均值不等式练习题

均值不等式练习题
均值不等式练习题

利用均值不等式求最值的方法

均值不等式a b ab a b +≥>>2

00(,,当且仅当a =b 时等号成立)是一个重要的不等式,利用它可以求解函数最值问题。对于有些题目,可以直接利用公式求解。但是有些题目必须进行必要的变形才能利用均值不等式求解。下面是一些常用的变形方法。

一、配凑

1. 凑系数

例1. 当04<

解析:由04<x ,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到2828x x +-=()为定值,故只需将y x x =-()82凑上一个系数即可。

y x x x x x x =-=-≤+-=()[()]()8212282122822

82· 当且仅当282x x =-,即x =2时取等号。

所以当x =2时,y x x =-()82的最大值为8。

评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。

2. 凑项

例2. 已知x <54,求函数f x x x ()=-+-42145

的最大值。 解析:由题意知450x -<,首先要调整符号,又()42145x x --·

不是定值,故需对42x -进行凑项才能得到定值。 ∵x x <->54

540, ∴f x x x x x ()()=-+

-=--+-+42145541543≤---+=-+=2541543231()x x · 当且仅当54154-=-x x

,即x =1时等号成立。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

3. 分离

例3. 求y x x x x =+++-27101

1()≠的值域。 解析:本题看似无法运用均值不等式,不妨将分子配方凑出含有(x +1)的项,再将其分离。

y x x x x x x x x =+++=+++++=++++22710115141141

5()()() 当x +>10,即x >-1时

y x x ≥+++=2141

59()·(当且仅当x =1时取“=”号)。 当x +<10,即x <-1时

y x x ≤-++=52141

1()·(当且仅当x =-3时取“=”号)。 ∴y x x x x =+++27101

1()≠-的值域为(][)-∞+∞,,19 。 评注:分式函数求最值,通常化成y mg x A g x B A m =+

+>>()()()00,,g(x)恒正或恒负的形式,然后运用均值不等式来求最值。

二、整体代换

例4. 已知a b a b >>+=0021,,,求t a b =

+11的最小值。 解法1:不妨将11a b

+乘以1,而1用a +2b 代换。 ()()()111112a b a b

a b +=++·· =+++=++≥+=+12232322322

b a a b

b a a b b a a b

· 当且仅当2b a a b =时取等号,由22121122b a a b a b a b =+=?????=-=-????

?,得

即a b =-=-????

?21122时,t a b =+11的最小值为322+。 解法2:将11a b

+分子中的1用a b +2代换。 a b a a b b b a a b b a a b

+++=+++=++≥+2212232322 评注:本题巧妙运用“1”的代换,得到t b a a b =+

+32,而2b a 与a b 的积为定值,即可用均值不等式求得t a b =

+11的最小值。

三、换元

例5. 求函数y x x =++225

的最大值。 解析:变量代换,令t x =

+2,则x t t y t t =-≥=+222021(),则 当t =0时,y =0

当t >0时,y t t t t =+≤=1

21

1221

24

· 当且仅当21t t =,即t =22

时取等号。 故x y =-=3224

时,max 。 评注:本题通过换元法使问题得到了简化,而且将问题转化为熟悉的分式型函数的求最值问题,从而为构造积为定值创造有利条件。

四、取平方

例6. 求函数y x x x =-+-<<21521252

()的最大值。 解析:注意到2152x x --与的和为定值。

y x x x x x x 22

2152422152421528

=-+-=+--≤+-+-=()()()

()() 又y >0,所以022<≤y

当且仅当2152x x -=-,即x =

32时取等号。 故y max =22。

评注:本题将解析式两边平方构造出“和为定值”,为利用均值不等式创造了条件。

总之,我们利用均值不等式求最值时,一定要注意“一正二定三相等”,同时还要注意一些变形技巧,积极创造条件利用均值不等式。

[练一练]

1. 若02<

-()63的最大值。 2. 求函数y x x x =-+>13

3()的最小值。 3. 求函数y x x x =+->281

1()的最小值。 4. 已知x y >>00,,且119x y

+=,求x y +的最小值。 参考答案:1.

3 2. 5 3. 8 4.

49

新课标人教A 版高中数学必修五典题精讲(3.4基本不等式)

典题精讲

例1(1)已知0<x <

31,求函数y=x(1-3x)的最大值; (2)求函数y=x+x

1的值域. 思路分析:(1)由极值定理,可知需构造某个和为定值,可考虑把括号内外x 的系数变成互为相反数;(2)中,未指出x >0,因而不能直接使用基本不等式,需分x >0与x <0讨论.

(1)解法一:∵0<x <

3

1,∴1-3x >0. ∴y=x(1-3x)= 31·3x(1-3x)≤31[2)31(3x x -+]2=121,当且仅当3x=1-3x ,即x=61时,等号成立.∴x=6

1时,函数取得最大值121.

解法二:∵0<x <

31,∴3

1-x >0. ∴y=x(1-3x)=3x(31-x)≤3[2

31x x -+]2=121,当且仅当x=31-x,即x=61时,等号成立. ∴x=61时,函数取得最大值121. (2)解:当x >0时,由基本不等式,得y=x+x 1≥2x

x 1?=2,当且仅当x=1时,等号成立. 当x <0时,y=x+x 1=-[(-x)+)

(1x -]. ∵-x >0,∴(-x)+)

(1x -≥2,当且仅当-x=x -1,即x=-1时,等号成立. ∴y=x+x

1≤-2. 综上,可知函数y=x+

x 1的值域为(-∞,-2]∪[2,+∞). 绿色通道:利用基本不等式求积的最大值,关键是构造和为定值,为使基本不等式成立创造条件,同时要注意等号成立的条件是否具备.

变式训练1当x >-1时,求f(x)=x+

1

1+x 的最小值. 思路分析:x >-1?x+1>0,变x=x+1-1时x+1与11+x 的积为常数. 解:∵x >-1,∴x+1>0.

∴f(x)=x+11+x =x+1+11+x -1≥2)

1(1)1(+?+x x -1=1. 当且仅当x+1=

11+x ,即x=0时,取得等号. ∴f(x)min =1.

变式训练2求函数y=1

33224+++x x x 的最小值. 思路分析:从函数解析式的结构来看,它与基本不等式结构相差太大,而且利用前面求最值的方法不易求解,事实上,我们可以把分母视作一个整体,用它来表示分子,原式即可展开.

解:令t=x 2+1,则t≥1且x 2=t-1.

∴y=1

33224+++x x x =1113)1(3)1(22++=++=+-+-t t t t t t t t . ∵t≥1,∴t+t 1≥2t

t 1?=2,当且仅当t=t 1,即t=1时,等号成立. ∴当x=0时,函数取得最小值3.

例2已知x >0,y >0,且x 1+y

9=1,求x+y 的最小值. 思路分析:要求x+y 的最小值,根据极值定理,应构建某个积为定值,这需要对条件进行必要的变形,下面给出三种解法,请仔细体会.

解法一:利用“1的代换”, ∵x 1+y

9=1, ∴x+y=(x+y)·(x 1+y 9)=10+y

x x y 9+. ∵x >0,y >0,∴y x x y 9+≥2y

x x y 9?=6. 当且仅当y

x x y 9=,即y=3x 时,取等号. 又x 1+y

9=1,∴x=4,y=12. ∴当x=4,y=12时,x+y 取得最小值16. 解法二:由x 1+y 9=1,得x=9

-y y . ∵x >0,y >0,∴y >9. x+y=9-y y +y=y+999-+-y y =y+99-y +1=(y-9)+9

9-y +10. ∵y >9,∴y-9>0. ∴999-+-y y ≥29

9)9(-?-y y =6. 当且仅当y-9=9

9-y ,即y=12时,取得等号,此时x=4.∴当x=4,y=12时,x+y 取得最小值16.解法三:由x 1+y

9=1,得y+9x=xy, ∴(x-1)(y-9)=9.

∴x+y=10+(x-1)+(y-9)≥10+2)9)(1(--y x =16,

当且仅当x-1=y-9时取得等号.又x 1+y

9=1, ∴x=4,y=12.

∴当x=4,y=12时,x+y 取得最小值16.

绿色通道:本题给出了三种解法,都用到了基本不等式,且都对式子进行了变形,配凑出基本不等式满足的条件,这是经常需要使用的方法,要学会观察,学会变形,另外解法二,通过消元,化二元问题为一元问题,要注意根据被代换的变量的范围对另外一个变量的范围的影响.

黑色陷阱:本题容易犯这样的错误:

x 1+y 9≥2xy 9①,即xy

6≤1,∴xy ≥6. ∴x+y≥2xy ≥2×6=12②.∴x+y 的最小值是12. 产生不同结果的原因是不等式①等号成立的条件是x 1=y

9,不等式②等号成立的条件是x=y.在同一个题目中连续运用了两次基本不等式,但是两个基本不等式等号成立的条件不同,会导致错误结论.

变式训练已知正数a,b,x,y 满足a+b=10,

y b x a +=1,x+y 的最小值为18,求a,b 的值. 思路分析:本题属于“1”的代换问题.

解:x+y=(x+y)(y b x a +)=a+x ay y bx ++b=10+x

ay y bx +. ∵x,y >0,a,b >0,

∴x+y≥10+2ab =18,即ab =4.

又a+b=10,

∴???==8,2b a 或?

??==.2,8b a 例3求f(x)=3+lgx+

x lg 4的最小值(0<x <1). 思路分析:∵0<x <1,

∴lgx <0,x

lg 4<0不满足各项必须是正数这一条件,不能直接应用基本不等式,正确的处理方法是加上负号变正数.

解:∵0<x <1,∴lgx <0,x lg 4<0.∴-x

lg 4>0. ∴(-lgx)+(-x lg 4)≥2)lg 4)(lg (x

x --=4. ∴lgx+x lg 4≤-4.∴f(x)=3+lgx+x

lg 4≤3-4=-1. 当且仅当lgx=x

lg 4,即x=1001时取得等号.

则有f(x)=3+lgx+x

lg 4 (0<x <1)的最小值为-1. 黑色陷阱:本题容易忽略0<x <1这一个条件.

变式训练1已知x <

45,求函数y=4x-2+5

41-x 的最大值. 思路分析:求和的最值,应凑积为定值.要注意条件x <4

5,则4x-5<0. 解:∵x <4

5,∴4x-5<0. y=4x-5+541-x +3=-[(5-4x)+x 451-]+3 ≤-2x x 451)45(-?

-+3=-2+3=1. 当且仅当5-4x=x

451-,即x=1时等号成立. 所以当x=1时,函数的最大值是1.

变式训练2当x <

23时,求函数y=x+3

28-x 的最大值. 思路分析:本题是求两个式子和的最大值,但是x·3

28-x 并不是定值,也不能保证是正值,所以,必须使用一些技巧对原式变形.可以变为y=21(2x-3)+328-x +23=-(x x 238223-+-)+2

3,再求最值. 解:y=21(2x-3)+328-x +23=-(x x 238223-+-)+2

3, ∵当x <23时,3-2x >0, ∴x x 238223-+-≥x

x 2382232-?-=4,当且仅当x x 238223-=-,即x=-21时取等号. 于是y≤-4+23=25-,故函数有最大值2

5-. 例4如图3-4-1,动物园要围成相同的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.

图3-4-1

(1)现有可围36 m 长网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大?

(2)若使每间虎笼面积为24 m 2,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋总长度最小?

思路分析:设每间虎笼长为x m ,宽为y m ,则(1)是在4x+6y=36的前提下求xy 的最大值;而(2)则是在xy=24的前提下来求4x+6y 的最小值.

解:(1)设每间虎笼长为x m ,宽为y m ,则由条件,知4x+6y=36,即2x+3y=18.

设每间虎笼的面积为S ,则S=xy.

方法一:由于2x+3y≥2y x 32?=2xy 6,

∴2xy 6≤18,得xy≤227,即S≤2

27. 当且仅当2x=3y 时等号成立.

由???=+=,1832,22y x y x 解得?

??==.3,5.4y x 故每间虎笼长为4.5 m ,宽为3 m 时,可使面积最大. 方法二:由2x+3y=18,得x=9-

23y. ∵x >0,∴0<y <6. S=xy=(9-23y)y=2

3 (6-y)y. ∵0<y <6,∴6-y >0.

∴S≤23[2)6(y y +-]2=2

27. 当且仅当6-y=y,即y=3时,等号成立,此时x=4.5.故每间虎笼长4.5 m,宽3 m 时,可使面积最大.

(2)由条件知S=xy=24.

设钢筋网总长为l,则l=4x+6y.

方法一:∵2x+3y≥2y x 32?=2xy 6=24,

∴l=4x+6y=2(2x+3y)≥48,当且仅当2x=3y 时,等号成立.

由???==,

24,32xy y x 解得???==.4,6y x 故每间虎笼长6 m ,宽4 m 时,可使钢筋网总长最小. 方法二:由xy=24,得x=

y 24. ∴l=4x+6y=y 96+6y=6(y 16+y)≥6×2y y

?16=48,当且仅当y 16=y ,即y=4时,等号成立,此时x=6. 故每间虎笼长6 m,宽4 m 时,可使钢筋总长最小.

绿色通道:在使用基本不等式求函数的最大值或最小值时,要注意:

(1)x,y 都是正数;

(2)积xy (或x+y )为定值;

(3)x 与y 必须能够相等,特别情况下,还要根据条件构造满足上述三个条件的结论.

变式训练某工厂拟建一座平面图为矩形且面积为200 平方米的三级污水处理池(平面图如图3-4-2所示),由于地形限制,长、宽都不能超过16米,如果池外周壁建造单价为每米400元,中间两道隔墙建造单价为每米248元,池底建造单价为每平方米80元,池壁的厚度忽略不计,试设计污水处理池的长和宽,使总造价最低,并求出最低造价.

图3-4-2

思路分析:在利用均值不等式求最值时,必须考虑等号成立的条件,若等号不能成立,通常要用函数的单调性

进行求解.

解:设污水处理池的长为x 米,则宽为

x 200米(0<x≤16,0<x

200≤16),∴12.5≤x≤16. 于是总造价Q(x)=400(2x+2×x 200)+248×2×x 200+80×200. =800(x+x 324)+16 000≥800×2x

x 324?+16 000=44 800, 当且仅当x=x

324 (x >0),即x=18时等号成立,而18?[12.5,16],∴Q(x)>44 800. 下面研究Q(x)在[12.5,16]上的单调性.

对任意12.5≤x 1<x 2≤16,则x 2-x 1>0,x 1x 2<162<324.

Q(x 2)-Q(x 1)=800[(x 2-x 1)+324(1

211x x -)] =800×2

12112)324)((x x x x x x --<0, ∴Q(x 2)>Q(x 1).∴Q(x)在[12.5,16]上是减函数.

∴Q(x)≥Q(16)=45 000.

答:当污水处理池的长为16米,宽为12.5米时,总造价最低,最低造价为45 000元.

问题探究

问题某人要买房,随着楼层的升高,上下楼耗费的精力增多,因此不满意度升高.当住第n 层楼时,上下楼造成的不满意度为n.但高处空气清新,嘈杂音较小,环境较为安静,因此随着楼层的升高,环境不满意度降低.设住第n 层楼时,环境不满意程度为n

8.则此人应选第几楼,会有一个最佳满意度. 导思:本问题实际是求n 为何值时,不满意度最小的问题,先要根据问题列出一个关于楼层的函数式,再根据基本不等式求解即可.

探究:设此人应选第n 层楼,此时的不满意程度为y.

由题意知y=n+n

8. ∵n+n 8≥2248=?n

n , 当且仅当n=n

8,即n=22时取等号. 但考虑到n ∈N *,

∴n≈2×1.414=2.828≈3,

即此人应选3楼,不满意度最低.

高考均值不等式经典例题

高考均值不等式经典例题 1.已知正数,,a b c 满足2 15b ab bc ca +++=,则58310a b c +++的最小值为 。 2.设M 是ABC V 内一点,且30AB AC A =∠=?u u u r u u u r g ,定义()(,,)f M m n p =,其中,,m n p 分别是 ,,MBC MCA MAB V V V 的面积,若1()(,,)2 f M x y =,则14x y +的最小值为 . 3.已知实数1,12 m n >>,则224211n m m n +--的最小值为 。 4.设22110,21025() a b c a ac c ab a a b >>>++-+-的最小值为 。 5.设,,a b c R ∈,且222 ,2222a b a b a b c a b c ++++=++=,则c 的最大值为 。 6.已知ABC V 中,142, 10sin sin a b A B +=+=,则ABC V 的外接圆半径R 的最大值为 。 7.已知112,,339 a b ab ≥≥=,则a b +的最大值为 。 8. ,,a b c 均为正数,且222412a ab ac bc +++=,则a b c ++的最小值为 。 9. ,,,()4a b c R a a b c bc +∈+++=-2a b c ++的最小值为 。 10. 函数()f x =的最小值为 。 11.已知0,0,228x y x y xy >>++=,则2x y +的最小值为 。 12.若*3()k k N ≥∈,则(1)log k k +与(1)log k k -的大小: 。 13.设正数,,x y z 满足22340x xy y z -+-=,则当xy z 取最大值时,212x y z +-的最大值为 。 14.若平面向量,a b r r 满足23a b -≤r r ,则a b ?r r 的最小值为 。 15. 的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a b +的最大值为 。 16.设{}n a 是等比数列, 公比q =n S 为{}n a 的前n 项和,记*21 17()n n n n S S T n N a +-=∈,设0n T 为数列{}n T 的最大项,则0n = 。

均值不等式测试题(含详解)

均值不等式测试题 一、选择题 1.已知a 、b ∈(0,1)且a ≠b ,下列各式中最大的是( ) A.a 2+b 2 B.2ab C.2a b D.a +b 2.x ∈R ,下列不等式恒成立的是( ) A .x 2+1≥x B .11 2+x <1 C .lg(x 2+1)≥lg(2x) D .x 2+4>4x 3.已知x+3y-1=0,则关于y x 82+的说法正确的是( ) A.有最大值8 B.有最小值22 C.有最小值8 D.有最大值22 4.A设实数x ,y ,m ,n 满足x 2+y 2=1,m 2+n 2=3那么mx+ny 的最大值是( ) A.3 B.2 C.5 D.2 10 5.设a>0,b>0,则以下不等式中不恒成立的是( ) A.(a+b )(b a 1 1+)≥4 B.a 3+b 3≥2ab 2 C.a 2+b 2+2≥2a+2b D.b a b a -≥- 6.下列结论正确的是( ) A .当x>0且x ≠1时,lgx+x lg 1≥2 B .当x>0时,x +x 1≥2 C .当x ≥2时,x + x 1 ≥2 D .当00且a(a+b+c)+bc=324-,则2a+b+c 的最小值为( ) A .13- B .13+ C .223+ D .223- 二.填空题: 8.设x>0,则函数y=2- x 4 -x 的最大值为 ;此时x 的值是 。 9.若x>1,则log x 2+log 2x 的最小值为 ;此时x 的值是 。 10.函数y=1 4 2-+-x x x 在x>1的条件下的最小值为 ;此时x=_________. 11.函数f(x)=2 42 +x x (x ≠0)的最大值是 ;此时的x 值为 _______________.

均值不等式习题大全

均值不等式题型汇总 杨社锋 均值不等式是每年高考必考内容,它以形式灵活多变而备受出题人的青睐,下面我们来细数近几年来均值不等式在高考试题中的应用。 类型一:证明题 1. 设*,,1,a b R a b ∈+=求证:1 125()()4 a b a b ++≥ 2. 设,,(0,),a b c ∈+∞)a b c ≥++ 3. 设,,(0,),a b c ∈+∞求证:222 b c a a b c a b c ++≥++ 4. 设,,(0,),a b c ∈+∞求证:222 a b c ab bc ac ++≥++ 5. 已知实数,,x y z 满足:222 1x y z ++=,求xy yz +得最大值。 6. 已知正实数,,a b c ,且1abc =9≥ 7. (2010辽宁)已知,,a b c 均为正实数,证明:22221 11()a b c a b c +++++≥,并确定,,a b c 为何值时,等号成立。 类型二:求最值: 利用均值不等式求最值是近几年高考中考查频率最高的题型之一。使用均值不等式的核心在于配凑,配凑的精髓在于使得均值不等式取等号的条件成立。 1. 设11,(0,)1x y x y ∈+∞+=且,求x y +的最小值。 2. 设,(0,)1x y x y ∈+∞+=且,求 112x y +的最小值。 3. 已知,a b 为正实数,且1a b +=求1ab ab +的最小值。 4. 求函数11(01)1y x x x =+<<-的最小值。

变式:求函数291(0)122 y x x x =+<<-的最小值。 5. 设,(0,)x y ∈+∞,35x y xy +=,求34x y +的最小值。 6. 设,(0,)x y ∈+∞,6x y xy ++=求x y +的最小值。 7. 设,(0,)x y ∈+∞,6x y xy ++=求xy 的最大值。 8. (2010浙江高考)设,x y 为实数,若22 41x y xy ++=,求2x y +的最大值。 9. 求函数y = 的最大值。 变式:y = 10. 设0x >求函数21x x y x ++=的最小值。 11. 设设1x >-求函数211 x x y x ++=+的最小值。 12. (2010山东高考)若任意0x >,231 x a x x ≤++恒成立,求a 的取值范围. 13. 求函数22233(1)22 x x y x x x -+=>-+的最大值。 类型三、应用题 1.(2009湖北)围建一个面积为2 360m 的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需要维修),其它三面围墙要新建,在旧墙对面的新墙上要留一个宽度为2m 的进出口,如图所示,已知旧墙的维修费用为45/m 元,新墙的造价为180/m 元,设利用旧墙的长度为x (单位:m )。 (1)将y 表示为x 的函数(y 表示总费用)。 (2)试确定x ,使修建此矩形场地围墙的总费用最少。并求出最小总费用。 2.(2008广东)某单位用2160万元购得一块空地,计划在该空地上建造一栋至少10层,每层2000平方米的楼房。经测算,如果将楼房建为x 层(10x ≥),则每平方米的平均建筑费用为56048x +(单位:元)。为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层? (注:平均综合费用=平均建筑费用+平均购地费用,

均值不等式求最值的常用技巧及习题

利用基本不等式求最值的常用技巧及练习题(含解答)(经典) 一.基本不等式的常用变形 1.若0x >,则12x x + ≥ (当且仅当1x =时取“=” );若0x <,则1 2x x +≤- (当且仅当 _____________时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当____________时取“=”) 2.若0>ab ,则2≥+a b b a (当且仅当____________时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当_________时取“=” ) 注:(1)当两个正数的积为定植时,可以求它们和的最小值,当两个正数的和为定植时, 可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的重要条件“一正,二定,三取等” 二、利用基本不等式求最值的技巧: 技巧一:直接求: 例1 已知,x y R + ∈,且满足 134 x y +=,则xy 的最大值为 ________。 解:因为x >0,y>0 ,所以 34x y +≥=当且仅当34x y =,即x=6,y=8时取等 号) 1, 3.xy ∴≤,故xy 的最大值3. 变式:若44log log 2x y +=,求11 x y +的最小值.并求x ,y 的值 解:∵44log log 2x y += 2log 4=∴xy 即xy=16 2 1211211==≥+∴xy y x y x 当且仅当x=y 时等号成立 技巧二:配凑项求 例2:已知5 4x < ,求函数14245 y x x =-+-的最大值。

均值不等式常考题型

均值不等式及其应用 一.均值不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2? ? ? ??+≤b a ab (当且仅当 b a =时取“=”) 3.若0x >,则1 2x x + ≥ (当且仅当1x =时取 “=”);若0x <,则12x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2(2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三相等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42) 45 x x --不是常数,所以对42x -要进行拆、凑项,

均值不等式练习题

均值不等式知识点: 二、习题讲解: 例1: (1)求y = x+Z(x>O)的最小值 (2)求y = x + 2(x ≥ 2)的最小值 X (3)己知x>2,求y = x+ —的最小值x-2 变式训练: 4 1.已知x>o,求y = 2- X -一的最大值 X 2.当x>-l时,求f(x)= x+ —的最小值 x + 1 3?已知xv-?求函数y=4x-2+—-一的最上值 4 4x-5 4?己知JU b. c ∈ R ?求证:a2 +b2 + c2≥ ab+bc+ ac y= 2-3x--(x>0)的最大值是2-4石 5?X 6.y = ZxH—-—,x>3 x-3 7.y = 2sinx÷-—,xu(O,τr) Sin X

例2: (1)已知OVXV丄,求y =ZX(I-2x)的最衣值 2 2 (2)已知:a、b都是正数,Ka + b = l, α=a÷i, β = b+-f求a+β的最小值a b 变式训练: 1.己知OVXV 求函数y =x(l - 3x)的最大值 2.当0 Cx <4时,求y =χ(8 - 2x)的最人值。 3.设0

2.设x ∈f θ,-1,则函数y = 2血x + 1的最小值为 2 丿 sin2x 5 Z X Y - — 4x+ S 3.己知Xnz 则f(x)=-~~ 的最小值 2 2x-4 y=手宀的最小值是 4. √X 2 + 2 IK X 2 + 7x+10 “ 一… 求y= (x>-l)的值域。 χ- + 5 6求函数y =-==的值域。 7?设x ,y,z 为正实数.且满足x-2y+3z = 0 ?则的最小值 例 4:己知a,b,cwR+,且a + b+c = l?求证:丄 + —+ - ≥9 变式训练: 1 4 1.己知a >0,b >0,a +b= 2 >则y = — +二的最小值是 2正数x 5y 满足X +2y = l,求l∕x+l∕ y 的最小值。 例3:求函数y = X - +3x+3 x+1 (x>-l)的1?小值 变式训 练:

均值不等式的应用(习题+答案)

均值不等式应用 一.均值不等式 1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则 ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取“=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2(2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--??231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数

均值不等式【高考题】

应用一、求最值 直接求 例1、若x ,y 是正数,则22)21 ()21(x y y x +++的最小值是【 】 A .3 B .27 C .4 D .2 9 例2、设y x b a b a b a R y x y x 11,32,3,1,1,,+=+==>>∈则若的最大值为【 】 A. 2 B. 23 C. 1 D. 21 练习1.若0x >,则2 x x +的最小值为 . 练习2.设,x y 为正数, 则14 ()()x y x y ++的最小值为【 】 A.6 B. 9 C. 12 D. 15 练习3.若0,0>>b a ,且函数224)(23+--=bx ax x x f 在1=x 处有极值,则ab 的最大值等于【 】 A.2 B .3 C .6 D .9 练习4.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x = 吨. 练习5.求下列函数的值域: (1)2 2 213x x y + = (2)x x y 1 += 练习6.已知0x >,0y >,x a b y ,,,成等差数列,x c d y ,,,成等比数列,则 2 ()a b cd +的最小值是【 】 A.0 B.4 C.2 D.1 例3、已知0,0,01,a b c a b c >>>++=且则111 (1)(1)(1)a b c ---最小值为【 】 A. 5 B. 6 C. 7 D. 8 凑系数 例4、若x y ∈+R ,,且14=+y x ,则x y ?的最大值是 . 练习1.已知,x y R +∈,且满足 134 x y +=,则xy 的最大值为 . 练习2. 当40<-+ =x x x x f 在x a =处取最小值,则a =【 】 A.21+ B .31+ C .3 D .4 练习1.已知5 4 x <,求函数14245y x x =-+-的最大值. 练习2.函数 1 (3)3 x x x +>-的最小值为【 】 A. 2 B. 3 C. 4 D. 5 练习3.函数2 32(0)x x x +>的最小值为【 】 A.39 32 B. 3942 C. 39 52 D. 39 2

均值不等式含答案

课时作业15均值不等式 时间:45分钟满分:100分 课堂训练 5 3 1.已知-+-=l(.r>0,)>0),则小的最小值是( ) A V 【答案】 当且仅当3x=5y时取等号. 4 2?函数f(x)=x+~+3在(一8,一2]上( ) x A.无最大值,有最小值7 B.无最大值,有最小值一1 C.有最大值7,有最小值一1 D.有最大值一1,无最小值 【答案】D 4 【解析】Vx^-2, :.f(x)=x+~+3 ?V = __(r)+(—羽+3W_2 寸(-弓+3 4 =—1,当且仅当一x=—即x=—2时,取等号,

有最大值一1,无最小值.

1 4 3?己知两个正实数小y 满足x+y=4,则使不等式三+^上加恒 兀y 成立的实数m 的取值范围是 _____________ . 【答案】(-8,計 【分析】 对于本题中的函数,可把x+1看成一个整体,然后 将函数用x+1来表示,这样转化一下表达形式,可以暴露其内在的 形式特点,从而能用均值定理来处理. 【解析】因为x>—1, 所以x+ l>0. “ r ?+7x+10 (X +1)2+5(X +1)+4 所以尸x+1 = 吊 4 / f+D+吊+5N2 屮 +1)?苗+5=9 4 当且仅当x+l= 勒,即X=1时,等号成立. mx+n = t,那么/(X )与g(x)都可以转化为关于t 的函数? 课后作业 一、选择题(每小题5分,共40分)???当x=\时, 工+7x+l° 灯仆-1 — $ 函数〉'一 丫+1 (x>—1),取侍取:小值为9. 【规律方法】 形如 f(x) — mx _^n (加工°, dHO)或者 g(x) — 【解析】 斤胃字E+芥沁+树+2胡畔 4. 求函数y= 以+7卄10 ~x+1 (Q-1)的最小值. mx+n

均值不等式常见题型整理

均值不等式 一、 基本知识梳理 1.算术平均值:如果a﹑b ∈R +,那么 叫做这两个正数的算术平均值. 2.几何平均值:如果a ﹑b ∈R+,那么 叫做这两个正数的几何平均值 3.重要不等式:如果a ﹑b ∈R,那么a 2+b 2 ≥ (当且仅当a=b时,取“=”) 均值定理:如果a ﹑b ∈R +,那么 2 a b +≥ (当且仅当a=b 时,取“=”) 均值定理可叙述为: 4.变式变形: ()()() ()()() 22 2 2 1;2 2; 230;425a b ab a b b a ab a b a b +≤ +??≤ ??? +≥>+?? ≤ ??? ≤; 5.利用均值不等式求最值,“和定,积最大;积定,和最小”,即两个正数的和为定值,则 可求其积的最大值;积为定值,则可求其和的最小值。 注意三个条件:“一正,二定,三相等”即:(1)各项或各因式非负;(2)和或积为定值; (3)各项或各因式都能取得相等的值。 6.若多次用均值不等式求最值,必须保持每次取“=”号的一致性。 有时为了达到利用均值不等式的条件,需要经过配凑﹑裂项﹑转化﹑分离常数等变形手段,创设一个应用均值不等式的情景。 二、 常见题型: 1、分式函数求最值,如果)(x f y =可表示为B x g A x mg y ++ =) ()(的形式,且)(x g 在定义域内恒正或恒负,,0,0>>m A 则可运用均值不等式来求最值。 例:求函数)01(11 2>->+++= a x x x ax y 且的最小值。 解:1 )1(11112++-+=++-+=+++=x a a ax x x ax ax x x ax y

均值不等式应用全面总结+题型总结(含详细解析)

均值不等式应用全面总结+题型总结(含详细解析) 一.均值不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则 2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈ ,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取“=”);若0x <,则12x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正 所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--??231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。 解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。 当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。 评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。 变式:设2 3 0< -x ∴2922322)23(22)23(42 =?? ? ??-+≤-?=-=x x x x x x y 当且仅当,232x x -=即?? ? ??∈= 23,043x 时等号成立。 技巧三: 分离 例3. 求2710 (1)1 x x y x x ++= >-+的值域。 解析一:本题看似无法运用均值不等式,不妨将分子配方凑出含有(x +1)的项,再将其分离。 当 ,即 时,4 21)591 y x x ≥+? =+((当且仅当x =1时取“=”号)。 技巧四:换元 解析二:本题看似无法运用均值不等式,可先换元,令t=x +1,化简原式在分离求最值。 22(1)7(1+10544=5t t t t y t t t t -+-++==++) 当,即t=时,4 259y t t ≥?=(当t=2即x =1时取“=”号)。 评注:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值。即化为 ()(0,0)() A y mg x B A B g x =+ +>>,g(x)恒正或恒负的形式,然后运用均值不等式来求最值。 技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a f x x x =+的单调性。 例:求函数22 4 y x = +的值域。 24(2)x t t +=≥,则2 24 y x = +221 4(2)4 x t t t x =+=+≥+

均值不等式练习题及答案解析

均值不等式练习题及答案解析 一.均值不等式 1.若a,b?R,则a2?b2?2ab 若a,b?R,则ab 2. 若a,b?R*,则 a?b2 ? * ? a?b2 22 a?b时取“=”) ab 若a,b?R,则a?b?2 2 ab a?b?若a,b?R,则ab??) ?? ? 2 a?b2 注:当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.求最值的条件“一正,二定,三取等”

均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用.应用一:求最值例1:求下列函数的值域 y=3x解:y=3x+ 11 y=x+xx 1 3x =∴值域为[,+∞) 2x 1 x· =2; x 1 x· =-2 x 1 ≥22x1 当x>0时,y=x+≥x 11 当x<0时, y=x+= -≤-2 xx ∴值域为 解题技巧:技巧一:凑项例1:已知x?

54 ,求函数y ?4x?2? 14x?5 的最大值。 1 解:因4x?5?0,所以首先要“调整”符号,又?x? 54 ,?5?4x?0,?y?4x?2? 1 4x?5 不是常数,所以对4x?2要进行拆、凑项, ???2?3?1 ??3? 1? ???5?4x? 4x?55?4x? 当且仅当5?4x? 15?4x ,即x?1时,上式等号成立,故当x?1时,ymax?1。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数

例1. 当时,求y?x的最大值。 解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到2x??8为定值,故只需将y?x凑上一个系数即可。 当 ,即x=2时取等号当x=2时,y?x的最大值为8。 32 评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。变式:设0?x? ,求函数y?4x的最大值。 3 2 2x?3?2x?9 解:∵0?x?∴3?2x?0∴y?4x?2?2x?2???? 222?? 当且仅当2x?3?2x,即x? 3 ?3? ??0,?时等号成立。?2? 技巧三:分离 例3. 求y?

均值不等式方法及例题

均值不等式当且仅当a=b时等号成立)是一个重要的不等式,利用它可以求解函数最值问题。对于有些题目,可以直接利用公式求解。但是有些题目必须进行必要的变形才能利用均值不等式求解。下面是一些常用的变形方法。 一、配凑1. 凑系数 例1. 当时,求的最大值。 解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到为定值,故只需将凑上一个系数即可。 当且仅当,即x=2时取等号。所以当x=2时,的最大值为8。 评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。 2. 凑项例2. 已知,求函数的最大值。 解析:由题意知,首先要调整符号,又不是定值,故需对进行凑项才能得到定值。 ∵∴ 当且仅当,即时等号成立。评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 3. 分离例3. 求的值域。 解析:本题看似无法运用均值不等式,不妨将分子配方凑出含有(x+1)的项,再将其分离。 当,即时(当且仅当x=1时取“=”号)。 当,即时(当且仅当x=-3时取“=”号)。 ∴的值域为。 评注:分式函数求最值,通常化成g(x)恒正或恒负的形式,然后运用均值不等式来求最值。 二、整体代换例4. 已知,求的最小值。

解法1:不妨将乘以1,而1用a+2b代换。 当且仅当时取等号,由即时,的最小值为。解法2:将分子中的1用代换。 评注:本题巧妙运用“1”的代换,得到,而与的积为定值,即可用均值不等式求得的最小值。三、换元例5. 求函数的最大值。解析:变量代换,令,则 当t=0时,y=0当时,当且仅当,即时取等号故。评注:本题通过换元法使问题得到了简化,而且将问题转化为熟悉的分式型函数的求最值问题,从而为构造积为定值创造有利条件。 四、取平方例6. 求函数的最大值。 解析:注意到的和为定值。 又,所以当且仅当,即时取等号。故。 评注:本题将解析式两边平方构造出“和为定值”,为利用均值不等式创造了条件。 总之,我们利用均值不等式求最值时,一定要注意“一正二定三相等”,同时还要注意一些变形技巧,积极创造条件利用均值不等式。 1. 若,求的最大值。 2. 求函数的最小值。 3. 求函数的最小值。 4. 已知,且,求的最小值。 参考答案:1. 2. 5 3. 8 4.

均值不等式习题大全

均值不等式题型汇总 杨社锋 均值不等式是每年高考必考内容,它以形式灵活多变而备受出题人的青睐,下面我们来细数近几年来均值不等式在高考试题中的应用。 类型一:证明题 1. 设*,,1,a b R a b ∈+=求证:1125()()4a b a b ++≥ 2. 设,,(0,),a b c ∈+∞)a b c ++ 3. 设,,(0,),a b c ∈+∞求证:222b c a a b c a b c ++≥++ 4. 设,,(0,),a b c ∈+∞求证:222a b c ab bc ac ++≥++ 5. 已知实数,,x y z 满足:2221x y z ++=,求xy yz +得最大值。 6. 已知正实数,,a b c ,且1abc =9≥

7. (2010辽宁)已知,,a b c 均为正实数,证明: 2222111()a b c a b c +++++≥,并确定,,a b c 为何值时,等号成立。 类型二:求最值: 利用均值不等式求最值是近几年高考中考查频率最高的题型之一。使用均值不等式的核心在于配凑,配凑的精髓在于使得均值不等式取等号的条件成立。 1. 设11,(0,)1x y x y ∈+∞+=且,求x y +的最小值。 2. 设,(0,)1x y x y ∈+∞+=且,求 112x y +的最小值。 3. 已知,a b 为正实数,且1a b +=求1ab ab +的最小值。 4. 求函数11(01)1y x x x =+<<-的最小值。 变式:求函数291(0)122y x x x = +<<-的最小值。 5. 设,(0,)x y ∈+∞,35x y xy +=,求34x y +的最小值。 6. 设,(0,)x y ∈+∞,6x y xy ++=求x y +的最小值。 7. 设,(0,)x y ∈+∞,6x y xy ++=求xy 的最大值。 8. (2010浙江高考)设,x y 为实数,若2241x y xy ++=,求2x y +的最大值。 9. 求函数y = 的最大值。 变式:y = 10. 设0x >求函数21x x y x ++=的最小值。

均值不等式题型汇总

均值不等式题型汇总 均值不等式是每年高考必考内容,它以形式灵活多变而备受出题人的青睐,下面我们来细数近几年来均值不等式在高考试题中的应用。 1.设*,,1,a b R a b 求证:1125()()4 a b a b 2.设,,(0,),a b c 求证:2222222() a b b c a c a b c 3.设,,(0,),a b c 求证:222 b c a a b c a b c 4.设,,(0,),a b c 求证:222a b c ab bc ac 5.已知实数,,x y z 满足:2221x y z ,求xy yz 得最大值。 6.已知正实数,,a b c ,且1abc 求证:1818189 a b c

7.(2010辽宁)已知,,a b c 均为正实数,证明:2222111()63a b c a b c , 并确定,,a b c 为何值时,等号成立。 类型二:求最值: 利用均值不等式求最值是近几年高考中考查频率最高的题型之一。 使用均值不等式的核心在于配凑,配凑的精髓在于使得均值不等式取等号的条件成立。 1.设11 ,(0,)1x y x y 且,求x y 的最小值。 2.设,(0,)1x y x y 且,求11 2x y 的最小值。 3.已知,a b 为正实数,且1a b 求1 ab ab 的最小值。 4.求函数11 (01)1y x x x 的最小值。 变式:求函数291 (0)122y x x x 的最小值。 5.设,(0,)x y ,35x y xy ,求34x y 的最小值。 6.设,(0,)x y ,6x y xy 求x y 的最小值。 7.设,(0,)x y ,6x y xy 求xy 的最大值。 8.(2010浙江高考)设,x y 为实数,若2241x y xy ,求 2x y 的最大值。 9.求函数216y x x 的最大值。 变式:152y x x 的最大值和最小值。 10.设0x 求函数21 x x y x 的最小值。

20道均值不等式练习题总结

最新模拟题均值不等式练习题总结 1.在平面直角坐标系中,A(-4,0),B(-1,0),点P(a ,b )(ab ≠0)满足 AP BP =,则 2 241 a b +的最小值为( ) A.4 B.9 C. 32 D. 94 2已知x >0,y >0,2x +y =2,则xy 的最大值为( ) A. B. 1 C. D. 3. 下列函数中,最小值为4的是( ) A. x x y 4+ = B.)0(sin 4sin π<<+=x x x y C.x x e e y 4 + = D.81log log 3x x y += 4、已知0x >,0y >,lg 2lg8lg 2x y +=,则1 1 3x y + 的最小值是( ) A .2 B . .4 D .5.设为正数,且,则( ) A. B. C. D. 6.若直线220(0,0)ax by a b -+=>>被圆22 2410x y x y ++-+=截得弦长为 4,则41 a b +的最小值是( ) .A 9 .B 4 . C 12 .D 1 4 7、已知0,0x y >>,182x y x y -=-,则2+x y 的最小值为( ) A B . C . D .4

8.已知0,0,2a b a b >>+=,则14y a b =+的最小值是( ) A .72 B. 92 C .5 D .4 9.已知0,0,,a b a b >>的等比中项为2,则11a b b a +++的最小值为( ) A .3 B .4 C .5 D . 10.已知0m >,0xy >,当2x y +=时,不等式24m x y +≥恒成立,则m 的取值范围是 A .)+∞ B .[)2,+∞ C .( D .(]0,2 11.设, 是与的等比中项,则1 1a b +的最小值为( ) A . B . C .3 D .4 12已知,x y R +∈,且41x y +=,则x y ?的最大值为______________; 13.设1,0>>b a ,若2=+b a ,则1 1 4-+b a 的最小值为 __________________. 答案 1. D 2. A 3. C 4. 【答案】C 【解析】∵lg2x +lg8y =lg2,∴lg (2x ?8y )=lg2,∴2x +3y =2,∴ 0a >0b >3a 3b 28 3

均值不等式高考题

均值不等式高考题文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

应用一、求最值 直接求 例1、若x ,y 是正数,则22)21 ()21(x y y x +++ 的最小值是【 】 A .3 B .27 C .4 D .2 9 例2、设y x b a b a b a R y x y x 11,32,3,1,1,,+=+==>>∈则若的最大值为【 】 A. 2 B. 23 C. 1 D. 21 练习1.若0x >,则2 x x +的最小值为 . 练习2.设,x y 为正数, 则14 ()()x y x y ++的最小值为【 】 A.6 B. 9 C. 12 D. 15 练习3.若0,0>>b a ,且函数224)(2 3+--=bx ax x x f 在1=x 处有极值,则ab 的最大值等于 【 】 A.2 B .3 C .6 D .9 练习4.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x = 吨. 练习5.求下列函数的值域: (1)22 213x x y + = (2)x x y 1 += 练习6.已知0x >,0y >,x a b y ,,,成等差数列,x c d y ,,,成等比数列,则 2 ()a b cd +的最小值是【 】 A.0 B.4 C.2 D.1 例3、已知0,0,01,a b c a b c >>>++=且则111 (1)(1)(1)a b c ---最小值为【 】 A. 5 B. 6 C. 7 D. 8 凑系数 例4、若x y ∈+R ,,且14=+y x ,则x y ?的最大值是 . 练习1.已知,x y R +∈,且满足 134 x y +=,则xy 的最大值为 . 练习2. 当40<-+ =x x x x f 在x a =处取最小值,则a =【 】 A.21+ B .31+ C .3 D .4 练习1.已知5 4x <,求函数14245 y x x =-+-的最大值.

经典均值不等式练习题

均值不等式 均值不等式又名基本不等式、均值定理、重要不等式。是求范围问题最有利的工具之一,在形式上均值不等式比较简单,但是其变化多样、使用灵活。尤其要注意它的使用条件(正、定、等)。 1. (1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤ (当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则 ab b a ≥+2 (2)若*,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”) (3)若* ,R b a ∈,则22??? ??+≤b a ab (当且仅当b a =时取“=”) 3. 均值不等式链:若b a 、都是正数,则2 211222b a b a ab b a +≤+≤≤+,当且仅当b a =时等号成立。 (注:以上四个式子分别为:调和平均数、几何平均数、代数平均数、加权(平方)平均数) 一、 基本技巧 技巧1:凑项 例 已知54x <,求函数14245 y x x =-+-的最大值。 技巧2:分离配凑 例 求2710(1)1 x x y x x ++=>-+的值域。

技巧3:利用函数单调性 例 求函数2 y =的值域。 技巧4:整体代换 例 已知0,0x y >>,且 191x y +=,求x y +的最小值。 典型例题 1. 若正实数X ,Y 满足2X+Y+6=XY , 则XY 的最小值是 2. 已知x >0,y >0,x ,a ,b ,y 成等差数列,x ,c ,d ,y 成等比数列,则()cd b a 2+的最小值是( ) A.0 B.1 C.2 D. 4 3. 若不等式x 2+ax+4≥0对一切x ∈(0,1]恒成立,则a 的取值范围为( ) A.[)+∞,0 B.[)+∞-,4 C.[)+∞-,5 D.[]4,4- 4. 若直线2ax+by-2=0 (a,b ∈R +)平分圆x 2+y 2-2x-4y-6=0,则a 2+b 1的最小值是( ) A.1 B.5 C.42 D.3+22 5. 已知x>0,y>0,x+2y+3xy=8,则x+2y 的最小值是 . 6. 已知,x y R +∈,且满足134 x y +=,则xy 的最大值为 . 7. 设0,0.a b >>1133a b a b +与的等比中项,则 的最小值为( ) A 8 B 4 C 1 D 14 8. 若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是 ( ) A. 245 B. 285 C.5 D.6 9. 若0,0,2a b a b >>+=,则下列不等式对一切满足条件的,a b 恒成立的是 (写出所有正确命题的编号). ①1ab ≤; ②≤; ③ 222a b +≥; ④333a b +≥;

相关文档
最新文档