第六章 基因预测和基因结构分析

第六章  基因预测和基因结构分析
第六章  基因预测和基因结构分析

第六章基因预测和基因结构分析

人们获得各种核酸和蛋白质序列的目的是了解这个序列在生物体中充当了怎样的角色。例如,DNA序列中重复片段、编码区、启动子、内含子/外显子、转录调控因子结合位点等信息;蛋白质的分子量、等电点、二级结构、三级结构、四级结构、膜蛋白的跨膜区段、酶的活性位点、以及蛋白质之间相互作用等结构和功能信息。虽然用实验的方法是多年以来解决这类问题的主要途径,但新的思路是利用已有的对生物大分子结构和功能特性的认识,用生物信息学的方法通过计算机模拟和计算来“预测”出这些信息或提供与之相关的辅助信息。由于生物信息学的特点,可以用较低的成本和较快的时间就能获得可靠的结果。近10年来生物学序列信息的爆炸性增长大大促进了各种序列分析和预测技术的发展,目前已经可以用理论预测的方法获得大量的结构和功能信息。要注意的是,尽管各种预测方法都基于现有的生物学数据和已有的生物学知识,但在不同模型或算法基础上建立的不同分析程序有其一定的适用范围和相应的限制条件,因此最好对同一个生物学问题尽量多用几种分析程序,综合分析各种方法得到的结果和结果的可靠性。此外,生物信息学的分析只是为生物学研究提供参考,这些信息能提高研究的效率或提供研究的思路,但很多问题还需要通过实验的方法得到验证。在构建一个基因结构预测模型时,一些主要问题是值得注意的:(1)对真核生物序列,遮蔽重复序列应先于其它分析过程;(2)大多程序都有特定生物物种适用性;(3)许多程序只能特定适用于基因组DNA数据或者只适用于cDNA的数据;(4)序列的长度也是一个重要因素。

6.1针对核酸序列的预测方法

针对核酸序列的预测就是在核酸序列中寻找基因,找出基因的位置和功能位点的位置,以及标记已知的序列模式等过程。在此过程中,确认一段DNA序列是一个基因需要有多个证据的支持。一般而言,在重复片段频繁出现的区域里,基因编码区和调控区不太可能出现;如果某段DNA片段的假想产物与某个已知的蛋白质或其它基因的产物具有较高序列相似性的话,那么这个DNA片段就非常可能属于外显子片段;在一段DNA序列上出现统计上的规律性,即所谓的“密码子偏好性”,也是说明这段DNA是蛋白质编码区的有力证据;其它的证据包括与“模板”序列的模式相匹配、简单序列模式如TATA Box等相匹配等。一般而言,确定基因的位置和结构需要多个方法综合运用,而且需要遵循一定的规则:对于真核生物序列,在进行预测之前先要进行重复序列分析,把重复序列标记出来并除去;选用预测程序时要注意程序的物种特异性;要弄清程序适用的是基因组序列还是cDNA序列;很多程序对序列长度也有要求,有的程序只适用于长序列,而对EST这类残缺的序列则不适用。

6.1.1 重复序列分析

对于真核生物的核酸序列而言,在进行基因辨识之前都应该把简单的大量的重复序列标记出来并除去,因为很多情况下重复序列会对预测程序产生很大的扰乱,尤其是涉及数据库搜索的程序。常见的重复序列分析程序有GrailEXP等,可以在Web界面上使用这些程序,或者用Email来进行。

6.1.2 数据库搜索

把未知核酸序列作为查询序列,在数据库里搜索与之相似的已有序列是序列分析

预测的有效手段,在上一节中已经专门介绍了序列比对和搜索的原理和技术。但值得注意的是,由相似性分析作出的结论可能导致错误的流传;有一定比例的序列很难在数据库里找到合适的同源伙伴。对于EST序列而言,序列搜索将是非常有效的预测手段。

6.1.3 编码区统计特性分析

统计获得的经验说明,DNA中密码子的使用频率不是平均分布的,某些密码子会以较高的频率使用而另一些则较少出现。这样就使得编码区的序列呈现出可察觉的统计特异性,即所谓的“密码子偏好性”。利用这一特性对未知序列进行统计学分析可以发现编码区的粗略位置。这一类技术包括:双密码子计数(统计连续两个密码子的出现频率);核苷酸周期性分析(分析同一个核苷酸在3,6,9,...位置上周期性出现的规律);均一/复杂性分析(长同聚物的统计计数);开放可读框架分析等。常见的编码区统计特性分析工具将多种统计分析技术组合起来,给出对编码区的综合判别。著名的程序有GRAIL和GenMark等,GRAIL提供了基于Web 的服务。

6.1.4 启动子分析

启动子是基因表达所必需的重要序列信号,识别出启动子对于基因辨识十分重要。有一些程序根据实验获得的转录因子结合特性来描述启动子的序列特征,并依次作为启动子预测的依据,但实际的效果并不十分理想,遗漏和假阳性都比较严重。总的来说,启动子仍是值得继续研究探索的难题。

6.1.5 内含子/外显子剪接位点

剪接位点一般具有较明显的序列特征,但是要注意可变剪接的问题。由于可变剪接在数据库里的注释非常不完整,因此很难评估剪接位点识别程序预测剪接位点的敏感性和精度。如果把剪接位点和两侧的编码特性结合起来分析则有助于提供剪接位点的识别效果。

6.1.6 翻译起始位点

对于真核生物,如果已知转录起始点,并且没有内含子打断5'非翻译区的话,“Kozak规则”可以在大多数情况下定位起始密码子。原核生物一般没有剪接过程,但在开放阅读框中找正确的起始密码子仍很困难。这时由于多顺反操纵子的存在,启动子定位不象在真核生物中起关键作用。对于原核生物,关键是核糖体结合点的定位,可以由多个程序提供解决方案。

6.1.7 翻译终止信号

PolyA和翻译终止信号不象起始信号那么重要,但也可以辅助划分基因的范围。

6.2 其它综合基因预测工具

除了上面提到的程序之外,还有许多用于基因预测的工具,它们大多把各个方面的分析综合起来,对基因进行整体的分析和预测。多种信息的综合分析有助于提高预测的可靠性,但也有一些局限:物种适用范围的局限;对多基因或部分基因,有的预测出的基因结构不可靠;预测的精度对许多新发现基因比较低;对序列中的错误很敏感;对可变剪接、重叠基因和启动子等复杂基因语法效果不佳。相对不错的工具有GENSCAN和GeneFinding,可以通过Web页面或Email获得服务。

这些程序的主要局限性在于:(1)复合的算法目前只适用少数物种;(2)所有的程序(除了GENSCAN)在输入序列中包含多基因或者部分基因时,所预测的外显子仍可靠,但所预测的基因结构就不一定了;(3)由于尚不完全清楚的原因,预测精度可能比原先想象的低得多,尤其是对新发现的基因。(Burset和Guigó,1996,用百来个简单实例来标定了能得到的程序,结果无一能正确预测出多于一半的外显子);(4)大多复合算法都明显对测序错误十分敏感(Burset和Guigó,1996);以及(5)交替剪接、重叠基因和启动子结构这样的基因语法结构仍超出当前程序的处理能力。

既然这些程序中没有一个十全十美,它们都覆盖了一些不同算法,都在迅速进步,因此强烈建议分析每个序列时采用3到4个不同程序,并仔细对比其结果。如果某个工具会经常用到,就值得用大量已知结果的序列对其进行测试,以便对算法适用性有所了解。

【高中生物】功能基因的克隆及生物信息学分析

(生物科技行业)功能基因的克隆及生物信息学分析

功能基因的克隆及其生物信息学分析 摘要:随着多种生物全基因组序列的获得,基因组研究正从结构基因组学(structuralgenomics)转向功能基因组学(functionalgenomics)的整体研究。功能基因组学利用结构基因组学研究获得的大量数据与信息评价基因功能(包括生化功能、细胞功能、发育功能、适应功能等),其主要手段结合了高通量的大规模的实验方法、统计和计算机分析技术[1],它代表了基因分析的新阶段,已成为21世纪国际生命科学研究的前沿。功能基因组学是利用基因组测序获得的信息和产物,发展和应用新的实验手段,通过在基因组或系统水平上全面分析基因的功能,使生物学研究从对单一基因或蛋白的研究转向多个基因或蛋白同时进行系统的研究,是在基因组静态的组成序列基础上转入对基因组动态的生物学功能学研究[2]。如何研究功能基因,也成为我们面临的一个课题,本文就克隆和生物信息学分析在研究功能基因方面的应用做一个简要的阐述。 关键词:功能基因、克隆、生物信息学分析。 1.功能基因的克隆 1.1图位克隆方法 图位克隆又称定位克隆,它是根据目标基因在染色体上确切位置,寻找与其紧密连锁的分子标记,筛选BCA克隆,通过染色体步移法逐步逼近目的基因区域,根据测序结果或用BAC、YAC克隆筛选cDNA表达文库寻找候选基因,得到候选基因后再确定目标基因。优点是无需掌握基因产物的任何信息,从突变体开始,逐步找到基因,最后证实该基因就是造成突变的原因。通过图位克隆许多

控制质量性状的单基因得以克隆,最近也有报道某些控制数量性状的主效基因(控制蕃茄果实大小的基因克隆[3]、控制水稻成熟后稻谷脱落基因克隆[4]以及小麦VRN2基因克隆[5]等)也通过图位克隆法获得。 1.2同源序列克隆目的基因 首先根据已知的基因序列设计PCR引物,在已知材料中扩增到该片段,并经克隆测序验证,利用放射性同位素标记或其他非同位素标记该PCR片段作为探针,与待研究材料的cDNA文库杂交,就可以获得该基因cDNA克隆,利用克隆进一步筛选基因组文库,挑选阳性克隆,亚克隆并测序,从中就可以筛选到该基因的完整序列。 1.3结合连锁和连锁不平衡的分析方法 结合连锁和连锁不平衡的分析方法是未知基因克隆研究领域发展的新方向[6]。(Linkagedisequilibrium,LD)。与连锁分析不同,连锁不平衡分析可以利用自然群体中历史发生的重组事件。历史上发生的重组使连锁的标记渐渐分布到不同的同源染色体上,这样就只有相隔很近的标记才能不被重组掉,从而形成大小不同的单倍型片段(Haplotypeblock)。这样经过很多世代的重组,只有相隔很近的基因,才能仍处在相同的原始单倍型片段上,基因间的连锁不平衡才能依然存在。所以基于连锁不平衡分析,可以实现目的基因的精细定位。林木大多为自由授粉的异交物种,所以连锁不平衡程度很低,林木基因组中的LD可能会仅局限于非常小的区域,这就为目的基因的精细定位提供了可能,结合SNP检测技术,科学家甚至可以将效应位点直接与单个的核苷酸突变关联起来,进行数量性状寡核苷酸

功能基因的克隆及生物信息学分析

功能基因的克隆及其生物信息学分析 摘要:随着多种生物全基因组序列的获得,基因组研究正从结构基因组学(structural genomics)转向功能基因组学(functional genomics)的整体研究。功能基因组学利用结构基因组学研究获得的大量数据与信息评价基因功能(包括生化功能、细胞功能、发育功能、适应功能等),其主要手段结合了高通量的大规模的实验方法、统计和计算机分析技术[1],它代表了基因分析的新阶段,已成为21世纪国际生命科学研究的前沿。功能基因组学是利用基因组测序获得的信息和产物,发展和应用新的实验手段,通过在基因组或系统水平上全面分析基因的功能,使生物学研究从对单一基因或蛋白的研究转向多个基因或蛋白同时进行系统的研究,是在基因组静态的组成序列基础上转入对基因组动态的生物学功能学研究[2]。如何研究功能基因,也成为我们面临的一个课题,本文就克隆和生物信息学分析在研究功能基因方面的应用做一个简要的阐述。 关键词:功能基因、克隆、生物信息学分析。 1.功能基因的克隆 1.1 图位克隆方法 图位克隆又称定位克隆,它是根据目标基因在染色体上确切位置,寻找与其紧密连锁的分子标记,筛选BCA克隆,通过染色体步移法逐步逼近目的基因区域,根据测序结果或用BAC、YAC克隆筛选cDNA表达文库寻找候选基因,得到候选基因后再确定目标基因。优点是无需掌握基因产物的任何信息,从突变体开始,逐步找到基因,最后证实该基因就是造成突变的原因。通过图位克隆许多控制质量性状的单基因得以克隆,最近也有报道某些控制数量性状的主效基因(控制蕃茄果实大小的基因克隆[3]、控制水稻成熟后稻谷脱落基因克隆[4]以及小麦VRN2 基因克隆[5]等)也通过图位克隆法获得。

DNA结构分析

基因结构分析 摘要:本文综述了基因的研究背景,并且用X射线衍射技术观察了DNA的双螺旋结构,原子力显微镜观察了pBR322DNA的拓扑结构,电子显微镜观察DNA,扫描隧道显微镜观察了DNA的变异结构,以及用透射电镜观察DNA的转录。 关键词:DNA X射线衍射原子力显微镜电子显微镜 1 研究背景 1869 年瑞士化学家米歇尔(Friedrich Miescher)在细胞核中发现了一种含有磷酸的奇特的物质,他把这种物质称为“核质”(nuclein),后来改名为核酸(nucleic acid)。1880年德国生化学家科塞尔(Albrecht Kossel)开始了对核酸的生化分析,到19 世纪末叶已从DNA中分离出4 种碱基,它们是腺嘌呤、鸟嘌呤、胞嘧啶和胸腺嘧啶。1927年李()从DNA中分离出脱氧核糖。到20世纪30年代已经确定了DNA的化学组成,它由4个称为核苷酸的基本单位组成,每种核苷酸又是由3 种基本的亚单位,1个碱基,1个脱氧戊糖和1个磷酸基团组成[1]。 1950 年查伽夫(Erwin Chargaff )发现DNA中嘌呤类两个碱基之比例和嘧啶类两个碱基之比例随生物种类不同而大有不同. 他又发现嘌呤类之总量和嘧啶类之总量相等,其中腺嘌呤之量等于胸腺嘧啶之量,鸟嘌呤之量等于胞嘧啶之量[1]。 1952 年赫尔希(. Hershey )和蔡斯(Martha Chase)利用放射性示踪物质对噬菌体侵染过程中分子事件的确切研究,表明了只有DNA(而没有蛋白质)参与了噬菌体颗粒复制的生化过程,说明DNA是遗传物质[2]。 DNA 分子是由许多核苷酸分子连接而成的长链分子,在DNA 中核苷酸是通过磷酸基团连接起来的(如图1所示)。每一个核苷酸的脱氧核糖与另一个核苷酸的磷酸基连接在一起,形成糖-磷酸基骨架,构成了DNA 的主链,这条主链决定了DNA分子的长度。 虽然糖-磷酸基主链是很有规则的,其结构单元是彼此相同的,但它不是作

实验--基因结构预测分析

学院:______ 班级:_______ 学号:_________ 姓名:__________ 成绩:______ 实验五基因结构预测分析 目的: 1、熟悉并掌握从基因组核酸序列中发现基因的方法。 内容: 1、用NCBI的ORF Finder分析原核生物核酸序列或真核生物的cDNA序列中的开放阅读框; 2、使用GENSCAN在线软件预测真核生物基因; 3、使用POL YAH在线预测转录终止信号; 4、使用PromoterScan在线预测启动子区域。 操作及问题: 随着测序技术的不断发展,越来越多的模式生物启动了全基因组测序计划,完成全基因组测序的物种也越来越多,使得基因结构和功能的预测成为可能。同时,通过基因组文库筛选也可得到目的基因所在克隆。获得克隆序列后,同样也需要对目的基因做结构预测以便指导后续功能研究。本实验介绍几种常用的基因预测分析工具,预测核酸序列的开放阅读框、转录终止信号、启动子、CpG岛等信息。 一、开放阅读框(open reading frame,ORF)的识别 ORF是指从核酸序列上5’端翻译起始密码子到终止密码子的蛋白质编码序列。原核生物与真核生物的基因结构存在很大不同,真核生物的ORF除外显子(平均150bp)外,还含有内含子,因此真核生物基因的预测远比原核生物复杂。 (一)利用NCBI ORF Finder预测原核生物核酸序列或真核生物的cDNA序列中的开放阅读框。https://www.360docs.net/doc/d61625542.html,/gorf/gorf.html 1、在NCBI上查找AC 号为AE008569 的核酸记录。(见实验五中的AE008569.mht) 问题1:这个序列的名称? 问题2:这个序列来源物种所属的生物学大分类?

基因预测和蛋白质结构预测

实习五基因预测和蛋白质结构预测 一、实习目的 掌握对给定核酸/蛋白质序列的基因和结果的预测方法 二、实习内容 1、基因预测 基因预测,一般是指预测DNA 序列中编码蛋白质的部分,即外显子部分。目前基因区域的预测已从单纯外显子预测发展到整个基因结构的预测。这些预测综合各种外显子预测的算法和人们对基因结构信号(如TATA BOX等)的认识,预测出可能的完整基因。 ?GENSCAN GENSCAN是一个使用HMM模型的基因识别程序。GENSCAN有几个明显的特点:它能在基因组DNA序列中找出一个完整的外显子—内含子结构,具有在给定的DNA序列中识别多个基因的能力,还可以同时处理正、反两条链。 https://www.360docs.net/doc/d61625542.html, ?GENEMARK https://www.360docs.net/doc/d61625542.html,/genemark/ GENEMARK是一个免费的基因识别软件,它由多个软件组成,分别适用于细菌和原核生物(GeneMark-P)、真核生物(GeneMark-E)以及病毒和噬菌体(GeneMark-S)等。根据自己的序列所属的物种,选用合适的软件进行分析。 ?其它基因预测相关网站 基因预测专业网站: https://www.360docs.net/doc/d61625542.html,/software.html GRAIL-利用人工神经网络进行预测 https://www.360docs.net/doc/d61625542.html,/grailexp/geneid http://genome.imim.es/software/geneid/GLIMMER 利用HMM模型进行基因识别 https://www.360docs.net/doc/d61625542.html,/software/glimmer/FGENESH https://www.360docs.net/doc/d61625542.html,/berry.phtml?topic=index&group=programs&subgroup=gfind 2、蛋白质结构预测 SWISS-PROT曾是最重要的蛋白质数据库之一,现在它已经与trEMBL合并,组成一个新的蛋白质数据库UniProt。在SWISS-PROT网站上有大量的蛋白质分析工具的链接,https://www.360docs.net/doc/d61625542.html,/tools/,在这个页面上包括Protein identification and characterization,DNA -> Protein,Similarity searches,Pattern and profile searches,secondary structure prediction,Tertiary structure, Sequence alignment等14类蛋白质分析工具。 蛋白质的二级结构预测就是预测蛋白质序列的哪些部位会形成α-helix,哪些形成β-sheets,哪里形成coil或turn。也就是判断序列中的每个氨基酸处于H(α-helix),E(β-sheets),C(coil or turn)三态中的哪一态。 ?GOR:利用GOR方法进行预测 http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_gor4.html ?HNN:利用神经网络进行二级结构预测 http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_nn.html 三、作业:

第五章基因克隆技术

第五章基因克隆技术 基因克隆技术是分子生物学的核心技术,其目的是获得某一基因或DNA片段的大量拷贝,用于深入分析基因的结构与功能,并可达到人为改造细胞以及物种遗传性状的目的。基因克隆的一项关键技术是DNA重组技术,它利用酶学方法将不同来源的DNA分子进行体外特异性切割,重新拼接组装成一个新的杂合DNA分子。在此基础上将杂合DNA分子转入一定宿主细胞中进行扩增,形成大量的子代分子,此过程称基因克隆。有目的地通过基因克隆技术,人为操作改造基因,改变生物遗传性状的系列过程总称为基因工程。 基因克隆的一般程序为: 一、获取目的基因 目的基因就是需要研究的特定基因或DNA片段。获取目的基因的主要方法: 1、用限制性内切酶酶解染色体DNA,构建基因组文库,再从基因组文库中筛选目的基因。该法的优点是获得的目的基因的组织结构与天然基因完全相同,在结构基因中也含有内含子序列,但是也正因为这一点构成了该法最大缺点,即含有内含子的基因在原核细胞中不能表达。原因是原核细胞不能识别并剪切插入顺序(内含子),因而也不能表达出正确的基因产物。 2、分离纯化细胞中的mRNA,以mRNA为模板,在反转录酶作用下生成cDNA第一链,再以cDNA第一链为模板在DNA聚合酶作用下生成双链cDNA,构建cDNA文库,从中筛选所需的目的基因。此法仅用于筛选为蛋白质编码的结构基因。因成熟的mRNA分子中已经切除了内含子序列,具有完整的阅读框架,可在原核细胞中正确表达。 3、人工体外合成基因:由于当前人工体外合成DNA的长度有限,此法仅用于制备小分子生物活性多肽基因和小分子量蛋白基因。在基因较大情况下,常需先合成多个DNA片段,然后拼接成完整的基因,此法还要求目的基因的全部碱基顺序已被阐明。 4、PCR法扩增基因:PCR(聚合酶链式反应)技术的出现和发展,为目的基因的寻找提供了有力技术工具。用PCR法可选择性扩增基因组中所要研究的个别基因或DNA片段,或用反向PCR技术,先将特定mRNA反转录为cDNA第一链,然后再进行扩增。用PCR法筛选基因,需要对目的基因的DNA序列至少有部分了解。 二、选择适当的载体 按上述方法制备的目的基因如果没有合适的载体协助,很难进入受体细胞,即使能进入,往往也不能进行复制和表达,因为这些外源性DNA一般不带有复制调控系统。为了保证目的基因或外源DNA片段能在细胞内克隆,必须将它们与适当的载体连接。理想的载体应该是:(1)分子量较小,能在细胞内自主复制的环状或线状DNA分子;(2)具有特异的限制性酶切位点,便于外源DNA片段的插入,且有明显的遗传筛选标志,如抗药性或插入失活等,以利于阳性克隆的筛选;(4)具有生物安全性。常用的克隆载体可分为三类,即质粒、噬菌体及病毒。由于天然载体用于基因克隆存在许多缺点,现用载体实际上是在天然载体基础上进行改造而成。 1、质粒载体质粒是细菌染色体外小型环状DNA复制子,质粒载体是在天然质粒的基础上人工改造拼接而成。质粒载体具有如下特点:分子相对较小(3~10kb);含松弛型复制子因而在

L_乳酸脱氢酶基因克隆及功能分析

20卷5期2004年9月生 物 工 程 学 报Chinese Jou rnal o f Biotechnology Vol.20 No.5 September 2004 收稿日期:2004_03_08,修回日期:2004_05_31。 *通讯作者。 Tel:86_22_23505967;Fax:86_22_23505967;E_mail:meor@https://www.360docs.net/doc/d61625542.html, L_乳酸脱氢酶基因克隆及功能分析 李 剑 唐 梁凤来 张心平 刘如林 * (南开大学生命科学学院,天津 300071) 摘 要 构建了一株产D,L_乳酸的乳杆菌(Lactobacillus sp.)MD_1的基因文库。利用乳酸脱氢酶和丙酮酸裂解酶缺陷的Escherichia coli FMJ144作为宿主,通过互补筛选分离克隆到乳酸脱氢酶基因(ldh L )。核酸序列分析表明,该基因以ATG 为起始密码子编码316个氨基酸残基组成的蛋白质,预测的分子量为33 84kD;5 端存在典型的启动子结构,3 端的终止子是不依赖于 因子的转录终止子。ldh L 编码的蛋白质有3个保守区域,其中Gly13~Asp50保守区域是NADH 的结合位点,Asp73~Ile100和Asn123~Arg154保守区是酶的活性部位。该ldhL 和其他乳杆菌的ldhL 基因和编码的氨基酸序列相似性较低,核苷酸序列相似性最高仅为64 1%,氨基酸序列相似性最高仅为68 9%,是新的L_乳酸脱氢酶基因。 关键词 乳杆菌(Lactobacillus sp.)MD_1,L_乳酸脱氢酶基因,互补筛选,功能分析中图分类号 Q93 文献标识码 A 文章编号1000 3061(2004)05 0725 05 乳酸在食品、医药、化工、环保等领域有广泛的用途。L_乳酸的生产及其聚合物作为可降解塑料和医用材料的研究日益深入。D_乳酸的聚合物可以用于药物的缓释技术和可降解环保农药的前体物。因此,高光学纯度的D_乳酸或L_乳酸均具有广阔的应用前景[1] 。 乳酸脱氢酶(LDH )是以NAD H 为辅酶,将丙酮酸经过生化反应生成乳酸,因此LDH 是乳酸菌合成乳酸的关键酶。产D,L_乳酸的乳杆菌中存在L 和D 两种依赖NADH 的LDH,分别催化丙酮酸生成L_乳酸和D_乳酸。作者筛选到一株产DL_乳酸的乳杆菌(Lactobacillus sp.)MD_1,能在48 含200g L 葡萄糖的发酵液中快速生长并生产乳酸,72h 产量可达 140g L 以上。如果使乳杆菌的D_乳酸脱氢酶基因(ldhD )缺失,则只生产高光学纯度的L_乳酸(理论上光学纯度可达到100%),同时可以大幅提高L_乳酸产量。反之,如果使L_乳酸脱氢酶基因(ldhL )缺 失,则生产高光学纯度的D_乳酸。 本文报道了Lactobacillus sp.MD_1菌株的ldhL 序列,同时对ldhL 及编码的蛋白质的一级结构进行了初步分析。 1 材料与方法 1 1 菌株与质粒 本文所用的菌株和质粒见表1。质粒pJDC9、菌株E .coli FMJ144由Jean Delcour 教授惠赠。 表1 菌株和质粒 Table 1 Bacterial strains and plasmids used in this study Strain or plas mi d Characteri stic(s) Source or reference Lactobacillus .s p.MD_1 Wild_type s train this study E .coli FMJ144 ldh pfl ::Cam r t rpR his _29(Am )pro _2ary _427deo B arc ts x IN (rrnD _rrnE )lacY 2 TG1suoE hsd 5thi (lac _proAB ) F (traD 36)ProAB +lac I q lacZ M 15 3Plas mid pJDC9Em r ;l dhZ 4 pLZD3083 Em r ;pJ DC9wi th a 3 11Bam H fragment from s train MD_1 this study Em r ,Ap r and Cm r indicate resistance to erythro myci n,ampicillin,and chl oramphenicol,respectivel y

Gene 序列分析

Gene 序列分析 原文https://www.360docs.net/doc/d61625542.html,/vionit/blog/item/98edb0dc706167a2cc116651.html 核酸和蛋白质序列分析 在获得一个基因序列后,需要对其进行生物信息学分析,从中尽量发掘信息,从而指导进一步的实验研究。通过染色体定位分析、内含子/外显子分析、ORF分析、表达谱分析等,能够阐明基因的基本信息。通过启动子预测、CpG岛分析和转录因子分析等,识别调控区的顺式作用元件,可以为基因的调控研究提供基础。通过蛋白质基本性质分析,疏水性分析,跨膜区预测,信号肽预测,亚细胞定位预测,抗原性位点预测,可以对基因编码蛋白的性质作出初步判断和预测。尤其通过疏水性分析和跨膜区预测可以预测基因是否为膜蛋白,这对确定实验研究方向有重要的参考意义。此外,通过相似性搜索、功能位点分析、结构分析、查询基因表达谱聚簇数据库、基因敲除数据库、基因组上下游邻居等,尽量挖掘网络数据库中的信息,可以对基因功能作出推论。上述技术路线可为其它类似分子的生物信息学分析提供借鉴。本路线图及推荐网址已建立超级链接,放在北京大学人类疾病基因研究中心网站(https://www.360docs.net/doc/d61625542.html,/science/bioinfomatics.htm),可以直接点击进入检索网站。 下面介绍其中一些基本分析。值得注意的是,在对序列进行分析时,首先应当明确序列的性质是mRNA序列还是基因组序列?是计算机拼接得到还是经过PCR扩增测序得到?是原核生物还是真核生物?这些决定了分析方法的选择和分析结果的解释。 (一)核酸序列分析 1、双序列比对(pairwise alignment) 双序列比对是指比较两条序列的相似性和寻找相似碱基及氨基酸的对应位置,它是用计算机进行序列分析的强大工具,分为全局比对和局部比对两类,各以Needleman-Wunsch算法和Smith-Waterman算法为代表。由于这些算法都是启发式(heuristic)的算法,因此并没有最优值。根据比对的需要,选用适当的比对工具,在比对时适当调整空格罚分(gap penalty)和空格延伸罚分(gap extension penalty),以获得更优的比对。 除了利用BLAST、FASTA等局部比对工具进行序列对数据库的搜索外我们还推荐使用EMBOSS软件包中的Needle软件(http://bioinfo.pbi.nrc.ca:8090/EMBOSS/),和Pairwise BLAST (https://www.360docs.net/doc/d61625542.html,/BLAST/)。以上介绍的这些双序列比对工具的使用都比较简单,一般输入所比较的序列即可。 (1)BLAST和FASTA FASTA(https://www.360docs.net/doc/d61625542.html,/fasta33/)和BLAST(https://www.360docs.net/doc/d61625542.html,/BLAST/)是目前运用较为广泛的相似性搜索工具。这两个工具都采用局部比对的方法,选择计分矩阵对序列计分,通过分值的大小和统计学显著性分析确定有意义的局部比对。使用FASTA和BLAST,进行数据库搜索,找到与查询序列有一定相似性的序列。一般认为,如果蛋白的序列一致性为25-30%,则可认为序列同源。 BLAST根据搜索序列和数据库的不同类型分为5种(表2),另外PSI-BLAST通过迭代搜索,可以搜索到与查询序列相似性较低的序列。其中BLASTN、BLASTP在实践中最为常用,TBLASTN 在搜索相似序列进行新基因预测时特别有用。 使用BLAST时,先选择需要使用的BLAST程序,然后提供相应的查询序列,选择所比对的数据库即可。 (2)Needle和Pairwise BLAST:其中Needle适用于蛋白质和DNA序列,而Pairwise BLAST仅适用于DNA序列(3)相似性和同源性:必须指出,相似性(similarity)和同源性( homology)是两个完全不同的概念。同源序列是指从某一共同祖先经过趋异进化而形成的不同序列。相似性是指序列比对过程中检测序列和目标序列之间相同碱基或氨基酸残基序列所占比例的

基因表达及分析技术

基因表达及其分析技术 生命现象的奥秘隐藏在基因组中,对基因组的解码一直是现代生命科学的主流。基因组学研究可以说是当今生命科学领域炙手可热的方向。从DNA 测序到SNP、拷贝数变异(copy number variation , CNV)等DNA多态性分析,到DNA 甲基化修饰等表观遗传学研究,生命过程的遗传基础不断被解读。 基因组研究的重要性自然不言而喻。应该说,DNA 测序技术在基因组研究 中功不可没,从San ger测序技术到目前盛行的新一代测序技术(Next Gen eration Seque ncing NGS)到即将走到前台的单分子测序技术,测序技术是基因组解读最重要的主流技术。而基因组测序、基因组多态性分析、DNA 甲基化修饰等表观遗传分析等在基因组研究中是最前沿的课题。但是基因组研究终究类似“基因算命”,再清晰的序列信息也无法真正说明一个基因的功能,基因功能的最后鉴定还得依赖转录组学和蛋白组学,而转录作为基因发挥功能的第一步,对基因功能解读就变得至关重要。声称特定基因、特定SNP、特定CNV、特定DNA修饰等与某种表型有关,最终需要转基因、基因敲除、突变、 RNAi 、中和抗体等技术验证,并必不可少要结合基因转录、翻译和蛋白修饰等数据。 基因实现功能的第一步就是转录为mRNA或非编码RNA,转录组学主要研究基因转录为RNA 的过程。在转录研究中,下面几点是必须考虑的: 1,基因是否转录(基因是否表达)及基因表达水平高低(基因是低丰度表达还是中、高丰度表达)。特定基因有时候在一个细胞中只有一个拷贝的表达,而表达量会随细胞类型不同或发育、生长阶段不同或生理、病理状态不同而改变。因此任何基

基因芯片数据功能分析

生物信息学在基因芯片数据功能分析中的应用2009-4-29 随着人类基因组计划(Human Genome Project)即全部核苷酸测序的即将完成,人类基因组研究的重心逐渐进入后基因组时代(PostgenomeEra),向基因的功能及基因的多样性倾斜。 通过对个体在不同生长发育阶段或不同生理状态下大量基因表达的平行分析,研究相应基因在生物体内的功能,阐明不同层次多基因协同作用的机理,进而在人类重大疾病如癌症、心血管疾病的发病机理、诊断治疗、药物开发等方面的研究发挥巨大的作用。它将大大推动人类结构基因组及功能基因组的各项基因组研究计划。生物信息学在基因组学中发挥着重大的作用,而另一项崭新的技术——基因芯片已经成为大规模探索和提取生物分子信息的强有力手段,将在后基因组研究中发挥突出的作用。基因芯片与生物信息学是相辅相成的,基因芯片技术本身是为了解决如何快速获得庞大遗传信息而发展起来的,可以为生物信息学研究提供必需的数据库,同时基因芯片的数据分析也极大地依赖于生物信息学,因此两者的结合给分子生物学研究提供了一条快捷通道。 本文介绍了几种常用的基因功能分析方法和工具: 一、GO基因本体论分类法 最先出现的芯片数据基因功能分析法是GO分类法。Gene Ontology(GO,即基因本体论)数据库是一个较大的公开的生物分类学网络资源的一部分,它包含38675个Entrez Gene注释基因中的17348个,并把它们的功能分为三类: 分子功能,生物学过程和细胞组分。在每一个分类中,都提供一个描述功能信息的分级结构。这样,GO中每一个分类术语都以一种被称为定向非循环图表(DAGs)的结构组织起来。研究者可以通过GO分类号和各种GO数据库相关分析工具将分类与具体基因联系起来,从而对这个基因的功能进行描述。在芯片的数据分析中,研究者可以找出哪些变化基因属于一个共同的GO功能分支,并用统计学方法检定结果是否具有统计学意义,从而得出变化基因主要参与了哪些生物功能。

第四章-基因的结构和功能

第四章基因的结构和功能 一、教学目的和要求: 1掌握基因概念及其发展; 2 掌握基因的重组测验 3 理解利用顺反试验、互补试验鉴定两个突变型是否属于同一基因的原理; 4 了解缺失作图的原理 二、教学重点: 1基因概念及其发展; 2 基因的重组测验 三、教学难点: 缺失作图的原理 四、教学方法: 面授并辅以多媒体教学 五、教学内容 基因是一个特定的DNA或RNA片段,但并非一段DNA或RNA都是基因。 第一节基因的概念一、基因概念的发展 (一)遗传“因子”:孟德尔认为,生物性状的遗传由遗传因子所控制,性状本身不遗传。(二)染色体是基因的载体:摩尔根实验证明基因位于染色体上,并呈直线排列,提出了遗传学是连锁交换规律,建立了遗传的染色体学说,为细胞遗传学奠定了重要基础。并由此提出基因既是一个功能单位,是一个突变单位,也是一个交换单位的“三位一体”概念。∴经典遗传学认为:基因是一个最小的单位,不能分割;既是结构单位,又是功能单位。(三)DNA是遗传物质:1928年Griffith首先发现了肺炎球菌的转化,证实DNA是遗传物质而非蛋白质;Avery用生物化学的方法证明转化因子是DNA而不是其他物质。 (四)基因是有功能的DNA片段 20世纪40年代Beadle和Tatum提出一个基因一个酶的假说,沟通了蛋白质合成与基因功能的研究 1953年Watson和Crick提出DNA双螺旋结构模型,明确了DNA的复制方式。 1957年Crick 提出中心法则,61年提出三联体遗传密码,从而将DNA分子结构与生物体结合起来 1957年Benzer用大肠杆菌T4噬菌体为材料,分析了基因内部的精细结构,提出了顺反子(cistor)的概念,证明基因是DNA分之上一个特定的区段,是一个功能单位,包括许多突变位点(突变子),突变位点之间可以发生重组(重组子) 理论上,一个基因有多少对核苷酸对就有多少突变子和的重组子,实际上,突变子数少于核苷酸对数,重组子数小于突变子数。 总之:顺反子学说打破了“三位一体”的基因概念,把基因具体化为DNA分子上特定的一段顺序--- 顺反子,其内部又是可分的,包含多个突变子和重组子。 近代基因的概念:基因是一段有功能的DNA序列,是一个遗传功能单位,其内部存在有许多的重组子和突变子。 突变子:指改变后可以产生突变型表型的最小单位。 重组子:不能由重组分开的基本单位。(五)操纵子模型 1961年法国分子生物学家Jacob和Monod通过对大肠杆菌乳糖突变体研究,提出了操纵子学说(operon theory)。阐明了基因在乳糖利用中的作用。

几种常用的基因功能分析方法和工具

几种常用的基因功能分析方法和工具(转自新浪博客) 一、GO分类法 最先出现的芯片数据基因功能分析法是GO分类法。Gene Ontology(GO,即基因本体论)数据库是一个较大的公开的生物分类学网络资源的一部分,它包含38675 个Entrez Gene 注释基因中的17348个,并把它们的功能分为三类:分子功能,生物学过程和细胞组分。在每一个分类中,都提供一个描述功能信息的分级结构。这样,GO中每一个分类术语都以一种被称为定向非循环图表(DAGs)的结构组织起来。研究者可以通过GO分类号和各种GO 数据库相关分析工具将分类与具体基因联系起来,从而对这个基因的功能进行描述。在芯片的数据分析中,研究者可以找出哪些变化基因属于一个共同的GO功能分支,并用统计学方法检定结果是否具有统计学意义,从而得出变化基因主要参与了哪些生物功能。 EASE(Expressing Analysis Systematic Explorer)是比较早的用于芯片功能分析的网络平台。由美国国立卫生研究院(NIH)的研究人员开发。研究者可以用多种不同的格式将芯片中得到的基因导入EASE 进行分析,EASE会找出这一系列的基因都存在于哪些GO分类中。其最主要特点是提供了一些统计学选项以判断得到的GO分类是否符合统计学标准。EASE能进行的统计学检验主要包括Fisher 精确概率检验,或是对Fisher精确概率检验进行了修饰的EASE 得分(EASE score)。 由于进行统计学检验的GO分类的数量很多,所以EASE采取了一系列方法对“多重检验”的结果进行校正。这些方法包括弗朗尼校正法(Bonferroni),本杰明假阳性率法(Benjamini falsediscovery rate)和靴带法(bootstraping)。同年出现的基于GO分类的芯片基因功能分析平台还有底特律韦恩大学开发的Onto-Express。2002年,挪威大学和乌普萨拉大学联合推出的Rosetta 系统将GO分类与基因表达数据相联系,引入了“最小决定法则”(minimal decision rules)的概念。它的基本思想是在对多张芯片结果进行聚类分析之后,与表达模式不相近的基因相比,相近的基因更有可能参与相同的生物学功能的实现。比较著名的基于GO分类法的芯片数据分析网络平台还有七十多个,表1列举了其中的一部分。 二、通路分析法 通路分析是现在经常被使用的芯片数据基因功能分析法。与GO分类法(应用单个基因的GO分类信息)不同,通路分析法利用的资源是许多已经研究清楚的基因之间的相互作用,即生物学通路。研究者可以把表达发生变化的基因列表导入通路分析软件中,进而得到变化的基因都存在于哪些已知通路中,并通过统计学方法计算哪些通路与基因表达的变化最为相关。现在已经有丰富的数据库资源帮助研究人员了解及检索生物学通路,对芯片的结果进行分析。主要的生物学通路数据库有以下两个:①KEGG 数据库:迄今为止,KEGG数据库(Kyoto encyclopedia of genes and genomes)是向公众开放的最为著名的生物学通路方面的资源网站。在这个网站中,每一种生物学通路都有专门的图示说明。②BioCarta 数据库:BioCarta 是一家生物技术公司,它在其公共网站上提供了用于绘制生物学通路的模板。研究者可以把符合标准的生物学通路提供给BioCarta数据库。BioCarta数据库不会检验这些生物学通路的质量,因此其中的资源质量参差不齐,并且有许多相互重复。然而BioCarta数据库数据量巨大,且不同于KEGG数据库,包含了大量代谢通路之外的生物学通路,所以也得到广泛的应用。 最先出现的通路分析软件之一是GenMAPP(gene microarray pathway profiler)。它可以免费使用,其最新版本为Gen-MAPP2。在这个软件中,使用者可以用几种灵活的文件格式输入自己的表达谱数据,GenMAPP的基因数据库包含许多从常用的资源中得到的物种特异性的基因注释和识别符(ID)。这些ID可以将使用者输入的基因与不同的生物学通路的基

02 生物化学习题与解析--核酸的结构与功能

核酸的结构与功能. 一、选择题 (一) A 型题 1 .核酸的基本组成单位是 A .磷酸和核糖 B .核苷和碱基 C .单核苷酸 D .含氮碱基 E .脱氧核苷和碱基 2 . DNA 的一级结构是 A .各核苷酸中核苷与磷酸的连接键性质 B .多核苷酸中脱氧核苷酸的排列顺序 C . DNA 的双螺旋结构 D .核糖与含氮碱基的连接键性质 E . C 、 A 、 U 、 G 4 种核苷酸通过3′ , 5′- 磷酸二酯键连接而成 3 .在核酸中,核苷酸之间的连接键是 A .糖苷键 B .氢键 C .3′ ,5′- 磷酸二酯键 D .1′ , 3′- 磷酸二酯键 E .2′ ,5′- 磷酸二酯键 4 .核酸中稀有碱基含量最多的是 A . rRNA B . mRNA C . tRNA D . hnRNA E . snmRNA 5 .核酸的最大紫外光吸收值一般在 A . 280nm B . 260nm C . 240nm D . 200nm E . 220nm 6 .有关核酸酶的叙述正确的是 A .由蛋白质和 RNA 构成 B .具有酶活性的核酸分子 C .由蛋白质和 DNA 构成的 D .专门水解核酸的核酸 E .专门水解核酸的酶 7 . DNA 与 RNA 彻底水解后的产物是 A .戊糖不同,碱基不同 B .戊糖相同,碱基不同 C .戊糖不同,碱基相同 D .戊糖不同,部分碱基不同 E .戊糖相同,碱基相同 8 .关于 DNA 的二级结构,叙述错误的是 A . A 和 T 之间形成三个氢键, G 和 C 之间形成两个氢键 B .碱基位于双螺旋结构内侧 C .碱基对之间存在堆积力 D .两条链的走向相反 E .双螺旋结构表面有大沟和小沟 9 .关于 mRNA 叙述正确的是 A .大多数真核生物的 mRNA 在5′ 末端是多聚腺苷酸结构 B .大多数真核生物的 mRNA 在5′ 末端是 m 7 GpppN- C .只有原核生物的 mRNA 在3′ 末端有多聚腺苷酸结构 D .原核生物的 mRNA 在5′ 末端是 m 7 GpppN- E .所有生物的 mRNA 分子中都含有稀有碱基 10 .关于 DNA 热变性的描述正确的是 A . A 260 下降 B .碱基对可形成共价键连接

基因家族生信分析

基因家族生信分析 一、什么是基因家族 概念:是来源于同一个祖先,有一个基因通过基因重复而产生两个或更多的拷 贝而构成的一组基因,他们在结构和功能上具有明显的相似性,编码相似的蛋白质产物。 划分: 按功能划分:把一些功能类似的基因聚类,形成一个家族。 按照序列相似程度划分:一般将同源的基因放在一起认为是一个家族。 1.常见基因家族: WRKY基因家族:是植物前十大蛋白质基因家族之一,大量研究表明,WRKY 基因家族的许多成员参与调控植物的生长发育,形态建成与抗病虫。 NBS-LRR抗病基因家族:是植物中最大类抗病基因家族之一。 MADS-BOX基因家族:是植物体内的重要转录因子,它们广泛地调控着植物的生长、发育和生殖等过程。在植物中参与花器官的发育,开花时间的调节,在果实,根,茎,叶的发育中都起着重要的作用。 热激蛋白70家族(HSP70)是一类在植物中高度保守的分子伴侣蛋白,在细胞中协助蛋白质正确折叠。 二、基因家族分析流程: ●利用蛋白保守域结构提取号在Pfam数据库提取其隐马尔科夫模型矩 阵文件(*.hmm) ●在数据库(Ensemble 、JGI、NVBI)下载你所需要的物种的基因组数 据(*.fa,*.gff) ●在虚拟机中Bio-Linux中的hummsearch程序,用隐马尔科夫模型矩 阵文件在蛋白序列文件中搜索含有该保守结构域的蛋白 ●将蛋白序列导入MEGA软件构建进化树(可以阐明成员之间系统进化 关系,从进化关系上揭示其多样性) ●利用MEME搜索蛋白质的保守结构域 利用MEME搜索基因家族成员的motif可以揭示基因家族在物种内的多样化及其功能,如果他们都含有相同的motif表明其功能具有 相似性,如果部分家族成员含有其他不同的motif,很可能这些成员有 其他特异功能,或者可以归分为一个亚族 ●绘制基因染色体位置图 从*.gff文件中抽取我们搜索到的基因位置信息,_v2.0/在线绘 制基因染色体位置图 通过染色体位置分布,可以了解基因主要分布字哪条染色体上,及是

第六章 基因预测和基因结构分析

第六章基因预测和基因结构分析 人们获得各种核酸和蛋白质序列的目的是了解这个序列在生物体中充当了怎样的角色。例如,DNA序列中重复片段、编码区、启动子、内含子/外显子、转录调控因子结合位点等信息;蛋白质的分子量、等电点、二级结构、三级结构、四级结构、膜蛋白的跨膜区段、酶的活性位点、以及蛋白质之间相互作用等结构和功能信息。虽然用实验的方法是多年以来解决这类问题的主要途径,但新的思路是利用已有的对生物大分子结构和功能特性的认识,用生物信息学的方法通过计算机模拟和计算来“预测”出这些信息或提供与之相关的辅助信息。由于生物信息学的特点,可以用较低的成本和较快的时间就能获得可靠的结果。近10年来生物学序列信息的爆炸性增长大大促进了各种序列分析和预测技术的发展,目前已经可以用理论预测的方法获得大量的结构和功能信息。要注意的是,尽管各种预测方法都基于现有的生物学数据和已有的生物学知识,但在不同模型或算法基础上建立的不同分析程序有其一定的适用范围和相应的限制条件,因此最好对同一个生物学问题尽量多用几种分析程序,综合分析各种方法得到的结果和结果的可靠性。此外,生物信息学的分析只是为生物学研究提供参考,这些信息能提高研究的效率或提供研究的思路,但很多问题还需要通过实验的方法得到验证。在构建一个基因结构预测模型时,一些主要问题是值得注意的:(1)对真核生物序列,遮蔽重复序列应先于其它分析过程;(2)大多程序都有特定生物物种适用性;(3)许多程序只能特定适用于基因组DNA数据或者只适用于cDNA的数据;(4)序列的长度也是一个重要因素。 6.1针对核酸序列的预测方法 针对核酸序列的预测就是在核酸序列中寻找基因,找出基因的位置和功能位点的位置,以及标记已知的序列模式等过程。在此过程中,确认一段DNA序列是一个基因需要有多个证据的支持。一般而言,在重复片段频繁出现的区域里,基因编码区和调控区不太可能出现;如果某段DNA片段的假想产物与某个已知的蛋白质或其它基因的产物具有较高序列相似性的话,那么这个DNA片段就非常可能属于外显子片段;在一段DNA序列上出现统计上的规律性,即所谓的“密码子偏好性”,也是说明这段DNA是蛋白质编码区的有力证据;其它的证据包括与“模板”序列的模式相匹配、简单序列模式如TATA Box等相匹配等。一般而言,确定基因的位置和结构需要多个方法综合运用,而且需要遵循一定的规则:对于真核生物序列,在进行预测之前先要进行重复序列分析,把重复序列标记出来并除去;选用预测程序时要注意程序的物种特异性;要弄清程序适用的是基因组序列还是cDNA序列;很多程序对序列长度也有要求,有的程序只适用于长序列,而对EST这类残缺的序列则不适用。 6.1.1 重复序列分析 对于真核生物的核酸序列而言,在进行基因辨识之前都应该把简单的大量的重复序列标记出来并除去,因为很多情况下重复序列会对预测程序产生很大的扰乱,尤其是涉及数据库搜索的程序。常见的重复序列分析程序有GrailEXP等,可以在Web界面上使用这些程序,或者用Email来进行。 6.1.2 数据库搜索 把未知核酸序列作为查询序列,在数据库里搜索与之相似的已有序列是序列分析

基因预测原理介绍

基因预测原理介绍 图一、真核生物基因结构 基础概念: 随机过程:一族无穷多个、相互有关联的随机变量。记为: 由于参数 t 经常代表时间,故称为随机过程。T 常为自然数,整数或区间。当参数取值为整数时,也称为随机序列。 马尔可夫过程:取值为整数的随机过程,若 t = i 时刻的取值只与时刻 i-1 取值有关,则称为马尔可夫过程,亦称为一阶马尔可夫链。 隐马尔可夫模型:存在一个隐序列H ,它是不可观测的,且由以下参数生成: 其中πα为初始状态出现概率;T αβ为转移概率,即t αβ = P(h i = β | h i-1= α); α, β属于{σ}; {σ}为字符集,即隐序列由哪些字符组成。观测的结果称为明序列O ,它由隐序列按照生成概率e αa 生成。其中e αa = P(a | α);{a}为明序列字符集。 隐马氏模型的三种典型问题: 可能性问题:给定模型参数,当观察到一个明序列时,这一明序列确实由给定模型生成的概率有多大? 解码问题:给定模型参数,当观察到一个明序列时,这一明序列所对应的最可能的隐序列是什么? 学习问题:观察到足够多明序列时,如何估计转移概率和生成概率(有的地方叫发射概率)? 基因组编码区的隐马模型:属于解码问题。假设基因组由两种功能区域组成,即编码区和非编码区。分别由字母c ,n 代表。转移矩阵为同种字母延伸或变为另一种字母的概率。初始状态概率为第一个字母出现c 或n 的概率。明序列由A ,C ,G ,T 四个字母组成,生成概率分别为编码区和非编码区四个字母出现的概率。 半隐马模型:隐序列的每一个状态持续时间(持续长度)是一个取值为正整数的随机变}}{,,{σπαβαT {} T t t X ∈),({} T t t X ∈),(

相关文档
最新文档