离散数学等价关系

离散数学等价关系
离散数学等价关系

等价关系是设R是非空集合A上的二元关系,若R是自反的、对称的、传递的,则称R是A上的等价关系。给定非空集合A,若有集合S={S ,S ,…,S },其中S A,S(i=1,2,…,m)且S S = (i j)同时有S =A,称S是A的划分。

研究等价关系的目的在于将集合中的元素进行分类,选取每类的代表元素来降低问题的复杂度,如软件测试时,可利用等价类来选择测试用例。

扩展资料:

定义

若关系R在集合A中是自反、对称和传递的,则称R为A上的等价关系。所谓关系R 就是笛卡尔积 A×A 中的一个子集。

A中的两个元素x,y有关系R,如果(x,y)∈R。我们常简记为xRy。

自反:任意x属于A,则x与自己具有关系R,即xRx;

对称:任意x,y属于A,如果x与y具有关系R,即xRy,则y与x 也具有关系R,即yRx;

传递:任意x,y,z属于A,如果xRy且yRz,则xRz

x,y具有等价关系R,则称x,y R等价,有时亦简称等价。

找出集合A的所有划分,每一个划分对应一个等价关系。

集合的划分就是对集合的元素分块,看到底是分成几块。

分成一块的有:

划分1:{{1,2,3,4}},对应的等价关系就是全域关系E,也就是A×A。分成两块的有:

划分2:{{1,2},{3,4}},

划分3:{{1,3},{2,4}},

划分4:{{1,4},{2,3}},

分成三块的有:

划分5:{{1},{2,3,4}},

划分6:{{2},{1,3,4}},

划分7:{{3},{1,2,4}},

划分8:{{4},{1,2,3}},

分成四块的有:

划分9:{{1},{2},{3},{4}},对应的等价关系就是恒等关系I。

由划分求等价关系:∈R当且仅当a,b在同一个划分块中。

离散数学(集合论)课后总结

第三章集合论基础 1、设A={a,{a},{a,b},{{a,b},c}}判断下面命题的真值。 ⑴{a}∈A T ⑵?({a}? A) F ⑶c∈A F ⑷{a}?{{a,b},c} F ⑸{{a}}?A T ⑹{a,b}∈{{a,b},c} T ⑺{{a,b}}?A T ⑻{a,b}?{{a,b},c} F ⑼{c}?{{a,b},c} T ⑽({c}?A)→(a∈Φ) T 2、证明空集是唯一的。(性质1:对于任何集合A,都有Φ?A。) 证明:假设有两个空集Φ1 、Φ2 ,则 因为Φ1是空集,则由性质1得Φ1 ?Φ2 。 因为Φ2是空集,则由性质1得Φ2 ?Φ1 。 所以Φ1=Φ2 。 3、设A={Φ},B=P(P(A)).问:(这道题要求知道幂集合的概念) a)是否Φ∈B?是否Φ?B? b)是否{Φ}∈B? 是否{Φ}?B? c)是否{{Φ}}∈B? 是否{{Φ}}?B? 解:设A={Φ},B=P(P(A)) P(A)= {Φ,{Φ}} 在求P(P(A))时,一些同学对集合{Φ,{Φ}}难理解,实际上你就将{Φ,{Φ}}中的元素分别看成Φ=a ,{Φ}=b, 于是{Φ,{Φ}}={a,b} B=P(P(A))=P({a,b}) ={B0, B1 , B2 , B3 }={B00, B01,B10 ,B11}={Φ, {b}, {a}, {a,b}} 然后再将a,b代回即可B=P(P(A))=P({Φ,{Φ}})={Φ,{Φ} ,{{Φ}}, {Φ,{Φ}}} 以后熟悉后就可以直接写出。 a) Φ∈B Φ?B b) {Φ}∈B {Φ} ? B c) {{Φ}}∈B {{Φ}}?B a)、b)、c)中命题均为真。 4、证明A?B ? A∩B=A成立。 证明:A∩B=A ??x(x∈A∩B ?x∈A) ??x((x∈A∩B → x∈A)∧(x∈A→ x∈A∩B)) ??x((x?A∩B∨x∈A)∧(x?A∨x∈A∩B)) ??x((?(x∈A∧x∈B)∨x∈A)∧(x?A∨(x∈A∧x∈B)) ??x(((x?A∨x?B)∨x∈A)∧(x?A∨(x∈A∧x∈B))) ??x(T∧(T∧( x?A∨x∈B))) ??x( x?A∨x∈B)??x(x∈A→x∈B)? A?B 5、(A-B)-C=(A-C)-(B-C) 证明:任取x∈(A-C)-(B-C) ?x∈(A-C)∧x?(B-C) ?(x∈A∧x?C)∧?(x∈B∧x?C) ?(x∈A∧x?C)∧(x?B∨x∈C) ?(x∈A∧x?C∧x?B)∨(x∈A∧x?C∧x∈C) ?x∈A∧x?C∧x?B?x∈A∧x?B∧x?C ?(x∈A∧x?B)∧x?C ?x∈A-B∧x?C?x∈(A-B)-C 所以(A-B)-C=(A-C)-(B-C)

应用离散数学-集合与关系

集合与关系《应用离散数学》 第3章 21世纪高等教育计算机规划教材

目录 3.1 集合及其运算 3.2 二元关系及其运算3.3 二元关系的性质与闭包3.4 等价关系与划分 3.5 偏序关系与拓扑排序3.6 函 数 3.7 集合的等势与基数3.8 多元关系及其应用

集合是现代数学中最重要的基本概念之一,数学概念的建立由于使用了集合而变得完善并且统一起来。集合论已成为现代各个数学分支的基础,同时还渗透到各个科学技术领域,成为不可缺少的数学工具和表达语言。对于计算机科学工作者来说,集合论也是必备的基础知识,它在开关理论、形式语言、编译原理等领域中有着广泛的应用。 本章首先介绍集合及其运算,然后介绍二元关系及其关系矩阵和关系图,二元关系的运算、二元关系的性质、二元关系的闭包,等价关系与划分、函数,最后介绍多元关系及其在数据库中的应用等。

3.1 集合及其运算 3.1.1 基本概念 集合是数学中最基本的概念之一,如同几何中的点、线、面等概念一样,是不能用其他概念精确定义的原始概念。集合是什么呢?直观地说,把一些东西汇集到一起组成一个整体就叫做集合,而这些东西就是这个集合的元素或叫成员。 例3.1 (1)一个班级里的全体学生构成一个集合。 (2)平面上的所有点构成一个集合。 (3)方程 的实数解构成一个集合。 (4)自然数的全体(包含0)构成一个集合,用N表示。 (5)整数的全体构成一个集合,用Z表示。 (6)有理数的全体构成一个集合,用Q表示。 (7)实数的全体构成一个集合,用R表示。

(8)复数的全体构成一个集合,用C表示。 (9)正整数集合Z+,正有理数集合Q+,正实数集合R+。(10)非零整数集合Z*,非零有理数集合Q*,非零实数集合R*。(11)所有n 阶(n≥2)实矩阵构成一个集合,用M n(R)表示,即

“离散数学”中的等价关系

“离散数学”中的等价关系 “离散数学”是计算机专业的重要基础课程和核心课程。通过该课程的教学,不仅要为学生们进一步学习本专业的后续课程提供必备的数学理论基础,更重要的是培养和提高学生的抽象思维能力和逻辑推理能力。与高等数学主要以连续量作为研究对象不同,离散数学主要以离散量作为主要的研究对象,内容包括数理逻辑、集合论、代数结构、图论以及组合数学、数论和离散概率等。由于这些内容在描述形式、研究方法和计算机应用领域等方面均存在着较大差异,且含有大量比较抽象的概念、定理和各种各样的形式化描述,因而学生普遍感到困难重重,学习效果不理想。因此,如何改进教学方法,提高教学效果,使学生们的抽象思维能力和逻辑推理能力真正得到提升,是“离散数学”课程教学过程中必须认真解决的重要课题。 1离散数学课程中的等价关系 1.1离散数学课程中等价关系的概念 定义1 设R为非空集合A上的二元关系。如果R是自反的、对称的和可传递的,则称R为A上的等价关系。 定义2 设R为非空集合A上的等价关系,x∈A,令[ x ]R={ y | y ∈A ∧xRy }, 则称[ x ]R 为x关于R的等价类,简记为[ x ]。 定义3 设R为非空集合A上的等价关系,以R的所有等价类作元素的集合称为A关于R的商集,记为A/R,即A/R={ [ x ]R| x∈A }。 根据定义1,很容易证明矩阵理论中的矩阵合同关系、相似关系都是等价关系;线性空间的同构关系也是一种等价关系。下面主要讨论离散数学中一些常见的等价关系。 1.2离散数学课程中各种具体的等价关系 数理逻辑中,命题公式A和B等值(记为A B)是指由它们构成的等价式A B 为永真式。命题公式的等值关系是建立在由所有命题公式构成的集合上的一种等价关系,这种等价关系将所有命题公式按其是否等值划分成若干个等价类,属于同一个等价类中的命题公式彼此等值,因而,只要清楚了等价类中某一个公式的性质,则与该公式同类的公式的性质也就完全清楚了。因此,命题公式的等值关系(等价关系)是获取命题公式性质的基石。 集合论中,集合A和B的等势是指从A到B存在一个双射函数即集合A中

离散数学之集合论

第二篇集合与关系 集合论是现代各科数学的基础,它是德国数学家康托(Geog Cantor, 1845~1918)于1874年创立的,1876~1883年康托一系列有关集合论的文章,对任意元的集合进行了深入的探讨,提出了关于基数、序数和良序集等理论,奠定了集合论深厚的基础,19世纪90年代后逐渐为数学家们采用,成为分析数学、代数和几何的有力工具。 随着集合论的发展,以及它与数学哲学密切联系所作的讨论,在1900年前后出现了各种悖论,使集合的发展一度陷入僵滞的局面。1904~1908年,策墨罗(Zermelo)列出了第一个集合论的公理系统,它的公理,使数学哲学中产生的一些矛盾基本上得到了统一,在此基础上以后就逐渐形成了公理化集合论和抽象集合论,使该学科成为在数学中发展最为迅速的一个分支。 现在,集合论已经成为内容充实、实用广泛的一门学科,在近代数学中占据重要地位,它的观点已渗透到古典分析、泛函、概率、函数论、信息论、排队论等现代数学各个分支,正在影响着整个数学科学。集合论在计算机科学中也具有十分广泛的应用,计算机科学领域中的大多数基本概念和理论几乎均采用集合论的有关术语来描述和论证,成为计算机科学工作者必不可少的基础知识。集合论可作为数学学科的通用语言,一切必要的数据结构都可以利用集合这个原始数据结构而构造出来,计算机科学家或许也可以利用这种方法。 本篇介绍集合论的基础知识,主要内容包括集合及其运算、性质、序偶、关系、映射、函数、基数等。 第2-1章集合及其运算 §2-1-1 集合的概念及其表示 一、集合的概念 “集合”是集合论中的一个原始的概念,因此它不能被精确地定义出来。一般地说,把具有某种共同性质的许多事物,汇集成一个整体,就形成一个集合。构成这个集合的每一个事物称为这个集合的一个成员(或一个元素),构成集合的这些成员可以是具体东西,也可以是抽象东西。例如:教室内的桌椅;图书馆的藏书;全国的高等学校;自然数的全体;程序设计语言C的基本字符的全体等均分别构成一个集合。通常用大写的英文字母表示集合的名称;用小写的英文字母表示元素。若元素a属于集合A记作

离散数学集合论练习题

集合论练习题 一、选择题 1.设B = { {2}, 3, 4, 2},那么下列命题中错误的是( ). A .{2}∈ B B .{2, {2}, 3, 4}B C .{2}B D .{2, {2}}B 2.若集合A ={a ,b ,{ 1,2 }},B ={ 1,2},则( ). A . B A ,且BA B .B A ,但BA C .B A ,但BA D .B A ,且BA 3.设集合A = {1, a },则P (A ) = ( ). A .{{1}, {a }} B .{?,{1}, {a }} C .{?,{1}, {a }, {1, a }} D .{{1}, {a }, {1, a }} 4.已知AB ={1,2,3}, AC ={2,3,4},若2 B,则( ) A . 1?C B .2? C C .3?C D .4?C 5. 下列选项中错误的是( ) A . ??? B . ?∈? C . {}??? D .{}?∈? 6. 下列命题中不正确的是( ) A . x {x }-{{x }} B .{}{}{{}}x x x ?- C .{}A x x =?,则xA 且x A ? D . A B A B -=??= 7. A , B 是集合,P (A ),P (B )为其幂集,且A B ?=?,则()()P A P B ?=( ) A . ? B . {}? C . {{}}? D .{,{}}?? 8. 空集?的幂集()P ?的基数是( ) A . 0 B .1 C .3 D .4 9.设集合A = {1,2,3,4,5,6 }上的二元关系R ={a , b ∈A , 且a +b = 8},则R 具有的性质为( ). A .自反的 B .对称的 C .对称和传递的 D .反自反和传递的

《应用离散数学》方景龙版3.4 等价关系与划分

§3.4 等价关系与划分 习题3.4 1. 对于给定的集合A 和其上的二元关系R ,判断R 是否为等价关系。 (1)A 为实数集,A y x ∈?,,2=-?y x xRy 。 (2)}321{,,=A ,A y x ∈?,,3≠+?y x xRy 。 (3)+=Z A ,即正整数集,A y x ∈?,,是奇数xy xRy ?。 (4))(X P A =,集合X 的基数2||≥X ,A y x ∈?,,x y y x xRy ?∨??。 (5))(X P A =,集合X 和C 满足X C ?,A y x ∈?,,C y x xRy ?⊕?。 解 略 2. 设}{d c b a A ,,,=,对于A 上的等价关系 A I c d d c a b b a R }{><><><><=,,,,,,, 画出R 的关系图,并求出A 中各元素关于R 的等价类。 解 R 的关系图如下: A 中各元素关于R 的等价类分别为: },{][][b a b a ==,},{][][d c d c == 3. 考虑单词的集合}{sit wind wash sky last sheet W ,,,,,=。1R 和2R 分别是由“具有同样多的字母”和“具有相同的开头字母”定义的等价关系。求由1R 和2R 确定的商集1/R W 和2/R W 。 解 略 4. 给出模6同余关系,并求出所有的模6同余类。 解 模6同余关系)}6(mod |{b a b a b a R ≡∧∈><=Z ,, 所有的模6同余类为: 510}|5{][,,,, =∈+=i z i z i Z 即 },20,15,10,5,0,5,10,15,20,{]0[ ----= },21,16,11,6,1,4,9,14,19,{]1[ ----=

离散数学公式

基本等值式 1.双重否定律A?┐┐A 2.幂等律 A ? A∨A, A ? A∧A 3.交换律A∨B ? B∨A,A∧B ? B∧A 4.结合律(A∨B)∨C ? A∨(B∨C) (A∧B)∧C ? A∧(B∧C) 5.分配律A∨(B∧C) ? (A∨B)∧(A∨C) (∨对∧的分配律) A∧(B∨C) ? (A∧B)∨(A∧C) (∧对∨的分配律) 6.德·摩根律┐(A∨B) ?┐A∧┐B ┐(A∧B) ?┐A∨┐B 7.吸收律 A∨(A∧B) ? A,A∧(A∨B) ? A 8.零律A∨1 ? 1,A∧0 ? 0 9.同一律A∨0 ? A,A∧1 ? A 10.排中律A∨┐A ? 1 11.矛盾律A∧┐A ? 0 12.蕴涵等值式A→B ?┐A∨B 13.等价等值式A?B ? (A→B)∧(B→A) 14.假言易位A→B ?┐B→┐A 15.等价否定等值式 A?B ?┐A?┐B 16.归谬论(A→B)∧(A→┐B) ?┐A 求给定公式范式的步骤 (1)消去联结词→、?(若存在)。 (2)否定号的消去(利用双重否定律)或内移(利用德摩根律)。 (3)利用分配律:利用∧对∨的分配律求析取范式,∨对∧的分配律求合取范式。 推理定律--重言蕴含式 (1) A ? (A∨B) 附加律 (2) (A∧B) ? A 化简律 (3) (A→B)∧A ? B 假言推理 (4) (A→B)∧┐B ?┐A 拒取式 (5) (A∨B)∧┐B ? A 析取三段论 (6) (A→B) ∧(B→C) ? (A→C) 假言三段论 (7) (A?B) ∧(B?C) ? (A ? C) 等价三段论 (8) (A→B)∧(C→D)∧(A∨C) ?(B∨D) 构造性二难 (A→B)∧(┐A→B)∧(A∨┐A) ? B 构造性二难(特殊形式) (9)(A→B)∧(C→D)∧(┐B∨┐D) ?(┐A∨┐C) 破坏性二难

离散数学及其应用集合论部分课后习题答案

作业答案:集合论部分 P90:习题六 5、确定下列命题是否为真。 (2)?∈? (4){}?∈? (6){,}{,,,{,}}a b a b c a b ∈ 解答:(2)假(4)真(6)真 8、求下列集合的幂集。 (5){{1,2},{2,1,1},{2,1,1,2}} (6){{,2},{2}}? 解答: (5)集合的元素彼此互不相同,所以{2,1,1,2}{1,2}=,所以该题的结论应该为 {,{{1,2}},{{2,1,1}},{{1,2},{2,1,1}}}? (6){,{{,2}},{{2}},{{,2},{2}}}??? 9、设{1,2,3,4,5,6}E =,{1,4}A =,{1,2,5}B =,{2,4}C =,求下列集合。 (1)A B (2)()A B 解答: (1){1,4}{3,4,6}{4}A B == (2)(){1}{2,3,4,5,6}A B == 31、设A,B,C 为任意集合,证明 () ()()()A B B A A B A B --=- 证明: ()() {|}{|()()}{|()()()()} {|()()}{|()()}{|()()} {|()()}{|()(A B B A x x A B x B A x x A x B x B x A x x A x B x B x B x A x A x B x A x x A x B x B x A x x A B x A x B x x A B x A x B x x A B x B x x A B x A --=∈-∨∈-=∈∧?∨∈∧?=∈∨∈∧?∨∈∧∈∨?∧?∨?=∈∨∈∧?∨?=∈∧?∨?=∈∧∈∨∈=∈∧∈=∈∧∈)} B A B A B =-

离散数学题目大汇总

离散数学试题一(A 卷答案) 一、(10分)证明(A ∨B )(P ∨Q ),P ,(B A )∨P A 。 二、(10分)甲、乙、丙、丁4个人有且仅有2个人参加围棋优胜比赛。关于谁参加竞赛,下列4 种判断都是正确的: (1)甲和乙只有一人参加; (2)丙参加,丁必参加; (3)乙或丁至多参加一人; (4)丁不参加,甲也不会参加。 请推出哪两个人参加了围棋比赛。 三、(10分)指出下列推理中,在哪些步骤上有错误为什么给出正确的推理形式。 (1)x (P (x ) Q (x )) P (2)P (y )Q (y ) T (1),US (3)xP (x ) P (4)P (y ) T (3),ES (5)Q (y ) T (2)(4),I (6)xQ (x ) T (5),EG 四、(10分)设A ={a ,b ,c},试给出A 上的一个二元关系R ,使其同时不满足自反性、反自反性、 五、(15分)设函数g :A →B ,f :B →C , (1)若f o g 是满射,则f 是满射。 (2)若f o g 是单射,则g 是单射。 六、(15分)设R 是集合A 上的一个具有传递和自反性质的关系,T 是A 上的关系,使得T R 且R ,证明T 是一个等价关系。 七、(15分)若是群,H 是G 的非空子集,则的子群对任意的a 、b ∈H 有 a * b -1∈H 。 八、(15分)(1)若无向图G 中只有两个奇数度结点,则这两个结点一定是连通的。 (2)若有向图G 中只有两个奇数度结点,它们一个可达另一个结点或互相可达吗 离散数学试题一(B 卷答案) 一、(15分)设计一盏电灯的开关电路,要求受3个开关A 、B 、C 的控制:当且仅当A 和C 同时关闭或B 和C 同时关闭时灯亮。设F 表示灯亮。 u v w

离散数学

计算机专业通知:计算机资料就是同学们网上学习的阶段测试和简答练习等资料,请同学们打印下来复习,如有新的资料更新会通知大家!(以下资料只是网上一部分) 离散数学 一、单项选择题 1、(p∨(q∧r))→(p∧q∧r)的主析取范式是:(B ) A. ∑(0,1) B. ∑(0,1,7) C. ∑(0,7) D. ∑(1,7) 2、下列是真命题的是(A ) A. 2是素数 B. 2+3=6 C. 雪是黑色的 D. 3能被2整除 3、设P:我们划船,Q:我们跳舞,命题“我们不能既划船又跳舞”符号化为(B ) A. P Q B. ┐(P∧Q) C. ┐P∧┐Q D. ┐P∧Q 4、设谓词P(x):x是奇数,Q(x):x是偶数,谓词公式 x(P(x)Q(x))在哪个个体域中为真 (A) A. 自然数 B. 实数 C. 复数 D. 前面三者均成立 5、当P的真值是1,Q的真值是1 R的真值是0,下列复合命题中真值为0的是(D ) A. (PvQ)→R B. R→(P ? Q) C. (PvR) →Q D. (P ?R)??Q 6、设A={1,2,3},则下列说法正确的是(C ) A. R={<1,1>,<2,2>,<3,3>,<1,2>}在A上是反自反的 B. R={<2,3>,<3,2>}在A上是自反的 C. R={<1,2>,<2,1>,<3,3>在A上是对称的 D. R={<1,2>,<1,3>}在A上是对称的 7、下面关于集合的表示中,正确的是(B ). A. φ=0 B. φ∈{φ} C. φ∈φ D. φ∈{a,b} 8、设A={?},B=P(P(A)),以下不正确的式子是()(分数:1分) A. .{{? },{{? }},{?,{? }}}包含于B B. {{{? }}}包含于B C. {{?,{? }}}包括于B D. {{? },{{?,{? }}}}包含于B 标准答案是:D。您的答案是: 9、六阶群的子群的阶数可以是()。(分数:1分) A. 1,2,5 B. 2,4 C. 3,6,7 D. 2,3 标准答案是:D。您的答案是: 10、设G是n个结点、m条边和r个面的连通平面图,则m等于()。(分数:1分) A. n+r-2 B. n-r+2 C. n-r-2 D. n+r+2 标准答案是:A。您的答案是:

离散数学N元集合关系个数计算

Author :ssjs Mail : 看了离散数学中的关系整理了一点关于n 元集合中各种关系的计算,现写下这个方便大家学习交流理解。对文章所致一切后果不负任何责任,请谨慎使用。 如有错误之处请指正。 定义: 1,对称:对于a,b R a b ∈∈∈),b (),a (,A 有如果只要 2,反对称:如果R a b R b a b b ∈∈=∈),(),(a ,A ,a 和时仅当 3,自反:如果对每个元素R ),(A a ∈∈a a 有 4,反自反:如果对于每个R ),(A a ?∈a a 有 5,传递:如果对R ),(,R ),(R ),(,A ,,∈∈∈∈c a c b b a c b a 则且 6,非对称:如果R ),(R ),(?∈a b b a 推出【注】其中是含(a,a)这样的有序对的。 【重要】集合A 的关系是从A 到A 的关系 (也就是说集合A 的关系是A A ?的子集)。 如下结论: N 元集合上的自反关系数为:)1(2 -n n N 元集合上的对称关系数为:2/)1(2+n n N 元集合上的反对称关系数为:2/)1(n 3 2-n n N 元集合上的非对称关系数为:2/)1(3-n n N 元集合上的反自反关系数为:)1(n 2-n N 元集合上的自反和对称关系数为:2/)1(n 2-n N 元集合上的不自反也不反自反关系数为:)1(n n 222 2-?-n 下面是上面结论的计算 1,自反 2A A ,A n n =?=因为也就是说集合A 有n 平方个有序对,由自反定义可知,对R ),(A a ∈∈?a a 有所以n 个有序对()).....3,2,1i X ,X (n i i =其中一定在所求关系中,否则的话此关系就不是自反的了,那么还有n n -2个有序对,所以由集合子集对应二进制串可得自反关系数为)1(n 222--=n n n 下图有助于理解。 (1,1) (2,2).......(n,n) | (1,2) (1,3).........(n-1,n) N n n -2 个有序对

离散数学等价关系

离散数学是一门研究离散量结构及其相互关系的数学学科,是现代数学的重要分支。离散的含义是指不同的连接元素,主要根据离散量研究结构和它们之间的关系,其对象通常是有限的或可数的元素。离散数学已广泛应用于各个学科,尤其是计算机科学和技术。同时,离散数学也是计算机专业许多专业课程必不可少的高级课程,例如编程语言,数据结构,操作系统,编译技术,人工智能,数据库,算法设计和分析以及计算机理论基础。通过对离散数学的研究,我们不仅可以掌握处理离散结构的描述工具和方法,为后续课程创造条件,还可以提高抽象思维和严格的逻辑推理能力,打下坚实的基础。参与未来的创新研发工作。 随着信息时代的到来,以微积分为代表的连续数学在工业革命时代的主导地位发生了变化,离散数学的重要性逐渐为人们所认识。离散数学教授的思想和方法广泛地反映在计算机科学和技术及相关专业的各个领域,从科学计算到信息处理,从理论计算机科学到计算机应用技术,从计算机软件到计算机硬件,从人工智能到认知系统,所有这些都与离散数学密切相关。因为数字电子计算机是离散结构,所以它只能处理离散或离散的定量关系。因此,计算机科学本身以及与计算机科学及其应用密切相关的现代科学研究领域都面临着如何为离散结构建立相应的数学模型的问题。以及如何离散化通过连续数量关系建立的数学模型,以便可以通过计算机对其进行处理。

离散数学是一门综合性学科,由传统逻辑,集合论(包括函数),数论基础,算法设计,组合分析,离散概率,关系论,图论和树,抽象代数(包括代数系统,组)组成。,环,域等),布尔代数和计算模型(语言和自动机)。离散数学已应用于现代科学和技术的许多领域。 离散数学也可以说是计算机科学的基本核心学科。离散数学中有一个著名的典型例子-四色定理,也称为四色猜想,它是现代世界上三个主要的数学问题之一。它是由英国制图员弗朗西斯·古斯里(Francis guthrie)于1852年提出的。当他为地图着色时,他发现了一种现象:“每张地图只能用四种颜色着色,而具有共同边界的国家可以使用不同的颜色。”那么可以通过数学证明吗?100多年后的1976年,肯尼思·阿佩尔(Kenneth Appel)和沃尔夫冈·哈肯(Wolfgang Haken)使用了计算机辅助计算,这花了1200个小时和100亿次判断,终于证明了四色定理,这在世界上引起了轰动。这是离散数学与计算机科学合作的结果。 离散数学可以看作是数学与计算机科学之间的桥梁,因为离散数学不仅可以与诸如集合论和图论之类的数学知识区分开,而且与计算机科学中的数据库理论和数据结构有关,这可以导致人们进入计算机科学的思维领域,促进计算机科学的发展。

离散数学集合论部分常考××题

离散数学常考题型梳理 第2章关系与函数 一、题型分析 本章主要介绍关系的概念及运算、关系的性质与闭包运算、等价关系、相容关系和偏序关系三个重要关系、函数以及函数相关知识等内容。常涉及到的题型主要包括: 2-1关系的概念理解以及关系的并、交、补、差以及复合和逆关系等运算2-2关系自反和反自反、对称和反对称等性质的概念理解与判定;自反、对称和传递闭包运算。 2-3等价关系 2-4偏序关系和哈斯图 2-5 函数的概念和性质 因此,在本章学习过程中希望大家要清楚地知道: 1.有序对和笛卡尔积 (1)有序对:所谓有序对就是指一个有顺序的数组,如< x , y >,x , y的位置是确定的,且< a , b >< b , a >。 (2)笛卡尔积:把集合A,B合成集合A×B,规定: {,|} ?=<>∈∈ 且 A B x y x A y B 由于有序对< x , y >中x,y 的位置是确定的,因此A×B 的记法也是确定的,不能写成B×A 。 笛卡儿积的运算一般不满足交换律。 2.二元关系的概念和表示、几种特殊的关系和关系的运算 (1)二元关系的概念:二元关系是一个有序对集合,设集合A,B ,从集合A 到B的二元关系 R∈ x ∈ < y =且 > } , x {B | y A 记作xRy。 二元关系的定义域:A Ram? R ) (。 ) R Dom? (;二元关系的值域:B 二元关系R 是一个有序对组成的集合.因此,一个二元关系是一个集合,可以用集合形式表示;反过来说,一个集合未必是一个二元关系,仅当集合是由有序对元素组成的,才能当做二元关系。 常用关系的表示法包括了集合表示法、列举法、描述法、关系矩阵法和关系图法。关系矩阵和关系图是有限集合上的二元关系的表示方法。

离散数学 集合与关系 函数 习题 测验

一、已知A、B、C是三个集合,证明(A∪B)-C=(A-C)∪(B-C) 证明:因为 x∈(A∪B)-C?x∈(A∪B)-C ?x∈(A∪B)∧x?C ?(x∈A∨x∈B)∧x?C ?(x∈A∧x?C)∨(x∈B∧x?C) ?x∈(A-C)∨x∈(B-C) ?x∈(A-C)∪(B-C) 所以,(A∪B)-C=(A-C)∪(B-C)。 二、设R={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>},求r(R)、s(R)和t(R),并作出它们及R的关系图。 解:r(R)={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<1,1>,<2,2>,<3,3>,<4,4>,<5,5>} s(R)={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<1,2>,<4,2>,<4,3>} R2=R5={<2,2>,<2,4>,<3,4>,<4,4>,<5,1>,<5,5>,<5,4>} R3={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<5,4>} R4={<2,2>,<2,4>,<3,4>,<4,4>,<5,1>,<5,5>,<5,4>} t(R)={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<2,2>,<5,1>,<5,4>, <5,5>} 三、证明等价关系 设R是集合A上的一个具有传递和自反性质的关系,T是A上的关系,使得∈T?∈R且∈R,证明T是一个等价关系。 证明因R自反,任意a∈A,有∈R,由T的定义,有∈T,故T自反。 若∈T,即∈R且∈R,也就是∈R且∈R,从而∈T,故T对称。 若∈T,∈T,即∈R且∈R,∈R且∈R,因R 传递,由∈R和∈R可得∈R,由∈R和∈R可得∈R,由∈R和∈R可得∈T,故T传递。 所以,T是A上的等价关系。 四、函数 设A、B、C、D是集合,f是A到B的双射,g是C到D的双射,令h:A×C→B×D且?∈A×C,h()=。证明h是双射。 证明:1)先证h是满射。 ?∈B×D,则b∈B,d∈D,因为f是A到B的双射,g是C到D的双射,所以存在a∈A,c∈C,使得f(a)=b,f(c)=d,亦即存在∈A×C,使得h()=

离散数学等价关系

离散数学等价关系 等价关系是设是非空集合A上的二元关du系,若R是自反的、对称的、传递的,则称R是A上的等价关系。给定非空集合A,若有集合S={S ,S ,…,S },其中S A,S(i=1,2,…,m)且S S = (i j)同时有S =A,称S是A的划分。研究等价关系的目的在于将集合中的元素进行分类,选取每类的代表元素来降低问题的复杂度,如软件测试时,可利用等价类来选择测试用例。 分成一块的有: 划分1:{{1,2,3,4}},对应的等价关系就是全域关系E,也就是A×A。分成两块的有: 划分2:{{1,2},{3,4}}, 划分3:{{1,3},{2,4}}, 划分4:{{1,4},{2,3}},分成三块的有: 划分5:{{1},{2,3,4}}, 划分6:{{2},{1,3,4}}, 划分7:{{3},{1,2,4}}, 划分8:{{4},{1,2,3}},分成四块的有: 划分9:{{1},{2},{3},{4}},对应的等价关系就是恒等关系I。 由划分求等价关系:∈R当且仅当a,b在同一个划分块中。扩展资料:

定义:若关系R在集合A中是自反、对称和传递的,则称R为A 上的等价关系。所谓关系R 就是笛卡尔积 A×A 中的一个子集。A 中的两个元素x,y有关系R,如果(x,y)∈R。我们常简记为 xRy。 自反:任意x属于A,则x与自己具有关系R,即xRx; 对称:任意x,y属于A,如果x与y具有关系R,即xRy,则y与x也具有关系R,即yRx; 传递:任意x,y,z属于A,如果xRy且yRz,则xRz。 x,y具有等价关系R,则称x,y R等价,有时亦简称等价。

离散数学(二元关系)课后总结

第四章二元关系 例1 设A={0,1},B={a,b},求A?B ,B?A,A?A 。 解:A?B={<0,a>,<0,b>,<1,a>,<1,b>} B?A={,,,} A?A={<0,0>,<0,1>,<1,0>,<1,1>} 可见A×B≠B×A 例2、关于笛卡尔乘积的几个证明 1)如果A、B都是有限集,且|A|=m, |B|=n,则 |A?B |=mn. 证明:由笛卡尔积的定义及排列组合中的乘法原理,直接推得此定理。 2) A?Φ=Φ?B=Φ 3) ?对∪和∩满足分配律。 设A,B,C是任意集合,则 ⑴A?(B∪C)= (A?B)∪(A?C); ⑵A?(B∩C)= (A?B)∩(A?C); ⑶(A∪B)?C= (A?C)∪(B?C); ⑷(A∩B)?C= (A?C)∩(B?C) 证明⑴:任取∈A?(B∪C) ?x∈A ∧y∈B∪C ?x∈A ∧(y∈B∨y∈C) ?( x∈A ∧y∈B)∨(x∈A∧y∈C) ?∈A?B∨∈A?C ?∈(A?B)∪(A?C) 所以⑴式成立。 4)若C≠Φ,,则A?B?(A?C?B?C) ?(C?A?C?B). 证明: 必要性:设A?B,求证A?C?B?C 任取∈A?C ?x∈A∧y∈C?x∈B∧y∈C (因A?B) ?∈B?C 所以, A?C?B?C. 充分性:若CΦ≠, 由A?C?B?C 求证A?B 取C中元素y, 任取x∈A?x∈A∧y∈C?∈A?C ?∈B?C (由A?C?B?C ) ?x∈B∧y∈C? x∈B 所以, A?B. 所以A?B?(A?C?B?C) 类似可以证明A?B ?(C?A?C?B). 5) 设A、B、C、D为非空集合,则 A?B?C?D?A?C∧B?D. 证明: 首先,由A?B?C?D 证明A?C∧B?D. 任取x∈A,任取y∈B,所以x∈A∧y∈B ?∈A×B ?∈C×D (由A?B?C?D ) ?x∈C∧y∈D 所以, A?C∧B?D. 其次, 由A?C,B?D. 证明A?B?C?D 任取∈A×B ∈A×B ? x∈A∧y∈B ? x∈C∧y∈D (由A?C,B?D) ?∈C×D 所以, A?B?C?D 证毕.

离散数学等价关系

等价类: 在离散数学中,等价关系是指定义在集合A上的关系,满足自反的、对称的和传递的等性质。设R是定义在集合A上的等价关系,与A中一个元素a有关系的所有元素的集合叫做a的等价类。等价类应用十分广泛,如在编程语言中,我们使用等价类来判定标识符是不是表示同一个事物。 定义: 在离散数学中,等价关系是指定义在集合A上的关系,满足自反的、对称的和传递的等性质。设R是定义在集合A上的等价关系,与A中一个元素a有关系的所有元素的集合叫做a的等价类。A的关于R的等价类记作。当只考虑一个关系时,我们省去下表R并把这个等价类写作[a]。 在软件工程中,是把所有可能输入的数据,即程序的输入域划分成若干部分(子集),然后从每一个子集中选取少数具有代表性的数据作为测试用例,从而减少了数据输入量从而提高了效率,称之为等价类方法,该方法是一种重要的、常用的黑盒测试用例设计方法。 分类: 在离散数学中,等价类的划分基于以下定理:设R是定义在集合A上的等价关系。那么R的等价类构成S的划分。反过来,给定集合S的划分{ |i∈I},则存在一个等价关系R,它以集合作为它的等价类。 因为等价关系的a 在a 中和任何两个等价类要么相等要么不

交集不相交的性质。得出X 的所有等价类的集合形成X 的集合划分划分: 所有X 的元素属于一且唯一的等价类。反过来,X 的所有划分也定义了在X 上等价关系。 在软件工程中等价类划分及标准如下: 划分等价类 等价类是指某个输入域的子集合。在该子集合中,各个输入数据对于揭露程序中的错误都是等效的,并合理地假定:测试某等价类的代表值就等于对这一类其他值的测试,因此,可以把全部输入数据合理划分为若干等价类,在每一个等价类中取一个数据作为测试的输入条件就可以用少量代表性的测试数据取得较好的测试结果。等价类划分有两种不同的情况:有效等价类和无效等价类。 1)有效等价类 是指对于程序的规格说明来说是合理的、有意义的输入数据构成的集合。利用有效等价类可检验程序是否实现了规格说明所规定的功能和性能。 2)无效等价类 指对程序的规格说明是不合理的或无意义的输入数据所构成的集合。对于具体的问题,无效等价类至少应有一个,也可能多个。 设计测试用例时,要同时考虑这两种等价类。因为软件不仅要能接收合理的数据,也要能经受意外的考验,这样的测试才能确保软件具有更高的可靠性。 3.划分等价类的标准

离散数学集合论部分测试题

离散数学集合论部分综合练习 本课程综合练习共分3次,分别是集合论部分、图论部分、数理逻辑部分的综合练习,这3次综合练习基本上是按照考试的题型安排练习题目,目的是通过综合练习,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。本次是集合论部分的综合练习。 一、单项选择题 1.若集合A={a,b},B={ a,b,{ a,b }},则(). A.A?B,且A?B B.A?B,但A?B C.A?B,但A?B D.A?B,且A?B 2.若集合A={2,a,{ a },4},则下列表述正确的是( ). A.{a,{ a }}?A B.{ a }?A C.{2}?A D.??A 3.若集合A={ a,{a},{1,2}},则下列表述正确的是( ). A.{a,{a}}?A B.{2}?A C.{a}?A D.??A 4.若集合A={a,b,{1,2 }},B={1,2},则(). A.B? A,且B?A B.B? A,但B?A C.B ? A,但B?A D.B? A,且B?A 5.设集合A = {1, a },则P(A) = ( ). A.{{1}, {a}} B.{?,{1}, {a}} C.{?,{1}, {a}, {1, a }} D.{{1}, {a}, {1, a }} 6.若集合A的元素个数为10,则其幂集的元素个数为(). A.1024 B.10 C.100 D.1 7.集合A={1, 2, 3, 4, 5, 6, 7, 8}上的关系R={|x+y=10且x, y∈A},则R的性质为(). A.自反的 B.对称的 C.传递且对称的 D.反自反且传递的 8.设集合A= {1,2,3,4,5,6 }上的二元关系R ={?a, b∈A, 且a +b = 8},则R具有的性质为(). A.自反的 B.对称的 C.对称和传递的 D.反自反和传递的 9.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个.

离散数学期末复习题

离散数学期末复习题 第一章集合论 一、判断题 (1)空集是任何集合的真子集. ( 错 ) (2){ }φ是空集. ( 错 ) (3){}{ }a a a },{∈ ( 对 ) (4)设集合{}{ }{}{}A A 22,1,2,1,2,1?=则. ( 对 ) (5)如果 B A a ??,则A a ?或B a ?. ( 错 ) 解 B A a ??则B A B A a ?=?∈,即A a ∈且B a ∈,所以A a ?且B a ? (6)如果A ∪.,B A B B ?=则 ( 对 ) (7)设集合},,{321a a a A =,},,{321b b b B =,则 },,,,,{332211><><><=?b a b a b a B A ( 错 ) (8)设集合}1,0{=A ,则}1},0{,0},0{,1,,0,{><><><><=φφρ是A 2到A 的关系. ( 对 ) 解 A 2}},1{},0{,{A φ=, =?A A 2}1,,0,,1},1{,0},1{,1},0{,0},0{,1,,0,{><><><><><><><>

大学期末离散数学集合论部分练习题2017

《离散数学》集合论部分练习题 班级 学号 姓名 一、填空题 1. 设全集{}{}{},5,2,3,2,1,5,4,3,2,1===B A E 则=B A ,=A , =B A ,=-)()(A P B P . 2. 设21,R R 都是集合{}4,3,2,1=A 上的二元关系,其中{}><><><=4,2,2,1,1,11R , {}><><><><=2,3,4,2,3,2,4,12R ,则=21R R . 3. 设{}21,,,,,R R d c b a A =是A 上的二元关系,且{}><><><><=d d c b b b a a R ,,,,,,,1, {}><><><><><=d d b c c b b b a a R ,,,,,,,,,2,则2R 是1R 的 闭包. 4. 设{}c b a A ,,=,R 是A 上的二元关系,且R 的关系矩阵为???? ? ?????=110110001)(R M ,则R 的传递 闭包)(R t 的关系矩阵为 . 5.设{}24,12,10,8,6,5,4,3,2=A ,R 是A 上的整除关系,则A 的极大元是 ,极小元是 . 二、选择题 1. 设集合{}{}{}d c C c b a B A ,,,,,2,1===,则=?)(C B A ( ) (A ){}><><><><2,,1,c c (D ){}><><2,,,1c c 2. 设{}{}3,,1,,0a B a A ==,则B A 的恒等关系是( ) (A){}><><><><><><3,3,1,1,0,0 (C){}><><><3,3,,,1,1a a (D){}><><><><0,3,3,,,1,1,0a a 3. 设A ={1,2,3,4,5,6}到B ={1,2,3}上的关系R ={|a =b 2},则dom R 和ran R 分别为( ) (A) {<1,2>}和{<1,4>} (B) {<1,4>}和{<1,2>}

010_离散数学

湖南师范大学硕士研究生入学考试自命题考试大纲 考试科目代码:考试科目名称:离散数学 一、试卷结构 1) 试卷成绩及考试时间 本试卷满分为100分,考试时间为180分钟。 2)答题方式:闭卷、笔试 3)试卷内容结构 集合论40% 数理逻辑40% 图论20% 4)题型结构 a: 填空题,5小题,每小题5分,共25分 b: 计算题,3小题,每小题10分,共30分 c: 证明题,3小题,每小题15分,共45分 二、考试内容与考试要求 1、集合论 考试内容 集合及其表示集合的运算与性质二元关系的概念二元关系的五种性质关系矩阵与关系图关系的各种运算与性质关系闭包与性质相容关系等价关系序关系部分函数、满射、内射、双射的概念可逆、左可逆、右可逆函数特征函数集合的基数与性质 考试要求 (1)理解集合的表示、二元关系的概念、部分函数、满射、内射、双射的概念可逆、左可逆、右可逆函数的概念; (2)掌握集合的运算与性质、关系的五种性质、关系的运算与性质、关系闭包与性质、相容关系、等价关系、序关系. (3)了解特征函数集合的基数与性质.

2、数理逻辑 考试内容 命题与命题的真值五个基本联结词命题符号化合式公式真值表合式公式的类型等价式、蕴含式的证明范式和判定问题求主范式的方法变元、谓词和量词量词的辖域、前束范式合式公式的解释、求合式公式在给定解释下真值的方法 考试要求 (1)理解命题与命题的真值、联结词、合式公式与真值表、变元、谓词和量词等概念. (2)掌握合式公式的类型、等价式、蕴含式的证明、求主范式的方法、合式公式的解释、以及求在给定解释下真值的方法. (3)了解量词的辖域、前束范式. 3、图论 考试内容 图的基本概念路与回路和连通性图的矩阵表示欧拉图和哈密顿图平面图对偶图与着色树与生成树根树及其应用 考试要求 (1)理解图、路、回路和连通性等基本概念. (2)掌握一些特殊图类的性质,树的特征与应用. 三、参考书目 [1] 左孝凌等,《离散数学》,上海科技文献出版社,1982年 [2] 王兵山、张强、毛晓光,《离散数学》,国防科技大学出版社,1998年 [3] 耿素云、屈宛玲,《离散数学》,高等教育出版社,2003年

相关文档
最新文档