几种生物质制氢方式的探讨

几种生物质制氢方式的探讨
几种生物质制氢方式的探讨

万方数据

万方数据

万方数据

万方数据

生物质制氢技术研究进展

中国生物工程杂志 China B i otechnol ogy,2006,26(5):107~112 生物质制氢技术研究进展 于 洁 1,2  肖 宏 13 (1中国科学院上海生命科学研究院生命科学信息中心 上海 200031 2中国科学院研究生院 北京 100039) 摘要 氢能以其清洁,来源及用途广泛等优点成为最有希望的替代能源之一,用可再生能源制氢是氢能发展的必然趋势。由于生物质制氢具有一系列独特的优点,它已成为发展氢经济颇具前景的研究领域之一。生物质制氢技术可以分为两类,一类是以生物质为原料利用热物理化学方法制取氢气,如生物质气化制氢,超临界转化制氢,高温分解制氢等热化学法制氢,以及基于生物质的甲烷、甲醇、乙醇的化学重整转化制氢等;另一类是利用生物转化途径转换制氢,包括直接生物光解,间接生物光解,光发酵,光合异养细菌水气转移反应合成氢气,暗发酵和微生物燃料电池等技术。综述了目前主要的生物质制氢技术及其发展概况,并分析了各技术的发展趋势。关键词 生物质 制氢 气化 高温分解 超临界水 微生物电池中图分类号 Q819 收稿日期:2006201209 修回日期:2006204210 3通讯作者,电子信箱:hxiao@sibs .ac .cn 化石能源的渐进枯竭,国际市场油价的日高一日,给我国高速发展的社会经济带来越来越大的压力。根据国家海关总署提供的资料,我国从1993年变为石油净进口国。过去的10年中,我国石油需求量几乎翻了一番。同时,环境生态问题与国家安全问题日益受到各国的高度重视,新替代能源的研制和开发已成为各国科研生产的战略重点之一。 氢能被誉为21世纪的绿色能源。氢气的燃烧只产生水,能够实现真正的“零排放”。相比于目前已知的燃料,氢的单位质量能量含量最高,其热值达到 143MJ /kg,约为汽油的3倍,并且氢的来源广泛。鉴于 化石能源的不可再生性及其造成的环境污染问题,特别是石化资源渐趋枯竭,利用可再生能源制氢已成为当务之急和氢能发展的长久之计。目前,“氢经济”已引起世界很多国家的高度重视,并已被纳入发展计划。 生物质制氢技术不同于风能、太阳能、水能之处在于生物质制氢技术不仅可以有“生物质产品”的物质性生产,还可以参与资源的节约和循环利用。例如气化制氢技术可用于城市固体废物的处理,微生物制氢过 程能有效处理污水,改造治理环境。微生物燃料电池 (MFC ),可以处理人类粪便、农业和工业废水等有机废 水。微生物发酵过程还能生产发酵副产品,例如重要的工业产品辅酶Q ,微生物本身又是营养丰富的单细胞蛋白,可用于饲料添加剂等。 1 技术概述及研究进展 生物质制氢技术可以分为两类,一类是以生物质为原料利用热物理化学原理和技术制取氢气,如生物质气化制氢,超临界转化制氢,高温分解制氢等。以及基于生物质的甲烷、甲醇、乙醇转化制氢;另一类是利用生物途径转换制氢,如直接生物光解,间接生物光解,光发酵,光合异养细菌水气转移反应合成氢气,暗发酵和微生物燃料电池技术。基于生物质发酵产物的甲烷、甲醇、乙醇等简单化合物也可以通过化学重整过程转化为氢气。目前生物质制氢的研究主要集中在如何高效而经济地转换和利用生物质。高温裂解和气化制氢适用于含湿量较小的生物质,含湿量高于50%的生物质可以通过细菌的厌氧消化和发酵作用制氢。有些湿度较大的生物质亦可利用超临界水气化制氢 [1] 。 一些主要的生物质制氢原料及常用方法见表1。

制氢技术比较及分析报告

制氢技术综述&制氢技术路线选择 一、工业制氢技术综述 1.工业制氢方案 工业制氢方案很多,主要有以下几类: (1)化石燃料制氢:天然气制氢、煤炭制氢等。 (2)富氢气体制氢:合成氨生产尾气制氢、炼油厂回收富氢气体制氢、氯碱厂回收副产氢制氢、焦炉煤气中氢的回收利用等。 (3)甲醇制氢:甲醇分解制氢、甲醇水蒸汽重整制氢、甲醇部分氧化制氢、甲醇转化制氢。 (4)水解制氢:电解水、碱性电解、聚合电解质薄膜电解、高温电解、光电 解、生物光解、热化学水解。 (5)生物质制氢。 (6)生物制氢。 2.工业制氢方案对比选择 (1)煤炭制氢制取过程比天然气制氢复杂,得到的氢气成本也高。 (2)由于生物制氢、生物质制氢和富氢气体制氢等方法制取的氢气杂质含量高、纯度较低,不能达到GT等技术提供商的氢气纯度要求。 (3)国内多晶硅绝大多数都采用的是水电解制氢,只有中能用的是天然气制氢,而国外应用的更多是甲醇制氢,因此,我们重点选择以下三类方案进行对比: (A)天然气制氢 (B)甲醇制氢 (C)水电解制氢 3. 天然气制氢

(1)天然气部分氧化制氢因需要大量纯氧增加了昂贵的空分装置投资和制氧成本。 (2)天然气自热重整制氢由于自热重整反应器中强放热反应和强吸热反应分步进行,因此反应器仍需耐高温的不修锈钢管做反应器,这就使得天然气自热重整反应过程具有装置投资高,生产能力低的特点。 (3)天然气绝热转化制氢大部分原料反应本质为部分氧化反应。 (4)天然气高温裂解制氢其关键问题是,所产生的碳能够具有特定的重要

用途和广阔的市场前景。否则,若大量氢所副产的碳不能得到很好应用,必将限制其规模的扩大。 (5)天然气水蒸汽重整制氢,该工艺连续运行, 设备紧凑, 单系列能力较大, 原料费用较低。 因此选用天然气水蒸汽重整制氢进行方案对比。 4.甲醇制氢 (1)甲醇分解制氢,该反应是合成气制甲醇的逆反应,在低温时会产生少量的二甲醚。 (2)甲醇水蒸汽重整制氢,是甲醇制氢法中氢含量最高的反应。这种装置已经广泛使用于航空航天、精细化工、制药、小型石化、特种玻璃、特种钢铁等

生物质制氢发展和前景研究

生物质制氢发展和前景研究 作者袁超 学号 201206030121 摘要:氢气作为一种清洁无污染的新型能源越来越受到人们的关注。与传统制氢方法相比,生物制氢技术的能耗低,对环境无害,已经逐渐引起了人们的重视。 Abstract:Hydrogen as a clean pollution-free new energy more and more get the attention of people. Compared with the traditional hydrogen production methods, biological hydrogen production technology of low energy consumption, harmless to the environment, has gradually aroused people's attention 关键词;发酵;制氢;酶;影响因素;前景;生物制氢 前言:据估计,地球上每年生长的生物质总量约相当于目前世界总能耗的l0倍,我国年产农作物秸秆6亿多t,可利用生物质资源约30亿t。从资源本身的属性来说,生物质是能量和氢的双重载体,生物质自身的能量足以将其含有的氢分解出来,合理的工艺还可利用多余能量额外分解水,得到更多的氢。生物质能是低硫和二氧化碳零排放的洁净能源,可避免化石能源制氢过程对环境的污染,从源头上控制

二氧化碳排放。与传统制氢方法相比,生物制氢技术的能耗低,对环境无害[ 1 ]。该文章从生物质制氢的原理入手,综述了多种生物质制氢方法,并以生物质制氢为中心对生物利用进行讨论。 正文 1生物制氢的方法 1.1生物质催化气化制氢 生物质催化气化制氢是加入水蒸气的部分氧化反应,类似于煤炭气化的水煤气反应,得到含氢和较多一氧化碳的水煤气,然后进行变换反应使一氧化碳转变,最后分离氢气。由于生物质气化产生较多焦油,研究者在气化器后采用催化裂解的方法以降低焦油并提高燃气中氧含量,催化剂为镍基催化剂或较。为便宜的白云石、石灰石等。气化过程可采用空气或富氧空气与水蒸气一起作为气化剂,产品气主要是氢、一氧化碳和少量二氧化碳。气化介质不同,燃料气组成及焦油含量也不同。使用空气时由于氮的加入,使气化后燃气体积增大,增加了氢气分离的难度;使用富氧空气时需增加富氧空气制取设备[2]。Dernmirbas[3]认为含水质量分数在35%以下的生物质适合采用气化制氢技术。

生物制氢

生物制氢 环工1402 2014011315许江东 摘要:基于2H2+O2=2H2O,氢气燃烧不产生CO2这种温室气体,所以氢气被称为清洁能源,具有广大的应用前景,导致制氢技术具有很高的研究价值。简要概述了生物制氢的几种方法,包括光发酵、暗发酵、两步发酵、光解水等技术,并在此基础上,探讨可能的突破方向。 关键字:生物制氢;光解水;光发酵;暗发酵;两步发酵 引言 如果把社会比作一台机器,那么能源就是这台机器必不可少的能量来源。现如今全球大部分的能源来自于化石燃料的燃烧,这不仅产生了大量的CO2等温室气体,还浪费了这种不可再生能源。氢气燃烧仅产生水,而且放热远大于碳水化合物。氢气燃烧的最高热值是122 kJ/g,比碳水化合物燃料高2.75倍【1】。在生物制氢之前,已经有了一些制氢技术。 ①水电解法:以铁为阴极面,镍为阳极面的串联电解槽(外形似压滤机)来电解苛性钾或苛性钠的水溶液,阳极产生02,阴极产生H2。该方法成本较高,在电解过程只有15%的电能最终被转化为氢能,高达85 %的电能得不到合理利用被白白地浪费掉。但产品纯度大,可直接生产99.7%以上纯度的氢气。目前工业用氢总量的4%来源于水电解法。 ②热化学法:这种方法采用高温热解进行制氢,水在3000 °C条件下会发生热化学反应,生成H2和02。该方法对温度的要求较高,因此设备和能源的要求和花费较大,虽然经过研究人员的不懈努力,现在已经将热解温度降低到1000°C,但是与其他方法相比依然成本过高消耗过大。 ③等离子化学法:以石油、煤、天然气与水蒸气等物质为原料进行一系列反应生成水煤气,然后将水煤气和水蒸气一起通过灼热的Fe203(氧化剂)后就会产生C02和H2,经过简单的气体分离和干燥技术即可得到氢气。 ④光电化学法:这是一种比较新的方法,主要原理就是利用一些半导体材料和电解质溶液使其组成光电化学电池,在阳光照射下通过电化学方法生产出H2的过程。 而生物制氢法是通过发酵微生物或光合微生物的作用,在适当的工程条件下

水电解制氢的最新进展与应用

水电解制氢的最新进展与应用 一、绿色能源氢能及其电解水制氢技术进展 摘要:随着环境污染日益严重,越来越多的研究关注于绿色无污染能源,其中氢能清洁无污染、高效、可再生,是未来最有潜力的能源载体。利用电解水技术制氢是目前最有潜力的技术,也是一种经济有效的技术。绍了氢能的研究现状和水电制氢技术,着重介绍了碱性电解槽、子交换膜电解技术以及固体氧化物水电解技术,对现有技术进行了总结。 1.氢能的研究现状 美国: 1990年,美国能源部(DOE)启动了一系列氢能研究项目。 2001年以来,美国政府制订了《自有车协作计划》、《美国氢能路线图》。 2004年2月,美国能源部出台的“氢态势计划”,并提出2040年美国将实现向氢经济的过渡。 美国能源部、国防部、交通部、国家科学基金、美国宇航局和商务部以及8个国家实验室、2所大学和19 个公司签署了研发合同。 欧盟: 2001 年11 月启动的“清洁能源伙伴计划”,欧盟拨款1850万欧元支持汉堡、伦敦等10个城市的燃料汽车示范项目。 2008年11 月初欧盟、欧洲工业委员会和欧洲研究社团联合制订了2020年氢能与燃料电池发展计划。 日本: 1993年就制订了“新阳光计划”,预计到2020年投资30亿美元用于氢能关键技术的研发。并计划在2020年实现燃料电池汽车500 万辆,建成燃料电池发电系统10000MW。 我国: 2003年11月我国加入了“氢能经济国际合作伙伴(IPHE)”,成为IPH首批成员国之一。《国家中长期科学和技术发展规划纲要(2006-2020年)》和《国家“十一五”科学技术发展规划》中都列入了发展氢能和燃料电池的相关内容。 相对而言,我国在氢能和燃料电池汽车领域的技术研发工作开始得较晚,这方面的标准体系尚未形成,然而通过国内研究单位的协作努力,在材料、基础设施、燃料电池堆、整车集成等方面都已取得阶段性进展,目前已有多家企业与联合国发展计划署和全球环境基金合作,开展燃料电池客车的公交线路试运行。 2 水电解氢能的制备技术进展 发展到现在,已有三种不同种类的电解槽,分别为碱性电解槽#聚合物薄膜电解槽和固体氧化物电解槽。 ①碱性电解槽 碱性电解槽是发展时间最长、技术最为成熟的电解槽,具有操作简单、#成本低的优点,其缺点是效率最低,槽体示意图如图1 所示。国外知名的碱性电解水制 氢公司有挪威留坎公司、格洛菲奥德公司和冰岛雷克雅维克公司等。电解槽一般采 用压滤式复极结构或箱式单极结构,每对电解槽压在1.8~2.0V,循环方式一般采用 混合碱液循环方式。

光解水制氢半导体光催化材料的研究进展

光解水制氢半导体光催化材料的研究进展 田蒙奎1 ,2 ,上官文峰2 ,欧阳自远1 ,王世杰1 (1. 中国科学院地球化学研究所,贵州贵阳550002 ; 2. 上海交通大学机械与动力学院燃烧与环境技术研究中心,上海200030) 摘要: 自从Fujishima2Honda 效应发现以来,科学研究者一直努力试图利用半导体光催化剂光分解水来获得既可储存而又清洁的学能———氢能。近一二十年来,光催化材料的研究经历了从简单氧化物、复合氧化物、层状化合物到能响应可见光的光催化材料。本文重点描述了这些光催化材料的结构和光催化特性,阐述了该课题的意和今后的研究方向。关键词: 光解水;氢能;半导体光催化剂中图分号: X13 文献标识码:A文章编号:100129731 (2005) 1021489204 1 引言 在能源危机和环境问题的双重压力下,氢能因其燃烧值高、储量丰富、无污染而成为最有希望替代现有化石能源的清洁能源,因而氢能的开发成了能源领域的研究热点。自从Fujishima 和Honda 于1972 年发现了TiO2 光电化学能分解水产生H2 和O2 以来[1 ] ,科学研究者实现太阳能光解水制氢一直在作不懈的努力。普遍接受的光解水制氢原理是:半导体光催化剂在能量等于或大于其禁带宽度的光辐射时,电子从最高电子占据分子轨道( HOMO ,即价带) 受激跃迁至最低电子占据分子轨道(LUMO ,即导带) ,从而在价带留下了光生空穴( h + ) , 导带中引入了光生电子(e - ) 。光生空穴和光生电子分别具有氧化和还

原能力。要实现太阳能光解水制氢和氧,光生电子的还原能力必须能还原H2O 产生H2 ,而光生空穴的氧化能力必须能氧化H2O 产生O2 ,即半导体光催化剂的导带底要在H2O/ H2 电位( E0 = 0V ,p H = 0) 的上面(导带位置越高,电位越负,还原能力越强) ;而价带顶在O2 / H2O 电位( ENHE = + 1. 23V ,p H = 0) 的下面(价带位置越低,电位越正,氧化能力越强) 。近一二十年来, TiO2 以外的光催化剂的相继发现,特别是能响应可见光的光催化材料的出现,使得光解水制氢研究进入了非常活跃时期。本文就近期太阳能光解水制氢研究进展中的半导体光催化材料作一综述。 2 简单半导体氧化物,硫化物系光催化剂目前广泛研究的简单化合物半导体材料的能带结构如图1 所示: 图1 部分半导体材料的能带结构示意图 Fig 1 Schematic diagram of band st ructure for some semiconductor s TiO2 光催化剂由于光照不发生光腐蚀、耐酸碱性好、化学性质稳定、对生物无毒性、来源丰富等优点而被广为利用。具有代表性的

生物质气化制氢

生物质气化制氢 Hydrogen Production from Biomass Gasification 院系: 环境科学与工程学院 专业: 环境工程 姓名: 陈健 学号: M201373228 导师: 胡智泉副教授

2013 年 12 月

摘要 在人类面临严重的能源危机与环境污染的背景下,世界各国都在致力于对洁净能源氢的开发和研究,并取得了一定的研究成果。生物质气化制氢是一项富有前景的制氢技术,已引起了世界各国研究者的普遍关注。 本文重点讨论生物质催化气化制氢的基本原理和基本过程,阐述了氢气的净化分离方法,指出目前我国生物质气化制氢存在的问题和将来的研究方向。 关键词:生物质;气化;制氢。

Abstract In the context of humans face with a series of serious energy crisis and environmental pollution,the world are committed to developing and researching clean energy, and it has made some achievements. The prospective future of hydrogen from biomass gasification makes it a major concern all over the world. This article focuses on the basic principles and fundamental processes of hydrogen from biomass gasification, describes the purification and separation method of hydrogen, pointed out that at present China's biomass gasification problems and future research directions. Key words: Biomass; gasification; Hydrogen production.

生物质气化制氢

生物质气化制氢Hydrogen Production from Biomass Gasification 院系: 环境科学与工程学院 专业: 环境工程 姓名: 陈健 学号: M201373228 导师: 胡智泉副教授 2013 年12 月

摘要 在人类面临严重的能源危机与环境污染的背景下,世界各国都在致力于对洁净能源氢的开发和研究,并取得了一定的研究成果。生物质气化制氢是一项富有前景的制氢技术,已引起了世界各国研究者的普遍关注。 本文重点讨论生物质催化气化制氢的基本原理和基本过程,阐述了氢气的净化分离方法,指出目前我国生物质气化制氢存在的问题和将来的研究方向。 关键词:生物质;气化;制氢。

Abstract In the context of humans face with a series of serious energy crisis and environmental pollution,the world are committed to developing and researching clean energy, and it has made some achievements. The prospective future of hydrogen from biomass gasification makes it a major concern all over the world. This article focuses on the basic principles and fundamental processes of hydrogen from biomass gasification, describes the purification and separation method of hydrogen, pointed out that at present China's biomass gasification problems and future research directions. Key words: Biomass; gasification; Hydrogen production.

天然气制氢的基本原理及工业技术经验进展

天然气制氢的基本原理及工业技术进展 一、天然气蒸汽转化的基本原理 1.蒸汽转化反应的基本原理 天然气的主要成分为甲烷,约占90%以上,研究天然气蒸汽转化原理可以甲烷为例来进行。 甲烷蒸汽转化反应为一复杂的反应体系,但主要是蒸汽转化反应和一氧化碳的变换反应。 主反应: CH4+H2O===CO+3H2 CH4+2H2O===CO2+4H2 CH4+CO2===2CO+2H2 CH4+2CO2===3CO+H2+H2O CH4+3CO2===4CO+2H2O CO+H2O===CO2+H2 副反应: CH4===C+2H2 2CO===C+CO2 CO+H2===C+H2O 副反应既消耗了原料,并且析出的炭黑沉积在催化剂表面将使催化剂失活,因此必须抑制副反应的发生。 转化反应的特点如下: 1)可逆反应在一定的条件下,反应可以向右进行生成CO和H2,称为正 反应;随着生成物浓度的增加,反应也可以向左进行,生成甲烷和水蒸气,

称为逆反应。因此生产中必须控制好工艺条件,是反应向右进行,生成尽可能多的CO和H2。 2)气体体积增大反应一分子甲烷和一分子水蒸气反应后,可以生成一分子CO 和三分子H2,因此当其他条件确定时,降低压力有利于正反应的进行,从而降低转化气中甲烷的含量。 3)吸热反应甲烷的蒸汽转化反应是强吸热反应,为了使正反应进行的更 快、更彻底,就必须由外界提供大量的热量,以保持较高的反应温度。 4)气-固相催化反应甲烷的蒸汽转化反应,在无催化剂的参与 的条件下,反应的速度缓慢。只有在找到了合适的催化剂镍,才使得转化的反应实现工业化称为可能,因此转化反应属于气-固相催化反应。 2.化学平衡及影响因素 3.反应速率及影响速率 在没有催化剂的情况时,即使在相当高的温度下,甲烷蒸汽转化反应的速率也是很慢的。当有催化剂存在时,则能大大加快反应速率;甲烷蒸汽转化反应速率对反应温度升高而加快,扩散作用对反应速率影响明显,采用粒度较小的催化剂,减少内扩散的影响,也能加快反应速率。 4.影响析炭反应的因素 副反应的产物炭黑覆盖在催化剂表面,会堵住催化剂的微孔,降低催化剂的活性,增加床层阻力,影响生产力。 在甲烷蒸汽转化反应中影响析炭的主要因素如下: a.转化反应温度越高,烃类裂解析炭的可能性越大。 b.水蒸气用量增加,析炭的可能性越小,并且已经析出的炭黑也会与过量 的水蒸气反应而除去,在一定的条件下,水碳比降低则容易发生析炭现 象。

生物质油重整制氢

Energy Fuels2010,24,3251–3255:DOI:10.1021/ef1000634 Published on Web04/26/2010 Upgrading of Bio-oil by Catalytic Esterification and Determination of Acid Number for Evaluating Esterification Degree Jin-Jiang Wang,Jie Chang,*and Juan Fan South China University of Technology,No.381Wushan Road,Guangzhou510641,People’s Republic of China Received January20,2010.Revised Manuscript Received April11,2010 Bio-oil was upgraded by catalytic esterification over the selected catalysts of732-and NKC-9-type ion- exchange resins.The determination of the acid number by potentiometric titration was recommended by the authors to quantify the total content of organic acids in bio-oil and also to evaluate the esterification degree of bio-oil in the process of upgrading.We analyzed the measurement precision and calibrated the method of potentiometric titration.It was proven that this method is accurate for measuring the content of organic acids in bio-oil.After bio-oil was upgraded over732and NKC-9,acid numbers of bio-oil were lowered by88.54and85.95%,respectively,which represents the conversion of organic acids to neutral esters,the heating values increased by32.26and31.64%,and the moisture contents decreased by27.74and 30.87%,respectively.The accelerated aging test and aluminum strip corrosion test showed improvement of stability and corrosion property of bio-oil after upgrading,respectively. 1.Introduction Bio-oil,a liquid product from biomass fast pyrolysis,by virtue of its environmental friendliness and energy indepen-dence,is regarded as a promising energy source and receives more and more attention.1,2Nonetheless,the drawbacks, including high acidity,low heating value,high corrosiveness, high viscosity,and poor stability of bio-oil,limit its usage as a high-grade/transportation fuel.3-5Consequently,upgrad-ing of bio-oil before use is desirable to give a liquid product that can be used in a wider variety of applications.Catalytic esterification is widely studied for this https://www.360docs.net/doc/d615420356.html,anic acids(formic acid,acetic acid,propionic acid,etc.)in bio-oils can be converted to their corresponding esters,and the quality of bio-oil will be greatly improved.Solid acid cata-lysts,solid base catalysts,6ionic liquid catalysts,7HZSM-5, and aluminum silicate catalysts8,9were investigated for esterification of bio-oils.Not only the liquid bio-oil but also the uncondensed bio-oil vapor can be esterified,and good results can be obtained.10Esterification was proven to occur by gas chromatography-mass spectrometry(GC-MS)or Fourier transform infrared(FITR)analysis.A GC-MS chromatogram or FITR spectrum can be used for qualitative analysis of the original and upgraded bio-oils;however, there is no quantitative method proposed for evaluating the esterification degree of bio-oils.Gas chromatography can be used to quantify the organic acids in bio-oils11-13 and to evaluate the esterification degree;however,the overlapping chromatographic peaks are difficult to discri-minate,and complicated pretreatment operations are often required. In this paper,we conducted the experiments of upgrading bio-oil by catalytic esterification over selected catalysts: 732-and NKC-9-type ion-exchange resins.Moreover,we developed a rapid method of acid number determination by potentiometric titration,which can be used to quantify the total amount of the organic weak acids in bio-oils and also to evaluate the esterification degree in the process of bio-oil upgrading.The acid number,which is expressed as milli-grams of sodium hydroxide per gram of sample in this paper (mg of NaOH/g),refers to the quantity of base required to titrate a sample in a specified solvent to a specified end point.We investigated the precision and accuracy of the method for quantifying the organic acids in bio-oils.The acid number was used as an important index for evalua-ting the follow-up upgrading process.The stability and *To whom correspondence should be addressed.Telephone:t86-20- 87112448.Fax:t86-20-87112448.E-mail:changjie@https://www.360docs.net/doc/d615420356.html,. (1)Czernik,S.;Bridgwater,A.V.Overview of applications of bio- mass fast pyrolysis oil.Energy Fuels2004,18,590–598. (2)Huber,G.W.;Iborra,S.;Corma,A.Synthesis of transportation fuels from biomass:Chemistry,catalysts,and engineering.Chem.Rev. 2006,106,4044–4098. (3)Bridgwater,A.V.;Peacocke,G.V.C.Fast pyrolysis processes for biomass.Renewable Sustainable Energy Rev.2000,4,1–73. (4)Mohan,D.;Pittman,C.U.;Steele,P.H.Pyrolysis of wood/ biomass for bio-oil:A critical review.Energy Fuels2006,20,848–889. (5)Oasmaa,A.;Czernik,S.Fuel oil quality of biomass pyrolysis oils;State of the art for the end user.Energy Fuels1999,13,914–921. (6)Zhang,Q.;Chang,J.;Wang,T.J.;Xu,Y.Upgrading bio-oil over different solid catalysts.Energy Fuels2006,20,2717–2720. (7)Xiong,W.M.;Zhu,M.Z.;Deng,L.;Fu,Y.;Guo,Q.X. Esterification of organic acid in bio-oil using acidic ionic liquid catalysts. Energy Fuels2009,23,2278–2283. (8)Peng,J.;Chen,P.;Lou,H.;Zheng,X.Catalytic upgrading of bio-oil by HZSM-5in sub-and super-critical ethanol.Bioresour.Technol. 2009,100,3415–3418. (9)Peng,J.;Chen,P.;Lou,H.;Zheng,X.M.Upgrading of bio-oil over aluminum silicate in supercritical ethanol.Energy Fuels2008,22, 3489–3492. (10)Hilten,R.N.;Bibens,B.P.;Kastner,J.R.;Das,K.C.In-line esterification of pyrolysis vapor with ethanol improves bio-oil quality. Energy Fuels2010,24,673–682. (11)Branca,C.;Giudicianni,P.;Di Blasi,C.GC/MS characterization of liquids generated from low-temperature pyrolysis of wood.Ind.Eng. Chem.Res.2003,42,3190–3202. (12)Oasmaa,A.;Meier,D.Norms and standards for fast pyrolysis liquids;1.Round robin test.J.Anal.Appl.Pyrolysis2005,73,323–334. (13)Sipila,K.;Kuoppala,E.;Fagernas,L.;Oasmaa,A.Character-ization of biomass-based flash pyrolysis oils.Biomass Bioenergy1998, 14,103–113.

浅谈生物制氢的现状与发展趋势

浅谈生物制氢的现状与发展趋势 黄宇 (江苏大学环境与安全工程系,镇江 212000) 摘要: 氢是一种理想的能源,具有清洁、可再生的优点。由于生物制氢技术具有无污染、可再生、成本低等优点,受到国内外广泛的关注,在新能源的研究利用中占有日趋重要的位置。本文综述了国内外各种生物制氢技术的产生背景、制氢原理和应用现状,总结了该技术的研究现状和存在的障碍,探讨生物制氢技术的发展前景。 关键词 : 生物制氢制氢原理研究进展发展前景 Abstract: Hydrogen is an ideal energy, which has the advantages of clean, renewable. Due to the biological hydrogen production technology has the advantages of no pollution, renewable, low cost, it has been widely concerned both at home and abroad, and becoming more and more important position the research of new energy utilization. This paper reviewed the biological hydrogen production technology of the background, principle and application status of hydrogen production at home and abroad, summarizes the research progress of the technology and the obstacles, and discusses the prospect of hydrogen production by biological technology. Key words :Biological hydrogen production;The principle of hydrogen production; Research status; Prospects 引言 随着人类社会的不断进步和工业化程度的加深,经济发展对能源的需求量日益增加。作为主要能源的化石燃料,如石油、煤炭、天然气贮存量不断减少,化石燃料消耗必然面临危机。从目前探明的石油储量来看,世界石油开采乐观的看有100多年, 悲观地讲只有 30~5

生物制氢研究进展_产氢机理与研究动态

2006年第25卷第9期 CHEMICAL INDUSTRY AND ENGINEERING PROGRESS ·1001· 化工进展 生物制氢研究进展(Ⅰ) 产氢机理与研究动态 柯水洲,马晶伟 (湖南大学土木工程学院水科学与工程系,湖南长沙 410082) 摘要:阐述了7类生物制氢系统的产氢机理、影响因素以及提高产氢率和产氢量的方法,介绍了国外最新的研究进展。光发酵生物制氢技术和厌氧发酵生物制氢技术是研究的热点,而厌氧发酵由于产氢效率较高而成为最具潜力的生物制氢技术之一。光合–发酵杂交技术不仅减少了所需光能,而且增加了氢气产量,同时也彻底降解了有机物,使该技术成为生物制氢技术的发展方向。 关键词:生物制氢;光发酵;厌氧发酵 中图分类号:Q 939.9;TK 91 文献标识码:A 文章编号:1000–6613(2006)09–1001–06 Progress of biological hydrogen production(Ⅰ) Mechanism and development KE Shuizhou,MA Jingwei (Department of Water Engineering and Science,School of Civil Engineering,Hunan University, Changsha 410082,Hunan,China) Abstract:This paper presents seven types of biological hydrogen production systems and the mechanism,affecting factors,methods of enhancement of hydrogen production as well as research progress. The recent studies are focused on photo fermentation and anaerobic fermentation technology. Anaerobic fermentation systems have the great potential to be developed as practical biological hydrogen systems due to its high hydrogen yield. A hybrid system using photosynthesis and fermentative bacteria can enhance the hydrogen production and reduce the need for light. The process will be the future direction of biological hydrogen production. Key words:biological hydrogen production;photo fermentation;anaerobic fermentation 目前全世界所需要的80%的能源都来自于化石燃料,但其储量有限,且趋于枯竭。化石燃料燃烧时生成CO x、SO x、NO x、C x H x、烟雾、灰尘、焦油和其他有机化合物,造成了严重的环境污染并使全球气候发生变化[1]。为了缓解能源危机和环境问题,氢气将是最佳的替代能源。 氢是一种清洁的新型能源,不含碳、硫及其他的有害杂质,和氧燃烧时只生成水,不会产生CO x、SO x和致癌物质,大大地减轻了对环境的污染,保护了自然界的生态平衡。氢除了具有化石燃料的各种优点外,还有它独特的优点,即:可储存性、可运输性好;不仅是所有已知能源中能量密度最大的燃料(122 kJ·g– 1),还可作为其他初级能源(如核能、太阳能)的中间载能体使用;转换灵活,使用方便,清洁卫生[2]。氢能是一种可再生的永久性清洁能源,符合人类长远发展的需要。因此,从20世纪70年代起,世界各国就对氢能的开发研究十分重视。 用氢制成燃料电池可直接发电,也可采用燃料电池和氢气–蒸汽联合循环发电,其能量转换效率大大高于现有的火力发电。除了作为能源,氢气还有着其他广泛的用途,如用于氢化工艺中生产低分子量饱和化合物,生产氨、盐酸和甲醇,提炼金属矿,作为防腐防氧化的除氧剂、火箭发动机的燃料、发电机的制 收稿日期2006–02–27;修改稿日期 2006–04–03。 第一作者简介柯水洲 (1964—),男,博士,教授,主要从事研究水 处理工程。E–mail szkyr@https://www.360docs.net/doc/d615420356.html,。

相关文档
最新文档