第一章原子结构与性质知识点归纳

第一章原子结构与性质知识点归纳
第一章原子结构与性质知识点归纳

第一章 原子结构与性质知识点归纳

山东临沂市莒南三中(276600) 张琛 山东省烟台市蓬莱四中(265602) 马彩红

2.位、构、性关系的图解、表解与例析

(1)元素在周期表中的位置、元素的性质、元素原子结构之间存在如下关系:

(2)元素及化合物性质递变规律表解

同位素(两个特性)

3.元素的结构和性质的递变规律

4.核外随着原子序数递增 ① 原子结构呈周期性变化

② 原子半径呈周期性变化 ③ 元素主要化合价呈周期性变化 ④ 元素的金属性与非金属形呈周期性变化

元素周期律

排列原则

① 按原子序数递增的顺序从左到右排列

② 将电子层数相同的元素排成一个横行

把最外层电子数相同的元素(个别除外),排成一个周期(7个横行)

① 短周期(第一、二、三周期) ② 长周期(第四、五、六周期)

性质递变

原子半径 主要化合价

强弱判断

族(18

个纵行)

① 主族(第ⅠA 族—第ⅦA 族共七个)

② 副族(第ⅠB 族—第ⅦB 族共七个)

③ 结 构

电子构成原理

(1)核外电子是分能层排布的,每个能层又分为不同的能级。

(2)核外电子排布遵循的三个原理:

a.能量最低原理 b.泡利原理 c.洪特规则及洪特规则特例

(3)原子核外电子排布表示式:a.原子结构简图 b.电子排布式 c.轨道表示式5.原子核外电子运动状态的描述:电子云

6.确定元素性质的方法

1.先推断元素在周期表中的位置。

2.一般说,族序数—2=本族非金属元素的种数(1 A族除外)。

3.若主族元素族序数为m,周期数为n,则:

(1)m/n<1时为金属,m/n值越小,金属性越强:

(2)m/n>1时是非金属,m/n越大,非金属性越强;(3)m/n=1时是两性元素。

(完整版)第一章原子结构与性质知识点归纳

第一章 原子结构与性质知识点归纳 山东临沂市莒南三中(276600) 张琛 山东省烟台市蓬莱四中(265602) 马彩红 2.位、构、性关系的图解、表解与例析 (1)元素在周期表中的位置、元素的性质、元素原子结构之间存在如下关系: 同位素(两个特性)

3.元素的结构和性质的递变规律 4.核外电子构成原理 (1)核外电子是分能层排布的,每个能层又分为不同的能级。 随着原子序数递增 ① 原子结构呈周期性变化 ② 原子半径呈周期性变化 ③ 元素主要化合价呈周期性变化 ④ 元素的金属性与非金属形呈周期性变化 ⑤ 元素原子的第一电离能呈周期性变化 ⑥ 元素的电负性呈周期性变化 元素周期律 排列原则 ① 按原子序数递增的顺序从左到右排列 ② 将电子层数相同的元素排成一个横行 ③ 把最外层电子数相同的元素(个别除外),排成一个 纵行 周期(7个横行) ① 短周期(第一、二、三周期) ② 长周期(第四、五、六周期) ③ 不完全周期(第七周期) 性质递变 原子半径 主要化合价 元 素 周 期 表 族(18 个纵行) ① 主族(第ⅠA 族—第ⅦA 族共七个) ② 副族(第ⅠB 族—第ⅦB 族共七个) ③ 第Ⅷ族(第8—10纵行) ④ 结 构

(2)核外电子排布遵循的三个原理: a.能量最低原理b.泡利原理c.洪特规则及洪特规则特例 (3)原子核外电子排布表示式:a.原子结构简图b.电子排布式c.轨道表示式5.原子核外电子运动状态的描述:电子云 6.确定元素性质的方法 1.先推断元素在周期表中的位置。 2.一般说,族序数—2=本族非金属元素的种数(1 A族除外)。 3.若主族元素族序数为m,周期数为n,则: (1)m/n<1时为金属,m/n值越小,金属性越强: (2)m/n>1时是非金属,m/n越大,非金属性越强;(3)m/n=1时是两性元素。

物理选修3---5第十八章:原子结构知识点汇总

物理选修3---5第十八章:原子结构知识点汇总 (训练版) 知识点一、电子的发现和汤姆生的原子模型: 1、电子的发现: 1897年英国物理学家汤姆生,对阴极射线进行了一系列的研究,从而 发现了电子。电子的发现表明:原子存在精细结构,从而打破了原子不可再分的观念。 2、汤姆生的原子模型: 1903年汤姆生设想原子是一个带电小球,它的正电荷均匀分布在整个球体内,而带负电的电子镶嵌在正电荷中。这就是汤姆生的枣糕式原子模型。 知识点二、α粒子散射实验和原子核结构模型 1、α粒子散射实验:1909年,卢瑟福及助手盖革手吗斯顿完成 ①实验装置的组成:放射源、金箔、荧光屏 1

②实验现象: a. 绝大多数α粒子穿过金箔后,仍沿原来方向运动, 不发生偏转。 b. 有少数α粒子发生较大角度的偏转 c. 有极少数α粒子的偏转角超过了90度,有的几乎达到180度,即被反向弹回。 2、原子的核式结构模型: 由于α粒子的质量是电子质量的七千多倍,所以电子不会使α粒子运动方向发生明显的改变,只有原子中的正电荷才有可能对α粒子的运动产生明显的影响。如果正电荷在原子中的分布,像汤姆生模型那模均匀分布,穿过金箔的α粒了所受正电荷的作用力在各方向平衡,α粒了运动将不发生明显改变。散射实验现象证明,原子中正电荷不是均匀分布在原子中的。 1911年,卢瑟福通过对α粒子散射实验的分析计算提出原子核式结构模型:在原子中心存在一个很小的核,称为原子核,原子核集中了原子所有正电荷和几乎全部的质 量,带负电荷的电子在核外空间绕核旋转。原子核半径小于1014-m,原子轨道半径约1010-m。 3、卢瑟福对实验结果的解释 电子对α粒子的作用忽略不计。 因为原子核很小,大部分α粒子穿过原子时离原子核很远,受到较小的库仑斥力,运动几乎不改变方向。 极少数α粒子穿过原子时离原子核很近,因此受到很强的库仑斥力,发生大角度散射。

(完整版)原子结构与性质知识点总结与练习

第一章原子结构与性质 一.原子结构 1.能级与能层 2.原子轨道 3.原子核外电子排布规律 ⑴构造原理:随着核电荷数递增,大多数元素的电中性基态原子的电子按右图顺序填入核外电子运动轨道(能级),叫做构造原理。 能级交错:由构造原理可知,电子先进入4s轨道,后进入3d轨道,这种现象叫能级交错。 说明:构造原理并不是说4s能级比3d能级能量低(实际上4s能级比3d能级能量高),而是指这样顺序填充电子可以使整个原子的能量最低。也就是说,整个原子的能量不能机械地看做是各电子所处轨道的能量之和。 (2)能量最低原理 现代物质结构理论证实,原子的电子排布遵循构造原理能使整个原子的能量处于最低状态,简称能量最低原理。 构造原理和能量最低原理是从整体角度考虑原子的能量高低,而不局限于某个能级。 (3)泡利(不相容)原理:基态多电子原子中,不可能同时存在4个量子数完全相同的电子。换言之,

一个轨道里最多只能容纳两个电子,且电旋方向相反(用“↑↓”表示),这个原理称为泡利(Pauli )原理。 (4)洪特规则:当电子排布在同一能级的不同轨道(能量相同)时,总是优先单独占据一个轨道,而且自旋方向相同,这个规则叫洪特(Hund )规则。比如,p3 的轨道式为或,而不是。 洪特规则特例:当p 、d 、f 轨道填充的电子数为全空、半充满或全充满时,原子处于较稳定的状态。即p0、d0、f0、p3、d5、f7、p6、d10、f14时,是较稳定状态。 前36号元素中,全空状态的有4Be 2s22p0、12Mg 3s23p0、20Ca 4s23d0;半充满状态的有:7N 2s22p3、15P 3s23p3、24Cr 3d54s1、25Mn 3d54s2、33As 4s24p3;全充满状态的有10Ne 2s22p6、18Ar 3s23p6、29Cu 3d104s1、30Zn 3d104s2、36Kr 4s24p6。 4. 基态原子核外电子排布的表示方法 (1)电子排布式 ①用数字在能级符号的右上角表明该能级上排布的电子数,这就是电子排布式,例如K :1s22s22p63s23p64s1。 ②为了避免电子排布式书写过于繁琐,把内层电子达到稀有气体元素原子结构的部分以相应稀有气体的元素符号外加方括号表示,例如K :[Ar]4s1。 (2)电子排布图(轨道表示式) 每个方框或圆圈代表一个原子轨道,每个箭头代表一个电子。 如基态硫原子的轨道表示式为 二.原子结构与元素周期表 1.原子的电子构型与周期的关系 (1)每周期第一种元素的最外层电子的排布式为ns1。每周期结尾元素的最外层电子排布式除He 为1s2外,其余为ns2np6。He 核外只有2个电子,只有1个s 轨道,还未出现p 轨道,所以第一周期结尾元素的电子排布跟其他周期不同。 (2)一个能级组最多所容纳的电子数等于一个周期所包含的元素种类。但一个能级组不一定全部是能量相同的能级,而是能量相近的能级。 2.元素周期表的分区 (1)根据核外电子排布 ①分区 ②各区元素化学性质及原子最外层电子排布特点 ↑↓ ↑ ↓ ↓ ↓ ↑ ↑ ↑

高二化学选修三《原子结构》知识点总结归纳 典例导析

原子结构 【学习目标】 1、根据构造原理写出1~36号元素原子的电子排布式; 2、了解核外电子的运动状态; 3、掌握泡利原理、洪特规则。 【要点梳理】 要点一、原子的诞生 我们所在的宇宙诞生于一次大爆炸。大爆炸后约2小时,诞生了大量的氢、少量的氦及极少量的锂。其后,经过或长或短的发展过程,氢、氦等发生原子核的融合反应,分期分批地合成了其他元素。(如图所示) 要点二、能层与能级 1.能层 (1)含义:在含有多个电子的原子里,由于电子的能量各不相同,因此,它们运动的区域也不同。通常能量最低的电子在离核最近的区域运动,而能量高的电子在离核较远的区域运动。根据多电子原子核外电子的能量差异可将核外电子分成不同的能层(即电子层)。如钠原子核外有11个电子,第一能层有2个电子,第二能层有8个电子,第三能层有1个电子。 要点诠释:电子层、次外层、最外层、最内层、内层 在推断题中经常出现与层数有关的概念,理解这些概念是正确推断的关键。为了研究方便,人们形象地把原子核外电子运动看成分层运动,在原子结构示意图中,按能量高低将核外电子分为不同的能层,并用符号K、L、M、N、O、P、Q……表示相应的层,统称为电子层。一个原子在基态时,电子所占据的电子层数等于该元素在周期表中所处的周期数。倒数第一层,称为最外层;从外向内,倒数第二层称为次外层;最内层就是第一层(K 层);内层是除最外层外剩下电子层的统称。以基态铁原子结构示意图为例:铁原子共有4个电子层,最外层(N层)只有2个电子,次外层(M层)共有14个电子,最内层(K层)有2个电子,内层共有24个电子。 2.能级 (1)含义:在多电子原子中,同一能层的电子,能量也可能不同,这样同一能层就可分成不同的能级(也可称为电子亚层)。能层与能级类似于楼层与阶梯之间的关系。在每一个能层中,能级符号的顺序是ns、np、nd、nf……(n代表能层)

原子结构与性质知识点归纳

第一章原子结构与性质知识点归纳 山东临沂市莒南三中(276600) 张琛 山东省烟台市蓬莱四中(265602) 马彩红 1原子结构 电子的吸引 外) 电负性逐渐减小 电负性增大 主要化合价 正价+1到+7 负价-4到 最高正价等于族序数(F 、O 除 元素性质 金属性逐渐减弱,非金属性逐 金属性逐渐增强,非金属性逐 渐增强 渐减弱,第一电离能逐渐减小, 原 2?位、构、性 质子 核电荷 决定元素种 系的图解、表解与例析_?近似相对原子 (1原元素持中中子置、元素的性质子种素原子位原子不特下关系: 子决定主族元素的化学 原子的电子式 子结构最高正价=8- F 原子纟逐渐增多 电子层数递增,最外层电子数 相同 原子核对外 逐渐增强 逐渐减弱 -1 电离能增大, 层 :电子排 同主族:从上到下 同主族:从上 位置 电子层结构 电子层数主族序数最= 递增 外 电 T *子 及化左 核电荷数 」到下一同周期::从左至负价

核外电 1族(18〈 个) 非金属性 ②副族(第I B 族一第% B 族共七 子是分能层排 3.元素的结构和性质的递变规律 随着原子序数递增 ①原子结构呈周期性变化序数递增的顺序从左到右排列 排②原则子半径呈周期性变化层数相同的元素排成一个横行 个横行)②长周期(第四、五、六周期) 厂金属性强 元素性质 Y 主要化主族(第I A 族—第% A 族共七验标志 元素周 、-③元素主要化合价 周期,7①外层变化第同的元三周别别)除外) 性质递变^原子半径 弱判断实

电子排布表示式:a .原子结构简图 b ?电子排布式c ?轨道表示式 5.原子核外电子运动状态的描述:电子云 6 .确定元素性质的方法 1 .先推断元素在周期表中的位置。 2 .一般说,族序数一2二本族非金属元素的种数(1 A 族 除外) 3 .若主族元素族序数为 m 周期数为n 贝y : (1)m/n<1 时为金属,m/n 值越小,金属性越强: ⑵m/n>1 时是非金属,m/n 越大,非金属性越强; ⑶m/n=1时是两性元素 ⑵核外电子 排布遵循的三 个原理: a .能量最低 原 理 b .泡 利 原 理 c .洪特规则及 洪特规则特例 (3)原子核外 布的,每个能层又分为不同的能级

高三复习原子结构与性质

原子结构与元素周期律 考点1 原子结构 1、原子的构成 中子N (核素) 原子核 近似相对原子质量 质子Z → 元素符号 原子结构 决定原子呈电中性 电子数(Z 个) 体积小,运动速率高(近光速),无固定轨道 核外电子 运动特征 电子云(比喻) 小黑点的意义、小黑点密度的意义。 排布规律 → 电子层数 周期序数及原子半径 表示方法 → 原子(离子)的电子式、原子结构示意图 2、三个基本关系 (1)数量关系:质子数 = 核电荷数 = 核外电子数(原子中) (2)电性关系: ①原子中:质子数=核电荷数=核外电子数 ②阳离子中:质子数>核外电子数 或 质子数=核外电子数+电荷数 ③阴离子中:质子数<核外电子数 或 质子数=核外电子数-电荷数 (3)质量关系:质量数 = 质子数 + 中子数 [例1](2008·茂名一模)一定量的锎(98252Cf )是有用的中子源,1mg (98252Cf )每秒约放出2. 34xl99个中子,在医学上常用作治疗恶性肿瘤的中子源。下列有关锎的说法错误的是 A.98252Cf 原子中,中子数为154 B.98252Cf 原子中,质子数为98 C.98252Cf 原子中,电子数为 98 D.锎元素的相对原子质量为252 考点2 原子核外电子排布规律 决定 X)(A Z

[例2](2008·广州二模·理基)X和Y属短周期元素,X原子的最外层电子数是次外层电子数的一半,Y位于X的前一周期,且最外层上只有一个电子,下列说法正确的是()A.X可能是第二周期的非金属元素 B.X可能是第三周期的金属元素 C.Y可能与X同主族 D.Y一定是金属元素 考点3 相对原子质量 定义:以12C原子质量的1/12(约1.66×10-27kg)作为标准,其它原子的质量跟它比较所得的值。其国际单位制(SI)单位为1,符号为1(单位1一般不写) 原子质量:指原子的真实质量,也称绝对质量,是通过精密的实验测得的。 如:一个氯原子的m(35Cl)=5.81×10-26kg。 核素的相对原子质量:各核素的质量与12C的质量的1/12的比值。一种元素有几 种同位素,就应有几种不同的核素的相对原子质量,相对诸量如35Cl为34.969,37Cl为36.966。 原子比较核素的近似相对原子质量:是对核素的相对原子质量取近似整数值,数值上与该质量核素的质量数相等。如:35Cl为35,37Cl为37。 元素的相对原子质量:是按该元素各种天然同位素原子所占的原子个数百分比 算出的平均值。如:Ar(Cl)=Ar(35Cl)×a% + Ar(37Cl)×b% 元素的近似相对原子质量:用元素同位素的质量数代替同位素相对原子质量与 其原子个数百分比的乘积之和。 注意①、核素相对原子质量不是元素的相对原子质量。 ②、通常可以用元素近似相对原子质量代替元素相对原子质量进行必要的计算。 [例4](2008·汕头二模)某元素一种同位素的原子的质子数为m,中子数为n,则下列说法正确的是( ) A.不能由此确定该元素的原子量 B.这种元素的原子量为(m+n) C.若碳原子质量为w g,此原子的质量为(m+n)w g D.核内中子的总质量小于质子的总质量

原子结构与元素性质

第二节原子结构与元素的性质 一、元素周期表的编排原则 1.将电子层数相同的元素按原子序数递增的顺序从左到右排成横行。 2.把最外层电子数相同的元素(个别例外)按电子层数递增的顺序从上到下排成纵行。 二、周期表的结构 周期:具有相同的电子层数的元素按照原子序数递增的顺序排成一个横行。 主族:由短周期和长周期元素共同构成的族。 副族:仅由长周期元素构成的族。 1.核外电子排布与族序数之间的关系 可以按照下列方法进行判断:按电子填充顺序由最后一个电子进入的情况决定,具体情况如下:

(3)进入(n -1)d ①(n -1)d 1~5为ⅢB~ⅦB ?族数=[(n -1)d +n s]电子数 ②(n -1)d 6~8为Ⅷ ③(n -1)d 10为ⅠB、ⅡB ?族数=n s 的电子数 ④进入(n -2)f ? ?????????4f ——La 系元素5f ——Ac 系元素ⅢB 2. 3.(1)主族(ⅠA~ⅦA)和副族ⅠB、ⅡB 的族序数=原子最外层电子数(n s +n p 或n s)。 (2)副族ⅢB~ⅦB 的族序数=最外层(s)电子数+次外层(d)电子数。 (3)零族:最外层电子数等于8或2。 (4)Ⅷ族:最外层(s)电子数+次外层(d)电子数。若之和分别为8、9、10,则分别是Ⅷ族第1、2、3列。 1.同周期,从左到右,原子半径依次减小。 2.同主族,从上到下,原子或同价态离子半径均增大。 3.阳离子半径小于对应的原子半径,阴离子半径大于对应的原子半径,如r (Na +)

4.电子层结构相同的离子,随核电荷数增大,离子半径减小,如r(S2-)>r(Cl-)>r(K+)>r(Ca2+)。 5.不同价态的同种元素的离子,核外电子多的半径大,如r(Fe2+)>r(Fe3+),r(Cu+)>r(Cu2+)。 特别提醒 在中学要求的畴可按“三看”规律来比较微粒半径的大小 “一看”能层数:当能层数不同时,能层越多,半径越大。 “二看”核电荷数:当能层数相同时,核电荷数越大,半径越小。 “三看”核外电子数:当能层数和核电荷数均相同时,核外电子数越多,半径越大。 七、电离能 1.第一电离能 (1)每个周期的第一个元素(氢和碱金属)第一电离能最小,稀有气体元素原子的第一电离能最大,同周期中自左至右元素的第一电离能呈增大的趋势。 (2)同主族元素原子的第一电离能从上到下逐渐减小。 2.逐级电离能 (1)原子的逐级电离能越来越大 首先失去的电子是能量最高的电子,故第一电离能较小,以后再失去电子都是能级较低的电子,所需要的能量多;同时,失去电子后离子所带正电荷对电子吸引更强,从而电离能越来越大。 (2)金属元素原子的电离能与其化合价的关系 一般来讲,在电离能较低时,原子失去电子形成阳离子的价态为该元素的常见价态。如Na的第一电离能较小,第二电离能突然增大(相当于第一电离能的10倍),故Na的化合价为+1,而Mg在第三电离能、Al在第四电离能发生突变,故Mg、Al的化合价分别为+2、+3。 八、元素电负性的应用 1.元素的金属性和非金属性及其强弱的判断 (1)金属的电负性一般小于 1.8,非金属的电负性一般大于 1.8,而位于非金属三角区边界的“类金属”(如锗、锑等)的电负性则在1.8左右,它们既有金属性,又有非金属性。 (2)金属元素的电负性越小,金属元素越活泼;非金属元素的电负性越大,非金属元素越活泼。 (3)同周期自左到右,电负性逐渐增大,同主族自上而下,电负性逐渐减小。 (4)电负性较大的元素集中在元素周期表的右上角。 2.化学键的类型的判断 一般认为:如果两个成键元素原子间的电负性差值大于1.7,它们之间通常形成离子键;如果两个成键元素原子间的电负性差小于1.7,它们之间通常形成共价键。

完整版原子结构与性质知识点总结与练习

第一章原子结构与性质 ?原子结构 1?能级与能层 加:也瓦子的总十轨ift 呈哦讳醪 mW L1+ wpFfe 詆上 各隐级上的廉「孰直養副」枳|睡緘丄宇牛 佩址」一-牛 * + b +*-r ⑴相同题上㈱子執坦能量的高低; WS 畀卩M?i 『 ② 形状相R 的尙子報说能卡的髙低: 农2令触靭…… ③ 同橋层内用状相同而伸屛方向 不同的廉了蜿ifi 的昶章和专'如 即“ 2i 如即勘道仰能楚4A 零 3. 原子核外电子排布规律 ⑴构造原理:随着核电荷数递增,大多数元素的电中性基 轨道(能级),叫做构造原理。 J ◎⑥?金 ? ◎⑥、⑥、⑥ ⑥⑥⑥? ?i/ 能级交错:由构造原理可知,电子先进入 说明:构造原理并不是说 4s 能级比3d 能级能 量低(实际上 4s 能级比3d 能级能量高),而是指这样顺 序填充电子可以使整个原子的能量最低。 也就是说,整个原子的能量不能机械地看做是各电子所处轨道的 能量之和。 (2)能量最低原理 现代物质结构理论证实,原子的电子排布遵循构造原理能使整个原子的能量处于最低状态,简称能量 最低原理。 构造原理和能量最低原理是从整体角度考虑原子的能量高低,而不局限于某个能级。 (3)泡利(不相容)原理:基态多电子原子中,不可能同时存在4个量子数完全相同的电子。 换言之, 态原子的电子按右图顺序填入核外电子运动 4s 轨道,后进入3d 轨道,这种现象叫能级交错。

一个轨道里最多只能容纳两个电子, 且电旋方向相反 (用“TJ”表示),这个原理称为泡利(Pauli )原理 (4) 洪特规则:当电子排布在同一能级的不同轨道(能量相同)时,总是优先单独占据一个轨道, 洪特规则特例:当p 、d 、f 轨道填充的电子数为全空、半充满或全充满时,原子处于较稳定的状态。 即 p0、dO 、fO 、p3、d5、f7、p6、d10、f14 时,是较稳定状态。 前36号元素中,全空状态的有 4Be 2s22p0、12Mg 3s23p0、20Ca 4s23d0;半充满状态的有:7N 2s22p3、 15P 3s23p3、24Cr 3d54s1、25Mn 3d54s2、33As 4s24p3;全充满状态的有 10Ne 2s22p6、18Ar 3s23p6、29Cu 3d104s1、30Zn 3d104s2、36Kr 4s24p6。 4. 基态原子核外电子排布的表示方法 (1) 电子排布式 ① 用数字在能级符号的右上角表明该能级上排布的电子数,这就是电子排布式,例如K : 1s22s22p63s23p64s1。 ② 为了避免电子排布式书写过于繁琐,把内层电子达到稀有气体元素原子结构的部分以相 应稀有气体 的元素符号外加方括号表示,例如 K : [Ar]4s1。 (2) 电子排布图(轨道表示式) 每个方框或圆圈代表一个原子轨道,每个箭头代表一个电子。 如基态硫原子的轨道表示式为 帀冋戸冋河丽FW1 In 2 驶 2fi 3* 3|> 二.原子结构与元素周期表 1. 原子的电子构型与周期的关系 (1) 每周期第一种元素的最外层电子的排布式为 ns1。每周 期结尾元素的最外层电子排布式除 He 为1s2 外,其余为ns2np6。He 核外只有2个电子,只有1个s 轨道,还未出现p 轨道,所以第一周期结尾元素的 电子排布跟其他周期不同。 (2) 一个能级组最多所容纳的电子数等于一个周期所包含的元素种类。但一个能级组不一定全部是能量 相同的能级,而 是能量相近的能级。 2. 元素周期表的分区 (1)根据核外电子排布 ① 分区 这个规则叫洪特( Hund )规则。比如, f J J J fJ I f p3的轨道式为 而且自旋方向相同,

原子物理知识点总结全

原 子 物 理 一、卢瑟福的原子模型——核式结构 1.1897年,_________发现了电子.他还提出了原子的 ______________模型. 2.物理学家________用___粒子轰击金箔的实验叫 __________________。 3. 实验结果:绝大部分α粒子穿过金箔后________;少数α粒子发生了较大的偏转;极少数的α粒子甚至被____. 4. 实验的启示:绝大多数α粒子直线穿过,说明原子内部存在很大的空隙; 少数α粒子较大偏转,说明原子内部集中存 在着对 α粒子有斥力的正电荷; 极个别α粒子反弹,说明个别粒子正对着质量比 α粒子大很多的物体运动时,受到该物体很大的斥 力作用. 5.原子的核式结构: 卢瑟福依据α粒子散射实验的结果,提出了原子的核式结构:在原子中心有一个很小 的核,叫 ________, 原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间绕核旋 转. 例1:在α粒子散射实验中,卢瑟福用α粒子轰击金箔,下列四个选项中哪一项属于实验得到的正确结果: A.α粒子穿过金箔时都不改变运动方向 B . 极少数α粒子穿过金箔时有较大的偏转 ,有的甚至被反 弹 C.绝大多数α粒子穿过金箔时有较大的 偏转 D. α粒子穿过金箔时都有较大的偏转. 例2:根据α粒子散射实验,卢瑟福提出了原子的核式结构模 型。如图 1-1所示表示了 原子核式结构模型的 α粒子散射图景。图中实 线表示 α粒子的运动轨迹。其中一个 c α粒子在从a 运动到b 、再运动到c 的过程中(α粒子在b 点时距原子核最近),下 列判断正确的是 ( ) a b A .α粒子的动能先增大后减小 原子核 B .α粒子的电势能先增大后减小 C .α粒子的加速度先变小后变大 α粒子 D .电场力对α粒子先做正功后做负功 图1-1 二玻尔的原子模型 能级 1.玻尔提出假说的背景——原子的核式结构学说与经典物理学的矛盾:⑴按经典物理学理论,核外电子绕核运动时,要不断地辐射电磁波,电子能量减小,其轨道半径将不断减小,最终落于原子核上,即核式结构将是不稳定的,而事实上是稳定的.⑵电子绕核运动时辐射出的电磁波的频率应等于电子绕核运动的频率,由于电子轨道半径不断减小,发射出的电磁波的频率应是连续变化的,而事实上,原子辐射的电磁波的频率只是某些特定值。 为解决原子的核式结构模型与经典电磁理论之间的矛盾,玻尔提出了三点假设,后人称之为玻尔模型. 2.玻尔模型的主要内容: ⑴定态假说:原子只能处于一系列 __________的能量状态中,在 这些状态中原子是 _______的,电子虽然绕核运动, 但不向外辐射能量.这些状态叫做 ________. ⑵跃迁假说:原子从一种定态跃迁到另一种定态时,它辐射(或吸收)一定频率的光子,光子的能量由这两定态的能量差决定,即________________. ⑶轨道假说:原子的不同能量状态对应于 ______子的不同轨道 .原子的定态是不连续的,因此电子的可能轨道也是不 连续的. 3.氢原子的能级公式和轨道 公式 原子各定态的能量值叫做原子的能级,对于氢原子,其能级 公式为 :______________; 对应的轨道公式为: r n n 2 r 1。其中n 称为量子数,只能取正.E1=-13.6eV ,r1=0.53×10-10m .

高中化学选修3知识点全部归纳(物质的结构与性质)

高中化学选修3知识点全部归纳(物质的结构与性质) 第一章原子结构与性质. 一、认识原子核外电子运动状态,了解电子云、电子层(能层)、原子轨道(能级)的含义. 1.电子云:用小黑点的疏密来描述电子在原子核外空间出现的机会大小所得的图形叫电子云图.离核越近,电子出现的机会大,电子云密度越大;离核越远,电子出现的机会小,电子云密度越小. 电子层(能层):根据电子的能量差异和主要运动区域的不同,核外电子分别处于不同的电子层.原子由里向外对应的电子层符号分别为K、L、M、N、O、P、Q. 原子轨道(能级):处于同一电子层的原子核外电子,也可以在不同类型的原子轨道上运动,分别用s、p、d、f表示不同形状的轨道,s轨道呈球形、p轨道呈纺锤形,d轨道和f轨道较复杂.各轨道的伸展方向个数依次为1、3、5、7。 2.(构造原理) 了解多电子原子中核外电子分层排布遵循的原理,能用电子排布式表示1~36号元素原子核外电子的排布. (1).原子核外电子的运动特征可以用电子层、原子轨道和自旋方向来进行描述.在含有多个核外电子的原子中,不存在运动状态完全相同的两个电子. (2).原子核外电子排布原理. ①.能量最低原理:电子先占据能量低的轨道,再依次进入能量高的轨道. ②.泡利不相容原理:每个轨道最多容纳两个自旋状态不同的电子. ③.洪特规则:在能量相同的轨道上排布时,电子尽可能分占不同的轨道,且自旋状态相同. 洪特规则的特例:在等价轨道的全充满(p6、d10、f14)、半充满(p3、d5、f7)、全空时(p0、d0、f0)的状态,具有较低的能量和较大的稳定性.如24Cr [Ar]3d54s1、29Cu [Ar]3d104s1. (3).掌握能级交错图和1-36号元素的核外电子排布式. 3.元素电离能和元素电负性 第一电离能:气态电中性基态原子失去1个电子,转化为气态基态正离子所需要的能量叫做第一电离能。常用符号I1表示,单位为kJ/mol。 (1).原子核外电子排布的周期性. 随着原子序数的增加,元素原子的外围电子排布呈现周期性的变化:每隔一定数目的元素,元素原子的外围电子排布重复出现从ns1到ns2np6的周期性变化. (2).元素第一电离能的周期性变化. 随着原子序数的递增,元素的第一电离能呈周期性变化: ★同周期从左到右,第一电离能有逐渐增大的趋势,稀有气体的第一电离能最大,碱金属的第一电离能最小; ★同主族从上到下,第一电离能有逐渐减小的趋势. 说明: ①同周期元素,从左往右第一电离能呈增大趋势。电子亚层结构为全满、半满时较相邻元素要大即第ⅡA 族、第ⅤA 族元素的第一电离能分别大于同周期相邻元素。Be、N、Mg、P ②.元素电离能的运用: a. 用来比较元素的金属性的强弱. I1越小,金属性越强,表征原子失电子能力强弱. b .电离能是原子核外电子分层排布的实验验证. 分析原子核外电子层结构,如某元素的I n+1?I n,则该元素的最外层电子数为n。 (3).元素电负性的周期性变化. 元素的电负性:元素的原子在分子中吸引电子对的能力叫做该元素的电负性。 随着原子序数的递增,元素的电负性呈周期性变化:同周期从左到右,主族元素电负性逐渐增大;同一主族从上到下,元素电负性呈现减小的趋势. 电负性的运用: a.确定元素类型(一般>1.8,非金属元素;<1.8,金属元素). b.确定化学键类型(两元素电负性差值>1.7,离子键;<1.7,共价键). c.判断元素价态正负(电负性大的为负价,小的为正价).

原子结构与元素的性质时优秀教案

第二节原子结构与元素地性质 第三课时 【学习目标】 1.能说出元素电负性地涵义,能应用元素地电负性说明元素地某些性质 2.能根据元素地电负性资料,解释元素地“对角线”规则,列举实例予以说明 3.能从物质结构决定性质地视角解释一些化学现象,预测物质地有关性质 4.进一步认识物质结构与性质之间地关系,提高分析问题和解决问题地能力 【学习过程】 【课前预习】 1. 叫键合电子;我们用电负性描述. 2.电负性地大小可以作为判断元素金属性和非金属性强弱地尺度. 地电负性一般小于1.8,地电负性一般大于1.8,而位于非金属三角区边界地“类金属”地电负性则在1.8左右,他们既有性又 有性. 【知识梳理】 【复习】1.什么是电离能?它与元素地金属性、非金属性有什么关系? 2.同周期元素、同主族元素地电离能变化有什么规律? (3)电负性: 【思考与交流】1. 什么是电负性?电负性地大小体现了什么性质?阅读教材p20页表同周期元素、同主族元素电负性如何变化规律?如何理解这些规律?根据电负性大小,判断氧地非金属性与氯地非金属性哪个强? 【科学探究】 1.根据数据制作地第三周期元素地电负性变化图,请用类似地方法制作IA、VIIA元素 地电负性变化图. 2.电负性地周期性变化示例

【归纳与总结】 1. 金属元素越容易失电子,对键合电子地吸引能力越,电负性越小,其金属性越;非金属元素越容易得电子,对键合电子地吸引能力 越,电负性越,其非金属性越强;故可以用电负性来度量金属性与非金属性地强弱.周期表从左到右,元素地电负性逐渐变;周期表从上到下,元素地电负性逐渐变. 2. 同周期元素从左往右,电负性逐渐增,表明金属性逐渐减弱,非金属性逐渐增.同主族元素从上往下,电负性逐渐减,表明元素地金属性逐渐减弱,非金属性逐渐增强. 【思考】对角线规则:某些主族元素与右下方地主族元素地有些性质相似,被称为对角线原则.请查阅电负性表给出相应地解释? 3. 在元素周期表中,某些主族元素与右下方地主族元素地性质有些相似,被称为“对角线规则”.查阅资料,比较锂和镁在空气中燃烧地产物,铍和铝地氢氧化物地酸碱性以及硼和硅地含氧酸酸性地强弱,说明对角线规则,并用这些元素地电负性解释对角线规则. 4. 对角线规则 【典题解悟】 例题1.下列有关电负性地说法中正确地是() A.主族元素地电负性越大,元素原子地第一电离能一定越大. B.在元素周期表中,元素电负性从左到右越来越大 C.金属元素电负性一定小于非金属元素电负性. D.在形成化合物时,电负性越小地元素越容易显示正价 解析:电负性地变化规律: (1)同一周期,从左到右,元素电负性递增. (2)同一主族,自上而下,元素电负性递减.(3)副族元素地电负性变化趋势和主族类似.主族元素原子地电离能、电负性变化趋势基本相同,但电离能有特例,如电负性:O >N,但第一电离能:N>O,A错误.B、C选项没有考虑过渡元素地情况. 答案:D 例2.能够证明电子在核外是分层排布地事实是() A、电负性 B、电离能 C、电子亲和能 D、电势能 【当堂检测】 1. 电负性地大小也可以作为判断金属性和非金属性强弱地尺度下列关于电负性地变化规律正确地 是()

选修3第一章《原子结构与性质》全章教案

第一节原子结构 第一课时 知识与技能: 1、进一步认识原子核外电子的分层排布 2、知道原子核外电子的能层分布及其能量关系 3、知道原子核外电子的能级分布及其能量关系 4、能用符号表示原子核外的不同能级,初步知道量子数的涵义 5、了解原子结构的构造原理,能用构造原理认识原子的核外电子排布 6、能用电子排布式表示常见元素(1~36号)原子核外电子的排布 教学内容: 一、原子结构理论发展 从古代希腊哲学家留基伯和德谟克利特的朴素原子说到现代量子力学模型,人类思想中的原子结构模型经过多次演变,给我们多方面的启迪。 现代大爆炸宇宙学理论认为,我们所在的宇宙诞生于一次大爆炸。大爆炸后约两小时,诞生了大量的氢、少量的氦以及极少量的锂。其后,经过或长或短的发展过程,氢、氦等发生原子核的熔合反应,分期分批地合成其他元素。 〖复习〗必修中学习的原子核外电子排布规律: 核外电子排布的一般规律 (1)核外电子总是尽量先排布在能量较低的电子层,然后由里向外,依次 排布在能量逐步升高的电子层(能量最低原理)。 (2)原子核外各电子层最多容纳个电子。 (3)原于最外层电子数目不能超过个(K层为最外层时不能超过个电 子)。 (4)次外层电子数目不能超过个(K层为次外层时不能超过个),倒 数第三层电子数目不能超过个。 说明:以上规律是互相联系的,不能孤立地理解。例如;当M层是最外层时,最多可排个电子;当M层不是最外层时,最多可排个电子 练习: 1、画出下列原子的结构示意图:Be、N、Na、Ne、Mg 在这些元素的原子中,最外层电子数大于次外层电子数的有,最外层电子数与次外层电子数相等的有,最外层电子数与电子层数相等的有; L层电子数达到最多的有,K层与M层电子数相等的有。 2、A元素原子的M电子层比次外层少2个电子。B元素原子核外L层电子数比最外层多7个电子。(1)A元素的元素符号是,B元素的原子结构示意图为________________; (2)A、B两元素形成化合物的化学式及名称分别是__ _____ _。 二、能层与能级 能层:多电子原子的核外电子的________是不同的,按电子的______差异,可将核外电子分成不同的能层由内而外可以分为: 第一、二、三、四、五、六、七……能层

新人教版九年级上册化学[原子的结构 知识点整理及重点题型梳理]

新人教版九年级上册初中化学 重难点有效突破 知识点梳理及重点题型巩固练习 原子的结构 【学习目标】 1.了解原子是由质子、中子和电子构成的;知道不同种类原子的区别。 2.初步了解相对原子质量的概念,并能利用相对原子质量进行简单的计算。 3.记住两个等量关系:核电荷数=质子数=核外电子数;相对原子质量≈质子数+中子数。 【要点梳理】 要点一、原子的构成(《原子的构成》) 1.原子是由下列粒子构成的: 原子由原子核和核外电子(带负电荷)构成,原子核由质子(带正电荷)以及中子(不带电)构成,但并不是所有的原子都是由这三种粒子构成的。例如:普通的氢原子核内没有中子。 2.原子中的等量关系:核电荷数=质子数=核外电子数 在原子中,原子核所带的正电荷数(核电荷数)就是质子所带的电荷数(中子不带电),每个质子带1个单位正电荷,每个电子带一个单位负电荷,原子整体是呈电中性的粒子。 3.原子内部结构揭秘—散射实验(如下图所示): 1911年,英国科学家卢瑟福用一束平行高速运动的α粒子(α粒子是带两个单位正电荷的氦原子)轰击金箔时,发现大多数α粒子能穿透金箔,而且不改变原来的运动方向,但是也有一小部分α粒子改变了原来的运动路径,甚至有极少数的α粒子好像碰到了坚硬不可穿透的质点而被弹了回来。实验结论:

(1)原子核体积很小,原子内部有很大空间,所以大多数α粒子能穿透金箔; (2)原子核带正电,α粒子途经原子核附近时,受到斥力而改变了运动方向; (3)金原子核的质量比α粒子大得多,当α粒子碰到体积很小的金原子核被弹了回来。 【要点诠释】 1.原子是由居于原子中心带正电的原子核和核外带负电的电子构成,原子核又是由质子和中子构成,质子带正电,中子不带电;原子核所带正电荷(核电荷数)和核外电子所带负电荷相等,但电性相反,所以整个原子不显电性。 2.区分原子的种类,依据的是原子的质子数(核电荷数),因为不同种类的原子,核内的质子数不同。要点二、相对原子质量 1.概念:以一种碳原子质量的1/12为标准,其他原子的质量跟它相比较所得到的比,就是这种原子的相对原子质量(符号为Ar)。根据这个标准,氢的相对原子质量约为1,氧的相对原子质量约为16。 2.计算式: 【要点诠释】 1.相对原子质量只是一个比值,单位是“1”(一般不读也不写),不是原子的实际质量。 2.每个质子和每个中子的质量都约等于1个电子质量的1836倍,即电子质量很小,跟质子和中子相比可以忽略不计。原子的质量主要集中在质子和中子(即原子核)上。 3.在相对原子质量计算中,所选用的一种碳原子是碳12,是含6个质子和6个中子的碳原子,它的质量的1/12约等于1.66×10-27 kg。 4.几种原子的质子数、中子数、核外电子数及相对原子质量比较:

选修3第一章原子结构与性质知识总结

第一章 原子结构与性质知识点归纳 2.位、构、性关系的图解、表解与例析 同位素(两个特性)

3.元素的结构和性质的递变规律 4.核外电子构成原理 (1)核外电子是分能层排布的,每个能层又分为不同的能级。 (2)核外电子排布遵循的三个原理: a .能量最低原理 b .泡利原理 c .洪特规则及洪特规则特例 (3)原子核外电子排布表示式:a .原子结构简图 b .电子排布式 c .轨道表示式 5.原子核外电子运动状态的描述:电子云 6.确定元素性质的方法 第二章 分子结构与性质复习 随着原子序数递增 ① 原子结构呈周期性变化 ② 原子半径呈周期性变化 ③ 元素主要化合价呈周期性变化 ④ 元素的金属性与非金属形呈周期性变化 ⑤ 元素原子的第一电离能呈周期性变化 ⑥ 元素的电负性呈周期性变化 元素周期律 排列原则 ① 按原子序数递增的顺序从左到右排列 ② 将电子层数相同的元素排成一个横行 ③ 把最外层电子数相同的元素(个别除 外),排成一个纵行 周期 (7个 横行) ① 短周期(第一、二、三周期) ② 长周期(第四、五、六周期) ③ 不完全周期(第七周期) 元 素 周 期 表 族(18 个纵行) ① 主族(第ⅠA 族—第ⅦA 族共七个) ② 副族(第ⅠB 族—第ⅦB 族共七个) ③ 第Ⅷ族(第8—10纵行) ④结 构

1、微粒间的相互作用 (2)共价键的知识结构 2.分子构型与物质性质 (1)微粒间的 相互作用 σ键 π键 按成键电子云 的重叠方式 极性键 非极性键 一般共价键 配位键 离子键 共价键 金属键 按成键原子 的电子转移方式 化学键 范德华力 氢键 分子间作用力 本质:原子之间形成共用电子对(或电子云重叠) 特征:具有方向性和饱和性 σ键 特征 电子云呈轴对称 (如s —s σ键、 s —p σ键、p —p σ键) π键 特征 电子云分布的界面对通过键轴的一个平面对称(如p —p π键) 成键方式 共价单键—σ键 共价双键—1个σ键、1个π键 共价叁键—1个σ键、2个π键 规律 键能:键能越大,共价键越稳定 键长:键长越短,共价键越稳定 键角:描述分子空间结构的重要参数 用于衡量共价键的稳定性 键参数 共 价 键

原子结构知识点总结

选修3-5知识点 第十八章原子结构 电子的发现 一、阴极射线 1876 年,德国物理学家戈德斯坦认为管壁上的荧光是由于玻璃受到的阴极发出的某种射线的撞击而引起的,并把这种未知射线称之为阴极射线。 二、电子的发现 1、汤姆逊发现电子,认为阴极射线的粒子是 电子且带负电,电子是原子的做成部分,是比原子更基本的物质单元。 2、密立根“油滴实验”测出电子电荷量: 3、密立根“油滴实验”发现是电荷是量子化的,即任何带电体倍。 4、电子的质量为: 5、质子质量与电子质量的比值为: 原子的核式结构模型 1、汤姆孙的西瓜模型:原子是一个球体,正电荷均匀分布在整个球体内,电子镶嵌其中。 一、卢瑟福的α粒子散射实验——利用碰撞中动量守恒原理

1、α粒子是从放射性物质(如铀和镭)中发射出来的快速运动的粒子,带有两个单位的正电荷,质量为氢原子质量的4 倍.电子质量的7300倍。 2、核式结构模型 ①在原子的中心有一个很小的核,叫做原子核。 ②原子的全部正电荷和几乎全部质量都集中在原子核里。 ③带负电的电子在核外空间绕着核旋转。 二、原子核的电荷与尺度 1、原子核的电荷等于核外电子数 2、原子核的半径10-15m,原子的半径10-10m,原子内十分空旷。 氢原子光谱 一、光谱 1、光谱是用光栅或棱镜可以把各种颜色的光按波长展开,获得波长(频率)和强度分布的记录。有时只是波长成分的记录。 2、有些光谱是一条条的亮线,我们把它们叫做谱线。 3、光谱可分为两类:线状谱和连续谱。 ①线状谱:由一条条分立的谱线(亮线)组成。 ②连续谱:由谱线(亮线)粘在一起的光带。

4、特征谱线(亮线):各种原子的发射光谱都是线状谱,原子只发出几种特定频率的光。不同原子的亮线位置不同,不同原子的发光频率(颜色)是不一样的。 5、每种原了都有自己的特征谱线,我们就可以利用它来鉴别物质和确定物质的组成成分。这种方法称为光谱分析。 二、氢原子光谱的实验规律 1、光是由原子内部电子的运动产生的。 2、氢原子是最简单的原子,其光谱也最简单。 3、——巴耳末公式 n的两层含义: ①每一个n值分别对应一条谱线。

课题2 原子的结构知识点

课题2 原子的结构知识点 Point1.原子的构成 (1)原子的构成 原子 (2)构成原子的粒子间的关系 原子序数= = = 整个原子不显电性的原因 不同原子 不同,即 决定元素的种类。 所有元素中 没有中子数,即中子数为零。 Point2.核外电子排布 1.电子层:核外电子的运动有自己的特点,在含有多个电子的原子里,有的电子能量较低, 通常在离核较近的区域运动;有的电子能量较高,通常在离核较远的区域运动,为了形象说 明,通常用电子层来表示 2.核外电子的分层排布 (1) 核外电子在不同的电子层内运动的现象叫做核外电子的分层排布 (2) 电子层数 K L M N O P Q 一 二 三 四 五 六 七 (3) 原子结构示意图:第一层最多容纳2个电子,第二层最多容纳8个电子,最外层不超过 8个电子 画出下列原子的原子结构示意图 Li Be Na Mg Al H B C N O F Si P S Cl He Ne Ar 3.离子 (1)定义: ,带正电的原子叫 做 ,如Na +,2Mg +,3Al +; 叫做阴离子;如2S -,Cl - ,24SO -等。

(2)离子化合物:由阴离子和阳离子直接构成的化合物叫做离子化合物,如氯化钠(NaCl)(3)离子符号的书写及意义 2 2Mg+表示: Cl-表示: Point3 相对原子质量 1.原子的质量很小。国际上规定:以一种碳原子质量的为标准,其它原子的质量跟它相比所得的值就是该种原子的相对原子质量。表达式为,相对原子质量≈+ 。相对原子质量是一个比值,单位为,一般省略不写。 2.某原子实际质量为a kg,作为标准的碳原子的质量为b kg,则该原子的相对原子质量为。

相关文档
最新文档