的52%,TOA 方法25%,TDOA 方法13%和AOA 方法10%,其比例图如图1 所示,从实用性的角度来看,基于RSSI 的定位方法更简便易行,因此,基于RSSI 测距方法的研究占基于测距算法研究总数的一半以上。

图1 各类方法研究比例图

3.1.2 节点坐标计算方法

无线传感器节点定位过程中,当未知节点获得与邻近参考节点之间的距离或相对角度信息后,通常使用以下原理计算自己的位置。

1)三边测量法是一种基于几何计算的定位方法,如图2 所示,已知3 个节点A,B,C 的坐标以及3 点到未知节点的距离就可以估算出该未知点D 的坐标,同理也可以将这个结果推广到三维的情况。

2)三角测量法也是一种基于几何计算的定位方法,如图3 所示,已知3 个节点A,B, C 的坐标和未知节点D 与已知节点A,B,C 的角度,每次计算2 个锚节点和未知节点组成的圆的圆心位置如已知点A,C与D的圆心位置O,由此能够确定3 个圆心的坐标和半径。最后利用三边测量法,根据求得的圆心坐标就能求出未知节点D 的位置。

图2 三边测量法原理示意图

图3 三角测量法原理示意图

3)极大似然估计法。如图4 所示,已知n 个点的坐标和它们到未知节点的距离,列出坐标与距离的n 个方程式,从第1 个方程开始,每个方程均减去最后一个方程,得到n?1 个方程组成的线性方程组,最后用最小二乘估计法可以得到未知节点的坐标。

图4 极大似然估计法原理示意图

4)极小极大定位算法,在无线传感器网络定位中也被广泛使用。如图5 所示,计算未知节点与锚节点的距离,接着锚节点根据与未知节点的距离d,以自身为中心,画以2d 为边长的正方形,所有锚节点做出的正方形中重叠的部分的质心就是未知节点的坐标。针对极小极大定位算法对锚节点密度依赖过高的问题,有学者利用锚节点位置信息提出了分步求精定位算法,该算法在只利用适量的锚节点的情况下可达到较高定位精度。

图5 极小极大定位算法原理示意图

文献[35]在12 m×19.5 m 的范围内对上述三边测量法、极大似然估计法和极小极大法方法的计算量和精度进行了测试。实验表明,极大似然估计法的计算量最大,锚节点小于10 个时,极小极大法的计算量最小,在锚节点较少情况下,三边法和极小极大法的精确度较高,而当锚节点超过6 个时,极大似然估计法精确度更高。因此,在计算坐标时要根据实际情况合理选择坐标计算方法。另外,针对现存的定位算法都是假设信标节点不存在误差,与真实情况不符的情况,文献[36]提出信标优化选择定位算法(OBS),即通过减小定位过程中的误差传递来提高定位精度。

3.2 基于非测距的算法

基于非测距的算法与测距法的区别在于前者不直接对距离进行测量,而是使用网络的连通度来估计节点距锚节点的距离或坐标,由于方法的不确定性,基于非测距的方法众多。下面按时间顺序,介绍部分典型非测距定位算法。

Bulusu 等人提出了一个单跳,低功耗的算法,它利用锚节点的连通性来确定坐标。未知节点的坐标通过计算无线电范围内所有节点的质心获得。节点将自己定位在与它们表现相近节点的质心处,该算法虽然简单,但误差较大,需要的锚节点密度较高。约90%节点的定位精度在锚节点分布间距的1/3以内。

He 等人提出了APIT 算法,目标节点任选3 个相邻锚节点,测试未知节点是否位于它们所组成的三角形中。使用不同锚节点组合重复测试直到穷尽所有组合或达到所需定位精度。最后计算包含目标节点的所有三角形的交集质心,并以这一点作为目标节点位置,该算法需要较高的锚节点密度,其定位精度为40%。

Niculescu 等人提出了DV-Hop 定位算法,它从网络中收集相邻节点信息,计算不相邻节点之间最短路径。DV-Hop 算法使用已知位置节点的坐标来估测一个跳跃距离,并使用最短路径的跳跃距离估计未知节点和锚节点的距离,该算法仅适用于各向同性的密集网络,当锚节点密度为10%时,定位误差为33%。

Radhika 等人提出的Amorphous Positioning 算法,使用离线的跳跃距离估测,同DV-Hop 算法一样,通过一个相邻节点的信息交换来提高定位的估测值,需要预知网络连通度,当网络连通度为15 时,定位精度20%。

Savvides 等人介绍了一种N-Hop multilateration算法,使用卡尔曼滤波技术循环求精,该算法避免了传感器网络中多跳传输引起的误差积累并提高了精度,节点通信距离为15 m,当锚节点密度为20%,测距误差为1 cm 时,定位误差为3 cm。

Capkun 等人提出了self-positioning algorithm(SPA),该算法首先根据通信范围在各个节点建立局部坐标系,通过节点间的信息交换与协调,建立全局坐标系统,网络中的节点可以在与它相隔N 跳的节点建立的坐标系中计算自己的位置。

综上可知,非测距算法多为理论研究,其定位精度普遍较低并且与网络的连通度及节点的密集程度密切相关,因此,其适用范围有一定的局限性,在进行无线传感器网络定位技术研究过程中应更多地考虑基于测距的定位算法。

4 新型WSN 定位研究分析

除了传统的定位方法,新型的无线传感器网络定位算法也逐渐出现,如利用移动锚节点来定位未知节点、在三维空间内定位未知节点、以及采用智能定位算法来提高定位精度等,下面分别介绍。

4.1 基于移动锚节点的定位算法

利用移动锚节点定位可以避免网络中多跳和远距离传输产生的定位误差累计,并且可以减少锚节点的数量,进而降低网络的成本。如MBAL(mobilebeacon assisted localization scheme)定位方法,锚节点在移动过程中随时更新自身的坐标,并广播位置信息。未知节点测量与移动节点处于不同位置时的距离,当得到3 个或3 个以上的位置信息时,就可以利用三边测量法确定自己的位置,进而升级为锚节点。此外,移动锚节点用于定位所有未知节点所移动的路径越长则功耗越大,因此对移动锚节点的活动路径进行合理规划可以减小功耗。

文献[48]提出了一种基于加权最小二乘法的移动锚节点定位距离估计算法,作者首先建立一个移动模型,锚节点沿着线性轨迹移动,使用加权最小二乘法来减小距离估计误差,并在Cramér-Raobound (CRB)的基础上分析了距离估计的最小误差边界,该算法在距离估计和位置估计方面都有较好的性能。

利用移动锚节点自身的可定位性和可移动性可定位网络局部相关节点,但移动锚节点的路径规划算法和采取的定位机制需要深入考虑。2009 年发表的关于WSN 定位的文章中,约25%是关于移动节点定位的。

4.2 三维定位方法

随着传感器网络的空间定位需求不断提升,三维空间场景下的定位也成为了一个新的研究方向。

目前的三维定位算法包括基于划分空间为球壳并取球壳交集定位的思想,提出的对传感器节点进行三维定位的非距离定位算法APIS(approximatepoint in sphere)。在此基础上针对目前三维定位算法的不足,提出的基于球面坐标的动态定位机制,该机制将定位问题抽象为多元线性方程组求解问题,最终利用克莱姆法则解决多解、无解问题。建立了WSN 空间定位模型并结合无线信道对数距离路径衰减模型,为解决不适定型问题提出了Tikhonov 正则化方法,并结合偏差远离方便的得到了较优的正则化参数,在3.5 m×6 m×3 m 的区域内定位精度可控制在2 m。

三维定位方法可扩展WSN 的应用场合,目前三维定位在许多方面还有待完善,如获取更准确的锚节点需要寻求更精确的广播周期和消息生存周期,缩减定位时间需要改进锚节点的选择和过滤机制等。

4.3 智能定位算法

随着电子技术的发展和芯片计算能力的提高,传感器网络节点本身的性能也有提升,复杂算法也可以在网络中实现。因此,智能定位算法也纷纷被提出。

对于无线传感器网络的户外三维定位,将锚节点固定在直升机上通过GPS 实时感知自身位置,采用基于RSSI 的测距方法,利用粒子滤波定位技术实现定位,该方法不需要任何关于未知节点的先验知识,非常适合应用于户外定位。

神经网络对于解决无线传感器网络的定位问题是一个切实可行的办法,将3 种神经网络:多层感知神经网络,径向基函数神经网络和递归神经网络与卡尔曼滤波的2 个变形进行比较,可以根据不同情况下的定位需求灵活选择定位方法。使用神经网络和网格传感器训练的灵活的模型,可以提高定位精度,且不需要额外的硬件支持。网络训练每隔一段时间进行一次更新来最小化误差,并且通过增加网格节点密度来提高定位精度。

对于节点定位中的非视距问题,常规的办法是采用机器学习中的支持向量回归(support vector regression,SVR)方法进行定位以降低误差,但其定位精度仍然受到一定的非视距误差影响,为了降低这种影响,研究人员提出了基于直推式回归的定位算法。利用锚节点的坐标和TOA 信息并借用核函数直接推导出未知节点的位置,进一步提高定位精度。

虽然智能定位算法已经成为一个新的研究方向,但由于WSN 网络本身属于低能耗的网络,单个节点的计算能力还比较低,目前智能定位算法不普遍适用于实际的WSN 定位系统,但随着低功耗技术、微处理器技术、FPGA 技术的发展,智能定位算法将在未来的定位系统中得到广泛的应用。

5 研究前景与应用分析

截至目前,无线传感器网络定位研究已广泛开展并取得了许多研究成果,但仍存在着一些没有被解决或被发现的问题,目前最为关键的问题仍然是WSN 节点的能耗问题,一切的定位算法应该在精度和能量消耗上选取一个较为折衷的效果。下面将对目前存在的问题及相应可能的解决方案进行介绍。

1)实用性差。大部分基于非测距的定位算法只是停留在理论研究阶段,且大都是在仿真环境下进行的,需要假设很多不确定因素,而这些因素在实际应用中往往不能满足,则这些算法就失去了实际的意义。因此定位算法的设计应该更多的从实际应用上考虑,结合实际应用情况设计实用的定位算法。

2)应用环境单一。多数的算法都是针对特定的应用场景进行设计的,也就是说,每个算法都只能解决特殊的问题或应用于特定的场景,一旦环境发生变动,算法或系统的测量误差将增大甚至不再适用。因此,探索更具通用性的定位算法或定位系统,将其应用于更为复杂多变的环境中是一项新的挑战。

3)受硬件限制。在实际定位中,一些算法由于受到传感器节点硬件成本和性能的限制,如某些算法需要在定位节点上增加GPS,超声波收发器,有向天线阵列等设备,增加了节点硬件成本,阻碍了其在实际定位系统中的应用。因此,算法设计应多考虑WSN 节点的实际情况,如只在部分节点上增加额外硬件,或根据实际节点资源受限情况采用其他定位算法等。

4)能量受限。测量精度、容错性和能量消耗等问题也是目前无线传感器网络研究的热点,更是定位技术研究的热点。通常情况下,高测量精度和低能量消耗不可兼得,往往需要在测量精度和能量消耗上进行有效的折衷。因此,可以在提高储能设备的容量,或利用可能的外界环境资源为节点提供能量方向进行研究,另外,提出高效、节能、符合实际情况的无线传感器网络定位算法将具有现实的意义。

5)安全和隐私问题。在大范围部署的无线传感器网络中,安全和隐私的问题也是一个主要的研究方向。一方面,一些应用需要节点位置信息,另一方面,向一些不需要知道位置的节点透露位置信息则会使网络面临安全问题。此外,鉴于无线传感器网络的性质,集中式算法在后台处理定位程序也使得节点的位置信息通过层层传递被过多的节点所知晓,因此分布式算法相对于集中式算法可以减少信息传递次数,增强网络安全性,另外,在网络通信中使用信息加密也可以提高网络安全性。就2009 年发表的定位相关文章来说,每4 篇发表的文章中就有1 篇提出的是分布式算法。

未来的无线传感器网络定位在解决上述问题之后将广泛应用于各类领域,包括安全定位、变化的环境、三维空间等。

6 结论

结合近年来无线传感器网络定位技术的发展状况,对无线传感器网络定位的基本概念、评价标准以及国内外研究现状进行了概述,重点对基于测距和基于非测距的无线传感器网络定位算法进行了分析,并列举了一些新型WSN 定位的算法,总结了目前无线传感器网络定位领域研究存在的问题和一些可以研究的内容和方向。希望本文能够为无线传感器网络定位相关领域的研究者提供一些参考和借鉴。

无线传感器网络技术试题

无线传感器网络技术试 题 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

一、填空题 1. 传感器网络的三个基本要素:传感器、感知对象、用户(观察者) 2. 传感器网络的基本功能:协作式的感知、数据采集、数据处理、发布感知信息 3. 无线传感器节点的基本功能:采集数据、数据处理、控制、通信 4. 传感节点中处理部件用于协调节点各个部分的工作的部件。 5. 基站节点不属于传感器节点的组成部分 6. 定向扩散路由机制可以分为三个阶段:兴趣扩展阶段、梯度建立阶段、路径加强阶段 7. 无线传感器网络特点:大规模网络、自组织网络、可靠的网络、以数据为中心的网络、应用相关的网络 8. NTP时间同步协议不是传感器网络的的时间同步机制。 物理层。介质访问控制层 10. 从用户的角度看,汇聚节点被称为网关节点。 11. 数据融合的内容主要包括:多传感器的目标探测、数据关联、跟踪与识别、情况评估和预测 13. 传感器网络的电源节能方法:_休眠(技术)机制、__数据融合 14. 分布式系统协同工作的基础是时间同步机制 15. 无线网络可以被分为有基础设施的网络与没有基础设施的网络,在无线传感器网络,Internet网络,WLan网络,拨号网络中,无线传感器网络属于没有基础设施的网络。 16. 传感器网络中,MAC层与物理层采用的是IEEE制定的IEEE协议

17. 分级结构的传感器网络可以解决平面结构的拥塞问题 18. 以数据为中心特点是传感器网络的组网特点,但不是Ad-Hoc的组网特点 19. 为了确保目标节点在发送ACK过程中不与其它节点发生冲突,目标节点使用了SIFS帧间间隔 20. 典型的基于竞争的MAC协议为CSMA 二、选择题 1.无线传感器网络的组成模块分为:通信模块、()、计算模块、存储模块和电源模块。A A.传感模块模块 C网络模块 D实验模块 2..在开阔空间无线信号的发散形状成()。A A.球状 B网络 C直线 D射线 3.当前传感器网络应用最广的两种通信协议是()D A. B. C. D. 4.ZigBee主要界定了网络、安全和应用框架层,通常它的网络层支持三种拓扑结构,下列哪种不是。D A.星型结构、B网状结构C簇树型结构D树形结构 5.下面不是传感器网络的支撑技术的技术。B A.定位技术B节能管理C时间同步D数据融合 6.下面不是无线传感器网络的路由协议具有的特点D A.能量优先 B.基于局部拓扑信息 C.以数据为中心 D预算相关 7.下面不是限制传感器网络有的条件C A电源能量有限 B通信能力受限 C环境受限 D计算和存储能力受限

基于无线传感器网络的环境监测系统设计与实现

南京航空航天大学 硕士学位论文 基于无线传感器网络的环境监测系统设计与实现 姓名:耿长剑 申请学位级别:硕士 专业:电路与系统 指导教师:王成华 20090101

南京航空航天大学硕士学位论文 摘要 无线传感器网络(Wireless Sensor Network,WSN)是一种集成了计算机技术、通信技术、传感器技术的新型智能监控网络,已成为当前无线通信领域研究的热点。 随着生活水平的提高,环境问题开始得到人们的重视。传统的环境监测系统由于传感器成本高,部署比较困难,并且维护成本高,因此很难应用。本文以环境温度和湿度监控为应用背景,实现了一种基于无线传感器网络的监测系统。 本系统将传感器节点部署在监测区域内,通过自组网的方式构成传感器网络,每个节点采集的数据经过多跳的方式路由到汇聚节点,汇聚节点将数据经过初步处理后存储到数据中心,远程用户可以通过网络访问采集的数据。基于CC2430无线单片机设计了无线传感器网络传感器节点,主要完成了温湿度传感器SHT10的软硬件设计和部分无线通讯程序的设计。以PXA270为处理器的汇聚节点,完成了嵌入式Linux系统的构建,将Linux2.6内核剪裁移植到平台上,并且实现了JFFS2根文件系统。为了方便调试和数据的传输,还开发了网络设备驱动程序。 测试表明,各个节点能够正确的采集温度和湿度信息,并且通信良好,信号稳定。本系统易于部署,降低了开发和维护成本,并且可以通过无线通信方式获取数据或进行远程控制,使用和维护方便。 关键词:无线传感器网络,环境监测,温湿度传感器,嵌入式Linux,设备驱动

Abstract Wireless Sensor Network, a new intelligent control and monitoring network combining sensor technology with computer and communication technology, has become a hot spot in the field of wireless communication. With the improvement of living standards, people pay more attention to environmental issues. Because of the high maintenance cost and complexity of dispose, traditional environmental monitoring system is restricted in several applications. In order to surveil the temperature and humidity of the environment, a new surveillance system based on WSN is implemented in this thesis. Sensor nodes are placed in the surveillance area casually and they construct ad hoc network automatieally. Sensor nodes send the collection data to the sink node via multi-hop routing, which is determined by a specific routing protocol. Then sink node reveives data and sends it to the remoted database server, remote users can access data through Internet. The wireless sensor network node is designed based on a wireless mcu CC2430, in which we mainly design the temperature and humidity sensors’ hardware and software as well as part of the wireless communications program. Sink node's processors is PXA270, in which we construct the sink node embedded Linux System. Port the Linux2.6 core to the platform, then implement the JFFS2 root file system. In order to facilitate debugging and data transmission, the thesis also develops the network device driver. Testing showed that each node can collect the right temperature and humidity information, and the communication is stable and good. The system is easy to deploy so the development and maintenance costs is reduced, it can be obtained data through wireless communication. It's easy to use and maintain. Key Words: Wireless Sensor Network, Environment Monitoring, Temperature and Humidity Sensor, Embedded Linux, Device Drivers

无线传感器网络面临的安全隐患及安全定位机制

无线传感器网络面临的安全隐患及安全定位机制 随着通信技术的发展,安全问题显得越来越重要。在现实生活中,有线网络已经深入到千家万户:互联网、有线电视网络、有线电话网络等与人们生活的联系越来越紧密,已经成为必不可少的一部分,有线网络的安全问题已经能够得到有效的解决。在日常生活中,人们可以放心的使用这些网络,利用它来更好的生活和学习。然而随着无线通信技术的不断发展,无线网络在日常生活中已占据重要的地位,如无线LAN技术、3G技术、4G技术等,同时也有许多新兴的无线网络技术如无线传感器网络, Ad-hoc 等有待进一步发展。随着人们对无线通信的依赖越来越强烈,无线通信的安全问题也面临着重要的考验。本章首先介绍普通网络安全定位研究方法,随后介绍无线传感器网络存在的安全隐患以及常见的网络攻击模型,分析比较这些攻击模型对定位的影响,最后介绍已有的一些安全定位算法,为后续章节的相关研究工作打下基础。 3.1 安全定位研究方法 不同的定位算法会面临着不同的安全方面的问题,安全定位的研究方法可以 采用图 3-1 所示的流程来进行。

图3-1安全定位方法研究流程图 Figure 3-1 Flowchart of security positi oning research method 在研究中首先要找出针对不同定位算法的攻击模型,分析这些攻击对定位精 度所造成的影响,然后从两方面入手来解决这个安全问题或隐患:一方面改进定 位算法使得该定位算法不易受到来自外界的攻击,另一方面可以设计进行攻击检 测判断及剔除掉受到攻击的节点的安全定位算法或者把已有的安全算法进行改进使之能够应用于无线传感器网络定位,还可以从理论上建立安全定位算法的数学模型,分析各种参数对系统性能的影响,最后根据这个数学模型对算法进行仿真,并把仿真结果作为反馈信息,对安全定位算法进一步优化和改进,直到达到最优为止。 3.2安全隐患 由于无线传感器网络随机部署、网络拓扑易变、自组织成网络和无线链路等特点,使其面临着更为严峻的安全隐患。在传感器网络不同的定位算法中具有不同的定位思想,所面临的安全问题也不尽相同。攻击者会利用定位技术的弱点设计不同的攻击手段,因此了解各定位系统自身存在的安全隐患和常见的攻击模型对安全定位至

无线传感器网络技术试题

1. 传感器网络的三个基本要素:传感器、感知对象、用户(观察者) 2. 传感器网络的基本功能:协作式的感知、数据采集、数据处理、发布感知信息 3. 无线传感器节点的基本功能:采集数据、数据处理、控制、通信 4. 传感节点中处理部件用于协调节点各个部分的工作的部件。 5. 基站节点不属于传感器节点的组成部分 6. 定向扩散路由机制可以分为三个阶段:兴趣扩展阶段、梯度建立阶段、路径加强阶段 7. 无线传感器网络特点:大规模网络、自组织网络、可靠的网络、以数据为中心的网络、应用相关的网络 8. NTP时间同步协议不是传感器网络的的时间同步机制。 9. IEEE 802.15.4标准主要包括:物理层。介质访问控制层 10. 从用户的角度看,汇聚节点被称为网关节点。 11. 数据融合的内容主要包括:多传感器的目标探测、数据关联、跟踪与识别、情况评估和预测 13. 传感器网络的电源节能方法:_休眠(技术)机制、__数据融合 14. 分布式系统协同工作的基础是时间同步机制 15. 无线网络可以被分为有基础设施的网络与没有基础设施的网络,在无线传感器网络,Internet 网络,WLan 网络,拨号网络中,无线传感器网络属于没有基础设施的网络。 16. 传感器网络中,MAC层与物理层采用的是IEEE制定的IEEE 802.15协议 17. 分级结构的传感器网络可以解决平面结构的拥塞问题 18. 以数据为中心特点是传感器网络的组网特点,但不是Ad-Hoc的组网特点 19. 为了确保目标节点在发送ACK过程中不与其它节点发生冲突,目标节点使用了SIFS帧间间隔 20. 典型的基于竞争的MAC协议为CSMA

(中文)基于无线传感器网络桥梁安全监测系统

基于无线传感器网络的桥梁安全检测系统 摘要 根据桥梁监测无线传感器网络技术的桥梁安全监测系统,以实现方案的安全参数的需要;对整个系统的结构和工作原理的节点集、分簇和关键技术,虽然近年来在无线传感器网络中,已经证明了其潜在的提供连续结构响应数据进行定量评估结构健康,许多重要的问题,包括网络寿命可靠性和稳定性、损伤检测技术,例如拥塞控制进行了讨论。 关键词:桥梁安全监测;无线传感器网络的总体结构;关键技术 1 阻断 随着交通运输业的不断发展,桥梁安全问题受到越来越多人的关注。对于桥梁的建设与运行规律,而特设的桥梁检测的工作情况,起到一定作用,但是一座桥的信息通常是一个孤立的片面性,这是由于主观和客观因素,一些桥梁安全参数复杂多变[1]。某些问题使用传统的监测方法难以发现桥梁存在的安全风险。因此长期实时监测,预报和评估桥梁的安全局势,目前在中国乃至全世界是一个亟待解决的重要问题。 桥梁安全监测系统的设计方案,即通过长期实时桥跨的压力、变形等参数及测试,分析结构的动力特性参数和结构的评价科关键控制安全性和可靠性,以及问题的发现并及时维修,从而确保了桥的安全和长期耐久性。 近年来,桥梁安全监测技术已成为一个多学科的应用,它是在结构工程的传感器技术、计算机技术、网络通讯技术以及道路交通等基础上引入现代科技手段,已成为这一领域中科学和技术研究的重点。 无线传感器网络技术,在桥梁的安全监测系统方案的实现上,具有一定的参考价值。 无线传感器网络(WSN)是一种新兴的网络科学技术是大量的传感器节点,通过自组织无线通信,信息的相互传输,对一个具体的完成特定功能的智能功能的协调的专用网络。它是传感器技术的一个结合,通过集成的嵌入式微传感器实时监控各类计算机技术、网络和无线通信技术、布式信息处理技术、传感以及无线发送收集到的环境或各种信息监测和多跳网络传输到用户终端[2]。在军事、工业和农业,环境监测,健康,智能交通,安全,以及空间探索等领域无线传感器网络具有广泛应用前景和巨大的价值。 一个典型的无线传感器网络,通常包括传感器节点,网关和服务器,如图1

无线传感器网络定位方法综述

第36卷 增刊Ⅰ2008年 10月 华 中 科 技 大 学 学 报(自然科学版) J.Huazhong Univ.of Sci.&Tech.(Natural Science Edition )Vol.36Sup.Ⅰ Oct. 2008 收稿日期:2008207215. 作者简介:郝志凯(19832),男,博士研究生,E 2mail :zk -hao @https://www.360docs.net/doc/d610038551.html,. 基金项目:国家高技术研究发展计划资助项目(2006AA11Z225);国家自然科学基金资助项目(60635010, 60605026). 无线传感器网络定位方法综述 郝志凯 王 硕 (中国科学院自动化研究所复杂系统与智能科学实验室,北京100190) 摘要:介绍了国内外研究机构在无线传感器网络定位方法方面开展的研究工作,并对这些研究工作进行了归纳和总结.定位的基本方法分为距离式定位和非距离式定位.距离式定位是通过测量距离或角度进行位置估计,测量数据的精度对定位精度有很大影响.非距离式定位是通过节点间的hop 数或估计距离计算节点的坐标,这种方法不需要测量距离或角度,利用估计距离代替真实距离,算法简单但精度不高.无线传感器网络中定位方法的应用需要针对不同的应用场合,综合考虑节点的规模、成本及系统对定位精度等要求来进行设计和选择. 关 键 词:无线传感器网络;定位方法;距离式定位;非距离式定位;相对定位 中图分类号:TN919.2;TP732 文献标识码:A 文章编号:167124512(2008)S120224204 Survey on localization algorithms for wireless sensor net w orks H ao Zhi k ai W ang S huo (Laboratory of Complex Systems and Intelligence Science ,Institute of Automation , Chinese Academy of Sciences ,Beijing 100190) Abstract :Current researches in wireless sensor networks (WSNs ′ )localization algorit hms are int ro 2duced ,and t hese researches are analyzed and concluded.The p recision of t he nodes ′locations are im 2portant for t he data ′s effectiveness in WSNs ′.The localization algorit hms are divided into range 2based and range 2free.Range 2based algorit hms use t he measured distance and angle to calculate t he nodes ′coordinates.However ,t he range 2f ree researches use hop s or evaluated distance to localization ,which are simple but low 2precision.In different occasions ,t he algorit hm should be taken account in t he net 2work ′s size ,co st ,p recision and so on. K ey w ords :wireless sensor networks (WSNs ′ );localization ;range 2based ;range 2f ree ;relative po sitio 2ning 目前广泛使用的全球卫星导航定位系统GPS 可用来确定携带者的绝对位置,但不适合在 无线传感器网络中大量使用.主要有以下原因[1]:a .成本高.无线传感器网络中的节点数量多、分 布密集,如果各节点都配备GPS 接收器成本很高;b .能源限制.网络中的节点通常是通过内部电池进行供电,由于其工作环境有时在森林、山地等人迹罕至的地方,对其进行电源更换困难;c .工作环境限制.节点有时会分布在室内等电磁 波较难到达的环境中,这种工作环境下GPS 无法完成定位任务;d .尺寸较大.由于上述种种原因使得GPS 不能广泛用在无线传感器网络系统的节点上,这就需要发展适合于无线传感器网络应用的节点定位方法. 鉴于无线传感器网络节点在能耗、计算能力、通信能力等方面的限制,其节点的定位方法应该具有分布式、低复杂性、精度较高、通用性较好等特点,国内外的研究机构已开展了大量工作[2~9].

基于无线传感器网络的智能交通系统的设计

一、课题研究目的 针对目前中国的交叉路口多,车流量大,交通混乱的现象研究一种控制交通信号灯的基于无线传感器的智能交通系统。 二、课题背景 随着经济的快速发展,生活方式变得更加快捷,城市的道路也逐渐变得纵横交错,快捷方便的交通在人们生活中占有及其重要的位置,而交通安全问题则是重中之重。据世界卫生组织统计,全世界每年死于道路交通事故的人数约有120 万,另有数100 万人受伤。中国拥有全世界1. 9 %的汽车,引发的交通事故占了全球的15 % ,已经成为交通事故最多发的国家。2000 年后全国每年的交通事故死亡人数约在10 万人,受伤人数约50万,其中60 %以上是行人、乘客和骑自行车者。中国每年由于汽车安全方面所受到的损失约为5180 亿(人民币),死亡率为9 人/ 万·车,因此,有效地解决交通安全问题成为摆在人们面前一个棘手的问题。 在中国,城市的道路纵横交错,形成很多交叉口,相交道路的各种车辆和行人都要在交叉口处汇集通过。而目前的交通情况是人车混行现象严重,非机动车的数量较大,路口混乱。由于车辆和过街行人之间、车辆和车辆之间、特别是非机动车和机动车之间的干扰,不仅会阻滞交通,而且还容易发生交通事故。根据调查数据统计,我国发生在交叉口的交通事故约占道路交通事故的1/ 3,在所有交通事故类型中居首位,对交叉口交通安全影响最大的是冲突点问题,其在很大程度上是由于信号灯配时不合理(如黄灯时间太短,驾驶员来不及反应),以及驾驶员不遵循交通信号灯,抢绿灯末或红灯头所引发交通流运行的不够稳定。随着我国经济的快速发展,私家车也越来越多,交通控制还是延续原有的定时控制,在车辆增加的基础上,这种控制弊端也越来越多的体现出来,造成了十字交叉路口的交通拥堵和秩序混乱,严重的影响了人们的出行。智能交通中的信号灯控制显示出了越来越多的重要性。国外已经率先开展了智能交通方面的研究。 美国VII系统(vehicle infrastructure integration),利用车辆与车辆、车辆与路边装置的信息交流实现某些功能,从而提高交通的安全和效率。其功能主要有提供天气信息、路面状况、交叉口防碰撞、电子收费等。目前发展的重点主要集中在2个应用上: ①以车辆为基础; ②以路边装置为基础。欧洲主要是CVIS 系统(cooperative vehicle infrastructure system)。它有60 多个合作者,由布鲁塞尔的ERTICO 组织统筹,从2006 年2 月开始到2010年6月,工作期为4年。其目标是开发出集硬件和软件于一体的综合交流平台,这个平台能运用到车辆和路边装置提高交通管理效率,其中车辆不仅仅局限于私人小汽车,还包括公共交通和商业运输。日本主要的系统是UTMS 21 ( universal traffic management system for the 21st century , UTMS 21)。是以ITS 为基础的综合系统概念,由NPA (National Police Agency) 等5个相关部门和机构共同开发的,是继20 世纪90 年代初UTMS 系统以来的第2代交通管理系统,DSSS是UTMS21中保障安全的核心项目,用于提高车辆与过街行人的安全。因此,从国外的交通控制的发展趋势可以看出,现代的交通控制向着智能化的方向发展,大多采用计算机技术、自动化控制技术和无线传感器网络系统,使车辆行驶和道路导航实现智能化,从而缓解道路交通拥堵,减少交通事故,改善道路交通环境,节约交通能源,减轻驾驶疲劳等功能,最终实现安全、舒适、快速、经济的交通环境。

基于arduino的无线传感器网络室内定位方法的研究大学论文

摘要 无线传感器网络(WSN,Wireless Sensor Network)是近年来迅速发展并受到普遍重视的新型网络技术,它的出现和发展给人类的生活和生产的各个领域带来了深远的影响。无线传感器网络节点定位技术是无线传感器网络应用研究的基础。目前,已有多种定位技术被应用于室内定位中,尤其是基于接收信号强度(RSSI,Received Signal Strength Indication)的定位技术以其低功耗、低成本、易于实现等优点,得到了无线传感器网络研究学者们的青睐。 本文重点研究了基于RSSI的室内定位的关键技术,主要包括定位模型分析和定位算法设计。首先,为了获得较为精确的定位,根据RSSI测距原理和无线信号传播衰减模型在设定的室内环境进行多次实验,通过计算及均值处理等方法反复调整以获得标准的定位模型参数,得到高精度的等效距离。接着,根据三边定位算法原理简化定位算法,建立更为简单的定位模型,采用双边定位得到两个可能的定位点,再利用RSSI测距原理对两个定位点进行择优选择确定定位点。最后,在Arduino开发平台上对参考节点与未知节点这两类iDuino节点的室内定位模型进行了软件开发设计和程序开发。在设定的室内环境部署iDuino节点,搭建实验定位模型,并实现了定位。 关键词:无线传感器网络,节点,室内定位,RSSI,Arduino

ABSTRACT Wireless sensor network (WSN) is developed rapidly and universally emphasized as a new network technology in recent years, the advent and development of WSN have had a profound and lasting impact on the life and all areas of production of human beings. Wireless nodes localization technology is the basis in the application and studies of wireless sensor network. There are a variety of positioning technology have been used in indoor location at present, especially the based on RSSI (received signal strength) positioning technology gets a great preference from many scholars of studies of wireless sensor network with the advantages of low power consumption, low cost and easy to realize. This paper mainly studies the key technology of indoor positioning based on RSSI, which mainly includes the positioning model analysis and positioning algorithm design. First, in order to obtain more accurate positioning, we perform several experiments according to the RSSI ranging principle and wireless signal propagation attenuation model in the setting of indoor environment, and get accurate positioning model parameters and equivalent distance by the methods of calculation and mean processing. Then, we simplify Trilateral Localization Algorithm to Bilateral Location Algorithm and establish a simpler positioning model, with which we can get two nodes of possible location, and determine the better node according to the RSSI ranging principle. At last, we make software designing and programming of these nodes that are anchor nodes and nodes of unknown on the Arduino development platform. Combined with the indoor environment we selected, we deploy the iDuino nodes and then build location model, with which we implement the location. KEY WORDS:Wireless Sensor Network,Nodes,Indoor Location,RSSI,Arduino

基于无线传感网络的大型结构健康监测系统_尚盈

文章编号:1004-9037(2009)02-0254-05 基于无线传感网络的大型结构健康监测系统 尚 盈 袁慎芳 吴 键 丁建伟 李耀曾 (南京航空航天大学智能材料与结构航空科技重点实验室,南京,210016) 摘要:针对大型碳纤维复合材料机翼盒段壁板结构,实现了基于无线传感网络的多点应变结构健康监测系统,采用自组织竞争神经网络成功判别了集中载荷模拟的损伤位置。本系统由传感采集子系统、无线传感网络子系统和终端监控子系统三部分组成。为了降低系统网络功耗及成本,提高系统的稳定性和可靠性,改善传感网络的实时性和同步性,设计了可直接配接无线传感网络节点的低功耗多通道应变传感器信号调理电路和基于无线传感网络的层次路由协议,开发了多通道应变数据采集、网络簇头转发和中继节点接收等主要软件模块。实验证明,相比于传统有线的监测方法和数据采集系统,基于无线传感网络的结构健康监测系统具有负重轻、成本低、易维护和搭建移动方便等优点。 关键词:无线传感网络;结构健康监测;层次路由协议;自组织竞争网络中图分类号:T P2;T P9 文献标识码:A  基金项目:国家“八六三”高技术研究发展计划(2007AA 032117)资助项目;国家自然科学基金(60772072,50420120133)资助项目;航空基金(20060952)资助项目。 收稿日期:2007-09-05;修订日期:2008-04-17 Large -Scale Structural Health Monitoring System Based on Wireless Sensor Networks S hang Ying ,Yuan Shenf ang ,Wu J ian ,Ding J ianw ei ,L i Yaoz eng (T he A ero nautic Key La bo rat or y o f Smart M ater ial and Str uct ur e,N anjing U niv ersit y o f Aer onautics and A str onautics,N anjing,210016,China) Abstract :Aimed at the large-scale structure and anisotropy nature o f the carbon fiber compos-ite material w ing box ,a large-scale structural health m onitoring system based on w ireless sen-sor netw orks is presented .A kind of artificial neural netw ork is designed to distinguish the damag e locatio n simulated by the co ncentrated load .The sy stem co nsists o f the sensor data ac-quisition,the w ireless sensor netw or ks,and the terminal monitoring sub-sy stem s.To im pro ve the performance o f the system ,the signal conditio ning circuit and the hierarchical routing pro -to col are designed based o n w ireless sensor netw orks ,the prog rams of data acquisition and Sink node are ex ploited.Experimental result pro ves that the system has advantag es of flexibili-ty o f deplo yment,low maintenance and deploym ent costs . Key words :w ir eless senso r netw or ks ;str uctural health monitoring ;hierarchical routing ;self -org anizing com petitive netw o rk 引 言 结构健康监测技术是采用智能材料结构的新概念,利用集成在结构中的先进传感/驱动元件网络,在线实时地获取与结构健康状况相关的信息(如应力、应变、温度、振动模态、波传播特性等),结 合先进的信号信息处理方法和材料结构力学建模 方法,提取特征参数,识别结构的状态,包括损伤,并对结构的不安全因素在其早期就加以控制,以消除安全隐患或控制安全隐患的进一步发展,从而实现结构健康自诊断、自修复、保证结构的安全和降低维修费用[1]。 无线传感网络节点具有局部信号处理的功能, 第24卷第2期2009年3月数据采集与处理Jour nal of D ata A cquisition &P ro cessing Vo l.24N o.2M a r.2009

无线传感网定位

对于定位一般的理解就是确定位置。在无线传感网中,定位是指网络通过特 定的方法确定节点的位置信息。其可分为节点的自身定位和目标定位。节点自 身定位是确定网络中节点位置坐标的过程,它是网络自身属性的确定过程,是网络 的支撑,可以通过人工配置或各种节点自定位算法完成; 目标定位是指在网络覆 盖范围内确定一个事件或一个目标的位置坐标,这可以通过把位置已知的网络节 点作为参考节点来确定事件或目标在网络中所处的位置。无线传感网定位问题 就是寻求利用少量的锚节点来确定网络中未知节点的位置坐标的方法。 无线传感网中,传感器节点的可靠性差、能量有限、节点数量庞大且节点部 署具有不确定性等,这些限制因素对定位技术提出了更高的要求。通常无线传感 网定位技术具备以下特点: ① 自组织性 通常无线传感网中的节点是随机布设的,不能依靠全局的基础设施的协助确定每 个节点的位置所在。因此,自组织性就显得格外重要。 ② 容错性 传感器节点的硬件配置低、处理能力弱、可靠性差、能量少以及测距时会产生 误差等因素决定了传感器节点本身的脆弱性,因此定位算法必须具有良好的容错 性。 ③ 能量高效性 为了尽量延长网络的生存周期,要尽可能的减少节点间的通信开销,减少算法中计 算的复杂度,用尽量少的能量完成尽可能多的工作。 ④ 分布式计算 每个节点自己对自身的位置进行估算,不需要将所有信息传送到某个特定的节点 进行集中计算。 、管路敷设技术通过管线不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行 高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况 ,然后根据规范与规程规定,制定设备调试高中资料试卷方案。 、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

无线传感器网络技术试题及答案

无线传感器网络技术试题及答案 一、填空题 1.传感器网络的三个基本要素:传感器、感知对象、用户(观察者) 2.传感器网络的基本功能:协作式的感知、数据采集、数据处理、发布感知信息 3.无线传感器节点的基本功能:采集数据、数据处理、控制、通信 4.传感节点中处理部件用于协调节点各个部分的工作的部件。 5.基站节点不属于传感器节点的组成部分 6.定向扩散路由机制可以分为三个阶段:兴趣扩展阶段、梯度建立阶段、路径加强阶段 7.无线传感器网络特点:大规模网络、自组织网络、可靠的网络、以数据为中心的网络、应用相关的网络 8.NTP时间同步协议不是传感器网络的的时间同步机制。 9.IEEE标准主要包括:物理层。介质访问控制层 10.从用户的角度看,汇聚节点被称为网关节点。 11.数据融合的内容主要包括:多传感器的目标探测、数据关联、跟踪与识别、情况评估和预测 13.传感器网络的电源节能方法:_休眠(技术)机制、__数据融合 14.分布式系统协同工作的基础是时间同步机制

15.无线网络可以被分为有基础设施的网络与没有基础设施的网络,在无线传感器网络,Internet网络,WLan网络,拨号网络中,无线传感器网络属于没有基础设施的网络。 16.传感器网络中,MAC层与物理层采用的是IEEE制定的IEEE 协议 17.分级结构的传感器网络可以解决平面结构的拥塞问题 18.以数据为中心特点是传感器网络的组网特点,但不是Ad-Hoc的组网特点 19.为了确保目标节点在发送ACK过程中不与其它节点发生冲突,目标节点使用了SIFS帧间间隔 20.典型的基于竞争的MAC协议为CSMA 二、选择题 1.无线传感器网络的组成模块分为:通信模块、()、计算模块、存储模块和电源模块。A A.传感模块模块C网络模块D 实验模块 2..在开阔空间无线信号的发散形状成()。A A.球状B网络C直线D射线 3.当前传感器网络应用最广的两种通信协议是()D A. B. C. D.

无线传感器网络技术的应用

无线传感器网络技术的应用 摘要:无线传感器网络(WSN)是新兴的下一代传感器网络,在国防安全和国民经济各方面均有着广阔的应用前景。本文介绍了无线传感器网络的组成和特点,讨论了无线传感器网络在军事、瓦斯监测系统、智能家具,环境监测,农业。交通等方面的现有应用,最后提出无线传感器网络技术需要解决的问题。 关键词:无线传感器网络,军事、瓦斯监测系统、智能家具,环境监测,农业。交通。 1.无线传感器网络研究背景以及发展现状 随着半导体技术、通信技术、计算机技术的快速发展,90年代末,美国首先出现无线传感器网络(WSN)。1996年,美国UCLA大学的William J Kaiser教授向DARPA提交的“低能耗无线集成微型传感器”揭开了现代WSN网络的序幕。1998年,同是UCLA大学的Gregory J Pottie教授从网络研究的角度重新阐释了WSN的科学意义。在其后的10余年里,WSN网络技术得到学术界、工业界乃至政府的广泛关注,成为在国防军事、环境监测和预报、健康护理、智能家居、建筑物结构监控、复杂机械监控、城市交通、空间探索、大型车间和仓库管理以及机场、大型工业园区的安全监测等众多领域中最有竞争力的应用技术之一。美国商业周刊将WSN网络列为21世纪最有影响的技术之一,麻省理工学院(MIT)技术评论则将其列为改变世界的10大技术之一。WSN是由布置在监测区域内传感器节点以无线通信方式形成一个多跳的无线自组网(Ad hoc),其目的是协作的感知,采集

和处理网络覆盖区域中感知对象的信息,并发送给观察者。传感器、感知对象和观察者是WSN的三要素。将Ad hoc技术与传感器技术相结合,人们可以通过WSN感知客观世界,扩展现有网络功能和人类认识世界的能力。WSN技术现已经被广泛应用。图为WSN基本结构。 WSN经历了从智能传感器,无线智能传感器到无线传感器三个发展阶段,智能传感器将计算能力嵌入传感器中,使传感器节点具有数据采集和信息处理能力。而无线智能传感器又增加了无线通信能力,WSN将交换网络技术引入到智能传感器中使其具备交换信息和协调控制功能。 无线传感网络结构由传感器节点,汇聚节点,现场数据收集处理决策部分及分散用户接收装置组成,节点间能够通过自组织方式构成网络。传感器节点获得的数据沿着相邻节点逐跳进行传输,在传输过程中所得的数据可被多个节点处理,经多跳路由到协调节点,最后通过互联网或无线传输方式到达管理节点,用户可以对传感器网络进行决策管理、发出命令以及获得信息。无线传感器网络在农业中的运用是推进农业生产走向智能化、自动化的最可行的方法之一。近年来国际上十分关注WSN在军事,环境,农业生产等领域的发展,美国和欧洲相继启动了WSN研究计划,我国于1999年正式启动研究。国家自然科学基金委员会在2005年将网络传感器中基础理论在一篇我国20年预见技术调查报告中,信息领域157项技术课题中7项与传感器网络有直接关系,2006年初发布的《国家长期科学与技术发展

详解无线传感器网络定位

详解无线传感器网络定位技

详解无线传感器网络定位技术 1 引言 无线传感器网络作为一种全新的信息获取和处理技术在目标跟踪、入侵监测及一些定位相关领域有广泛的应用前景。然而,无论是在军事侦察或地理环境监测,还是交通路况监测或医疗卫生中对病人的跟踪等应用场合,很多获取的监测信息需要附带相应的位置信息,否则,这些数据就是不确切的,甚至有时候会失去采集的意义,因此网络中传感器节点自身位置信息的获取是大多数应用的基础。首先,传感器节点必须明确自身位置才能详细说明“在什么位置发什么了什么事件”,从而实现对外部目标的定位和跟踪;其次,了解传感器节点的位置分布状况可以对提高网络的路由效率提供帮助,从而实现网络的负载均衡以及网络拓扑的自动配置,改善整个网络的覆盖质量。因此,必须采取一定的机制或算法来实现无线传感器网络中各节点的定位。 无线传感器网络定位最简单的方法是为每个节点装载全球卫星定位系统(GPS)接收器,用以确定节点位置。但是,由于经济因素、节点能量制约和GPS 对于部署环境有一定要求等条件的限制,导致方案的可行性较差。因此,一般只有少量节点通过装载GPS 或通过预先部署在特定位置的方式获取自身坐标。另外,无线传感器网络的节点定位涉及很多方面的内容,包括定位精度、网络规模、锚节点密度、网络的容错性和鲁棒性以及功耗等,如何平衡各种关系对于无线传感器网络的定位问题非常具有挑战性。可以说无线传感器网络节点自身定位问题在很大程度上决定着其应用前景。因此,研究节点定位问题不仅必要,而且具有很重要的现实意义。 2 WSN 定位技术基本概念 2.1 定位方法的相关术语 1)锚节点(anchors):也称为信标节点、灯塔节点等,可通过某种手段自主获取自身位置的节点; 2)普通节点(normal nodes):也称为未知节点或待定位节点,预先不知道自身位置,需使用锚节点的位置信息并运用一定的算法得到估计位置的节点; 3)邻居节点(neighbor nodes):传感器节点通信半径以内的其他节点; 4)跳数(hop count):两节点间的跳段总数; 5)跳段距离(hop distance):两节点之间的每一跳距离之和;

相关文档
最新文档