仁爱学院下承式栓焊简支钢桁梁桥设计计算书

仁爱学院下承式栓焊简支钢桁梁桥设计计算书
仁爱学院下承式栓焊简支钢桁梁桥设计计算书

仁爱学院下承式栓焊简支钢桁梁桥

课程设计

姓名:

学号:

班级:

设计时间:

目录

第一章设计资料………………………………………………………………

第一节基本资料…………………………………………………………

第二节设计内容…………………………………………………………

第三节设计要求…………………………………………………………第二章杆件内力计算…………………………………………………………

第一节主力作用下主桁杆件内力计算…………………………………

第二节横向风力作用下的主桁杆件附加内力计算……………………

第三节制动力作用下的主桁杆件附加内力计算………………………

第四节疲劳内力计算……………………………………………………

第五节主桁杆件内力组合………………………………………………第三章主桁杆件截面设计……………………………………………………

第一节下弦杆截面设计…………………………………………………

第二节上弦杆截面设计…………………………………………………

第三节端斜杆截面设计…………………………………………………

第四节中间斜杆截面设计………………………………………………

第五节吊杆截面设计……………………………………………………

第六节腹杆高强度螺栓计算……………………………………………第四章弦杆拼接计算和下弦端节点设计……………………………………

第一节E2节点弦杆拼接计算……………………………………………

第二节E0节点弦杆拼接计算……………………………………………

第三节下弦端节点设计………………………………………………….. 下弦端节点设计图………………………………………………………………

第一章设计资料

第一节基本资料

1 设计规范:铁路桥涵设计基本规范(TB10002.1-2005),铁路桥梁钢结构设计规范(TB10002.2-2005)。

2 桁架尺寸:计算跨度分别为L=48 m、64 m、80 m (按班级人数等分三组,按组序分别对应计算跨度),节间长度8 m,桁高11 m,主桁中心距5.75 m,纵梁中心距2.0 m,纵联计算宽度5.30 m,采用明桥面。

3 材料:主桁杆件材料Q345q,板厚≤ 40mm,高强度螺栓采用40B,精制螺栓采用BL3,支座铸件采用ZG35 II、辊轴采用35号锻钢。

4 活载等级:中-荷载。

5 恒载

(1) 主桁计算桥面p1=10kN/m,桥面系p2=7 kN/m,主桁架p3=15 kN/m,联结系p4=3 kN/m,检查设备p5=1 kN/m,螺栓、螺母和垫圈p6=0.02*(p2+p3+p4),焊缝p7=0.015*(p2+p3+p4);

(2) 纵梁、横梁计算纵梁(每线) p8=5 kN/m(未包括桥面),横梁(每片) p9=2 kN/m。

6 风力强度W0=1.5 kPa,K1K2K3=1.0。

7 工厂采用焊接,工地采用高强度螺栓连接,栓径均为22 mm、孔径均为23 mm。高强度螺栓设计预拉力P=200kN,抗滑移系数μ0=0.45。

8 计算参考书目

苏彦江,《钢桥构造与设计》,西南交通大学出版社,成都,2006年12月。陈绍蕃,《钢结构》.科学出版社,2002

王国周,瞿履谦,《钢结构原理与设计》,清华大学出版社,1993

郑凯锋,吴臻旺,杨国静, 《钢桥课程设计参考文本》, 西南交通大学, 2003

第二节设计内容

1 主桁杆件内力计算;

2 主桁杆件截面设计;

3 弦杆拼接计算和下弦端节点设计;

第三节设计要求

1 主桁内力计算结果和截面设计计算结果如计算书中表2.1和表3.1格式进行汇总成表格。

2 主桁内力计算表格和截面设计计算项目包括表2.1和表3.1的表头各项:

3 主桁内力计算和截面设计计算结果采用Microsoft Excel 电子表格排版和节点设计图可用计算机打印,其他各项设计需手工计算完成计算书。

4 步骤清楚,计算正确,文图工整。

5 设计文件排版格式严格要求如下:

(1) 版面按照A4 纸张设置,竖排(个别表格可以横排)。

(2) 计算书文件按封面、目录、正文(包括表格、插图)、节点图顺序,正文起始页码为第1页。

(3) 各章节文字大小层次分明。

(4) 特别要求正文内的表格完整、表格排版符合页宽要求。

(5) 特别要求正文内的图形和节点图完整、清晰。

6 设计文件在规定时间内提交。

第二章 杆件内力计算

第一节 主力作用下主桁杆件内力计算

1 恒载

桥面p 1=10kN/m ,桥面系p 2=7 kN/m ,主桁架p 3=15 kN/m , 联结系 p 4=3 kN/m ,检查设备p 5=1 kN/m , 螺栓、螺母和垫圈 p 6=0.02*(p 2+p 3+p 4),焊缝 p 7=0.015*(p 2+p 3+p 4)

每片主桁所受恒载强度

2/)(7654321p p p p p p p p ++++++=

2 影响线面积计算 (要求计算加粗线各杆件内力)

A 1

A 2

A 3

A 1

A 2

A 3

E 1

E 2

E 3

E 0

y=l 1l 2/(lH)

l 1=αl

l 2

E 2E 3

E 2A 3

θ

y

y'

l'2l 2

l 1l'1

A 3E 3

1

1/sin θ

1/sin θ

E 4

(1)弦杆

影响线最大纵距H l l l y ??=

21, 影响线面积y l ?=Ω2

1

31A A :

=1l ,=2l ,

=α,=y ,

=Ω 42E E :

=1l ,=2l , =α,=y , =Ω

其余弦杆计算方法同上,计算结果列于表2.1中。 (2)斜杆:l l y 2sin 1?=

θ,l

l y '

sin 1'2?=θ,2

tan 11sin 1θθ+=,

y l l ?+=

Ω)(2121,')''(2

1

'21y l l ?+=Ω, 10A E :

181?=l , 982?=l ,8

1

=α, =y ,=Ω

21E A :=2l ,='2l ,=y , ='y ,=1l ,

211

l l l +=

α,='1l , ''''211l l l +=α,y l l ?+=Ω)(21

21

')''(2

1

'21y l l ?+=Ω,∑=Ω;

其余斜杆计算方法同上,计算结果列于表2.1中。

(3)吊杆:=Ω=,y ; 3 恒载内力 ∑Ω=p N p , 下弦杆:=P N E E :20 …

上弦杆:P N A A :31= …

斜杆: =P N E A :01 … 吊杆: P N … 4 活载内力

(1)换算均布活载k ,按α及加载长度l 查表求得,中间值按内插法求得 ===k l E E ,,:20α ===k l E A ,,:21α ;',','==k l α

其余杆件计算方法同上,计算结果列于表2.1中。 (2)冲击系数

弦杆,斜杆: d L ++

=++

=+4028

1402811μ 吊杆: d

L ?++

=++=+24028

1402811μ (3)静活载内力k N Ω?=k N k

=k N E E :42 =K N E A :21 ='K N

其余杆件计算方法同上,计算结果列于表2.1中。

(4)活载发展均衡系数η值:)(6

11m ax ααη-+=,k p N N )1(μα+=,max α在表中查找确定,计算各杆件η值

其余杆件计算方法同上,计算结果列于表2.1中。 5 列车横向摇摆力产生的弦杆内力

横向摇摆力取S=100kN 作为一个集中荷载取最不利位置加载,水平作用在钢轨顶面。摇摆力在上下平纵联的分配系数如下:桥面系所在平面分配系数为1.0,另一平面为0.2。

上平纵联所受的荷载,20k 1002.0N S =?=上 下平纵联所受的荷载,100k 1000.1N S =?=下

摇摆力作用下的弦杆内力y ,y S N S =为弦杆在简支平纵联桁架的影响线纵距。 上弦杆:LB

L L y A A 2

131:=,S N S y = …

下弦杆:

LB

L L y E E 2

120:=

,S N S y = …

第二节 横向风力作用下的主桁杆件附加力计算

1 平纵联效应的弦杆附加力

风压 kPa W K K K W 5.10.10321?==,车风压kPa W W 0.18.0'== (1)下平纵联的有车均布荷载下w

桁高H=,h=纵梁高+钢轨轨木高

')]3()4.01(4.05.0[w h H w +?-+??=下

(2)上平纵联的有车均布荷载上w ')]3()4.01(2.04.05.0[w h H w +?-?+??=上 (3)弦杆内力

上弦杆:31A A 在均布风荷载上w 作用下的内力为:

31A A :==

Ω=上上上yLw w Nw 2

1

下弦杆:

20E E :k yLw w Nw ==

Ω=下下下2

1

2 桥门架效应的端斜杆和端下弦杆的附加力 桥门架所受总风力:上Lw H w 2

1=,

θ

sin 1?

=H l 端斜杆反弯点位置:=++=

)

2(2)

2(0l c l c c l ,

端斜杆轴力:=-=B

l l H V w )

(0

端斜杆轴力V 在下弦杆产生的分力:θcos 'V N w = 端斜杆中部附加弯矩:

2

)

(0l c H M W F -=

端斜杆端部(横梁高度1的一半处)附加弯矩为:

=-=

)2

(20横h l H M w

k 计算结果列在表2.1中。

第三节 制动力作用下的主桁杆件附加力计算

1下弦杆制动力计算

以下弦杆42E E 为例,将活载作如图所示的布置,根据结构力学方法,当三角形影响线顶点左边的活载之和等于右边之和时,为产生最大杆力的活载布置位置。

b

R a R b

a =

解得=x

故桥上活载总重N =

在主力作用下的内力已计入冲击系数,制动力按静活载的7%计算: 制动力=T

42E E 的制动力作用附加内力2/T N T =

其下弦杆件内力见表2.1。 2 端斜杆制动力计算

01E E 杆力影响线顶点位置离左端点支点7.64m ,设将列车荷载的第4轴重1P 置于影响线顶点处。因为影响线为三角形,则活载位置是产生最大杆力时的荷载:

b R a P R b a >+1;b

P R a R b

a 1

+< a P R a 1+和b R

b 比较

a

R a 和b P R b 1+

将第3轴重或第5放到顶点位置上均不满足上述条件,故将上述活载即为产生最大杆力时的活载。 求制动力:=T

制动力所产生的杆件内力t N 和2M : 轴向力2T N t =

,h T

M ?=2

(下弦杆中线至支座下摆顶点的距离h=0.37m ) 下弦杆弯矩 M M ?=4.01; 端斜杆弯矩 M M ?=7.02

第四节 疲劳内力计算

1 疲劳轴力计算

疲劳荷载组合包括设计荷载中的恒载和活载(包括冲击力、离心力,但不考虑活载发展系数)。列车竖向活载包括竖向动力作用时,应将列车竖向静活载乘以运营动力系数(f μ+1)。同时,规定焊接及非焊接(栓接)构件及连接均需进行疲劳强度验算,当疲劳应力均为压应力时,可不检算疲劳。 疲劳计算采用动力运营系数:

弦杆,斜杆: d L f ++

=++

=+4018

1401811μ 吊杆: d

L f ?++

=++=+24018

1401811μ 42E E :

k f p n N N N )1(m ax μ++= p n N N =min

其余计算内力见表2.1。 2 吊杆疲劳弯矩计算 作用在纵梁上的恒载

81

2

p p p +=

由恒载产生纵梁对横梁的作用力(即纵梁梁端 剪力)

Ω?=p N p

当α和L 时,换算均布荷载(k 需要除以2) =k

由活载产生纵梁对横梁的作用力Ω?=k N k 由恒载产生的简支梁弯矩

??

?

??-=2c B N M p p

由静活载产生的简支梁弯矩

??

?

??-=2c B N M k k

冲击系数

L

++

=+4028

11μ 横梁

()μα+=

1k p

N N

)(6

1

1m ax ααη-+=

横梁

()k p pk M M M μη++=1

()p s b

Bp M i i M 3

5.023+??-=

βμ

()pk s

b

Bpk M i i M 3

5.023+??-=βμ

B c

a +=μ L L '=β

横梁、竖杆在框架面内的刚度系数

==

B EI i b

b ==B EI i s s

式中E ——钢的弹性模量;

s b I I ,——横梁、竖杆在框架平面内的惯性矩;

L ——横联门楣最下端节点到衡量重心轴的距离;

L '——上弦节点中心到横梁重心的距离;

Bp M Bpk M

第五节 主桁杆件内力组合

1 主力组合

()s k p N N N N +++=I μη1

其余杆件用Excel 计算,内力见表2.1。

2 主力和附加力组合

31A A :主力 =I N ,附加风力=w N

主力+横向附加力=∏N

=='∏∏2

.1N

N (绝对值取大)。

42E E :主力 =I N ,附加风力=w N

主力+横向附加力=∏N

=='∏∏2

.1N

N

主力+纵向附加力(制动力)

='III N

其余杆件用Excel 计算,内力见表2.1。

=III N

表2.1 主桁杆件内力计算汇总表

第三章 主桁杆件截面设计

第一节 下弦杆截面设计

一、中间下弦杆E4E4′

1 初选杆件截面 选用腹板 1—□388×24 翼缘 2—□440×36 每侧有4 排栓孔,孔径d=23cm; 毛截面Am = 栓孔削弱面积ΔA = 净截面面积 Aj = Am -ΔA =

2 刚度验算

=y I

杆件自由长度ly=

==

m

y y A I r

y

y y r l =

λ(可)

(λx<λy ,可不需验算) 3 拉力强度验算

j

I

j A N =

σ 式中γ为板厚的修正系数,依《钢桥规范》3.2.1 条及其条文说明,查“续说明表3.2.1”,对于Q345q ,35

由表2.1 可知 Nmin = 得j

A N min

min =

σ

Nmax =得j

mac

A N =

max σ 拉-拉杆件验算式:][)(0m in m ax σσσt n d r r r ≤-

式中线路系数0.1=d r , 损伤修正系数0.1=n r ,板厚修正系数4

25

t

r t =查规范表3.27-2的杆件验算截面为第Ⅲ类疲劳等级,查表3.27-1知其疲劳容许应力 确定。 二、端下弦杆20E E 1 初选截面

选用腹板 1—□428×12 翼缘 2—□440×16

毛、净截面面积、毛截面惯性矩计算方法同上 净截面惯性矩I yj =I y -ΔI y 2 刚度验算 λx λy 3 拉力强度验算

(1) 主力作用 N Ⅰ=2111.11kN

Aj

N I

j =

σ和][σγ比较 (2) 主力+制动力作用∏N ,制动力弯矩∏M

j

II

j II j W M A N +=

∏σ 和 ][σγ比较 4 疲劳强度验算

由表2.1 可知 N min = 得j A N min

min =

σ N max = 得j

A N max

max =

σ 拉-拉杆件验算式:][)(0m in m ax σσσt n d r r r ≤- 故

第二节 上弦杆截面设计

以上弦杆A1A3为例。 1 初选截面

选用腹板 1—□412×18 翼缘 2—□460×24 2 刚度检算

43242.389548.12.41121

464.21212cm I y =??+???

=

λy=66.48<[λ]=100(可) 3 总体稳定验算

由λy=,查表内插求得1?

m

c

A N =

σ(可) 4 局部稳定验算 (1) 翼缘板

按照《钢桥规范》,查表5.3.3,当λ≥50 时,板件的宽厚比514.0+?≤λδ

b

翼缘板=δ

b

(2) 腹板

按照《钢桥规范》,查表5.3.3,当λ≥50 时,板件的宽厚比104.0+?≤λδ

b

腹板δ

b

同理,设计计算其它上弦杆。

第三节 端斜杆截面设计

1 初选截面 选用腹板 1—□412×18

翼缘 2—□600×24

截面面积,惯性矩计算方法同上。 2 刚度验算

λy =,λx =,查表内插求得? 3 总体稳定验算 (1) 主力作用

m

I

A N =

Im σ(可) (2) 主力+横向风力作用

端斜杆E0A1在主力作用下为受压杆件,在主力与横向力作用下为压弯杆。附加力为横向力时,弯矩作用于主平面外。参照《钢桥规范》第4.2.2 条规定,对受压并在一个主平面内受弯曲的杆件,总稳定性计算公式 为:][1211σ??μ?σ≤?+=

W

M A N m ①换算长细比 y

x

e r r h

L ?

=αλ 查表得'1? 式中 α ——系数,焊接杆件取1.8;

h ——杆件两翼缘板外缘距离,即截面宽度,该算例h 。

因端斜杆采用H 形截面,且失稳平面为主桁平面,和弯矩作用平面不一致。按《钢桥规范》第4.2.2 条,此'1?可以用作2?。 ②

m

A N

和 ][15.01σ? 比较 所以应考虑弯矩因构件受压而增大所引用的值μ

m

EA N n 22

11πλμ-=

式中 λ——构件在弯矩作用平面内的长细比;

E ——钢材的弹性模量(MPa);

1n ——压杆容许应力安全系数。主力组合时取用n1=1.7,[σ]应按主力

组合采用;主力加附加力组合时取用1n =1.4,[σ]应按主力加附加力组合采用。 ③ =∏m σ

(3) 主力+制动力作用

依照《钢桥规范》4.2.2 条规定,当验算的失稳平面和弯矩作用平面一致时,2?=1.0

m

A N 和 ][15.01σ? 比较

所以应考虑弯矩因构件受压而增大所引用的值μ

m

EA N n 22

11πλμ-=

=III m σ 4 局部稳定验算同上,见表3.1。

第四节 中间斜杆截面设计

以斜杆E4A5 为例

1 初选截面

选用腹板 1—□428×10

翼缘 2—□460×16

截面面积,惯性矩计算方法同上。 2 刚度验算 ==y λλm a x 3 总体稳定验算

由,1009.88m ax <==y λλ查表内插得1?

m

m A N

=

σ 和 ][1σ? 比较 4 局部稳定验算 (1) 翼缘板

按照《钢桥规范》,查表5.3.3,当λ≥50 时,板件的宽厚比514.0+?≤λδ

b

翼缘板=δ

b

(2) 腹板

按照《钢桥规范》,查表5.3.3,当λ≥50 时,板件的宽厚比104.0+?≤λδ

b

腹板=δ

b

简支钢梁设计计算书

------------------------------- | 简支梁设计 | | | | 构件:BEAM52 | | 日期:2015/08/31 | | 时间:15:37:10 | ------------------------------- ----- 设计信息 ----- 钢梁钢材:Q235 梁跨度(m): 5.200 梁平面外计算长度(m): 2.600 钢梁截面:焊接组合H形截面: H*B1*B2*Tw*T1*T2=300*250*250*6*12*12 容许挠度限值[υ]: l/400 = 13.000 (mm) 强度计算净截面系数:1.000 计算梁截面自重作用: 计算 简支梁受荷方式: 竖向单向受荷 荷载组合分项系数按荷载规范自动取值 ----- 设计依据 ----- 《建筑结构荷载规范》(GB 50009-2012)

《钢结构设计规范》(GB 50017-2003) ----- 简支梁作用与验算 ----- 1、截面特性计算 A =7.6560e-003; Xc =1.2500e-001; Yc =1.5000e-001; Ix =1.3500e-004; Iy =3.1255e-005; ix =1.3279e-001; iy =6.3894e-002; W1x=9.0000e-004; W2x=9.0000e-004; W1y=2.5004e-004; W2y=2.5004e-004; 2、简支梁自重作用计算 梁自重荷载作用计算: 简支梁自重 (KN): G =3.1252e+000; 自重作用折算梁上均布线荷(KN/m) p=6.0100e-001; 3、梁上活载作用 荷载编号荷载类型荷载值1 荷载参数1 荷载参数2 荷载值2 1 4 8.10 2.60 0.00 0.00 4、单工况荷载标准值作用支座反力 (压为正,单位:KN) △恒载标准值支座反力 左支座反力 Rd1=1.563, 右支座反力 Rd2=1.563 △活载标准值支座反力 左支座反力 Rl1=4.050, 右支座反力 Rl2=4.050

30+45+30m预应力连续梁计算书

30+45+30米连续梁计算书 一、预应力钢筋砼上部结构纵向计算书 (一)工程概况: 本计算书是针对标段中的30+45+30米的预应力混凝土连续梁桥进行。桥宽为9.5m,采用单箱单室,单侧翼板长2.5米;梁高为1.6~2.3米,梁底按二次抛物线型变化。 箱梁腹板采用斜腹板,腹板的厚度随着剪力的增大而从跨中向支点逐渐加大,箱梁边腹板厚度为50~70cm。箱梁顶板厚22cm。为了满足支座布置及承受支点反力的需要,底板的厚度随着负弯矩的增大而逐渐从跨中向支点逐渐加大,厚度为22~35cm。其中跨跨中断面形式见图1.1,支承横梁边的截面形式见图1.2。结构支承形式见图1.3。主梁设纵向预应力。钢束采用?j15.24低松弛预应力钢绞线,标准强度为1860MPa,弹性模量为1.9X105 MPa,公称面积为140mm2。预应力钢束采用真空吸浆工艺,管道采用与其配套的镀锌金属波纹管。纵向钢束采用大吨位锚。钢束为19?s15.24的钢绞线,均为两端张拉,张拉控制应力为1339MPa。 图1.1 中跨跨中截面形式

图1.2 横梁边截面形式 图1.3 结构支承示意图 (二)设计荷载 结构重要性系数:1.0 设计荷载:桥宽9.5米,车道数为2,城-A汽车荷载。 人群荷载:没有人行道,所以未考虑人群荷载。 设计风载:按平均风压1000pa计, 地震荷载:按基本地震烈度7度设防, 温度变化:结构按整体温升200C,整体温降200C计,桥面板升温140C,降温70C。基础沉降:桩基础按下沉5mm计算组合。 其他荷载: (三)主要计算参数 材料:C50砼; 预应力钢束:高强度低松弛钢绞线,抗拉标准强度fpk=1860MPa,抗拉设计强度fpd=1260MPa,抗压设计强度fpd=390Mpa。

m实心简支板桥计算书

钢筋混凝土实心简支板桥设计计算书 2006年11月

一、设计资料 1、桥面跨径及桥宽: 标准跨径:根据实际情况及《公路桥涵设计通用规范》JTJ D60—2004 第3.2.5条的新建桥梁跨径的要求,确定为标准跨径等于8m 的单跨钢筋混凝土实心简支板桥。 计算跨径:偏安全取L=8m 桥面宽度:双幅 2×4 m =8 m 2、设计荷载:公路Ⅱ级汽车荷载 其中车辆荷载根据实际情况进行提高如下: 车辆荷载的立面、平面尺寸图 (图中尺寸单位为m,荷载单位为kN ) (b ) 平 面 尺 寸 (a ) 立 面 布 置 人群荷载不计。 3、设计安全等级: 三级 4、结构重要系数: 5、主要设计材料: (1)混凝土强度等级:主梁拟用30号,即C30; MPa f ck 1.20=MPa f tk 01.2=MPa f cd 8.13= MPa f td 39.1= MPa E c 41000.3?= 人行道、栏杆无; 桥面铺装不计; 混凝土容重r=24kN/m3, 钢筋混凝土容重r=25kN/ m3。 (2)钢材初步选取:直径大于或等于12mm 时采用HRB335,指标:

MPa f sk 335= MPa f f sd sd 280=' = MPa E s 5100.2?= 直径小于12mm 时采用R235钢筋,指标: MPa f sk 235= MPa f f sd sd 195=' = MPa E s 5101.2?= 6、设计依据 (1)《公路桥涵设计通用规范》JTJ D60—2004 (2)《公路钢筋混凝土及预应力混凝土桥涵设计规范》JTJ D62—2004 二、构造布置: 设计板厚0.50m= ,在 ~ ,符合规范要求, 设计截面尺寸见下图: 侧 面 图 单位:cm 平 面 图 单位:cm 三、几何特性计算 截面面积: 面惯性矩: 面积矩: 四、主梁内力计算 (一)、恒载内力 一期荷载集度主梁每延米自重: g=(4×0.5)×25.0=50kN/m 二期恒载(栏杆、人行道、桥面铺装)不计。 恒载作用下梁产生的内力计算:

连续梁桥计算

第一章混凝土悬臂体系和连续体系梁桥的计算 第一节结构恒载内力计算 一、恒载内力计算特点 对于连续梁桥等超静定结构,结构自重所产生的内力应根据它所采用的施工方法来确定其计算图式。 以连续梁为例,综合国内外关于连续梁桥的施工方法,大体有以下几种: (一)有支架施工法; (二)逐孔施工法; (三)悬臂施工法; (四)顶推施工法等。 上述几种方法中,除有支架施工一次落梁法的连续梁桥可按成桥结构进行分析之外,其余几种方法施工的连续梁桥,都存在一个所谓的结构体系转换和内力(或应力)叠加的问题,这就是连续梁桥恒载内力计算的一个重要特点。 本节着重介绍如何结合施工程序来确定计算图式和进行内力分析以及内力叠加等问题,并且仅就大跨径连续梁桥中的后两种的施工方法——悬臂浇筑法和顶推施工法作为典型例子进行介绍。理解了对特例的分析思路以后,就可以容易地掌握当采用其它几种施工方法时的桥梁结构分析方法了。 二、悬臂浇筑施工时连续梁的恒载内力计算 为了便于理解,现取一座三孔连续梁例子进行阐明,如图1-1所示。该桥上部结构采用挂篮对称平衡悬臂浇筑法施工,从大的方面可归纳为五个主要阶段,现按图分述如下。 (一)阶段1 在主墩上悬臂浇筑混凝土 首先在主墩上浇筑墩顶上面的梁体节段(称零号块件),并用粗钢筋及临时垫块将梁体与墩身作临时锚固,然后采用施工挂篮向桥墩两侧分节段地进行对称平衡悬臂施工。此时桥墩上支座暂不受力,结构的工作性能犹如T型刚构。对于边跨不对称的部分梁段则采用有支架施工。 此时结构体系是静定的,外荷载为梁体自重q自(x)和挂篮重量P挂,其弯矩图与一般悬臂梁无异。 (二)阶段2 边跨合龙 当边跨梁体合龙以后,先拆除中墩临时锚固,然后便可拆除支架和边跨的挂篮。 此时由于结构体系发生了变化,边跨接近于一单悬臂梁,原来由支架承担的边段梁体重量转移到边跨梁体上。由于边跨挂篮的拆除,相当于结构承受一个向上的集中力P挂。 (三)阶段3 中跨合龙 当中跨合龙段上的混凝土尚未达到设计强度时,该段混凝土的自重q及挂篮重量2P 将以2个集中力 挂 R0的形式分别作用于两侧悬臂梁端部。

简支梁设计计算

第四章 简支梁(板)桥设计计算 第一节 简支梁(板)桥主梁内力计算 对于简支梁桥的一片主梁,知道了永久作用和通过荷载横向分布系数求得的可变作用,就可按工程力学的方法计算主梁截面的内力(弯矩M 和剪力Q ),有了截面内力,就可按结构设计原理进行该主梁的设计和验算。 对于跨径在10m 以内的一般小跨径混凝土简支梁(板)桥,通常只需计算跨中截面的最大弯矩和支点截面及跨中截面的剪力,跨中与支点之间各截面的剪力可以近似地按直线规律变化,弯矩可假设按二次抛物线规律变化,以简支梁的一个支点为坐标原点,其弯矩变化规律即为: )(42max x l x l M M x -= (4-1) 式中:x M —主梁距离支点x 处的截面弯矩值; m ax M —主梁跨中最大设计弯矩值; l —主梁的计算跨径。 对于较大跨径的简支梁,一般还应计算跨径四分之一截面处的弯矩和剪力。如果主梁沿桥轴方向截面有变化,例如梁肋宽度或梁高有变化,则还应计算截面变化处的主梁内力。 一 永久作用效应计算 钢筋混凝土或预应力混凝土公路桥梁的永久作用,往往占全部设计荷载很大的比重(通常占60~90%),桥梁的跨径愈大,永久作用所占的比重也愈大。因此,设计人员要准确地计算出作用于桥梁上的永久作用。如果在设计之初通过一些近似途径(经验曲线、相近的标准设计或已建桥梁的资料等)估算桥梁的永久作用,则应按试算后确定的结构尺寸重新计算桥梁的永久作用。 在计算永久作用效应时,为简化起见,习惯上往往将沿桥跨分点作用的横隔梁重力、沿桥横向不等分布的铺装层重力以及作用于两侧人行道和栏杆等重力均匀分摊给各主梁承受。因此,对于等截面梁桥的主梁,其永久作用可简单地按均布荷载进行计算。如果需要精确计算,可根据桥梁施工情况,将人行道、栏杆、灯柱和管道等重力像可变作用计算那样,按荷载横向分布的规律进行分配。 对于组合式梁桥,应按实际施工组合的情况,分阶段计算其永久作用效应。 对于预应力混凝土简支梁桥,在施加预应力阶段,往往要利用梁体自重,或称先期永久作用,来抵消强大钢丝束张拉力在梁体上翼缘产生的拉应力。在此情况下,也要将永久作用分成两个阶段(即先期永久作用和后期永久作用)来进行计算。在特殊情况下,永久作用可能还要分成更多的阶段来计算。 得到永久作用集度值g 之后,就可按材料力学公式计算出梁内各截面的弯矩M 和剪力Q 。当永久作用分阶段计算时,应按各阶段的永久作用集度值g i 来计算主梁内力,以便进行内力或应力组合。 下面通过一个计算实例来说明永久作用效应的计算方法。 例4-1:计算图4-1 所示标准跨径为20m 、由5片主梁组成的装配式钢筋混凝土简支梁桥主梁的永久作用效应,已知每侧的栏杆及人行道构件的永久作用为m kN /5。 图4-1 装配式钢筋混凝土简支梁桥一般构造图(单位:cm )

实心板桥123456

实心简支板桥设计计 算书 一、设计资料 1、桥面跨径及桥宽: 标准跨径:根据实际情况及《公路桥涵设计通用规范》JTJ D60—2004 第3.2.5条的新建桥梁跨径的要求,确定为标准跨径等于8m的单跨钢筋混凝土实心简支板桥。 计算跨径:偏安全取L=8m

桥面宽度:双幅 2×4 m =8 m 2、设计荷载:公路Ⅱ级汽车荷载 其中车辆荷载根据实际情况进行提高如下: 车辆荷载的立面、平面尺寸图 (图中尺寸单位为m,荷载单位为kN ) (b ) 平 面 尺 寸 (a ) 立 面 布 置 人群荷载不计。 3、设计安全等级: 三级 4、结构重要系数: 5、主要设计材料: (1)混凝土强度等级:主梁拟用30号,即C30; MPa f ck 1.20=MPa f tk 01.2=MPa f cd 8.13= MPa f td 39.1= MPa E c 41000.3?= 人行道、栏杆无; 桥面铺装不计; 混凝土容重r=24kN/m3, 钢筋混凝土容重r=25kN/ m3。 (2)钢材初步选取:直径大于或等于12mm 时采用HRB335,指标: MPa f sk 335= MPa f f sd sd 280=' = MPa E s 5100.2?= 直径小于12mm 时采用R235钢筋,指标: MPa f sk 235= MPa f f sd sd 195=' =

MPa E s 5101.2?= 6、设计依据 (1)《公路桥涵设计通用规范》JTJ D60—2004 (2)《公路钢筋混凝土及预应力混凝土桥涵设计规范》JTJ D62—2004 二、构造布置: 设计板厚0.50m=,在~,符合规范要求, 设计截面尺寸见下图: 侧 面 图 单位:cm 平 面 图 单位: cm 三、几何特性计算 截面面积: 面惯性矩: 面积矩: 四、主梁内力计算 (一)、恒载内力 一期荷载集度主梁每延米自重: g=(4×0.5)×25.0=50kN/m 二期恒载(栏杆、人行道、桥面铺装)不计。 恒载作用下梁产生的内力计算:

钢结构计算书

钢结构课程设计 计算书 设计题目: 18m三角形芬克式角钢焊接屋架院系:土木工程学院 专业:城市地下空间工程 年级: 2014级 姓名:黄超 学号: 1412121007 指导教师:张惠华 华侨大学土木工程学院 2017年7月4日

目录 一、概述------------------------------------------------------------------------1 1.1、设计题目---------------------------------------------------------------1 1.2、设计要求---------------------------------------------------------------1 1.3、设计依据---------------------------------------------------------------1 1.4、设计任务---------------------------------------------------------------2 1.5、需提交的设计文件-------------------------------------------------------2 二、屋盖支撑布置----------------------------------------------------------------2 2.1上弦横向水平支撑---------------------------------------------------------2 2.2下弦支撑-----------------------------------------------------------------3 2.3垂直支撑-----------------------------------------------------------------3 三、节点荷载计算-----------------------------------------------------------------3 3.1永久荷载------------------------------------------------------------------3 3.2可变荷载------------------------------------------------------------------3 3.3风荷载--------------------------------------------------------------------4 四、杆件内力计算及内力组合--------------------------------------------------------4 五、杆件截面选择及验算------------------------------------------------------------5 5.1上弦杆---------------------------------------------------------------------6 5.2.下弦杆---------------------------------------------------------------------7 5.3.腹杆-----------------------------------------------------------------------7 5.4屋架杆件截面表-------------------------------------------------------------7 六、节点设计-----------------------------------------------------------------------8

预应力混凝土连续梁桥设计 计算书

目录 第一章概述 (4) 1.1 地质条件 (4) 1.2 主要技术指标 (4) 1.3 设计规范及标准 (4) 第二章方案比选 (5) 2.1 概述 (5) 2.2 比选原则 (5) 2.3 比选方案 (5) 2.3.1 预应力混凝土连续梁桥 (5) 2.3.2 预应力混凝土连续刚桥桥 (7) 2.3.3 普通上承式拱桥 (8) 2.4 方案比较 (9) 第三章预应力混凝土连续梁桥总体布置 (12) 3.1 桥型布置 (12) 3.2 桥孔布置 (12) 3.3 桥梁上部结构尺寸拟定 (12) 3.4 桥梁下部结构尺寸拟定 (13) 3.5 本桥使用材料 (14) 3.6 毛界面几何特性计算 (14) 第四章荷载内力计算 (16) 4.1 模型简介 (16) 4.2 全桥结构单元的划分 (16) 4.2.1 划分单元原则 (16) 4.2.2 桥梁具体单元划分 (17) 4.3 全桥施工节段的划分 (17) 4.3.1 桥梁划分施工分段原则 (17) 4.3.2 施工分段划分 (17) 4.4 恒载、活载内力计算 (17) 4.4.1 恒载内力计算 (17) 4.4.2 悬臂浇筑阶段内力 (18) 4.4.3 边跨合龙阶段内力 (19)

4.4.4 中跨合龙阶段内力 (20) 4.4.5 活载内力计算 (21) 4.5 其他因素引起的内力计算 (23) 4.5.1 温度引起的内力计算 (23) 4.5.2 支座沉降引起的内力计算 (25) 4.5.3 收缩、徐变引起的内力计算 (26) 4.6 内力组合 (28) 4.6.1 正常使用极限状态的内力组合 (28) 4.6.2 承载能力极限状态的内力组合 (29) 第五章预应力钢束的估算与布置 (32) 5.1 钢束估算 (32) 5.1.1 按承载能力极限计算时满足正截面强度要求 (32) 5.1.2 按正常使用极限状态的应力要求计算 (33) 5.2 预应力钢束布置 (39) 5.3 预应力损失计算 (40) 5.3.1 预应力与管道壁间摩擦引起的应力损失 (40) 5.3.2 锚具变形、钢筋回缩和接缝压缩引起的应力损失 (41) 5.3.3 混凝土的弹性压缩引起的应力损失 (41) 5.3.4 钢筋松弛引起的应力损失 (42) 5.3.5 混凝土收缩徐变引起的应力损失 (42) 5.3.6 有效预应力计算 (44) 5.4 预应力计算 (45) 第六章强度验算 (48) 6.1 正截面承载能力验算 (48) 6.2 斜截面承载能力验算 (51) 第七章应力验算 (55) 7.1 短暂状况预应力混凝土受弯构件应力验算 (55) 7.1.1 压应力验算 (55) 7.1.2 拉应力验算 (55) 7.2 持久状况正常使用极限状态应力验算 (60) 7.2.1 持久状况(使用阶段)预应力混凝土受压区混凝土最大压应力验算 60 7.2.2 持久状况(使用阶段)混凝土的主压应力验算 (62) 7.2.3 持久状况(使用阶段)预应力钢筋拉应力验算 (65) 第八章抗裂验算 (68) 8.1 正截面抗裂验算 (68)

简支T型梁计算说明书

预制钢筋混凝土简支T形梁计算说明书 姓名 *** 学号******* 2012年12月5号

1)已知设计数据及要求 钢筋混凝土简支梁全长o L=9.96m,计算跨径L=9.5m。T形截面梁的尺寸如图,桥梁处于I类环境条件,安全等级为二级,oγ=1 。 梁体采用C25混凝土,轴心抗压强度设计值 cd f=11.5MPa,轴心抗拉强度设 计值 td f=1.23MPa。主筋采用HRB335钢筋,抗拉强度设计值sd f=280MPa;箍筋采 用R235钢筋,直径8mm,抗拉强度设计值 sd f=195MPa。 简支梁控制截面的弯矩组合设计值和剪力组合设计值: l/2 ,d M=1.2*257.16+1.4*132.89=494.64KNm l/4 ,d M=1.2*192.87+1.4*88.67=355.58KNm 0,d V=1.2*107,15+1.4*123.45=301.41KN l/2 ,d V=1.2*0+1.4*36.54=51.16KN 2)跨中截面纵向受拉钢筋计算 (1)T形截面梁受压翼板的有效宽度'b f 由图所示,T形截面受压翼板厚度的尺寸,可得翼板平均厚度 ' h f =mm 120 2 100 140 = +,则可得到' 1 b f =L/3=9500/3=3167mm ' 2 b f =1600mm ' 3 b f =b+2bh+12'h f =170+2*0+12*120=1610mm 故,受压翼板的有效宽度'b f =1600mm (2)钢筋数量计算 截面设计

l/2M =o γl/2,d M =494.64KNm 设s a =300mm+0.07h=30+0.007*800=86mm , 则截面有效高度o h =800-86=714mm ①判定T 形截面类型: cd f ' b f 'h f (o h -'h f /2)=11.5*1600*120(714-120/2)=1444KNm>l/2M (=494.64KNm) ②求受压区的高度 494.64*610=11.5*1600x (714-x/2) 得合适解为x=39mm<'h f (=120mm) ③求受拉钢筋面积As As= f cd 'b f x/f sd =(11.5*1600*39)/280=2563mm 2 跨中截面主筋选择为12?18,焊接骨架的钢筋层数为6层纵向钢筋面积As=3054mm 2 混凝土保护层取30 mm>d=18mm ,及设计要求的最小值30mm 。有效钢筋的横向间距S n =170-2*30-2*20.5=69mm>40 mm 及1.25d=1.25*18=22.5mm ,故满 足构造要求。如图所示。 截面复核 s a =30+20.5*6/2=91.5mm 则o h =800-91.5=708.5mm ①判定T 形截面类型 cd f ' b f 'h f =11.5*1600*120=2.21KNm sd f s a =280*3054=0.86KNm 由于 cd f 'b f 'h f >sd f s a ,故为第一类T 形截面 ②求受压区高度)(mm h mm b f A f x f cd s sd 12047.461600 5.113054280f ='<=??= '= ③正截面抗弯承载力M u ) 64.494(93.585)2 47.465.708(47.4616005.11)2 (2 0KNm M KNm x h x b f M l f cd u =>=- ??=- '= 3)腹筋设计

钢结构课程设计计算书

一由设计任务书可知: 厂房总长为120m,柱距6m,跨度为24m,屋架端部高度为2m,车间内设有两台中级工作制吊车,该地区冬季最低温度为-22℃。暂不考虑地震设防。 屋面采用1.5m×6.0m预应力大型屋面板,屋面坡度为i=1:10。卷材防水层面(上铺120mm 泡沫混凝土保温层和三毡四油防水层)。屋面活荷载标准值为0.7KN/㎡,雪荷载标准值为0.4KN/㎡,积灰荷载标准值为0.5KN/㎡。 屋架采用梯形钢屋架,钢屋架简支于钢筋混凝土柱上,混凝土强度等级C20. 二选材: 根据该地区温度及荷载性质,钢材采用Q235-C。其设计强度为215KN/㎡,焊条采用E43型,手工焊接,构件采用钢板及热轧钢筋,构件与支撑的连接用M20普通螺栓。 屋架的计算跨度L。=24000-2×150=23700,端部高度:h=2000mm(轴线处),h=2150(计算跨度处)。 三结构形式与布置: 屋架形式及几何尺寸见图1所示: 图1 屋架支撑布置见图2所示:

图2 四荷载与内力计算: 1.荷载计算: 活荷载于雪荷载不会同时出现,故取两者较大的活荷载计算。 永久荷载标准值: 防水层(三毡四油上铺小石子)0.35KN/㎡找平层(20mm厚水泥砂浆)0.02×20=0.40 KN/㎡保温层(40mm厚泡沫混凝土0.25 KN/㎡预应力混凝土大型屋面板 1.4 KN/㎡钢屋架和支撑自重0.12+0.011×24=0.384 KN/㎡ 总计:2.784 KN/㎡可变荷载标准值: 雪荷载<屋面活荷载(取两者较大值)0.7KN/㎡积灰荷载0.5KN/㎡风载为吸力,起卸载作用,一般不予考虑。 总计:1.2 KN/㎡永久荷载设计值 1.2×2.784 KN/㎡=3.3408KN/㎡可变荷载设计值 1.4×1.2KN/㎡=1.68KN/㎡2.荷载组合: 设计屋架时应考虑以下三种组合: 组合一全跨永久荷载+全跨可变荷载 屋架上弦荷载P=(3.3408KN/㎡+1.68KN/㎡) ×1.5×6=45.1872KN 组合二全跨永久荷载+半跨可变荷载 屋架上弦荷载P1=3.3408KN/㎡×1.5×6=30.07KN P2=1.68KN/㎡×1.5×6=15.12KN 组合三全跨屋架及支撑自重+半跨大型屋面板自重+半跨屋面活荷载

装配式砼简支T形梁桥内力计算与结构设计

桥梁工程课堂设计 专业:土木工程 班级:交通10152 姓名:杨伟巍学号:10200311327 指导老师:张莲英 2013年6月18日

目录 一、设计原始资料 (3) 二、设计内容及要求 (4) 三、设计正文 (4) 1、桥面板内力计算 (2) 1.1 恒载及其内力 (5) 1.2 活载内力 (5) 1.3 荷载组合 (6) 2、主梁内力计算 (6) 2.1 恒载内力计算 (6) 2.2 活载内力计算 (7) 2.2.1用“杠杆法”计算荷载位于支点处各主梁的荷载横向分布系数…… ( 8 ) 2.2.3用“偏心压力法”计算荷载位于跨中时各主梁的荷载横向分布系数(9) 2.2.3用“修正刚性横梁法”计算荷载位于跨中时各主梁的荷载横向分布系(10) 2.3计算活载内力 (13) 3、横隔梁内力计算 (17) 4、挠度、预拱度计算 (20) 四、主要参考文献 (24)

装配式砼简支T形梁桥内力计算与结构设计计算 一、设计原始资料 1.桥面净空:净-7+2×1.50m 2.主梁跨径和全长:标准跨径:l b =20.00m(墩中心距离),计算跨径:l j =19.60m(支座中心距 离),主梁全长:l 全 =19.96m(主梁预制长度) 3.上部结构主梁布置图:(单位:cm) 主梁一般构造图 上部结构横断面构造图 上部结构纵断面构造图4.设计荷载:2004桥梁规范:公路—I级荷载,人群3.0KN/m2

5.材料:主梁:混凝土C40,容重26KN/m3, 桥面铺装:10cm厚C30混凝土(25KN/m3),8cm厚沥青(23KN/m3),人行道栏杆10N/m 6.设计方法:“杠杆法”、“修正刚性横梁法”、“铰接板法”、“比拟正交异性板法”等 7.设计依据:《公路桥涵设计通用规范》(JTG D60-2004) 《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004) 二、设计内容及要求 1.桥面板内力计算:计算T梁翼板所构成的铰接悬臂板的设计内力。 2.主梁内力计算: (1)用“杠杆法”计算荷载位于支点处各主梁的荷载横向分布系数。 (2)用“偏心压力法、修正刚性横梁法、刚接板法”计算荷载位于跨中时各主梁的荷载横向分布系数。 (3)计算主梁在荷载作用下跨中截面的弯矩、支点和跨中截面的剪力。 (4)进行主梁内力组合,并画出主梁弯矩包络图和剪力包络图。 3.横梁内力计算:用“刚性横梁法”计算横梁内力。 4.挠度、预拱度计算:计算主梁跨中的挠度,并考虑是否需要设置预拱度。 5.提交成果 1.设计计算书一份; 2.上部结构构造图一张(A3图纸);参考81页 3.主粱钢筋大样图一张(A3图纸)。参考81页 三、设计正文 1、桥面板内力计算

钢结构设计计算书

《钢结构设计原理》课程设计 计算书 专业:土木工程 姓名 学号: 指导老师:

目录 设计资料和结构布置- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -1 1.铺板设计 1.1初选铺板截面 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 1.2板的加劲肋设计- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3 1.3荷载计算 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4 3.次梁设计 3.1计算简图- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5 3.2初选次梁截面 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5 3.3内力计算 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6 3.4截面设计 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6 4.主梁设计 4.1计算简图 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7 4.2初选主梁截面尺寸 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7 5.主梁内力计算 5.1荷载计算- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9 5.2截面设计- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9 6.主梁稳定计算 6.1内力设计- - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - 11 6.2挠度验算- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 13 6.3翼缘与腹板的连接- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 13 7主梁加劲肋计算 7.1支撑加劲肋的稳定计算 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14 7.2连接螺栓计算 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14 7.3加劲肋与主梁角焊缝 - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - 15 7.4连接板的厚度 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 15 7.5次梁腹板的净截面验算 - - - - - - - - - - - - - - - - - - - - - - - - - - - - 15 8.钢柱设计 8.1截面尺寸初选 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 16 8.2整体稳定计算 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 16 8.3局部稳定计算 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 17 8.4刚度计算 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 17 8.5主梁与柱的链接节点- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 18 9.柱脚设计 9.1底板面积 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 21 9.2底板厚度 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 21 9.3螺栓直径 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 21 10.楼梯设计 10.1楼梯布置 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 22

钢桁梁施工合同(正式版本)

钢桁梁制造、运输及安装施工格式合同 甲方:中交二航局深茂铁路JMZQ-6标工程指挥部 乙方:中交二航局结构工程有限公司 甲方因施工实际需要,确定将承建的新建深圳至茂名铁路江门至茂名段DK133+223~DK388+868.29JMZQ-6标工程项目(以下简称本项目)钢桁梁制造、运输及安装施工交由乙方实施,乙方在全面接受本项目业主招标文件及其修改补遗和甲方与业主签订的总承包合同、承诺的前提下,愿意实施上述施工任务,按《中华人民共和国合同法》等有关规定,为明确双方权利、义务和责任,经双方协商一致,同意签订本合同以资共同遵守。 第一条工程名称、地点、范围及内容 1、工程名称:新建深圳至茂名铁路江门至茂名段JMZQ-6标; 2、工程地点:广东省阳江市境内; 3、工程范围:新建深圳至茂名铁路江门至茂名段JMZQ-6标钢桁梁制造、涂装、运输、工地连接(包括焊接或栓接)、配合吊装(不含顶推,平台、支架等)等 4、工作内容 乙方根据铁四院设计出版的《134m双线有砟简支钢桁梁》施工图设计,完成本合同钢桁梁制造、涂装、运输与配合安装(含检查车、检查车轨道安装),包括但不限于以下工作: (1)钢结构制造、运输、安装 (2) 本项目钢桁梁制作的钢材接收、卸车、钢材预处理、下料,钢桁梁单元

件制作 (含零配件 ),钢桁梁节段的制作、拼装、保管,在甲方规定时间内将钢桁梁节段及临时匹配件在制造厂吊装并运输到桥位监理工程师及甲方指定的位置;配合甲方按监理工程师及设计要求进行钢桁梁吊装就位;梁段吊装就位后负责逐节连接(焊接或栓接,包括高强螺栓连接、施拧、配合检测及焊缝修补等工作),检查车的安装配合,施工措施用临时约束、临时匹配件、临时吊点、吊耳等的加工、制作。 本项目钢结构构件加工场内装船(车)、运输、现场配合卸货、拼装接长,安装配合及缺陷修补等; 实施本项目钢结构制作、运输及安装工作所需的遮雨棚等临时设施制安拆及与此相关的工作内容; 本项目检修车的配合安装及随车电缆的布设、行走动力系统的安装等为完成施工设计图纸要求的所有相关工作内容。 (2)附属设施 本项目附属设施 (防撞钢护栏底座板、检修道栏杆底座板、灯柱底座板、泄水管、路缘石、后期工程预留件等)的材料接收、卸车、下料,制造、运输、安装等; 本项目钢桁梁上的所有预留钢构件的制造及焊接(包括永久钢构件如支座预留钢构件、伸缩装置预留钢构件、阻尼器预留钢构件等及经监理工程师批准的临时预留钢构件); (3)涂装 钢桁梁(含检查车轨道)、桥面系钢构件及钢桁梁特殊部位自加工工厂内生产直至在工地现场安装完毕(包括最终涂装)的所有防腐涂装工作;

H型钢结构简支梁设计计算书

H型钢结构简支梁设计计算书 转发评论 2011-10-21 11:16 ------------------------------- | 简支梁设计| | | | 构件:BEAM1 | | 日期:2011/10/21 | | 时间:11:03:20 | ------------------------------- ----- 设计信息----- 钢梁钢材:Q235 梁跨度(m):15.000 梁平面外计算长度(m):6.500 钢梁截面:焊接组合H形截面: H*B1*B2*Tw*T1*T2=298*149*149*8*10*10 容许挠度限值[υ]: l/400 = 37.500 (mm) 强度计算净截面系数:1.000 计算梁截面自重作用: 计算 简支梁受荷方式: 竖向单向受荷 荷载组合分项系数按荷载规范自动取值 ----- 设计依据----- 《建筑结构荷载规范》(GB 50009-2001) 《钢结构设计规范》(GB 50017-2003) ----- 简支梁作用与验算----- 1、截面特性计算 A =5.2040e-003; X c =7.4500e-002; Yc =1.4900e-001; Ix =7.6141e-005; Iy =5.5251e-006; ix =1.2096e-001; iy =3.2584e-002;

W1x=5.1102e-004; W2x=5.1102e-004; W1y=7.4163e-005; W2y=7.4163e-005; 2、简支梁自重作用计算 梁自重荷载作用计算: 简支梁自重(KN): G =6.1277e+000; 自重作用折算梁上均布线荷(KN/m) p=4.0851e-001; 3、梁上恒载作用 荷载编号荷载类型荷载值1 荷载参数1 荷载参数2 荷载值2 1 4 1.00 1.00 0.00 0.00 2 4 1.50 7.50 0.00 0.00 3 4 1.00 14.00 0.00 0.00 4、单工况荷载标准值作用支座反力(压为正,单位:KN) △恒载标准值支座反力 左支座反力Rd1=4.814, 右支座反力Rd2=4.814 5、梁上各断面内力计算结果 △组合1:1.2恒+1.4活 断面号: 1 2 3 4 5 6 7 弯矩(kN.m):0.000 6.538 11.110 14.916 17.955 20.229 21.737 剪力(kN) : 5.777 3.964 3.351 2.738 2.126 1.513 -0.900 断面号:8 9 10 11 12 13 弯矩(kN.m):20.229 17.955 14.916 11.110 6.538 0.000 剪力(kN) :-1.513 -2.126 -2.738 -3.351 -3.964 -5.777 △组合2:1.35恒+0.7*1.4活 断面号: 1 2 3 4 5 6 7 弯矩(kN.m):0.000 7.355 12.498 16.780 20.200 22.758 24.455 剪力(kN) : 6.499 4.459 3.770 3.081 2.391 1.702 -1.013 断面号:8 9 10 11 12 13 弯矩(kN.m):22.758 20.200 16.780 12.498 7.355 0.000 剪力(kN) :-1.702 -2.391 -3.081 -3.770 -4.459 -6.499

钢桁梁

1.1.1.钢桁梁施工方法及工艺 本线路为跨越东海河设臵南畔中桥,孔跨布臵为1-64m单线道砟桥面简支钢桁梁。根据实际情况钢桁梁采用拖拉法架设就位进行施工。 钢桁梁拖拉法施工主要工序为搭设拼装及拖拉支架、钢梁拼装、拖拉就位后调整落梁及桥面砼施工等,工艺流程见图2-2.2-18。 拆除支架、附属工程施工 图2-2.2-18 钢桁梁拖拉法施工工艺流程图 1.1.1.1.施工准备 1.1.1.1.1.施工场地准备 杆件装卸、场内移位以及膺架搭设吊装采用一台QY25,杆件拼装采用一台QY50汽车吊,用一台加长运输车转运杆件,在杆件吊装

和转运过程中要对杆件进行护角保护,防止损伤杆件。 根据现场实际情况,在大里程桥台后路基上选择约3500m2的场地可作为架梁场地,在架梁场地内应合理布臵杆件堆放厂、预拼场、场内道路及高强度螺栓存放库、小型机具零星材料库、试验室、配电房、管理房等生产临时设施。 ⑴杆件存放库 杆件从工厂运到工地时要临时存放,存放场要根据杆件规格、数量、存放时间、卸装机具、确定其面积。按经验每吨按2~3m2考虑。场地需平整、压实,填料应用石渣,且排水设施完善。 ⑵杆件预拼场 为减少桥上拼装工作,降低拼装难度,提高拼装精度和加快拼装速度,杆件在上桥拼装前要先按节点长度预拼成构架单元,预拼场内按钢梁节点位臵、纵横梁、上下平纵联、桥门架、横联等设臵拼装台座,预拼场要用混凝土硬化。 ⑶喷砂场 杆件栓合板面或板钣面损坏,或摩擦系数检查不合格,则需要在工地进行补喷处理。喷砂场配套设臵空压机房和喷砂设臵。喷砂场应设在下风边缘位臵。 ⑷油漆存放库 杆件预拼完和桥上装拼完成后要进行钢梁油漆喷涂,场内布臵存放各种油漆的房屋。 ⑸临时生产房屋

钢结构桁架设计计算书

renchunmin 一、设计计算资料 1. 办公室平面尺寸为18m ×66m ,柱距8m ,跨度为32m ,柱网采用封闭结合。火灾危险性:戊类,火灾等级:二级,设计使用年限:50年。 2. 屋面采用长尺复合屋面板,板厚50mm ,檩距不大于1800mm 。檩条采用冷弯薄壁卷边槽钢C200×70×20×2.5,屋面坡度i =l/20~l/8。 3. 钢屋架简支在钢筋混凝土柱顶上,柱顶标高9.800m ,柱上端设有钢筋混凝土连系梁。上柱截面为600mm ×600mm ,所用混凝土强度等级为C30,轴心抗压强度设计值f c =1 4.3N/mm 2 。 抗风柱的柱距为6m ,上端与屋架上弦用板铰连接。 4. 钢材用 Q235-B ,焊条用 E43系列型。 5. 屋架采用平坡梯形屋架,无天窗,外形尺寸如下图所示。 6. 该办公楼建于苏州大生公司所 属区内。 7. 屋盖荷载标准值: (l) 屋面活荷载 0.50 kN/m 2 (2) 基本雪压 s 0 0.40 kN/m 2(3) 基本风压 w 0 0.45 kN/m 2(4) 复合屋面板自重 0.15 kN/m 2(5) 檩条自重 查型钢表 (6) 屋架及支撑自重 0.12+0. 01l kN/m 28. 运输单元最大尺寸长度为9m ,高度为0.55m 。 二、屋架几何尺寸的确定 1.屋架杆件几何长度 屋架的计算跨度mm L l 17700300180003000=-=-=,端部高度取mm H 15000=跨中高度为mm 1943H ,5.194220 217700 150020==?+ =+=取mm L i H H 。跨中起拱高度为60mm (L/500)。梯形钢屋架形式和几何尺寸如图1所示。

相关文档
最新文档