电动潜油离心泵单级高扬程叶导轮的设计与应用

高扬程潜水泵品牌型号及说明

高扬程潜水泵品牌型号及说明 上海阳光泵业作为国内一家著名的集研制、开发、生产、销售、服务于一体的大型多元化企业,上海阳光泵业制造有限公司一直坚持“以质量求生存、以品质求发展”的宗旨为广大客户提供优质服务!同时,上海阳光泵业一直专注于自身实力的提升以及对产品质量的严格把关,为此,目前不但拥有国内最高水准的水泵性能测试中心、完善的一体化服务体系、经验丰富的水泵专家,同时经过多年的发展,产品以优越的性能、精良的品质、良好的服务口碑获得各项专业认证证书和客户认可。经过团队的不懈努力,上海阳光泵业在国内水泵行业已经取得了很大成就。这样一家诚信为本、责任重于天的水泵行业佼佼者,对于水泵的维修、保养等各大方面都有自己独特的方法,下面就一起来看看吧! 一、QJ型高扬程潜水泵结构说明: 1、QJ型高扬程潜水泵由:水泵、潜水电机(包括电缆)、输水管和控制开关四大部分组成。潜水泵为单吸多级立式离心泵:潜水电机为密闭充水湿式、立式三相笼异步电动机,电机与水泵通过爪式或单健筒式联轴器直接;配备有不同规格的三芯电缆;起动设备为不同容量等级的空气开关和自偶减压起动器、输水管为不同直径的钢管制成、采用法兰联接,高扬程式电泵采用闸阀控制。最高扬程可达2000米。 2、潜水泵每级导流壳中装有一个橡胶轴承;叶轮用锥形套固定在泵轴上;导流壳采用螺纹或螺栓联成一体。 3、高扬程潜水泵上部装有止回阀,避免停机水垂造成机组破坏。 4、潜水电机轴上部装有迷宫式防砂器和两个反向装配的骨架油封,防止流砂进入电机。 5、潜水电机采用水润滑轴承,下部装有橡胶调压膜、调压弹簧,组成调压室,调节由于温度引起的压力变化;电机绕组采用聚乙稀绝缘,尼龙护套耐用消费品水电磁线,电缆联接方式按QJ型电缆接头工艺,把接

电潜螺杆泵

第二章电潜螺杆泵 第一节井下采油单螺杆泵的现状及发展 摘要井下采油单螺杆泵因具有较高的系统效率而日益受到重视。目前已开发的并下单螺杆泵有地面驱动采油单螺杆泵、电动潜油单螺杆泵、单螺杆波动机—单螺杆泵装置和多头螺杆泵。筒述了单螺杆泵定于衬套选用的材料和转子的表面处至方式,介绍了单螺杆泵在国外的使用情况。指出井下采油单螺杆泵主要朝增大泵的下井深度,加大泵的排量,延长泵的使用寿命和拓宽泵的使用范围等方向发展。最后就国内开发和推广螺杆泵工作规划提出了建议。 前言 井下来油单螺杆泵作为一种实用的采油机械应用于石油工业已有20多年的历史。1986年大庆油田从加拿大Griffin公司引进螺杆泵在油田试用,从此国内厂家便开始了较系统地研制井下采油螺杆泵。螺杆泵的结构非常简单,特别适合于高粘度、高含砂量的油井,并且有较高的工作效率。 美国一石油公司曾对螺杆泵采油系统、电动潜油离心泵和有杆泵抽油系统3种采油设备,在水驱采油井中进行了同样条件下的采油试验。试验结果表明,3种采油系统的效率分别为63.4%、52.4%和50.4%,其中螺杆泵采油系统的效率最高。此外,螺杆泵采油系统的装备投资费用比另外两种采油装备低20%—30%以上。 主要结构型式 目前,井下采油螺杆泵大致可分为以下4种结构型式。 1.地面驱动采油单螺杆泵 地面驱动采油单螺杆泵是井下来油螺杆泵中最简单的结构型式,也是国内外井下采油单螺杆泵采用的主要结构型式。由于是利用抽油杆传递泵所需要的扭矩,因此在大徘量情况下很难实现深井采油。 地面驱动单螺杆泵的驱动头动力主要由电动机或液马达提供。由电动机作动力的驱动头,有的采用变频调速,有的利用胶带和减速器共同调速,还有的直接利用减速器调速。利用液马达作动力调节泵的转速非常方便。 2.电动潜油单螺杆泵 电动潜油单螺杆泵的最大特点是不需要抽油杆传递动力,特别适合于深井、斜井和水平井采油作业。 较早开展这种泵的研究工作的是前苏联和法国。近年来,美国等发达国家也开始重视电动潜抽螺杆泵的开发,并在多砂、高粘深井、定向井、水平井中应用,取得了很好的效果。在某些情况下,电动潜油螺杆泵的使用寿命甚至比电动潜油离心泵高5倍。电动潜油螺杆泵寿命的提高,大大降低了采油成本,使一些原经济上无开采价值的油井有了良好的效益。电动潜油螺杆泵由螺杆泵、柔性轴、装有轴承的密封短节、齿轮减速器和潜油电动机等组成。为了使泵的旋转速度降到500r/min以下,有以下3种方案可供选择。 (1)采用6极潜油电动机,在60HZ时,电动机的转速为1000r/min,再利用变速装置,转速可以降到500r /min以下。 (2)采用4极潜油电动机,在60HZ时,电动机的转速为1700r/min,再利用单行星齿轮减速器减速(如 传动比4:1),转速可降到425r/min以下。 (3)采用2极潜油电动机,转速为3500r/min,配传动比9:1的双行星齿轮减速器,可将速度减至400r /m in以下。 由于选择4极和6极电动机会降低电动机效率,减小启动扭矩,增加装备费用,因此第(3)种方案为

多级泵的结构图展示及原理介绍

多级泵的结构图展示及原理介绍 多级泵主要由定子、转子、轴承和轴封四大部分组成: 1、多级泵定子部分主要由吸入段、中段、吐出段和导叶等组成,有拉紧螺栓将各段夹紧,构成工作室。D 型多级泵泵一般水平吸入,垂直向上吐出;用于是油田注水时,泵进出口均垂直向上。DG 型多级泵出、入口均垂直向上。 2、多级泵转子部分主要由轴、叶轮、平衡盘和轴套等组成。轴向力由平衡盘平衡。 3、多级泵轴承主要由轴承体、轴承和轴承压盖等组成,轴承用油脂或稀油润滑。 4、多级泵轴封采用软填料密封,主要由进水段和尾盖上的密封函体、填料、挡水圈等组成。D 型多级泵泵水封水来源于泵内的压力水。DG 型多级泵泵水封水来源于外部供水。 5、多级泵转动泵通过弹性联轴器由原动机直接驱动。从原动机端看泵,泵为顺时针方向旋转D 、DG 型多级泵泵是卧式单吸多级节段式离心泵。供输送清水(含杂质量小于1% ,颗粒度小于0.1mm )或物理化学性质类似于水的其它液体。D 型多级泵泵输送介质温度小于80℃,适用于矿山排水、油田注水、工厂和城市给、排水等场合。油田注水泵根据介质的腐蚀性,泵采用不同的材质。DG 型泵输送介质温度小于105℃,适用于各种锅炉给水。

多级泵与单级泵有什么区别? 1、单级泵是指只有一只叶轮的泵,最高扬程只有125米; 2、多级泵是指有两只或两只以上叶轮的泵,最高扬程可以超过125米;多级泵在单级泵扬程需要必须配两级电机的情况下,可以通过增加叶轮个数来配用四级电机,从而可以提高泵使用寿命和降低机组噪音,但是多级泵维修相对单级泵来说要困难一点。 3、在泵实际需要扬程小于125米时,可根据泵房面积、泵价格(多级泵一般比单级泵价格偏高)、等因素综合考虑该选用单级泵还是多级泵。 随着技术的进步,单级叶轮的泵可通过提高泵的转速来提高泵的扬程,可代替多级泵, 只是价格贵一点。

离心泵主要参数

离心泵主要參數: 一、流量Q(m3/h或m3/s) 离心泵的流量即为离心泵的送液能力,是指单位时间内泵所输送的液体体积。 泵的流量取决于泵的结构尺寸(主要为叶轮的直径与叶片的宽度)和转速等。操作时,泵实际所能输送的液体量还与管路阻力及所需压力有关。 二、扬程H(m) 离心泵的扬程又称为泵的压头,是指单体重量流体经泵所获得的能量。 泵的扬程大小取决于泵的结构(如叶轮直径的大小,叶片的弯曲情况等、转速。目前对泵的压头尚不能从理论上作出精确的计算,一般用实验方法测定。 泵的扬程可同实验测定,即在泵进口处装一真空表,出口处装一压力表,若不计两表截面上的动能差(即Δu2/2g=0),不计两表截面间的能量损失(即∑f1-2=0),则泵的扬程可用下式计算 注意以下两点: (1)式中p2为泵出口处压力表的读数(Pa);p1为泵进口处真空表的读数(负表压值,Pa)。 (2) 注意区分离心泵的扬程(压头)和升扬高度两个不同的概念。 扬程是指单位重量流体经泵后获得的能量。在一管路系统中两截面间(包括泵)列出柏努利方程式并整理可得 式中H为扬程,而升扬高度仅指Δz一项。 例2-1现测定一台离心泵的扬程。工质为20℃清水,测得流量为60m /h时,泵进口真空表读数为-0.02Mpa,出口压力表读数为0.47Mpa(表压),已知两表间垂直距离为0.45m若泵的吸入管与压出管管径相同,试计算该泵的扬程。 解由式

查20℃, h =0.45m p =0.47Mpa=4.7*10 Pa p =-0.02Mpa=-2*10 Pa H=0.45+ =50.5m 三、效率 泵在输送液体过程中,轴功率大于排送到管道中的液体从叶轮处获得的功率,因为容积损失、水力损失物机械损失都要消耗掉一部分功率,而离心泵的效率即反映泵对外加能量的利用程度。 泵的效率值与泵的类型、大小、结构、制造精度和输送液体的性质有关。大型泵效率值高些,小型泵效率值低些。 四、轴功率N(W或kW) 泵的轴功率即泵轴所需功率,其值可依泵的有效功率Ne和效率η计算,即 (kW)

采油工程—— 电动潜油离心泵采油

第四章无杆泵采油

第四章无杆泵采油 无杆泵机械采油方法与有杆泵采油的主要区别: 不需用抽油杆传递地面动力,而是用电缆或高压液体将地面能量传输到井下,带动井下机组把原油抽至地面。常用的无杆泵包括电动潜油离心泵、水力活塞泵、水力射流泵和螺杆泵等。 电动潜油离心泵采油 一、电动潜油离心泵采油装置及其工作原理 电动潜油离心泵是一种在井下工作的多级离心泵,用油管下入井内,地面电源通过潜油泵专用电缆输入井下潜油电机,使电机带动多级离心泵旋转产生离心力,将井中的原油举升到地面。 电潜泵由井下部分、地面部分和联系井下地面的中间部分组成。 井下部分主要是电潜泵的机组,它由多级离心泵、保护器和潜油电动机三部分组成,起着抽油的主要作用。 地面部分由变压器组、自动控制台及辅助设备组成。自动控制台用来控制电潜泵工作,同时保护潜油电动机,防止电动机电缆系统短路和电动机过载。 电动潜油离心泵装置示意图 1—变压器组;2—电流表;3—配电盘;4—接线盒;5—地面电缆;6—井口装置;7—溢流阀;8—单流阀;9—油管;10—泵头;11—多级离心泵;12—吸人口;13—保护器;14—电动机;15—扶正器;16—套管;17—电缆护罩;18,20—电缆;19—电缆接头 中间部分由电缆和油管组成。将电流从地面部分传送给井下部分,采用的是特殊结构的电缆(圆电缆和扁电缆)。在油井中利用钢带将电缆和油管柱、泵、保护器外壳固定在一起。

(一) 电动潜油离心泵型号及主要部件 1.电动潜油离心泵型号 1) 电动潜油离心泵机组表示方法 示例:额定扬程1000m,额定排量200m3/d ,适用油井温度120℃的119mm 电动潜油离心泵机组表示为:QYDB119—200/1000E。 2)泵型号表示方法 示例:额定排量500m3/d,额定扬程2000m的98mm通用节泵表示为:QYB98—500/2000T。 2.电动潜油离心泵主要部件 1) 潜油电动机 示例:容量45kW的114mm潜油电泵机组用的电动机表示为:YQYll4—45S。 电动机用于驱动离心泵转动。一般为两极三相鼠笼式感应电动机,工作原理与地面电动机相同。根据实际需要电动机可以采用几级串联达到特定的

离心泵选型建议

离心泵及选型过程介绍 一、离心泵的介绍: 离心泵是指靠叶轮旋转时产生的离心力来输送液体的泵。被输送液体和叶轮一同高速旋转,获得了足够的运动势能(扬程、压力),从而实现流通输送的目的。 按照不同区分方法,可将离心泵类型分为:单级泵、多级泵;低压泵、中压泵、高压泵;单侧进水式泵、双侧进水式泵;卧式泵、立式泵;蜗壳泵、导叶泵;自灌式离心泵、吸入式离心泵;磁力泵、屏蔽泵;油泵、水泵、凝结水泵、排灰泵、循环水泵等。 离心泵选型时,需明确我们需要的是哪一类型的泵。 从设备结构上区分,可将离心泵的基本构造分为:叶轮、泵体、泵轴、轴承、密封、电机、联轴器、基座以及附属的冷却、润滑、密封等装置。 在选型过程中,对每一部件机构、装置的要求也需具体化。 二、离心泵叶轮加工过程介绍 离心泵的性能参数(流量、扬程等)由叶轮的直径大小、过流部分的体积(叶轮的厚度)等决定。用户对流量、扬程的需求是随机的。叶轮一般由铸造加工而成,其过流部分的厚度一般只有几个常用规格,厂家通过切削叶轮的直径大小,来满足不同流量、扬程的需求。 三、离心泵性能曲线图 离心泵的主要性能参数:流量Q、扬程H、轴功率N和效率η。在一定转速下,离心泵的扬程H、轴功率N和效率η均随实际流量Q的大小而变化,泵的生产部门将表明Q-H、Q-N 及Q-η关系的曲线,标绘在一张图上,称为离心泵的特性曲线,是反映泵各性能参数之间的关系曲线。 离心泵的实际特性曲线需经过实际的工况(通过调节泵出口阀门,测试不同流量和压力、功率的对应关系)测试而成。选型前期可作为选型的参考,使用中也可以作为考核厂家产品性能是否稳定的一个依据。 各个厂家叶轮的铸造工艺不同,其流量、扬程和效率也不尽相同,各有特色。 由图可见,一般情况下当扬程升高时流量下降;可以根据扬程查到流量,也

中国十大离心泵的型号高扬程离心泵品牌有哪些

1.上海阳光泵业制造有限公司 上海阳光泵业制造有限公司座落于上海市金山工业园区,是国内一家著名的集研制、开发、生产、销售、服务于一体的大型多元化企业,注册资本1100万元。主导产品包括:螺杆泵、隔膜泵、液下泵、磁力泵、排污泵、化工泵、多级泵、自吸泵、齿轮油泵、计量泵、卫生泵、真空泵、潜水泵、转子泵等类别。产品以优越的性能,精良的品质已获得各项专业认证证书及客户的认可。公司拥有多名水泵专家和各类中高级工程师,不断的开发制造,升级换代产品年年都有问世。 公司拥有国内高水准的水泵性能测试中心,产品全部采用CAD设计软件和CFD计算流体力学软件等先进设计手段,产品经过精密铸造、热锻压、焊接、热处理、精加工、装配等十多道工序。使用先进的数控加工中心、等离子焊接机、全自动气体保护、半自动真空熔焊机、超频真空热处理设备、高效加工专机、理化和探伤设备等各类高精密加工检测设备。齐全的加工检测设备,于同行业中处领先地位,更加充分保证了产品的质量。公司产品达二十大系列,一万多种规格。产品广泛应用于:工业生产,建筑城镇供水,环保污水处理,市政工程,食品制药,水利电力,石油船舶等多种领域。客户包括大庆油田、胜利油田、中国水利水电、浦项集团 等世界知名企业。 2.天昊泵业集团有限公司 天昊泵业集团是经工商总局批准成立的集团公司,位于京津冀一体化的青县经济开发区南区,是专业生产水泵和控制柜的大型厂家。从设计、研发、铸造、精加工、装配、试验全部自己生产完成。 研发中心具有几十年水泵设计丰富经验的专业研究人员,又有年轻的本科毕业生的新生力量和操作能力较强的技术工人。集团研发设备先进、研究方法科学,具有较强的产品研发、试制、测试能力,测试中心的测试水池总容积达200000m3,测试能力:口径Φ32-Φ3000mm,流 量0-200000m3,压力0-10MPa,功率0-600kw/380V,200-3000kw/6KV-10KV。测试系统精度达 到GB/T32-2005《回转动力泵水力性能验收实验1级和2级》。集团生产的产品广泛用于农田 灌溉、抗旱排涝、市政工程、电厂、工矿、冶金等行业。 3.淄博双工泵业有限公司 淄博双工泵业有限公司,坐落于“中国泵业名城”-博山,是专业从事离心泵,潜水泵, 潜污泵,排沙泵,真空泵等泵类产品的开发、生产的现代化水泵企业。严格按照企标ISO9001 国际质量管理体系为标准生产。重质量、守信用。

电动潜油螺杆泵

电动潜油螺杆泵 目录 第一章井下采油单螺杆泵的现状及发展 (1) 第二章电动潜油螺杆泵在疑难井中的应用 (3) 第三章大排量井下电动潜油螺杆泵研究与应用 (8) 第四章大庆油田改变采油技术现状势在必行 (10) 第五章螺杆泵工况测试技术 (12)

第一章井下采油单螺杆泵的现状及发展 摘要井下采油单螺杆泵因具有较高的系统效率而日益受到重视。目前已开发的并下单螺杆泵有地面驱动采油单螺杆泵、电动潜油单螺杆泵、单螺杆波动机—单螺杆泵装置和多头螺杆泵。筒述了单螺杆泵定于衬套选用的材料和转子的表面处至方式,介绍了单螺杆泵在国外的使用情况。指出井下采油单螺杆泵主要朝增大泵的下井深度,加大泵的排量,延长泵的使用寿命和拓宽泵的使用范围等方向发展。最后就国内开发和推广螺杆泵工作规划提出了建议。 前言 井下来油单螺杆泵作为一种实用的采油机械应用于石油工业已有20多年的历史。1986年大庆油田从加拿大Griffin公司引进螺杆泵在油田试用,从此国内厂家便开始了较系统地研制井下采油螺杆泵。螺杆泵的结构非常简单,特别适合于高粘度、高含砂量的油井,并且有较高的工作效率。 美国一石油公司曾对螺杆泵采油系统、电动潜油离心泵和有杆泵抽油系统3种采油设备,在水驱采油井中进行了同样条件下的采油试验。试验结果表明,3种采油系统的效率分别为63.4%、52.4%和50.4%,其中螺杆泵采油系统的效率最高。此外,螺杆泵采油系统的装备投资费用比另外两种采油装备低20%—30%以上。 主要结构型式 目前,井下采油螺杆泵大致可分为以下4种结构型式。 1.地面驱动采油单螺杆泵 地面驱动采油单螺杆泵是井下来油螺杆泵中最简单的结构型式,也是国内外井下采油单螺杆泵采用的主要结构型式。由于是利用抽油杆传递泵所需要的扭矩,因此在大徘量情况下很难实现深井采油。 地面驱动单螺杆泵的驱动头动力主要由电动机或液马达提供。由电动机作动力的驱动头,有的采用变频调速,有的利用胶带和减速器共同调速,还有的直接利用减速器调速。利用液马达作动力调节泵的转速非常方便。 2.电动潜油单螺杆泵 电动潜油单螺杆泵的最大特点是不需要抽油杆传递动力,特别适合于深井、斜井和水平井采油作业。 较早开展这种泵的研究工作的是前苏联和法国。近年来,美国等发达国家也开始重视电动潜抽螺杆泵的开发,并在多砂、高粘深井、定向井、水平井中应用,取得了很好的效果。在某些情况下,电动潜油螺杆泵的使用寿命甚至比电动潜油离心泵高5倍。电动潜油螺杆泵寿命的提高,大大降低了采油成本,使一些原经济上无开采价值的油井有了良好的效益。电动潜油螺杆泵由螺杆泵、柔性轴、装有轴承的密封短节、齿轮减速器和潜油电动机等组成。为了使泵的旋转速度降到500r/min以下,有以下3种方案可供选择。 (1)采用6极潜油电动机,在60HZ时,电动机的转速为1000r/min,再利用变速装置,转速可以降到500r /min以下。 (2)采用4极潜油电动机,在60HZ时,电动机的转速为1700r/min,再利用单行星齿轮减速器减速(如 传动比4:1),转速可降到425r/min以下。

采油工程试卷

一、名词解释(每小题2分,共20分) 1.油井流入动态 指油井产量与井底流动压力的关系。 2.滑脱损失 由于油井井筒流体间密度差异,在混合物向上流动过程中,小密度流体流速大于大密度流体流速,引起的小密度流体超越大密度流体上升而引起的压力损失。 3.气举启动压力 气举井启动过程中,当环形空间内的液面将最终达到管鞋(或注气点)处时的井口注入压力。 4.扭矩因数 悬点载荷在曲柄轴上造成的扭矩与悬点载荷的比值。 5.速敏 在流体与地层无任何物理化学作用的前提下,当流体在地层中流动时,会引起颗粒运移并堵塞孔隙和喉道,引起地层渗透率下降的现象。 6.基质酸化 在低于岩石破裂压力下将酸注入地层,依靠酸液的溶蚀作用恢复或提高井筒附近油层渗透性的工艺。 7.吸水剖面 一定注入压力下各层段的吸水量的分布。 8.填砂裂缝的导流能力 油层条件下填砂裂缝渗透率与裂缝宽度的乘积。 9.酸压裂缝的有效长度 酸压过程中,由于裂缝壁面被酸不均匀溶蚀,施工结束后仍具有相当导流能力的裂缝长度。10.蜡的初始结晶温度 当温度降到某一数值时,原油中溶解的蜡开始析出时的温度。 二、填空题(每空格0.5分,共20分) 1.在气液两相垂直管流中,流体的压力梯度主要由(1) 重力梯度、(2) 摩擦梯度和(3) 加速度梯度三部分组成。 2.采用常规方法开采稠油油藏时,常用的井筒降粘技术主要包括(4) 化学降粘技术和(5) 热力降粘技术。 3.常用的油气井完井方式包括(6) 裸眼完井、(7) 射孔完井、(8) 砾石充填完井和(9) 衬管完井等。4.压裂液滤失于地层主要受三种机理的控制:(10) 压裂液粘度、(11) 储层岩石和流体压缩性、(12) 压裂液的造壁性。

水泵流量与压力_扬程

水泵的扬程、功率与闭合系统中的管道长度L有关。 水泵流量 Q= 25m^3/h = m^3/s 管道流速取2m/s左右, 则管内径 D=[4Q/]^(1/2)=[4**2)]^(1/2)= 选用管径 D= 70 mm = m,流速V=[4Q/]^(1/2)= m/s 管道摩阻 S=^2/D^=*^2/^ = 2122 水泵扬程 H=h+SLQ^2=170+2122*600*^2 = 231 m 配套电动机功率 N=k =**231/ = kw 注:式中,H——水泵扬程,单位m;S——管道摩阻,S=^2/d^,n为管内壁糙率,钢管可取n=,D为内径,以m为单位。L——管道长度,以m为单位;Q——流量,以 m^3/s为单位。 P——电动机功率,kw;k ——水泵电动机机组的总效率,取50%,选定水泵、电动机后,功率可按实际情况精确确定。 按扬程和出水量来选择,与管道长度无关。 实际计算应为:(要扬程+管道阻力)*(1+泵的损耗).所以应为:(50+10)*=66米 所以泵的扬程应选在65-75米之间,再加上你需要的流量,泵就能 补水泵和给水泵计算方法一样。补水泵的流量Q由需要而定,即单位时间锅炉水补给量。补水泵的扬程由提水高度、锅炉压力水头以及管路的沿程水头损失和局部水头损失而定。设管长为L,沿程阻力系数为k,局部阻力系数为j,提水高度为Z,锅炉压力为P,水的密度为p,重力加速度用g表示,则补水泵扬程: H = Z+P/(pg)+(kL/D)V^2/(2g)+jV^2/(2g) 式中平均流速 V=4Q/(^2),D为管内径。 对于循环泵,流量当然看需要而定,流量确定后,算出循环回路的水头损失总和就是泵之扬程。 水泵排水管路弯头处扬程损失怎么计算

加拿大潜油螺杆泵

APPLICATIONS ■Progressing cavity pump (PCP) wells ■High dogleg severity (DLS) wells suit- able for PCPs ■Wells with restrictions of rod or tubing wear or wax problems ■Offshore heavy oil wells BENEFITS ■Eliminate restrictions to running PCP in wellbore with high DLS ■Reduce all PCP failures caused by rod string and tubing wear ■Decrease torque and pressure losses in relation to high-viscosity fluid ■Reduce torque by 20–60% with the elimination of rod string ■Improve overall efficiency ■Reduce power consumption ■Increase safety without having rod backspin on the surface ■Avoid leakage at surface without having a stuffing box ■Lower wellsite maintenance cost ■Minimize noise disturbance FEATURES ■Permanent magnet motor (PMM) based downhole drive ■Broad range of PCP speed from 50–500 rpm ■Constant torque in the entire range of speed ■PMM applicable control panel in NEMA4 enclosure ■Completion and various components are compatible with conventional ESP ■Canadian standards association (CSA) and underwriters laboratories (UL) certified The most typical PCP failure occurs from sucker rod or tubing wear. The severity of wear is determined by various factors such as DLS, water cut, and sand cut. The wear is especially high for deviated and horizontal wells. KUDU Rodless PCP* eliminates all rod failures, resulting in a 30–50% decrease in system failure rates. This technol-ogy also allows for pump installations in a high DLS or horizontal section of the well.Rodless PCP components A low-speed downhole PMM drive and a PCP are capable of working together in challenging PCP wells without being limited by deviation profile. Every component of a KUDU Rodless PCP is selected based on well conditions and the customer’s operational parameters, such as production target rate. All other system components are selected dependent on the PCP and motor combination.KUDU Rodless PCP.Rodless PCP Progressing cavity pump combined with submersible electrical motor for artificial lift solutions PMM technology PMM downhole drive is a proven technology that has been used with regular ESPs for many years and in PCP applications since 2003. A synchronous machine incorporating rare earth magnets in its rotor design, a PMM provides the following benefits: ■improve efficiency due to low power loss in the rotor ■increase power density with a shorter motor ■enhance dynamic performance by providing a variable frequency drive (VFD) specifically designed for PMM.By adopting a low-speed PMM, KUDU Rodless PCP provides constant torque in the entire PCP speed zone, ranging from 50 rpm to 500 rpm. Such system flexibility enables easy adjust-ment to a broad range of well production rates without replacing the pump. The downhole assembly is effective in high temperatures of up to 300 degF (150 degC) and is corrosion resistant with special coating. KUDU Rodless PCP Specifications Production rate ?, bbl/d [m 3/d]12–1,900 [2–300]Maximum setting vertical depth, ft [m]6,500 [2,000]Maximum downhole temperature ?, degF [degC]300 [150]Operational speed range, rpm 50–500Maximum power capacity, hp [kW]60 [45]Power supply requirements, V [Hz]Three-phase 380–480 [50–60]Maximum pump axial load, lbs [kg]13,200 [6,000]Minimum casing size, in [mm] 5.5 [139.7]?Based on pump model, fluid level, and pump setting depth.? Maximum temperature for PMM.

多级泵结构图

D型多级泵结构图 技术交流2010-04-27 22:57:24 阅读138 评论0 字号:大中小 D型多级离心泵的结构图 不锈钢多级泵、长沙不锈钢多级泵、湖南不锈钢多级泵的性能结构说明 参数范围: 流量Q 55~175m3/h 扬程H 165~684m DF型不锈钢多级泵系单吸\多吸\节段式耐腐蚀离心泵,适用于输送不含固体颗粒的腐蚀性液体,泵进口压力不得超过0.59MPA(6KGF/CM2)。被输送介质的温度为-20℃~105℃ 不锈钢多级泵的泵壳可在轴线处轴向拆开;吸入口水平,吐出口垂直向上,与轴心线垂直。从驱动端方向看,水

泵旋向为顺时针方向,根据用户需要也可生产逆时针方向旋转的,用户可在定货时特别提出。 泵体与泵盖构成叶轮的工作室,在进、出水法兰上制有安装真空表和压力表的管螺孔,泵体下部制有放余水的管螺孔。 叶轮为单吸闭式,设置平衡盘平衡绝大部分轴向力,可能残存的小部分轴向力则由轴端的轴承承受。叶轮及转子部件在装配前均须作严格的静平衡校验,以保证运行的平稳。 泵轴由两个单列向心球轴承支承,轴承装在泵悬架中的轴承体内,用脂或稀油润滑。轴承的布置使轴处于稳定的拉杆状态。 在泵体上设有密封环,可以减少泵的级间漏损,提高泵的容积效率;另一方面也可以避免高压水回流入吸入室,扰乱进水流场,可以保证水泵的吸入性能。 不锈钢多级泵的过流部件材质为铸钢、铸不锈钢两类。如用户有特殊要求,订货时可向厂家提出。)DF型泵成套供应电机,本身底座。另外,厂主还提供备件(其中有叶轮、轴套、密封环、导叶套、平衡盘、平衡环)。 轴封一般为软填料密封,水泵工作时可引少量介质至填料函处,也可外接冷却润滑水,起水封及冷却润滑作用,订货时,就根据输送介质的名称、浓度泵进口压力、使用温度对材质的腐蚀程度,合理选用泵的材质及密封形式。 D、DG型卧式多级离心泵结构图:

采油工程期末考试复习资料

名词解释 1油井流入动态:油井产量与井底流动压力的关系,它反映了油藏向该井供油的能力。 2滑脱损失:由于油井井筒流体间密度差异,在混合物向上流动过程中,小密度流体流速大于大密度流体流速,引起的小密度流体超越大密度流体上升而引起的压力损失。 3气举启动压力:气举井启动过程中,当环形空间内的液面将最终达到管鞋处时的井口注入压力。 4扭矩因数:悬点载荷在曲柄轴上造成的扭矩与悬点载荷的比值。 5速敏:在流体与地层无任何物理化学作用的前提下,当液体在地层中流动时,会引起颗粒运移并堵塞孔隙和喉道,引起地层渗透率下降的现象。 6基质酸化:在低于岩石破裂压力下将酸注入地层,依靠酸液的溶蚀作用恢复或提高井筒附近油层渗透性的工艺。 7吸水剖面:一定注入压力下各层段的吸水量的分布。 8填砂裂缝的导流能力:油层条件下填砂裂缝渗透率与裂缝宽度的乘积。 9酸压裂缝的有效长度:酸压过程中,由于裂缝壁面被酸不均匀溶蚀,施工结束后仍具有相当导流能力的裂缝长度。 10蜡的初始结晶温度:当温度降到某一数值时,原油中溶解的蜡开始析出时的温度。 11:采油指数:是指单位压差下的油井产量,反映了油层性质、流体物性、完井条件及泄油面积等与产量的关系。 12气举采油:是指人为地从地面将高压气体注入停喷的油井中,以降低举升管中的流压梯度,利用气体的能量举升液体的人工举升方法。 13吸水指数:表示注水井在单位井底压差下的日注水量。 14沉没度:泵下入动液面以下深度位置。 15原油的密闭集输:在原油的集输过程中,原油所经过的整个系统都是密闭的,既不与大气接触。 16滤失系数:压裂液在每一分钟内通过裂缝壁面1m^3面积的滤失量, 17滑脱现象:气液混流时,由于气相密度明显小于液相密度,在上升流动中,轻质气相其运动速度会快于重质液相,这种由于两相间物性差异所产生的气相超越液相流动。 18酸液有效作用距离:当酸液浓度降低到一定程度后(一般为初始浓度的10%),酸液变为残酸,酸液由活性酸变为残酸之前所流经裂缝的距离。 19破裂压力梯度:地层破裂压力与地层深度的比值。************************* 7分析常规有杆泵生产过程中抽油杆柱下端受压的主要原因。 答:(1)柱塞与泵筒的摩擦力;(2)抽油杆下端处流体的压强产生的作用力;(3)流体通过游动阀孔产生的阻力;(4)抽油杆柱与井筒流体的摩擦力;(5)抽油杆柱与油管间的摩擦力;(6)抽油杆柱和井筒流体的惯性力和振动力等。 8作出自喷井油层-油管-油嘴三种流动的协调曲线,并说明各曲线的名称,标出该油井生产时的协调点及地层渗流和油管中多相管流造成的压力损失。 答:自喷井油层-油管-油嘴三种流动的协调曲线: 曲线A:流入动态曲线;表示地层渗流压力损失,为地层静压; 曲线B:满足油嘴临界流动的井口油压与产量关系曲线;表示油管中多相管流造成的压力损失,为井底压力; 曲线C:嘴流特性曲线;表示井口压力。 曲线B与曲线C的交点G为协调点

立式多级离心泵概述及原理

立式多级离心泵概述及原理 一、立式多级离心泵产品概述: 立式多级离心泵是采用国家推荐使用的高效节能产品IS型泵的水力模型,为立式多级多节段式结构。螺杆把进水段、中段、出水段夹紧联成一体。水泵每一级装一个叶轮、一个导水叶。 轴向力采用水力平衡法解决,残余轴向力由球轴轴承承受,用油脂润滑。轴封采用软填料或机械密封。产品执行JB/T2727-93 《立式多级离心泵型式与基本参数》标准,主要供吸送稀释的、清洁的、不腐蚀的、不爆炸的清水及物理化学性质类似水的不含固体颗粒或纤维的液体。 立式多级离心泵采用计算机设计和优化处理,拥有雄厚的技术力量、丰富的生产经验和完善的检测手段,从而产品质量的稳定可靠。 二、立式多级离心泵适用范围: 广泛应用于高层建筑的消防、生活供水以及空调机组循环、冷却水输送。 三、立式多级离心泵产品特点: 1、水力模型先进:效率高,性能范围广。 2、结构新颖,运行可靠:取消了平衡鼓,其轴向力采用水力平衡,彻底解决了平衡鼓易锈蚀、易咬死、易磨损的问题,保证了运行更加可靠。 3、更少的运行、维修费用:采用优质机械密封,耐磨损、无泄漏、使用寿命长,故障率低,具有更少的运行维修费用。 4、运行平稳,噪音低:采用低转速电机,使泵运行平稳,噪音更低。 5、立式结构,占地面积小。

四、立式多级离心泵技术参数: 流量:4.2-504m3/h; 扬程:24-240m; 功率:1.5-450kw; 转速:1480r/min; 口径:φ40-φ250; 温度范围:0-+90℃; 工作压力:≤2.4Mpa。五、立式多级离心泵型号意义:

六、立式多级离心泵适用范围: 广泛应用于高层建筑的消防、生活供水以及空调机组循环、冷却水输送。

水泵流量、扬程、效率的关系

1、流量、扬程、效率的关系 离心式水泵的主要设计与运行参数是流量与扬程,设计技术参数应与运行工艺参数应一致或相接近。当泵在这两个参数之间会相互影响,各类泵、各规格型号的泵均有自己的特性曲线图,如下图: 图中有三条基本曲线(不包括蚀余量(NPSH)r)):H与Q曲线,从曲线中可以清楚看出,扬程H下降,其流量Q随着增加,再一个是功率曲线P,它一般随流量Q的增加而增加,但不很明显,重要的一个曲线是效率曲线η,它随流量的增加而增加,但到一个峰值后,又迅速下降(上图中扬程在15.5m时最高)。因此,泵的实际运行应尽量在高效率区间状态下工作。 当设计(泵的选型)确定后,如泵实际运行扬程过高,则不但造成泵的效率降低,而会严重影响泵的实际流量来Q的下降。反之,如泵的扬程选得过高,而实际运行扬程过低,则也同样影响泵的效率下降与造成实际运行时流量过大,还很可能会增加泵的功率而超出电机的额定电流而发热。

2、扬程过高的影响 离心泵的扬程是用来克服高度和阻力的,高扬程的泵在高扬程点工作时他的流量是设计点的流量,如果在低扬程工作时,相当于泵的出口阻力减小,这时泵的流量就会增加,电机就会超负荷,超到一定程度就会烧毁电机。例如一台给水泵的扬程为50米,流量为50立方米/小时,当它往50米高处给水的时,它的流量是50立方米/小时,当它往40米高处给水时,它的高度和阻力降低了它的流量可能达到80-90立方米/小时以上,这时电机就会发热或烧毁。 很多用户认为水泵抽水扬程越低,电机负荷越小。在这种错误认识的误导下,选购水泵时,常将水泵的扬程选得很高。其实对于离心式水泵而言,当水泵型号确定后,其消耗功率的大小是与水泵的实际流量成正比的。而水泵的流量会随扬程的增加而水泵扬程过高导致烧电机的原因减小,因而扬程越高,流量越小,消耗功率也就越小。反之,扬程越低,流量越大,消耗的功率也就越大。因此,为了防止电机过载,一般要求水泵的实际抽水使用扬程不得低于标定扬程的60%。所以当高扬程用于过低扬程抽水时,电机容易过载而发热,严重时可烧毁电机。若应急使用,则必须在出水管上装一个用于调节出水量的闸阀(或用木头等物堵小出水口),以减小流量,防止电机过载。 提醒:注意电机温升,若发现电机过热,应及时关小出水口流量或关机。 这一点也容易产生误解,有些认为堵塞出水口,强制减少流量,会增加电机负荷。其实正好相反,正规的大功率离心泵排灌机组的出水管上都装有闸阀,为了减小机组启动时的电机负荷,应先关闭闸阀,待电机启动后再逐渐开启闸阀就是这个道理。

直驱潜油螺杆泵

潜油螺杆泵装置 沈阳大学王子贵 一、产品用途 该潜油直驱螺杆泵装置的特点是潜油电机在螺杆泵上端,电机的转子轴是空心,用来走井液。主要适用于开采高黏度、高含蜡、高含沙、高含气原油,在斜井、水平井、沼泽区块和海上平台作业中,其泵效高、同比采油量能耗低、泵检周期长、制造成本低、维护费用低、节能效果显著等。 二、技术特点 1、将有杆采油工艺变为无杆采油,消除了抽油杆与油管之间的磨损。 2、抽吸连续平稳,不对油层产生压力激动作用,泵的排量稳定,油液流动无扰动,便于计量。

3、不易发生气锁,具有破乳作用。 4、适用于直井、斜井、水平井、尤其适用于杆管偏磨井。 5、机械采油设备中同比采油量能耗低、泵效高。 6、采用大功率步进永磁电机并直接驱动螺杆泵,电能利用率在80%以上。 7、该种电机低速转矩大,特别适合含沙量大及稠油的井况。 8、井口控制器采用无位置传感器磁通矢量控制,使系统运行更平滑稳定。 9、保护功能齐全,可对电机欠载、过载、过电压、欠电压、短路、三相电压及电流不平衡等有效保护。 10、可靠性高,稳定性好,适应性强,维修与保养简单。 11、耐颠簸震动,噪音低,震动小,运转平滑,寿命长。 12、效率高,电机本身没有励磁损耗和碳刷损耗,消除了多级减速损耗。 13、综合节电率可达20%-60%。 三、技术参数 (一) 1、电机功率:6KW 2、工作电压:380V 3、额定电流:12A 4、工作转矩:285N〃M(200r/min) 5、环境温度:120℃ (二) 1、电机功率:8KW 2、工作电压:380V 3、额定电流:16A 4、工作转矩:380N〃M(200r/min)

离心水泵扬程和流量关系

离心水泵扬程和流量关系 1.出水管口在出水池正常水位以上 如果出水口在出水池正常水位以上,虽增加了水泵扬程,但减少了流量。如因地形条件所限,出水口必须高出出水池水位,则应在管口加装弯头和短管,使水管成为虹吸式,降低出水口高度。 2.高扬程水泵用于低扬程抽水 很多人认为抽水扬程越低,电机负荷越小。在这种错误认识的误导下,选购水泵时,常将水泵的扬程选得很高。其实对于离心式水泵而言,当水泵型号确定后,其消耗功率的大小是与水泵的实际流量成正比的。而水泵的流量会随扬程的增加而减小,因而扬程越高,流量越小,消耗功率也就越小。反之,扬程越低,流量越大,消耗的功率也就越大。 因此,为了防止电机过载,一般要求水泵的实际抽水使用扬程不得低于标定扬程的60%。所以当高扬程用于过低扬程抽水时,电机容易过载而发热,严重时可烧毁电机。若应急使用,则必须在出水管上装一个用于调节出水量的闸阀(或用木头等物堵小出水口),以减小流量,防止电机过载。注意电机温升,若发现电机过热,应及时关小出水口流量或关机。这一点也容易产生误解,有些机手认为堵塞出水口,强制减少流量,会增加电机负荷。其实正好相反,正规的大功率离心泵排灌机组的出水管上都装有闸阀,为了减小机组启动时的电机负荷,应先关闭闸阀,待电机启动后再逐渐开启闸阀就是这个道理。 3.进水管路上用的弯头多 如果在进水管路上用的弯头多,会增加局部水流阻力。并且弯头应在垂直方向转弯,不允许在水平方向转弯,以免聚集空气。 4.进水管的进水口位置错误 1、进水管的进水口离进水池底和池壁距离小于进水口直径。如果池底有泥沙等污物时,进水口离池底的距离小于直径的1.5倍时,会造成抽水时进水不畅或吸进泥沙杂物,堵塞进水口。 2、进水管的进水口入水深度不够时,这样会引起进水管周围水面产生漩涡,影响进水,减少出水量。正确的安装方法是:中小型水泵入水深度不得小于300~600mm,大型水泵不

水泵扬程和进出水的关系

水泵扬程和进出水的关系 1、高扬程水泵低负荷运行 很多人认为抽水扬程越低,电机负荷越小。在这种错误认识的误导下,选购水泵时,常将水泵的扬程选得很高。其实对于离心式水泵而言,当水泵型号确定后,其消耗功率的大小是与水泵的实际流量成正比的。而水泵的流量会随扬程的增加而减小,因而扬程越高,流量越小,消耗功率也就越小。反之,扬程越低,流量越大,消耗的功率也就越大。 因此,为防止电机过载,一般要求水泵的实际抽水使用扬程不低于标定扬程60%。当高扬程用于过低扬程抽水时,电机过载而发热,严重可烧毁电机。应急使用,必须在出水管上装调节出水量的闸阀,以减小流量,防止电机过载。 注意电机温升,若发现电机过热,应及时关小出水口流量或关机。这一点也容易产生误解,有些机手认为堵塞出水口,强制减少流量,会增加电机负荷。其实正好相反,正规的大功率离心泵排灌机组的出水管上都装有闸阀,为了减小机组启动时的电机负荷,应先关闭闸阀,待电机启动后再逐渐开启闸阀就是这个道理。 2、大口径水泵配小水管抽水 很多用户认为这样可以提高实际扬程,其实水泵的实际扬程=总扬 程- 损失扬程。当水泵型号确定后,总扬程是一定的;损失扬程主 要来自于管路阻力,管径越小显然阻力越大,因而损失扬程越大, 所以减小管径后,水泵的实际扬程非但不能增加,反而会降低,导 致水泵效率下降。 同理,当小管径水泵用大水管抽水时,也不会降低水泵的实际扬程,反而会因管路的阻力减小而减小了损失扬程,使实际扬程有所提高。也有用户认为小管径水

泵用大水管抽水时,必然会大大增加电机负荷,他们认为管径增大后,出水管里的水对水泵叶轮的压力就大,因而会大大增加电机负荷。 殊不知,液体压强的大小只与扬程高低有关,而与水管截面积大小无关。只要扬程一定,水泵的叶轮尺寸不变,无论管径多大,作用在叶轮上的压力都是一定的。只是管径增大后,水流阻力会减小,而使流量有所增加,动力消耗也有适当增加。但只要在额定扬程范围内,无论管径如何增加水泵都是可以正常工作的,并且还可以减小管路损耗,提高水泵效率。 3、进水管路水平管段过于平直或上翘 这样做会使进水管内聚集空气,降低水管和水泵真空度,使水泵吸水扬程降低,出水量减少。正确的做法是:其水平段应向水源方向稍有倾斜,不应水平,更不得向上翘起。 4、进水管路弯头过多 如果在进水管路上用的弯头多,会增加局部水流阻力。并且弯头应在垂直方向转弯,不允许在水平方向转弯,以免聚集空气。 5、水泵进水口与弯头直接相连 这样会使水流经过弯头进入叶轮时分布不均。当进水管直径大于水泵进水口时,应安装偏心变径管。偏心变径管平面部分要装在上面,斜面部分装在下面。否则聚集空气,出水量减少或抽不上水,并有撞击声等。若进水管与水泵进水口直径相等时,应在水泵进水口和弯头之间加一直管,直管长度不得小于水管直径的2~3倍。 6、装底阀的进水管底端不垂直 这样安装,阀门不能自行关闭、造成漏水。正确安装方法:装有底阀的进水管,最下一节最好是垂直的。如因地形条件限制不能垂直安装,则水管轴线与水平面夹角应在60°以上。

相关文档
最新文档