二氧化碳激光器论文(准专业水平)

二氧化碳激光器论文(准专业水平)
二氧化碳激光器论文(准专业水平)

二氧化碳激光器

论文

院系

专业

班级

学号

姓名

日期

目录

摘要 .............................................................................................. 错误!未定义书签。关键词 .......................................................................................... 错误!未定义书签。1引言 .. (1)

2激光 (1)

2.1激光产生的三个条件 (2)

2.2激光的特点 (2)

2.3激光器 (2)

3 CO2激光器的原理 (3)

3.1 CO2激光器的基本结构 (3)

3.2 CO2激光器基本工作原理 (4)

3.3 CO2激光器的优缺点 (6)

4 CO2激光器的应用 (6)

4.1军事上的应用 (6)

4.2医疗上的应用 (7)

4.3工业上的应用 (8)

5 CO2激光器的研究现状与发展前景 (9)

5.1 CO2激光器的研究现状 (9)

5.2 CO2激光器的发展前景 (10)

参考文献 (11)

摘要:本文从引言出发介绍了CO2激光技术的基本情况,简单介绍了激光和激光器的一些特点,重点介绍了气体激光器中的CO2激光器的相关应用,目前CO2激光器是用最广泛的激光器之一,它有着一些非常突出的高功率、高质量等优点。论文首先介绍了应用型CO2激光器的基本结构和工作原理,着重介绍了应用型CO2激光器在军事、医疗和工业三个主要领域的应用,最后介绍应用型CO2激光器的研究前景和现状。通过这些介绍使得人们能够加深对CO2激光器的了解和认识。

关键词: CO2激光器;基本原理;基本结构;应用。

1 引言

1964年由Patel在CO2气体放电中,获得了波长在10.4微米和9.4微米附近的连续激光输出,世界上第一台CO2分子的激光器诞生了。它有比较大的功率和比较高的能量转换效率。它是利用CO2分子的振动-转动能级间的跃迁的,有比较丰富的谱线,在10微米附近有几十条谱线的激光输出。其在工业、军事、医疗、科研等方面得到了广泛的应用,给我们的实现生活带了许多便利。

1966年气动CO2激光器诞生了,从此CO2激光器受到了极大的关注。由于激光技术中气动技术的引进,CO2激光器开辟了广阔的运用前景。伴随着科学技术的进步,世界各国的激光技术也得到了相应的发展,二氧化碳激光器是目前连续输出功率较高的一种激光,它发展较早,商业产品较为成熟,被广泛应用到材料加工、医疗使用、军事武器、环境量测等各个领域。在激光的发展和应用方面,CO2激光器的制作和应用较早也较多,早在1970年代末期,就有从国外直接进口CO2激光器,从事工业加工和医疗等应用。从80年代末期开始,CO2激光器被广泛引进并应用在在材料加工领域。

本文主要介绍的CO2激光器的基本原理和基本结构,并着重从三个方面介绍了CO2激光器的应用,最后介绍了CO2激光器的研究现状和发展前景。

2 激光

激光的最初的中文名叫做“镭射”或“莱塞”,是它的英文名称LASER的音译,是取自英文Light Amplification by Stimulated Emission of Radiation的各单词头一个字母组

成的缩写词。意思是"通过受激发射光扩大"。激光的英文全名已经完全表达了制造激光的主要过程。1964年按照我国著名科学家钱学森建议将“光受激发射”改称“激光[1]。

2.1激光产生的三个条件

激光产生的三个条件如下:

(1) 有提供放大作用的增益介质作为激光工作物质,其激活粒子(原子、分子或离子)有适合于产生受激辐射的能级结构;

(2) 有外界激励源,将下能级的粒子抽运到上能级,使激光上下能级之间产生粒子数反转;

(3) 有光学谐振腔,增长激活介质的工作长度,控制光束的传播方向,选择被放大的受激辐射光频率以提高单色性[2]。

2.2 激光的特点

激光与普通意义上的光源相比较激光主要有四个特点:方向性好、亮度极高、单色性好、相干性好[3]。

2.3 激光器

激光器是一种能发射激光的装置。1954年制成了第一台微波量子放大器,获得了高度相干的微波束。1958年A.L.肖洛和C.H.汤斯把微波量子放大器原理推广应用到光频范围,并指出了产生激光的方法。1960年T.H.梅曼等人制成了第一台红宝石激光器。1961年A.贾文等人制成了氦氖激光器。1962年R.N.霍耳等人创制了砷化镓半导体激光器。以后,激光器的种类就越来越多。

除自由电子激光器外,各种激光器的基本工作原理均相同,产生激光的必不可少的条件是粒子数反转和增益大过损耗,所以装置中必不可少的组成部分有激励(或抽运)源、具有亚稳态能级的工作介质两个部分。激光器中常见的组成部分还有谐振腔,但谐振腔(见光学谐振腔)并非必不可少的组成部分,谐振腔可使腔内的光子有一致的频率、相位和运行方向,从而使激光具有良好的方向性和相干性,一般激光器都具有谐振腔[4]。

激光器的种类是很多的。下面,将分别从激光工作物质、激励方式、运转方式等几个方面进行分类介绍[5]。

(1)按工作物质分类

根据工作物质物态的不同可把所有的激光器分为以下几大类:①固体(晶体和玻璃)激光器;②气体激光器,而进一步区分为原子气体激光器、离子气体激光器、分子气体激光器、准分子气体激光器等;③液体激光器,这类激光器所采用的工作物质主要包括两类,一类是有机荧光染料溶液,另一类是含有稀土金属离子的无机化合物溶液;④半导体激光器;⑤自由电子激光器。

(2)按激励方式分类

①光泵式激光器;②电激励式激光器;③化学激光器;④核泵浦激光器。

(3)按运转方式分类

由于激光器所采用的工作物质、激励方式以及应用目的的不同,其运转方式和工作状态亦相应有所不同,从而可区分为以下几种主要的类型。①连续激光器;②单次脉冲激光器;

③重复脉冲激光器;④调激光器;⑤锁模激光器;⑥单模和稳频激光器;⑦可调谐激光器。

3 CO2激光器的基本结构

3.1 CO2激光器的基本结构

图1 CO2激光器基本结构

如图1所示是为一种典型的CO2激光器结构示意图。构成CO2激光器谐振腔的两个反射镜放置在可供调节的腔片架上,最简单的方法是将反射镜直接贴在放电管的两端。

基本结构:

①激光管

激光器中最关键的部分。通常由三部分组成(如图1所示):放电空间(放电管)、水冷套(管)、储气管。放电管通常由硬质玻璃制成,一般采用层套筒式结构。它能够影响激

光的输出以及激光输出的功率,放电管长度与输出功率成正比。在一定的长度范围内,每米放电管长度输出的功率随总长度而增加。一般而言,放电管的粗细对对输出功率没有影响。水冷套管的和放电管一样,都是由硬质玻璃制成。它的作用是冷却工作气体,使得输出功率稳定。储气管与放电管的两端相连接,即储气管的一端有一小孔与放电管相通,另一端经过螺旋形回气管与放电管相通。它的作用是可以使气体在放电管中与中循环流动,放电管中的气体随时交换。

②光学谐振腔

光学谐振腔由全反射镜和部分反射镜组成,是CO2激光器的重要

组成部分。光学谐振腔通常有三个作用:控制光束的传播方向,提高单色性;选定模式;增长激活介质的工作长度。最简单常用的激光器的光学谐振腔是由相向放置的两平面镜(或球面镜)构成。CO2激光器的谐振腔常用平凹腔,反射镜采用由K8光学玻璃或光学石英加工成大曲率半径的凹面镜,在镜面上镀有高反射率的金属膜——镀金膜,使得波长为10.6μm 的光反射率达98.8%,且化学性质稳定。我们知道二氧化碳发出的光为红外光,因此反射镜需要应用透红外光的材料。因为普通光学玻璃对红外光不透,就要求在全反射镜的中心开一小孔,再密封上一块能透过10.6μm激光的红外材料,以封闭气体,这样就使谐振腔内激光的一部分从这一小孔输出腔外,形成一束激光。

③电源及泵浦

泵浦源能够提供能量使工作物质中上下能级间的粒子数翻转。封闭式CO2激光器的放电电流较小,采用冷电极,阴极用钼片或镍片做成圆筒状。30~40mA的工作电流,阴极圆筒的面积500cm2,不致镜片污染,在阴极与镜片之间加一光栏[6]。

3.2 CO2 激光器基本工作原理

如下图2所示为CO2激光器的产生激光的分子能级图。从图2中可以分析得到CO2激光的激发过程,主要的工作物质由CO2,氮气,氦气三种气体组成。其中CO2是产生激光辐射的气体、氮气及氦气为辅助性气体。加入的氦有两个作用:一个是可以加速010能级热弛预过程,因此有利于激光能级100及020的抽空;另一个是实现有效的传热。氮气的加入主要在CO2激光器中起能量传递作用,为CO2激光上能级粒子数的积累与大功率高效率的激光输出起到强有力的作用。泵浦采用连续直流电源激发。它的直流电源原理:直流电压为把接入的交流电压,用变压器提升,经高压整流及高压滤波获得高压电加在激光管上[7]。

图2 CO2分子激光跃迁能级图

CO2激光器是一种效率较高的激光器,不易造成工作介质损害,发射出10.6μm波长的不可见激光,是一种比较理想的激光器。按气体的工作形式可分为封闭式及循环式,按激励方式分电激励,化学激励,热激励,光激励与核激励等。在医疗中使用的CO2激光器几乎百分之百是电激励[8]。

CO2激光器的基本工作原理:与其它分子激光器一样,CO2激光器工作原理其受激发射过程也较复杂。分子有三种不同的运动,即分子里电子的运动,其运动决定了分子的电子能态;二是分子里的原子振动,即分子里原子围绕其平衡位置不停地作周期性振动——并决定于分子的振动能态;三是分子转动,即分子为一整体在空间连续地旋转,分子的这种运动决定了分子的转动能态。分子运动极其复杂,因此能级也很复杂。

CO2激光器产生激光:在放电管中,通常输入几十mA或几百mA的直流电流。放电时,放电管中的混合气体内的氮分子由于受到电子的撞击而被激发起来。这时受到激发的氮分子便和CO2分子发生碰撞,N2分子把自己的能量传递给CO2分子,CO2分子从低能级跃迁到高能级上形成粒子数反转从而产生激光[9]。

3.3 CO2激光器的优缺点

与其它激光器相比,CO2激光器有着以下优缺点,如下:

优点:具有较好的方向性、单色性和较好的频率稳定性。而气体的密度小,不易得到高的激发粒子浓度,因此,CO2气体激光器输出的能量密度一般比固体激光器小。

缺点:CO2激光器的转换效率是很高的,但最高也不会超过40%,这就是说,将有60%以上的能量转换为气体的热能,使温度升高。而气体温度的升高,将引起激光上能级的消激

发和激光下能级的热激发,这都会使粒子的反转数减少。并且,气体温度的升高,将使谱线展宽,导致增益系数下降。特别是,气体温度的升高,还将引起CO2分子的分解,降低放电管内的CO2分子浓度。这些因素都会使激光器的输出功率下降,甚至产生“温度猝灭”[10]。

4 CO2激光器的应用

4.1 军事上的应用

激光技术在军事上应用中,在这近几年里,CO2激光器在这方面得到了稳步的发展。

激光武器作为一种新概念武器,与传统常规武器相比,以其速度快,方向性好,能量密度高,作战耗费比高等优点,成为新世纪武器中的新宠.高能激光武器在军事应用的方面扮演着越来越重要的角色,代表着未来武器的发展方向,将彻底改变目前的战场环境和作战方式,使未来战争的形态发生了深刻变革.高能气动CO2激光器输出功率大,曾被各国设计用于研制高能激光武器[11]。

激光导弹防御或称激光反导的基本特征是:用由光速的高能激光去摧毁声速运行的导弹或其它飞行固体。我们可以说这方面是CO2激光器的天下,因为它有一些突出的优点。目前在陆军中采用的陆基小型激光反导系统、空军采用的机载激光反未来的CO2激光武器主要的特点是超高功率和高便携性。高能激光器是未来战斗系统的重要组成部分,将在反监视、主动保护、防空和清除暴露地雷等方面做出贡献。。目前各国的激光武器都朝着这个方向努力,当然这个实导系统和海军采用的舰载激光反导系统中都是使用高能CO2激光器[12]。

未来的CO2激光武器将向着高功能、便携式、杀伤力强发展。如图3所示:

图3 CO2激光器军事上的应用

4.2 医疗上的应用

近20年来激光技术在医疗有着飞速的进步,许多疾病和先天性的疾病都可以被成功地根治。

CO2激光手术采用的是自由光束CO2激光器,通常都是采用光束与皮肤组织非接触的方式,比常规手术提供了更多便利的条件,包括减少机械损伤,增加周围组织被保护等,并且更易保持无菌手术,与其他激光手术相比,CO2激光手术刀具有切割能力强,组织吸收系数大,组织穿透浓度较小(约0.23mm),手术时不易伤及动脉血管等,使得连续CO2激光被大量用于外科手术临床治疗。但是连续CO2在临床上对组织的损伤属非选择性的,手术治疗后常常伴随着皮肤疤痕等副作用。对病灶进行的切割或气化时也有不同程度地损伤正常组织,因而不能适用于有较高要求的手术治疗,这种情况严重地限制了CO2激光在医疗中的进一步应用。

1983年,Aderson和Parrish提出了“选择性光热作用”原理,以进行激光的无损伤治疗。这一原理的要点是:当激光通过正常组织到达病变靶组织时,应使靶组织对激光的吸收系数大于正常组织,其反差愈大愈好,以便在激光破坏靶组织时,不伤及正常组织;靶组织的热弛豫时应大于激光的脉冲宽度或作用时间,使靶组织在激光加热过程中,来不及将热量向周围正常组织扩散,以保护周围正常组织。基于“选择性光热作用”原理,90年代后出现了以超脉冲CO2激光治疗机为代表的高能量脉冲医疗设备,并得到成功的应用,使得要求较高的应用领域得到突破性进展,特别是激光美容方面独占鳌头。发展前景十分广阔。

超脉冲CO2激光器采用先进的脉冲技术和PWM电源控制技术,不仅能在极短时间内提高了激光输出的峰值功率,向靶组织提供足够的能量,而且可以通过PWM信号精确控制每个脉冲的宽度和脉冲重复频率。通过计算靶组织的热弛豫时间,控制脉冲宽度可实现最佳手术效果。如毛细血管的热弛豫时间约为10μs,要求脉宽小于10μs;皮肤组织的热弛豫时间大致为1 ms,要求做皮肤磨削除皱的激光仪的脉宽小于1 ms。现代激光仪与10余年前的激光仪的最大区别正是在于对脉宽的精确控制,这是现代激光治疗安全性的根本保证。

超脉冲CO2激光治疗机不但有连续CO2激光手术刀的共同特点,还具有本身的优点,可输出高能量高重复频率的的脉冲激光,可满足“激光选择性光热作用”的操作要求,可以迅速有效地去除病变靶组织,最大限度地减少激光对正常组织的损伤,大大提高了医学临床的准确性和安全性。临床实践证明,在进行同一种手术时脉冲激光所使用的激光功率要比连续激光低得多,因而由激光手术引起的组织反应较轻,对周围组织的损伤小,也缩短时间,治疗时产生烟雾少,视野清晰。

超脉冲CO2激光器已经广泛应用于耳鼻喉科(Otorhinolaryngology),妇科医学(Gynecology),神经外科(Neurosurgery),一般手术(General Surgery),美容学(Aesthetics)。微桥点阵治疗(Bridge Therapy)技术推出者Lumenis医疗激光公司已经研究并生产了各种CO2激光治疗仪,像Nova Pulse Series可用于耳鼻喉科和美容学,其他还有波兰的CTL公司生产的MODEL CTL1401是一款手术仪,日本NANO LASER的GL-Ⅲ可用于口腔科的CO2激光治疗仪,目前国内已有5个国家级激光技术研究中心,十几个产品研发机构。医疗激光设备生产企业主要集中在上海,武汉,长春,北京,成都等城市或是周边地区。例如拥有CO2激光治疗技术的上海激光研究所,上海嘉定光电仪器有限公司,广州市激光技术应用研究所,(不列出全部,排名不分主次)。中国的激光医疗技术与西方相比水平并不低,且中国有13亿人口,故激光医疗器械的潜在需求巨大,今后10年,我国激光医疗器械市场将迎来一个新的繁荣期,超脉冲CO2激光将在这一大浪中起举足轻重的地位[13]。

4.3 工业上的应用

(1) CO2激光器切割技术

激光切割技术广泛应用于金属和非金属材料的加工中,可大大减少加工时间,降低加工成本,提高工件质量。激光切割是应用激光聚焦后产生的高功率密度能量来实现的。与传统的板材加工方法相比,激光切割其具有高的切割质量、高的切割速度、高的柔性(可随意切割任意形状)、广泛的材料适应性等优点。激光切割技术分为金属切割是CO2激光切割的最大支柱领域,目前从经济上考虑,一般用大功率激光切割机按加工站形式提供代工,随着国内中功率CO2激光器的成熟,各个钣金厂会自购激光切割机,需求会大增。非金属切割应用于刀模板切割,木材和高密度木质纤维板切割,塑胶切割[14]。

(2) CO2激光器的焊接技术

激光焊接是一种材料连接方法,主要是金属材料之间连接的技术。它和传统的焊接技术一样,通过将连接区的部分材料熔化而将两个零件或部件连接起来。因为激光能量高度集中,加热、冷却的过程及其迅速,一些普通焊接技术难以加工的如脆性大、硬度高或柔软性强的材料,用激光很容易实现。另一方面,在激光焊接过程中无机械接触,易保证焊接部位不因受力而发生变形,通过熔化最小数量的物质实现合金连接,从而大大提高焊接质量,提高生产率。激光焊的焊缝深度比大,而焊缝热影响区极小,质量好。

例如:金属薄板的焊接,中功率CO2激光器适合焊接1mm以下厚度的金属薄板,如汽车部件,发电机、刮水机、启动机、举窗机等经常使用到的层叠状的硅钢片的固定,过去采用

打孔销钉固定,现在可以激光焊接。电池焊接,锂电池的生产工序如极耳焊接、安全阀焊接、负极焊接、外壳密封焊接使用激光焊接为最佳工艺,需要配备的激光焊接机的品种和数量十分巨大。精密仪表零件的激光焊接需求也在增大,如不锈钢压力膜片的焊接、航空仪表外壳的焊接[15]。

5 CO2激光器的研究现状与发展前景

5.1 CO2激光器的研究现状

CO2激光器从诞生到现在的近50年时间里一直被人类所关注,二氧化碳激光器是以CO2气体作为工作物质的气体激光器。CO2激光器是一种比较重要的气体激光器,目前对CO2激光器的研究方向主要朝一下几个方面[16]:

第一,高效率的CO2激光器。

显然,相对于固体激光器其效率是非常高的,但是总体而言,相对于CO2激光器本身其效率还是相对较低的。1964年,通过使用N2,转换效率达到3%;1965年,通过使用CO2-N2-He 混合气体,转换效率达到6%。到目前为止,其最高效率也不会超过60%。在效率提高方面许多公司研究,已美国大通公司为例,研究的CO2激光器的效率已达到60%左右。国内研究较好的公司大都具有军方背景,目前效率已接近国外水平,代表公司为北京中科思远光电科技。

第二,小体积多功能CO2激光器。

目前大部分的CO2激光器功能单一,只能够从事某一项非常具体的工作。我们知道大型医院里使用的CO2祛斑激光器和CO2除毛激光器,他们的体积都非常的庞大,但是结构基本相同。使用多功能CO2激光器的话,占用的体积小,而且售价相对也低了许多。在这个方面国内的研究处于国际水平了,当然研究机构大都是具有医院背景的。例如拥有完全的自主产权的吉林省科英激光技术有限责任公司,已研究出小体积多功能 CO2激光器(医疗美容)。

第三,高功率CO2激光器

高功率一直都是军方的追求目标,在这方面国内的一些军工企业的研究水平还是相对落后。美国空军最早开始着手研究高功率CO2激光器。1975年,也就是CO2诞生的十一周年,美国空军医研制出功率达到30KW级别的CO2激光器。1988年,研究的CO2激光器的输出功率已达到380KW。目前根据美国军方公布的部分数据,研制的CO2激光器输出功率已达到千万瓦级别。

第四,工业技术的研究

CO2激光器在激光加工方面占主导地位,它广泛的用于焊接,切割,热处理和清洗等方

面,输出激光的质量和功率都有很明确的要求。因此,工业中的CO2激光器要有高质量的激光光束和稳定的输出功率。在这个方面我们一直跟在国外公司的后面,毕竟我们在工业方面的研究晚了近十年。在企业中,使用较多的CO2激光器为美国的大通公司所生产的。激光应用已经遍及光学、医学、原子能、天文、地理、海洋等领域,它标志着新技术革命的发展。如果将激光发展的历史与电子学及航空发展的历史相比,你不得不意识到现在还是激光发展的早期阶段,更令人激动的美好前景将要来到。

5.2 CO2激光器的发展前景

未来的CO2激光器将朝着以下几个方向发展:

(1) 高功率横流CO2激光器。

高功率横流CO2激光器,用于激光加工和热处理,激光器的整机呈一体化的箱体。箱体的上箱体中置有一体化的放电室、热交换器、风机系统、进出口导流器以及光学谐振腔,箱体的下箱体中置有激光电源、充放气系统、真空泵、镇流电阻箱和控制盒。与已有技术相比具有结构紧凑、安装调试和维修方便、激光器的工作效率高,整机的体积可以小型化的特点。主要应用于金刚石工具、汽车齿轮、汽车安全气囊气体发生器等焊接中的应用,激光表面淬火与熔覆工艺及其在钢铁轧辊表面熔凝淬火、石油化工零件表面修复等方面的特殊应用[17]。

(2) 声光调Q CO2激光器:为满足激光测距、环境探测、空间通讯及激光与物质相互作用机理研究等领域应用要求,研制了声光调Q C02激光器。针对影响声光调Q CO2:激光器输出的各种因素,利用调Q脉冲激光器速率方程对该激光器输出的主要技术参数进行了理论分析和计算,提出了声光调Q CO2:激光器优化设计的方法,并进行了验证实验。激光器脉冲重复频率为lHz~50 kHz,在l kHz运转时获得的输出激光脉冲宽度为180 ns,峰值功率为4062 W,与理论计算基本一致。结果证明:通过声光晶体(AO)的优选及谐振腔的合理设计。可实现小型CO2激光器的高重频、窄脉宽,高峰值功率输出,并可通过光栅选线的设计方式和TTL 信号控制实现此类激光器的波长调谐和编码输出[18]。

(3)紧凑型长寿命射频激励波导CO2激光器 :为了使CO2激光器在工业加工及军事上有更广泛的应用,采用铝合金拉制型材作为激光器壳体、盘装电感代替传统线绕电感的结构以及全金属封接工艺等,研制出一种紧凑型长寿命射频激励波导CO2激光器.可连续输出或在不高于20kHz调制频率下脉冲输出,最大输出功率30W,实测工作寿命超过1500h,存储寿命超过

1.5a.结果表明,这种激光器具有结构紧凑、输出功率稳定、工作寿命长、可连续及脉冲调制

工作等特点,除了能满足各种材料的加工,也可在军事上应用[19]。

(4)新型便携式TEA CO2激光器:它是一种新型便携式横向激励大气压CO2激光器。该激光器采用4节5号充电电池直流供电,在1 Hz重复频率条件下,可连续工作1 h.激光器整机(包括电源及控制系统)尺寸为200 nm×200 mm × 360 mm,质量小于8 kg.激光器使用紫外电晕预电离方式,放电均匀、稳定.自由振荡情况下,激光脉冲输出能量达到35 mJ,输出脉冲宽度为70 ns[20]。

(5)高功率连续CO2激光器:针对直升飞机发动机涡轮叶片采用连续激光熔覆出现裂纹及叶片变形的问题,在5 kW连续横流CO2激光器上,采用新的电源控制方案,通过软件及相关控制,实现了脉冲激光功率输出.克服了采用高功率开关电源带来的成本和稳定性问题.且脉冲调制频率可达到5 Hz,调制占空比可达到5%~100%.当采用4 kW峰值功率,4 Hz脉冲重复频率,占空比为20%时,在发动机叶片K403合会表面进行合金粉末Stellite X-40的熔覆实验.结果表明,熔覆后热影响区比连续激光减少50%,硬度提高5%,界面结合性能与母材相当,无熔覆裂纹及叶片变形[21]。

参考文献:

[1]马养武,陈玉清.激光器件.北京:电子工业出版社 1990.6:1-2

[2]陈家壁,彭润玲.激光原理与应用(第二版).北京:电子工业出版社,2008.8:102

[3]陈家壁,彭润玲.激光原理与应用(第二版).北京:电子工业出版社,2008.8:103

[4]李相因,姚敏玉,李卓,崔骥.激光原理技术及应用.哈尔滨:哈尔滨工业大学出版社,2004.10:56

[5]马养武,陈玉清.激光器件.北京:电子工业出版社,1990.6:56-59

[6]周炳琨,高以智,陈稠嵘.激光原理.北京:国防工业出版社2000.12:78-92

[7]李适民,黄伟玲.激光器件原理与设计(第二版),北京:国防工业出版社,2005.1:158-159

[8]马养武,陈玉清.激光器件.北京:电子工业出版社,1990.6:78-80

[9]李适民,黄伟玲.激光器件原理与设计(第二版),北京:国防工业出版

社,2005.1:158-160

[10]陈家壁,彭润玲.激光原理与应用(第二版).北京:电子工业出版社,2008.8:177

[11]叶向阳,汪盛烈,何云贵.射频激励CO2激光器功率控制原理及其控制器设计.1998:151-153

[12]郑权,赵岭,钱龙生.大功率泵浦固体激光器的应用和发展.光学精密工程,2001.1:74-77

[13]程兆谷,王润文,毛英立等.脉冲预电离管-条电极.装备装备指挥技术学院学报,2004.1:8

[14]张国威,王兆民.激光光谱学(原理与技术).北京:北京理工大学出版社,1991:102-107

[15]陈家壁,彭润玲.激光原理与应用(第二版).北京:电子工业出版社,2008.8:245

[16]黄元庆,陈永明,朱立秒. 微小型高功率CO2气体激光器的新进展.厦门大学学报,2001.56(3):5-6

[17]武建强,唐霞辉,秦应雄,程祖海,李宏棋,钟如涛.中国激光2007.35(4):11-12

[18]谢冀江,李殿军,张传胜,郭汝海.声光调Q CO2激光器,光学精密工程2009.17(5):8

[19]江建平,孙鹏,刘向东,周鼎富.紧凑型长寿命射频激励波导,CO2激光器,激光技术,2009:33(6):20

[20]郑义军,孙科,谭荣清,王东雷,刘世民,张阔海.新型便携式TEA CO2激光器,激光与红外,2009.39(8):13

[21] 柳娟,唐霞辉,彭浩,秦应雄.高功率连续CO2激光器脉冲调制特性及特殊熔覆应用中国激光 2009.36(6):23

半导体激光器原理

半导体激光器原理 一、半导体激光器的特征 半导体激光器是用半导体材料作为工作物质的一类激光器,由于物质结构上的差异,产生激光的具体过程比较特殊。常用材料有砷化镓:GaAs:、硫化镉:CdS:、磷化铟(InP)、硫化锌(ZnS)等。激励方式有电注入、电子束激励和光泵浦三种形式。 半导体激光器件,可分为同质结、单异质结、双异质结等几种。同质结激光器和单异质结激光器室温时多为脉冲器件,而双异质结激光器室温时可实现连续工作。 半导体激光器具有体积小、效率高等优点,广泛应用于激光通信、印刷制版、光信息处理等方面。 二、半导体激光器的结构与工作原理 现以砷化镓:GaAs:激光器为例,介绍注入式同质结激光器的工作原理。 1〃注入式同质结激光器的振荡原理。由于半导体材料本身具有特殊晶体结构和电子结构,故形成激光的机理有其特殊性。 :1:半导体的能带结构。半导体材料多是晶体结构。当大量原子规则而紧密地结合成晶体时,晶体中那些价电子都处在晶体能带上。价电子所处的能带称价带:对应较低能量:。与价带最近的高能带称导带,能带之间的空域称为禁带。当加外电场时,价带中电子跃迁到导带中去,在导带中可以自由运动而起导电作用。同时,价带中失掉一个电子,则相当于出现一个带正电的空穴,这种空穴在外电场的作用下,也能起导电作用。因此,价带中空穴和导带中的电子都有导电作用,统称为载流子。 :2:掺杂半导体与p-n结。没有杂质的纯净半导体,称为本征半导体。如果在本征半导体中掺入杂质原子,则在导带之下和价带之上形成了杂质能级,分别称为施主能级和受主能级:见图19,24:。

图19,24 有施主能级的半导体称为n型半导体;有受主能级的半导体称这p型半导体。在常温下,热能使n型半导体的大部分施主原子被离化,其中电子被激发到导带上,成为自由电子。而p型半导体的大部分受主原子则俘获了价带中的电子,在价带中形成空穴。因此,n型半导体主要由导带中的电子导电;p型半导体主要由价带中的空穴导电。 半导体激光器中所用半导体材料,掺杂浓度较大,n型杂质原子数一般 为:2,5:×1018cm-1;p型为:1,3:×1019cm-1。 在一块半导体材料中,从p型区到n型区突然变化的区域称为p-n结。其交界面处将形成一空间电荷区。n型半导体带中电子要向p区扩散,而p型半导体价带中的空穴要向n区扩散。这样一来,结构附近的n型区由于是施主而带正电,结区附近的p型区由于是受主而带负电。在交界面处形成一个由n区指向p区的电场,称为自建电场。此电场会阻止电子和空穴的继续扩散:见图19,25:。 图19,25 :3:p-n结电注入激发机理。若在形成了p-n结的半导体材料上加上正向偏压,p 区接正极,n区接负极。显然,正向电压的电场与p-n结的自建电场方向相反,它削

大功率半导体激光器件最新发展现状分析

大功率半导体激光器件最新发展现状分析 1 引言 半导体激光器由于具有体积小、重量轻、效率高等众多优点,诞生伊始一直是激光领域的关注焦点,广泛应用于工业、军事、医疗、通信等众多领域。但是由于自身量子阱波导结构的限制,半导体激光器的输出光束质量与固体激光器、CO2激光器等传统激光器相比较差,阻碍了其应用领域的拓展。近年来,随着半导体材料外延生长技术、半导体激光波导结构优化技术、腔面钝化技术、高稳定性封装技术、高效散热技术的飞速发展,特别是在直接半导体激光工业加工应用以及大功率光纤激光器抽运需求的推动下,具有大功率、高光束质量的半导体激光器飞速发展,为获得高质量、高性能的直接半导体激光加工设备以及高性能大功率光纤激光抽运源提供了光源基础。 2 大功率半导体激光器件最新进展 作为半导体激光系统集成的基本单元,不同结构与种类的半导体激光器件的性能提升直接推动了半导体激光器系统的发展,其中最为主要的是半导体激光器件输出光束发散角的降低以及输出功率的不断增加。 2.1 大功率半导体激光器件远场发散角控制 根据光束质量的定义,以激光光束的光参数乘积(BPP)作为光束质量的衡量指标,激光光束的远场发散角与BPP成正比,因此半导体激光器高功率输出条件下远场发散角控制直接决定器件的光束质量。从整体上看,半导体激光器波导结构导致其远场光束严重不对称。快轴方向可认为是基模输出,光束质量好,但发散角大,快轴发散角的压缩可有效降低快轴准直镜的孔径要求。慢轴方向为多模输出,光束质量差,该方向发散角的减小直接提高器件光束质量,是高光束半导体激光器研究领域关注的焦点。 在快轴发散角控制方面,如何兼顾快轴发散角和电光效率的问题一直是该领域研究热点,尽管多家研究机构相续获得快轴发散角仅为3o,甚至1o的器件,但是基于功率、光电效率及制备成本考虑,短期内难以推广实用。2010年初,德国费迪南德-伯恩研究所(Ferdinand-Braun-Inst itu te)的P. Crump等通过采用大光腔、低限制因子的方法获得了30o快轴发散角(95%能量范围),光电转换效率为55%,基本达到实用化器件标准。而目前商用高功率半导体激光器件的快轴发散角也由原来的80o左右(95%能量范围)降低到50o以下,大幅度降低了对快轴准直镜的数值孔径要求。 在慢轴发散角控制方面,最近研究表明,除器件自身结构外,驱动电流密度与热效应共同影响半导体激光器慢轴发散角的大小,即长腔长单元器件的慢轴发散角最易控制,而在阵列器件中,随着填充因子的增大,发光单元之间热串扰的加剧会导致慢轴发散角的增大。2009年,瑞士Bookham公司制备获得的5 mm腔长,9XX nm波段10 W商用器件,成功将慢轴发散角(95%能量范围)由原来的10o~12o降低到7o左右;同年,德国Osram公司、美国相干公司制备阵列器件慢轴发散角(95%能量范围)也达7o水平。 2.2 半导体激光标准厘米阵列发展现状 标准厘米阵列是为了获得高功率输出而在慢轴方向尺度为1 cm的衬底上横向并联集成多个半导体激光单元器件而获得的半导体激光器件,长期以来一直是大功率半导体激光器中最常用的高功率器件形式。伴随着高质量、低缺陷半导体材料外延生长技术及腔面钝化技术的提高,现有CM Bar的腔长由原来的0.6~1.0 mm增大到2.0~5.0mm,使得CM Bar输出功率大幅度提高。2008年初,美国光谱物理公司Hanxuan Li等制备的5 mm腔长,填充因子为83%的半导体激光阵列,利用双面微通道热沉冷却,在中心波长分别为808 nm,940 nm,980 nm处获得800 W/bar,1010W/bar,950 W/bar的当前实验室最高CM Bar连续功率输出水平。此外,德国的JENOPTIK公司、瑞士的Oclaro公司等多家半导体激光供应商也相续制备获得千瓦级半导体激光阵列,其中Oclaro公司的J. Müller等更是明确指出,在现有技术

半导体激光器的研究

半导体激光器的研究 半导体激光器是近年来应用非常广泛的一种激光器。在本实验中我们将对半导体激光器的主要发光器件——激光二极管(LD)进行全面的实验研究。 【实验内容】 1.激光二极管(LD)的伏安特性测量。 2.LD的发光强度与电流的关系曲线测量。 3*.LD发光光谱分布测量。 4*.LD发光偏振特性分析。 【实验仪器】 激光二极管,电压表,电流表,激光功率计,分光计,格兰—泰勒棱镜等

阅读材料 半导体激光器件 按照半导体器件功能的基本结构可分为:注入复合发光,即电—光转换;光引起电动势效应,即光—电变换。这里主要讨论前者。 半导体激光光源是半导体激光器发射的激光。它是以半导体材料作为激光工作物质的一类激光器,亦称激光二极管,英文缩写为LD。与其相对应的非相干发光二极管,英文缩写为LED。它具有工作电压低、体积小、效率高、寿命长、结构简单、价格便宜以及可以高速工作等一系列优点。可采用简单的电流注入方式来泵浦,其工作电压和电流与集成电路兼容,因而有可能与之单片集成;并且还可用高达吉赫(109 Hz)的频率直接进行电流调制以获得高速调制的激光输出。由于这些优点,LD在激光通信、光纤通信、光存储、光陀螺、激光打印、光盘录放、测距、制导、引信以及光雷达等方面已经获得了广泛应用,大功率LD 可用于医疗、加工和作为固体激光器的泵浦源等。 半导体激光器自1962年问世以来,发展极为迅速。特别是进入20世纪80年代,借用微电子学制作技术(称为外延技术),现已大量生产半导体激光器。以半导体LD条和LD堆为代表的高功率半导体激光器品种繁多,应有尽有。 1 概述 1)半导体激光器的分类 从半导体激光器的发射的激光看,可分为半导体结型二极管注入式激光器和垂直腔表面发射半导体激光器两种类型;而从结型看,又可分为同质结和异质结两类;从制造工艺看,又可为一般半导体激光器、分布反馈式半导体激光器和量子阱半导体激光器激光器;另外,为了提高半导体激光器的输出功率,增大有源区,将其做成列阵式,又可分为单元列阵、一维线列阵、二维面阵等。 2)半导体激光器的工作原理 半导体激光器与其它激光器没有原则区别,只是因工作物质不同,而有其自身的特点。图示给出了GaAs激光器的外形及其管芯结构,在激光器的外壳上有一个输出激光的小窗口,激光器的电极供外接电源用,外壳内是激光器管芯,管芯形状有长方形、台面形、电极条形等多种。它的核心部分是PN结。半导体激光器PN结的两个端面是按晶体的天然晶面剖切开的,称为解理面,这两个表面极为光滑,可以直接用作平行反射镜面,构成激光谐振腔。激光可以从某一侧解理面输出,也可由两侧输出。 半导体材料是一种单晶体,各原子最外层的轨道互相重叠,导致半导体能级不再是分

半导体激光器特性测量

半导体激光器特性测量实验 摘要:激光器的三个基本组成部分是:增益介质、谐振腔、激励能源。本实验通过测量半导体激光器的输出特性、偏振度和光谱特性,进一步了解半导体激光器的发光原理,并掌握半导体激光器性能的测试方法。 关键字:半导体激光器偏振度阈值光谱特性 一、引言 半导体激光器是用半导体材料作为工作物质的激光器,常用工作物质有砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)等。激励方式有电注入、电子束激励和光泵浦三种形式。半导体激光器件,可分为同质结、单异质结、双异质结等几种。半导体激光器发射激光必须具备三个基本条件:(1)产生足够的粒子数反转分布;(2)合适的谐振腔起反馈作用,使受激辐射光子增生,从而产生激光震荡;(3)满足阀值条件,使光子的增益≥损耗。半导体激光器工作原理是用某种激励方式,将介质的某一对能级间形成粒子数反转分布,在自发辐射和受激辐射的作用下,将有某一频率的光波产生(用半导体晶体的解理面形成两个平行反射镜面作为反射镜,组成谐振腔),在腔内传播,并被增益介质逐渐增强、放大,输出激光。 二、实验仪器 半导体激光器装置、WGD-6型光学多道分析器、电脑、光功率指示仪等。 三、实验原理 3.1半导体激光器的基本结构 半导体激光器大多数用的是GaAs或Gal-xAlxAs材料,p-n结激光器的基本结构如图1所示,p-n结通常在n型衬底上生长p型层而形成。在p区和n区都要制作欧姆接触,使激励电流能够通过,这电流使结区附近的有源区内产生粒子数反转,还需要制成两个平行的端面其镜面作用,为形成激光模提供必须的光反馈。图1中的器件是分立的激光器结构,它可以与光纤传输连成线,如果设计成更完整的多层结构,可以提供更复杂的光反馈,更适合单片集成光电路。

半导体激光器的发展与运用

半导体激光器的发展与运用 0 引言激光器的结构从同质结发展成单异质结、双异质结、量子 阱 (单、多量子阱)等多种形式, 制作方法从扩散法发展到液相外延(LP日、气相外延(VPE)、分子束外延(MBE)、金属有机化合物气相淀积(MOCVD)、化学束外延(CBE 以及它们的各种结合型等多种工艺[5].半导体激光器的应用范围十分广泛,而且由于它的体积小,结构简单,输入能量低,寿命长,易于调制和价格低等优点, 使它已经成为当今光电子科学的核心技术,受到了世界各国的高度 重视。 1 半导体激光器的历史 半导体激光器又称激光二极管(LD)。随着半导体物理的发展,人们早在20 世纪50 年代就设想发明半导体激光器。 20 世纪60 年代初期的半导体激光器是同质结型激光器, 是一种只能以脉冲形式工作的半导体激光器。在1962 年7 月召开的固体器件研究国际会议上,美国麻省理工学院林肯实验室的两名学者克耶斯(KeyeS和奎斯特(Quist、报告了砷化镓材料的光发射现象。 半导体激光器发展的第二阶段是异质结构半导体激光器,它是由两种不同带隙的半导体材料薄层,如GaAs,GaAIAs所组成的激光器。单异质结注人型激光器(SHLD,它是利用异质结提供的势垒把注入电子限制在GaAsP 一N 结的P 区之内,以此来降低阀值电流密度的激光

器。 1970 年,人们又发明了激光波长为9 000? 在室温下连续工作的双异质结GaAs-GaAlAs(砷化稼一稼铝砷)激光器. 在半导体激光器件中,目前比较成熟、性能较好、应用较广的是具有双异质结构的电注人式GaAs 二极管激光器. 从20 世纪70 年代末开始, 半导体激光器明显向着两个方向发展,一类是以传递信息为目的的信息型激光器;另一类是以提高光功率为目的的功率型激光器。在泵浦固体激光器等应用的推动下, 高功率半导体激光器(连续输出功率在100W 以上,脉冲输出功率在5W 以上, 均可称之谓高功率半导体激光器)在20 世纪90 年代取得了突破性进展,其标志是半导体激光器的输出功率显著增加,国外千瓦级的高功率半导体激光器已经商品化,国内样品器件输出 已达到600W另外,还有高功率无铝激光器、红外半导体激光器和量子级联激光器等等。其中,可调谐半导体激光器是通过外加的电场、磁场、温度、压力、掺杂盆等改变激光的波长,可以很方便地对输出 光束进行调制。 20 世纪90 年代末,面发射激光器和垂直腔面发射激光器得到了迅速的发展。 目前,垂直腔面发射激光器已用于千兆位以太网的高速网络,为了满足21 世纪信息传输宽带化、信息处理高速化、信息存储大容量以及军用装备小型、高精度化等需要,半导体激光器的发展趋势主要是向高速宽带LD大功率LD短波长LD盆子线和量子点激光器、中红外LD

半导体激光器研究的依据及意义-Read

半导体激光器研究的依据及意义 信息技术已成为当今全球性战略技术。以光电技术和微电子技术为基础所支持的通信和网络技术已成为高技术的核心,正在深刻影响国民经济、国建设的各个领域。其中,半导体激光器起着举足轻重的作用 半导体激光器 ,其转换效率高、体积小、重量轻、可靠性高、能直接调制以及与其它半导体器件集成的能力强等特点而成为信息技术的关键器件。在光谱技术、光外差探测、医疗、加工等领域得到愈来愈广泛的应用。目前,它已是固体激光器泵浦、光纤放大器泵浦中不可替代的重要光源。 但是,半导体激光器正常工作时,需要稳定的环境温度。环境温度的变化以及激光器运转时器件发热而导致其温度起伏,将直接影响激光器输出功率的稳定性和运行的安全可靠性,甚至造成半导体激光器的损坏。因此,半导体激光器的驱动电源温度控制问题越来越受到人们的重视。 阀值是所有激光器所具有的特性,它标志着激光器的增益与损耗的平衡点。由于半导体激光器是直接注入电流的电子—光子转换器件,因此其阀值是常用电流密度或者电流来表示的。温度是影响半导体激光器阀值特性的主要因素。温度对阈值电流密度的影响由下面公式 J th (T )=J th (T r )exp[(T-T r )/T 0] 1. (1) 给出。T 为半导体激光器的工作温度,T r 为室温,J th (T )为工作温度 下的阈值电流密度,J th (T r )为室温下的阈值电流密度,T 0是表征半导 体激光器温度稳定性的特征温度,它与激光器所使用的材料及结构有关。 温度的变化也影响半导体激光器的激光波长,λ=2nL/m 1.(2) 中,n 为折射率,m 是模数,波长λ随折射率n 和长度L 较大程度的影响。波长λ对T 微分,这里,折射率是温度和波长的函数,即: (1/λ)(d λ/dT)=(1/n)(аn/аλ)T (d λ/dT)

半导体激光器工作原理及主要参数

半导体激光器工作原理及主要参数 OFweek激光网讯:半导体激光器又称为激光二极管(LD,Laser Diode),是采用半导体材料作为工作物质而产生受激发射的一类激光器。常用材料有砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)。激励方式有电注入、电子束激励和光泵浦激励三种形式。半导体激光器件,一般可分为同质结、单异质结、双异质结。同质结激光器和单异质结激光器室温时多为脉冲器件,而双异质结激光器室温时可实现连续工作。半导体激光器的优点在于体积小、重量轻、运转可靠、能耗低、效率高、寿命长、高速调制,因此半导体激光器在激光通信、光存储、光陀螺、激光打印、激光医疗、激光测距、激光雷达、自动控制、检测仪器等领域得到了广泛的应用。 半导体激光器工作原理是:通过一定的激励方式,在半导体物质的能带(导带与价带)之间,或者半导体物质的能带与杂质(受主或施主)能级之间,实现非平衡载流子的粒子数反转,当处于粒子数反转状态的大量电子与空穴复合时便产生受激发射作用。半导体激光器的激励方式主要有三种:电注入式、电子束激励式和光泵浦激励式。电注入式半导体激光器一般是由GaAS(砷化镓)、InAS(砷化铟)、Insb(锑化铟)等材料制成的半导体面结型二极管,沿正向偏压注入电流进行激励,在结平面区域产生受激发射。电子束激励式半导体激光器一般用N型或者P型半导体单晶(PbS、CdS、ZhO等)作为工作物质,通过由外 部注入高能电子束进行激励。光泵浦激励式半导体激光器一般用N型或P型半导体单晶(GaAS、InAs、InSb等)作为工作物质,以其它激光器发出的激光作光泵激励。 目前在半导体激光器件中,性能较好、应用较广的是:具有双异质结构的电注入式GaAs 二极管半导体激光器。 半导体光电器件的工作波长与半导体材料的种类有关。半导体材料中存在着导带和价带,导带上面可以让电子自由运动,而价带下面可以让空穴自由运动,导带和价带之间隔着一条禁带,当电子吸收了光的能量从价带跳跃到导带中去时就把光的能量变成了电,而带有电能的电子从导带跳回价带,又可以把电的能量变成光,这时材料禁带的宽度就决定了光电器件的工作波长。 小功率半导体激光器(信息型激光器),主要用于信息技术领域,例如用于光纤通信及光交换系统的分布反馈和动态单模激光器(DFB-LD)、窄线宽可调谐激光器、用于光盘等信息处理领域的可见光波长激光器(405nm、532nm、635nm、650nm、670nm)。这些 器件的特征是:单频窄线宽、高速率、可调谐、短波长、光电单片集成化等。 大功率半导体激光器(功率型激光器),主要用于泵浦源、激光加工系统、印刷行业、生物医疗等领域。 半导体激光器主要参数: 波长nm:激光器工作波长,例如405nm、532nm、635nm、650nm、670nm、690nm、780nm、810nm、860nm、980nm。 阈值电流Ith:激光二极管开始产生激光振荡的电流,对小功率激光器而言其值约在数 十毫安。

半导体激光器实验报告

半导体激光器实验报告 课程:_____光电子实验_____ 学号: 姓名: 专业:信息工程 南京大学工程管理学院

半导体激光器 一.实验目的 (1)通过实验熟悉半导体激光器的光学特性 (2)掌握半导体激光器耦合、准直等光路的调节 (3)根据半导体激光器的光学特性考察其在光电技术方面的应用 二.实验原理 1.半导体激光器的基本结构 半导体激光器大多数用的是GaAs或Gal-xAlxAs材料。P-n结通常在n 型衬底上生长p型层而形成,在p区和n区都要制作欧姆接触,使激励 电流能够通过,电流使结区附近的有源区产生粒子数反转。 2.半导体激光器的阈值条件 当半导体激光器加正向偏置并导通时,器件不会立刻出现激光震荡,小电流时发射光大都来自自发辐射,随着激励电流的增大,结区大量粒 子数反转,发射更多的光子,当电流超过阈值时,会出现从非受激发射 到受激发射的突变。这是由于激光作用过程的本身具有较高量子效率的 缘故,激光的阈值对应于:由受激发射所增加的激光模光子数(每秒) 正好等于平面散射,吸收激光器的发射所损耗的光子数(每秒)。 3.横模和偏振态 半导体激光器的共振腔具有介质波导的结构,所以在共振腔中传播光以模的形式存在。每个模都由固有的传播常数和横向电场分布,这些 模就构成了激光器中的横模。横模经端面射出后形成辐射场,辐射场的 角分布沿平行于结面方向和垂直于结面方向分别成为侧横场和正横场。 共振腔横向尺寸越小,辐射场发射角越大,由于共振腔平行于结面方向 的宽度大于垂直于结面方向的厚度,所以侧横场小于正横场的发散角。 激光器的GaAs晶面对TE模的反射率大于对TM模的反射率,因而TE模需要的阈值增益低,TE模首先产生受激发射,反过来又抑制了TM 模,另一方面形成半导体激光器共振腔的波导层一般都很薄,这一层越

半导体激光器工作原理

半导体激光器工作原理 半导体激光器工作原理是:通过一定的激励方式,在半导体物质的能带(导带与价带)之间,或者半导体物质的能带与杂质(受主或施主)能级之间,实现非平衡载流子的粒子数反转,当处于粒子数反转状态的大量电子与空穴复合时便产生受激发射作用。半导体激光器的激励方式主要有三种:电注入式、电子束激励式和光泵浦激励式。电注入式半导体激光器一般是由GaAS(砷化镓)、InAS(砷化铟)、Insb (锑化铟)等材料制成的半导体面结型二极管,沿正向偏压注入电流进行激励,在结平面区域产生受激发射。电子束激励式半导体激光器一般用N型或者P型半导体单晶(PbS、CdS、ZhO等)作为工作物质,通过由外部注入高能电子束进行激励。光泵浦激励式半导体激光器一般用N型或P型半导体单晶(GaAS、InAs、InSb等)作为工作物质,以其它激光器发出的激光作光泵激励。

目前在半导体激光器件中,性能较好、应用较广的是:具有双异质结构的电注入式GaAs二极管半导体激光器。 半导体光电器件的工作波长与半导体材料的种类有关。半导体材料中存在着导带和价带,导带上面可以让电子自由运动,而价带下面可以让空穴自由运动,导带和价带之间隔着一条禁带,当电子吸收了光的能量从价带跳跃到导带中去时就把光的能量变成了电,而带有电能的电子从导带跳回价带,又可以把电的能量变成光,这时材料禁带的宽度就决定了光电器件的工作波长。 小功率半导体激光器(信息型激光器),主要用于信息技术领域,例如用于光纤通信及光交换系统的分布反馈和动态单模激光器(DFB-LD)、窄线宽可调谐激光器、用于光盘等信息处理领域的可见光波长激光器(405nm、532nm、635nm、650nm、670nm)。这些器件的特征是:单频窄线宽、高速率、可调谐、短波长、光电单片集成化等。大功率半导体激光器(功率型激光器),主要用于泵浦源、激光加工系统、印刷行业、生物医疗等领域。 半导体激光器主要参数: 1.波长nm:激光器工作波长,例如405nm、532nm、635nm、650nm、670nm、690nm、780nm、810nm、860nm、980nm。 2.阈值电流Ith:激光二极管开始产生激光振荡的电流,对小功率激光器而言其值约在数十毫安。 3.工作电流Iop:激光二极管达到额定输出功率时的驱动电流,此

实验一-半导体激光器系列实验

实验一-半导体激光器系列实验

实验一半导体激光器系列 实验

一、实验设备介绍 2.配套仪器的使用 WGD-6光学多道分析器的使用参考WGD-6光学多道分析器的使用说明书。 3.激光器概述 光电子器件和技术是当今和未来高技术的基础,引起世界各国的极大关注。其中半导体激光器的生产和应用发展特别迅猛,它已经成功地用于光通讯和光学唱片系统;还可以作为红外高分辨率光谱仪光源,用于大气测污和同位素分离等;同时半导体激光器可以成为雷达,测距,全息照相和再现、射击模拟器、红外夜视仪、报警器等的光源。半导体激光器,调频器,放大器集成在一起的集成光路将进一步促进光通 - 1 -

讯,光计算机的发展。 激光器一般包括三个部分: (1)激光工作介质 激光的产生必须选择合适的工作介质,可以是气体、液体、固体或半导体。在这种介质中可以实现粒子数反转,以制造获得激光的必要条件。显然亚稳态能级的存在,对实现粒子数反转是非常有利的。现有工作介质近千种,可产生的激光波长包括从真空紫外到远红外,非常广泛。 (2)激励源 为了使工作介质中出现粒子数反转,必须用一定的方法去激励原子体系,使处于上能级的粒子数增加。一般可以用气体放电的办法来利用具有动能的电子去激发介质原子,称为电激励;也可用脉冲光源来照射工作介质,称为光激励;还有热激励、化学激励等。各种激励方式被形象化地称为泵浦或抽运。为了不断得到激光输出,必须不断地“泵浦”以维持处于上能级的粒子数比下能级多。 (3)谐振腔 有了合适的工作物质和激励源后,可实现粒子数反转,但这样产生的受激辐射强度很弱,无法实际应用。于是人们就想到了用光学谐振腔进行放大。所谓光学谐振腔,实际是在激光器两端,面对面装上两块反射率很高的镜。一块几乎全反射,一块大部分反射、 - 2 -

详解二氧化碳激光管的三个组成部分

详解二氧化碳激光管的三个组成部分 本文章出自:https://www.360docs.net/doc/d611144502.html, 作者:陈凌志公司:https://www.360docs.net/doc/d611144502.html, CO2激光打标机,激光管的结构主要由硬质玻璃、谐振腔、电极三部分组成。下面主要来介绍一个三部分的详细结构及原理, 第一部分:硬质玻璃部分;本部件由GG17料烧制成放电管、水冷套、储气套和回气管而组成。封离式CO2激光器通常为三层套管结构。最里面的是放电管,中间是水净套,最外一层是储气套,回气管是用于连通放电管和储气管。 第二部分:谐振腔部分:本部件由全反镜和输出反射镜组成。谐振腔的全反镜一般以光学玻璃为基底,表面渡金膜,金膜反射镜在10.6um附近的反射率达98%以上;谐振腔的输出反射镜一般采用能透射10.6um辐射的红外线材料锗(Ge)为基底,在上面渡上多层介质膜而制成。 第三部分:电极部分:CO2激光器一般采用冷阴极,形状为圆筒形,阴极材料选用对激光器的寿命有很大的影响,对阴极材料的基本要求是:溅射率低,气体吸收率小, 对于co2激光打标机而言,激光管的质量和性能直接影响到co2激光打标机的工作效率,这也是co2激光打标机最重要的部分之一。一般co2激光打标机激光器常用硬质玻璃制成,一般采用层套筒式结构。最里面一层是放电管,第2层为水冷套管,最外一层为储气管。二氧化碳激光器放电管直径比He-Ne激光管粗。放电管的粗细一般来说对输出功率没有影响,主要考虑到光斑大小所引起的衍射效应,应根据管长而定。管长的粗一点,管短的细一点。放电管长度与输出功率成正比。在一定的长度范围内,每米放电管长度输出的功率随总长度而增加。加水冷套的目的是冷却工作气体,使输出功率稳定。 放电管在两端都与储气管连接,即储气管的一端有一小孔与放电管相通,另一端经过螺旋形回气管与放电管相通,这样就可使气体在放电管中与储气管中循环流动,放电管中的气体随时交换。被广泛适用于亚克力、塑料产品等非金属打标、雕刻;并且发展到对电镀低碳钢打标的能力。CO2激光器还被用在自动化系统中对电子仪器的柔性电路板和膜片的聚酰亚胺和聚酯薄板。所以了解激光CO2激光打标机,激光管的结构后才能进行进一步的了解。

半导体激光器的发展与应用

题目:半导体激光器的发展与应用学院:理 专业:光 姓名:刘

半导体激光器的发展与应用 摘要:激光技术自1960年面世以来便得到了飞速发展,作为激光技术中最关键的器件激光器的种类层出不穷,这其中发展最为迅速,应用作为广泛的便是半导体激光器。半导体激光器的独特性能及优点,使其获得了广泛应用。本文就简要回顾半导体激光器的发展历程,着重介绍半导体激光器在日常生活与军用等各个领域中的应用。 关键词:激光技术、半导体激光器、军事应用、医学应用

引言 激光技术最早于1960年面世,是一种因刺激产生辐射而强化的光。激光被广泛应用是因为它具有单色性好、方向性强、亮度高等特性。激光技术的原理是:当光或电流的能量撞击某些晶体或原子等易受激发的物质,使其原子的电子达到受激发的高能量状态,当这些电子要回复到平静的低能量状态时,原子就会射出光子,以放出多余的能量;而接着,这些被放出的光子又会撞击其它原子,激发更多的原子产生光子,引发一连串的“连锁反应”,并且都朝同一个方前进,形成强烈而且集中朝向某个方向的光。这种光就叫做激光。激光几乎是一种单色光波,频率范围极窄,又可在一个狭小的方向内集中高能量,因此利用聚焦后的激光束可以对各种材料进行打孔。激光因为拥有这种特性,所以拥有广泛的应用。 激光技术的核心是激光器,世界上第一台激光器是1960年由T.H.梅曼等人制成的第红宝石激光器,激光器的种类很多,可按工作物质、激励方式、运转方式、工作波长等不同方法分类。但各种激光器的基本工作原理均相同,产生激光的必不可少的条件是粒子数反转和增益大过损耗,所以装置中必不可少的组成部分有激励(或抽运)源、具有亚稳态能级的工作介质两个部分。 半导体物理学的迅速发展及随之而来的晶体管的发明,使科学家们早在50年代就设想发明半导体激光器。在1962年7月美国麻省理工学院林肯实验室的两名学者克耶斯(Keyes)和奎斯特(Quist)报告了砷化镓材料的光发射现象,通用电气研究实验室工程师哈尔(Hall)与其他研究人员一道研制出世界上第一台半导体激光器。 半导体激光器是用半导体材料作为工作物质的一类激光器,由于物质结构上的差异,产生激光的具体过程比较特殊。常用材料有砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)等。激励方式有电注入、电子束激励和光泵浦三种形式。自1962年世界上第一只半导体激光器是问世以来,经过几十年来的研究,半导体激光器得到了惊人的发展,它的波长从红外、红光到蓝绿光,被盖范围逐渐扩大,各项性能参数也有了很大的提高!半导体激光器具有体积小、效率高等优点,因此可广泛应用于激光通信、印刷制版、光信息处理等方面。

半导体激光器输出特性的影响因素

半导体激光器输出特性的影响因素

半导体激光器输出特性的影响因素 半导体激光器是一类非常重要的激光器,在光通信、光存储等很多领域都有广泛的应用。下面我将探讨半导体激光器的波长、光谱、光功率、激光束的空间分布等四个方面的输出特性,并分析影响这些输出特性的主要因素。 1. 波长 半导体激光器的发射波长是由导带的电子跃迁到价带时所释放出的能量决定的,这个能量近似等于禁带宽度Eg(eV)。 hf = Eg f (Hz)和λ(μm)分别为发射光的频率和波长 且c=3×108m/s , h=6.628×10?34 J ·s ,leV=1.60×10?19 J 得 决定半导体激光器输出光波长的主要因素是半导体材料和温度。 λ c =f ) ( )(24.1m eV Eg μλ=

不同半导体材料有不同的禁带宽度Eg ,因而有不同的发射波长λ:GaAlAs-GaAs 材料适用于0.85 μm 波段, InGaAsP-InP 材料适用于 1.3~1.55 μm 波段。 温度的升高会使半导体的禁带宽度变小,导致波长变大。 2. 光功率 半导体激光器的输出光功率 其中I 为激光器的驱动电流,P th 为激光器的阈值 功率;I th 为激光器的阈值电流;ηd 为外微分量 子效率;hf 为光子能量;e 为电子电荷。 hf 、e 为常数,Pth 很小可忽略。由此可知,输出光功率主要取决于驱动电流I 、阈值电流I th 以及外微分量子效率ηd 。驱动电流是可随意调节 的,因此这里主要讨论后两者。除此之外,温度也是影响光功率的重要因素。 1)阈值电流 半导体激光器的输出光功率通常用P-I 曲线 ) (th d th I I e hf P P -+=η

CO2激光器原理及应用

目录 摘要 (1) 关键词 (1) Abstract (1) Keywords (1) 1引言 (2) 2激光 (2) 2.1激光产生的三个条件 (3) 2.2激光的特点 (3) 2.3激光器 (3) 3 CO2激光器的原理 (5) 3.1 CO2激光器的基本结构 (5) 3.2 CO2激光器基本工作原理 (7) 3.3 CO2激光器的优缺点 (8) 4 CO2激光器的应用 (9) 4.1军事上的应用 (9) 4.2医疗上的应用 (10) 4.3工业上的应用 (12) 5 CO2激光器的研究现状与发展前景 (14) 5.1 CO2激光器的研究现状 (14) 5.2 CO2激光器的发展前景 (15) 6 结束语 (17) 参考文献 (19) 致谢 (20)

摘要:本文从引言出发介绍了CO2激光技术的基本情况,简单介绍了激光和激光器的一些特点,重点介绍了气体激光器中的CO2激光器的相关应用,目前CO2激光器是用最广泛的激光器之一,它有着一些非常突出的高功率、高质量等优点。论文首先介绍了应用型CO2激光器的基本结构和工作原理,着重介绍了应用型CO2激光器在军事、医疗和工业三个主要领域的应用,最后介绍应用型CO2激光器的研究前景和现状。通过这些介绍使得人们能够加深对CO2激光器的了解和认识。 关键词: CO2激光器;基本原理;基本结构;应用; Abstract: This departure from the introduction of CO2 laser technology, introduced the basic situation, briefly introduced some of the characteristics of laser and laser to highlight the CO 2gas laser in laser-related applications, the current CO 2 laser was one of the most extensive laser, it had some very prominent high-power, high quality and so on. Paper introduced the application of CO 2 laser-type basic structure and working principle, focusing on the application type CO 2 laser in the military, medical and industrial application of the three main areas, Finally, applied research prospects for CO 2 laser and status. Through these presentations allowed people to deepen their knowledge and understanding of CO s lasers. Keywords:CO2Laser Basic Principle Basic Structure Application

半导体激光器的发展及其应用

浅谈半导体激光器及其应用 摘要:近十几年来半导体激光器发展迅速,已成为世界上发展最快的一门激光技术。由于半导体激光器的一些特点,使得它目前在各个领域中应用非常广泛,受到世界各国的高度重视。本文简述了半导体激光器的概念及其工作原理和发展历史,介绍了半导体激光器的重要特征,列出了半导体激光器当前的各种应用,对半导体激光器的发展趋势进行了预测。 关键词:半导体激光器、激光媒质、载流子、单异质结、pn结。 自1962年世界上第一台半导体激光器发明问世以来,半导体激光器发生了巨大的变化,极大地推动了其他科学技术的发展,被认为是二十世纪人类最伟大的发明之一。近十几年来,半导体激光器的发展更为迅速,已成为世界上发展最快的一门激光技术。半导体激光器的应用范围覆盖了整个光电子学领域,已成为当今光电子科学的核心技术。由于半导体激光器的体积小、结构简单、输入能量低、寿命较长、易于调制以及价格较低廉等优点,使得它目前在光电子领域中应用非常广泛,已受到世界各国的高度重视。 一、半导体激光器 半导体激光器是以直接带隙半导体材料构成的Pn 结或Pin 结为工作物质的一种小型化激光器。半导体激光工作物质有几十种,目前已制成激光器的半导体材料有砷化镓、砷化铟、锑化铟、硫化镉、碲化镉、硒化铅、碲化铅、铝镓砷、铟磷砷等。半导体激光器的激励方式主要有三种,即电注入式、光泵式和高能电子束激励式。绝大多数半导体激光器的激励方式是电注入,即给Pn 结加正向电压,以使在结平面区域产生受激发射,也就是说是个正向偏置的二极管。因此半导体激光器又称为半导体激光二极管。对半导体来说,由于电子是在各能带之间进行跃迁,而不是在分立的能级之间跃迁,所以跃迁能量不是个确定值, 这使得半导体激光器的输出波长展布在一个很宽的范围上。它们所发出的波长在0.3~34μm之间。其波长范围决定于所用材料的能带间隙,最常见的是AlGaAs双异质结激光器,其输出波长为750~890nm。 半导体激光器制作技术经历了由扩散法到液相外延法(LPE), 气相外延法(VPE),分子束外延法(MBE),MOCVD 方法(金属有机化合物汽相淀积),化学束外延(CBE)以及它们的各种结合型等多种工艺。半导体激光器最大的缺点是:激光性能受温度影响大,光束的发散角较大(一般在几度到20度之间),所以在方向性、单色性和相干性等方面较差。但随着科学技术的迅速发展, 半导体激光器的研究正向纵深方向推进,半导体激光器的性能在不断地提高。以半导体激光器为核心的半导体光电子技术在21 世纪的信息社会中将取得更大的进展, 发挥更大的作用。 二、半导体激光器的工作原理 半导体激光器是一种相干辐射光源,要使它能产生激光,必须具备三个基本条件: 1、增益条件:建立起激射媒质(有源区)内载流子的反转分布,在半导体中代表电子能量的是由一系列接近于连续的能级所组成的能带,因此在半导体中要实现粒子数反转,必须在两个能带区域之间,处在高能态导带底的电子数比处在低能态价带顶的空穴数大很多,这靠给同质结或异质结加正向偏压,向有源层内注入必要的载流子来实现, 将电子从能量较低的价带激发到能量较高的导带中去。当处于粒子数反转状态的大量电子与空穴复合时,便产生受激发射作用。 2、要实际获得相干受激辐射,必须使受激辐射在光学谐振腔内得到多次反馈而形成激光振荡,激光器的谐振腔是由半导体晶体的自然解理面作为反射镜形成的,通常在不出光的那一端镀上高反多层介质膜,而出光面镀上减反膜。对F—p 腔(法布里—珀罗腔)半导体激光器可以很方便地利用晶体的与p-n结平面相垂直的自然解理面构成F-p腔。 3、为了形成稳定振荡,激光媒质必须能提供足够大的增益,以弥补谐振腔引起的光损耗及从腔

常用激光器简介

几种常用激光器的概述 一、CO2激光器 1、背景 气体激光技术自61年问世以来,发展极为迅速,受到许多国家的极大重视。特别是近两年,以二氧化碳为主体工作物质的分子气体激光器的进展更为神速,已成为气体激光器中最有发展前途的器件。 二氧化碳分子气体激光器不仅工作波长(10.6微米)在大气“窗口”,而且它正向连续波大功率和高效率器件迈进。1961年,Pola-nyi指出了分子的受激振动能级之间获得粒子反转的可能性。在1964年1月美国贝尔电话实验室的C.K.N.Pate 研制出第一支二氧化碳分子气体激光器,输出功率仅为1毫瓦,其效率为0.01%。不到两年,现在该类器件的连续波输出功率高达1200瓦,其效率为17 %,电源激励脉冲输出功率为825瓦,采用Q开关技术已获得50千瓦的脉冲功率输出。最近,有人认为,进一步提高现有的工艺水平,近期可以达到几千瓦的连续波功率输出和30~40% 的效率。 2、工作原理 CO2激光器中,主要的工作物质由CO?,氮气,氦气三种气体组成。其中CO?是产生激光辐射的气体、氮气及氦气为辅助性气体。加入其中的氦,可以加速010能级热弛预过程,因此有利于激光能级100及020的抽空。氮气加入主要在CO?激光器中起能量传递作用,为CO?激光上能级粒子数的积累与大功率高效率的激光输出起到强有力的作用。CO?分子激光跃迁能级图CO?激光器的激发条件:放电管中,通常输入几十mA或几百mA的直流电流。放电时,放电管中的混合气体内的氮分子由于受到电子的撞击而被激发起来。这时受到激发的氮分子便和CO?分子发生碰撞,N2分子把自己的能量传递给CO2分子,CO?分子从低能级跃迁到高能级上形成粒子数反转发出激光。 3、特点 二氧化碳分子气体激光器不但具有一般气体激光器的高度相干性和频率稳定性的特点,而且还具有另外三个独有的特点: (1)工作波长处于大气“窗口”,可用于多路远距离通讯和红外雷达。 (2)大功率和高效率( 目前,氩离子激光器最高连续波输出功率为100瓦,其效率为0.17 %,原子激光器的连续波输出功率一般为毫瓦极,其效率约为0.1%,而二氧化碳分子激光器连续波输出功率高达1200瓦,其效率为17%)。 (3)结构简单,使用一般工业气体,操作简单,价格低廉。由此可见,随着研究工作的进展、新技术的使用,输出功率和效率会不断提高,寿命也会不断增长,将会出现一系列新颖的应用。例如大气和宇宙通讯、相干探测和导航、超外

课程设计半导体激光器

郑州轻工业学院 课程设计任务书 题目半导体激光器原理及应用 专业、班级学号姓名 主要内容、基本要求、主要参考资料等: 完成期限: 指导教师签名: 课程负责人签名: 年月日

郑州轻工业学院半导体激光器课程设计 郑州轻工业学院 课程设计说明书题目:半导体激光器原理及应用 姓名:王森 院(系):技术物理系 专业班级:电子科学与技术09-1 学号:540911010132 指导教师:运高谦 成绩: 时间:年月日至年月日 I

郑州轻工业学院半导体激光器课程设计 摘要 本文主要讲的是半导体激光器的发展历史、工作原理及应用。半导体激光器产生激光的机理,即必须建立特定激光能态间的粒子数反转,并有合适的光学谐振腔。由于半导体材料物质结构的特异性和其中电子运动的特殊性,首先产生激光的具体过程有许多特殊之处,其次所产生的激光光束也有独特的优势,使其在社会各方面广泛应用。从同质结到异质结,从信息型到功率型,激光的优越性也愈发明显,光谱范围变宽,相干性增强,可以说是半导体激光器开启了激光应用发展的新纪元。 关键词激光技术;半导体激光器;受激辐射;光场 II

郑州轻工业学院半导体激光器课程设计 Abstract This article is mainly about the history of the development of semiconductor lasers, working principle and applications. Semiconductor lasers produce laser mechanism, which must be established between the specific laser energy state population inversion, and a suitable optical resonator. As the physical structure of the semiconductor material in which electron motion specificity and particularity, while the specific process of producing laser has many special features, the other produced by the laser beam has a unique advantage to make it widely used in all sectors of society . From homo-junction to the heterojunction, the power from the information type to type, is also becoming increasingly apparent superiority of the laser, spectral range, coherence enhanced semiconductor lasers opened a new era in the development of laser applications. Keywords: Laser technique;Semiconductor lasers;Stimulated emission;Optical field III

相关文档
最新文档