西工大2015模电实验报告

西工大2015模电实验报告
西工大2015模电实验报告

模拟电子技术基础

实验报告

(2015年秋季,周五第十一、十二节)

小组成员:

姓名:郭振超学号:2014301801 姓名:刘昊然学号:2014301803

日期:2015年12月19日

一、单级共射放大电路

一、实验目的

(1)掌握用Multisim13.0仿真软件分析单极放大器主要性能指标的办方法。

(2)熟悉常用电子仪器的使用方法,熟悉基本电子元器件的作用。

(3)学会并熟悉“先静态后动态”的电子线路的基本调试方法。

(4)分析静态工作点对放大器性能的影响,学会调试放大器的静态工作点。

(5)掌握放大器电压放大倍数、输入电阻、输出电阻级最大不失真输出电压的测试方法。(6)测量放大器的频率特性。

元件名称参数及数量元件名称参数及数量

双路直流稳压电源一台函数信号发生器一台

示波器一台毫伏表一台

万用表一块三极管一个

电阻5个47kΩ电位器一个

电解电容10μF(2个)100μF(一个)模拟电路实验箱一台

实验电路如下图所示,采用基极固定分压式偏置电路。电路在接通直

流电源Vcc而未加入输入信号(vi=0)时,三极管三个极电压和电流称为

静态工作点Q

V BEQ=(0.6~0.7)V硅管;(0.2~0.3)V 锗管

V CEQ=R2V CC/(R P+R1+R2)

I CQ=I EQ=(V BQ-V BEQ)/R e

I BQ=I CQ/β

1.静态工作点的选择和测量

放大器的基本任务是不失真地放大小信号。为此应设置合适的静态工作点。为了获得最大不失真的输出电压,静态工作点应选在输出特性曲线上交流福在线的中点(Q点)。

若工作点选得太高则易引起饱和失真;而选的太低,又易引起截止失真。

静态工作点的测量是指在接通电源电压后放大器输入端不加信号时,测量晶体管集电极电流I CQ、管压降V。

静态工作点调整现象动作归纳

无失真现象出现截止失真出现饱和失真两种失真都出

动作减小增大减小输入信号加大输入信号

2.电压放大倍数的测量

电压放大倍数是指放大器输出电压V0与输入电压V i之比,其值与负载R L有关,是衡量放大电路放大能力的指标。

A V=V0/V I 式(1)

3.输入电阻和输出电阻的测量

(1)输入电阻。放大电路的输入电阻可用电流电压法测量求得。在输入回路中串接一外电阻R=1kΩ,用示波器分别测出电阻两端的电压V S和V I,则可求得放大电路的输入电阻为

R

==R=R 式(2)

I

(2)输出电阻。放大电路的输出电阻可通过测量放大电路输出端开路时的输出电压,带上负载后的输出电压V L,经计算求得

3)

= R

L 式(

四、实验内容

(一)仿真部分

1、静态工作点的调整和测量

(1)按图连接电路

(2)输入端加1kHz、幅度为100mV(峰峰值)的正弦波,调节电位器,使示波器显示的输出波形达到最大不失真。

即逐渐增大输入信号的幅度,使放大器的输出信号略有失真(饱和失真或者截止失真),调节电位器R P,消除失真。

重复上述步骤,直到略微增大输入信号的幅值,输入信号同时出现截止失真和饱和失真,再略微减小输入信号幅值,输出信号的失真现象同时消失。此时得到的输出信号电压,即为最大不失真输出电压。

(3)采用直流点工作分析法。测定直流工作点Q。记录数据于表1。

2、放大电路的动态指标测试

(1)电压放大倍数的测量。调整放大器到合适的静态工作点,在如下图的电路中闭合开关

J1,J2,调整输入信号为1kHz、幅度为100mV(峰-峰值)的正弦信号。单击仿真开关进行

仿真,打开示波器,观察输入输出电压波形。在输出波形不失真的情况下,用万用表测出V i,V O的有效值,根据式(1)电压放大倍数。记录于表2。

(2)输入电阻的测量。

如上图所示电路中断开开关J1,闭合开关J2,调整输入电压1kHz、幅度为100mV(峰-峰值)的正弦信号。单击仿真开关进行仿真,打开示波器,观察输入输出电压波形。在输出波形不

失真的情况下,用万用表测出电阻两端的电压V S和V I,根据式(2)进行计算R I。结果记录于表2

(3)输出电压的测量。

如上图所示电路中闭合开关J1,调整输入电压1kHz、幅度为100mV(峰-峰值)的正弦信号。单击仿真开关进行仿真,打开示波器,观察输入输出电压波形。在输出波形不失真的情况下,

用万用表测出开关J2打开和闭合两种情况下开路时的输出电压,带上负载后的输出电压

V L,由式(3)求得。数据记录于表2。

(4)用扫描分析法测量放大电路的幅频特性。完成表三。

(二)实验室操作部分

静态工作点的调整和测量

(1)按照实验电路在面包板上连接好电路,检查无误后接通12V直流电源。

(2)在放大电路输入端加入1kHz、幅度为100mV(峰-峰值)的正弦信号,在放大电路的输出端接示波器,调节电位器,使示波器所显示的输出波形不失真,然后关掉信号发生器的电源,用万用表,测量三极

管三个极分别对地的电压、、,计算V CEQ,I CQ数据记录与表四。(3)测量放大器动态指标完成表五。

五、实验结果

1、仿真部分

表一静态工作点仿真电压(V)电流(mA)

实际测量值

V

CEQ

I

CQ

2.85274 8.12960 2.14586 5.98374 1.93526

表二放大电路动态指标测试、计算结果(仿真)

实际测量值

参数V

i V0A V

R

I

负载开路70.709mV 1.225V 17.325

3.091 1.993

R L=2kΩ70.709mV 613.617mV 8.678

kΩkΩ

V I、V0的波形(保证不失真)

表三用扫描分析法测量放大电路的幅频特性

参数f

L f

H

BW

仿真值18.3093kHz 55.8222MHz 4.87e8

2、实验室操作部分

实际测量值

V

CEQ I

CQ

3.516 6.610 2.861 3.749 2.625

实际测量值

参数V

i V0A V R

I

负载开路33.33mv 0.588v 17.658

127Ω 2.185k

Ω

R L=2kΩ33.33mv 0.281v 8.431

二、集成运算放大器的线性应用

一.实验目的

(1) 加深对集成运算放大器的基本应用电路和性能参数的理解。

(2)了解集成运算放大器的特点,掌握集成运算放大器的正确使用方法和基本应用电路。

(3)掌握由集成运算放大器组成的比例、加法、减法、积分和微分等基本运算电路的功

能。

(4)进一步熟悉仿真软件的应用。

二.实验仪表及元器件

(1)双路直流稳压电源一台:

(2)函数信号发生器一台;

(3)示波器一台;

(4)毫伏级电压表一台;

(5)万用表一块;

(6)集成运算放大器(μa747)一片;

(7)电容0.01μF两个,电阻若干;

(8)模拟电路试验台一台。

三.实验原理

(1)反向加法运算电路。电路如下图所示:

对于理想运算放大器,该电路输出电与输入电压之间的关系为:

=-()

=////

此时,=-()

(2)同相减法运算电路。

减法电路实际上是反相放大电路和同相放大电路的组合,电路如下图所示:

输出电与输入电压之间的关系为

=(1+)(-

当,时

=(- )

(3)反相积分运算电路。电路如下所示:

在理想条件下,该电路输出电压与输入电压之间的关系为

(t)=-dt+(0)

式中(0)是t=0时刻电容C两端的电压值,即为初始值。

如果是幅值为E的阶跃电压,并设(0),则

即输出电压和时间成正比即

(t)=-dt+(0)=t

。显然RC的数值越大,达到给定的值的所需时间更长。积分输出电压所能达到

的最大值受集成运算放大器最大输出范围的限制。

四、实验过程以及仿真结果

1.反相加法电路

在Multisim13电路窗口创建如图所示电路。输入端加入幅度为100mV、频率为1kHz的正弦信号和幅度为50mV、频率为1kHz的正弦信号。点击仿真开关,进行仿真分析,此时电路在示波器XSC1显示的输入、输出波形如图所示。

2.同相减法电路

在Multisim13 电路窗口创建如图所示电路。输入端加入幅度为100mV、频率为1kHz

西工大模电实验报告(完全版)

晶体管单极放大器 一、实验目的 (1)掌握用Multisim11.0仿真软件分析单极放大器主要性能指标的办法。 (2)掌握晶体管放大器静态工作点的测试和调整方法,观察静态工作点对放大器输出波形的影响。 (3)测量放大器的放大倍数、输出电阻和输入电阻。 二、实验原理及电路 实验电路如下图所示,采用基极固定分压式偏置电路。电路在接通直流电源Vcc而未加入输入信号()时,三极管三个极电压和电流称为静态工作点,即 (1) (2) (3) (4)

1、静态工作点的选择和测量 放大器的基本任务是不失真地放大小信号。为此应设置合适的静态工作点。为了获得最大不失真的输出电压,静态工作点应选在输出 特性曲线上交流福在线的中点(Q点)。若工作点选得太高则易引起饱 和失真;而选的太低,又易引起截止失真。 静态工作点的测量是指在接通电源电压后放大器输入端不加信号时,测量晶体管集电极电流、管压降和。 静态工作点调整现象动作归纳 电压放大倍数是指放大器输出电压与输入电压之比 (5) 3、输入电阻和输出电阻的测量 (1)输入电阻。放大电路的输入电阻可用电流电压法测量求得。 在输入回路中串接一外接电阻R=1kΩ,用示波器分别测出电阻 两端的电压和,则可求得放大电路的输入电阻为 =(6) (2) 输出电阻。放大电路的输出电阻可通过测量放大电路输出端 开路时的输出电压,带上负载后的输出电压,经计算求 得。 =()×(7) 三、实验内容 (一)仿真部分 1、静态工作点的调整和测量 (1)按图连接电路

(2)输入端加1kHz、幅度为20mV(峰-峰值)的正弦波,调节电位器,使示波器显示的输出波形达到最大不失真。 (3)撤掉信号发生器,用万用表测量三极管三个极分别对地的电压,、、,计算和数据记录与表一。 2、电压放大倍数的测量 (1)输入信号为1kHz、幅度为20mV(峰-峰值)的正弦信号,输出端开 路时(RL=∞),用示波器分别测出,的大小,由式(5)算出 电压放大倍数。记录于表二。 (2)放大电路输出端接入2kΩ的负载电阻,保持输入电压不变,测出此时的输出电压,并计算此时的电压放大倍数,分析负载 对放大电路电压放大倍数的影响。记录于表二。

西工大2016数电实验报告1

实验1 TTL集成门电路逻辑变换 一、实验目的 (1)掌握各种TTL门电路的逻辑功能。 (2)掌握验证逻辑门电路功能的方法。 (3)掌握空闲输入端的处理方法。 二、实验设备 (1)数字电路实验箱 (2) 74LS00集成门电路 三、实验原理 门电路是数字逻辑电路的基本组成单元,门电路按逻辑功能可分为与门、或门、非门及与非门、或非门、异或门等。按电路结构组成的不同,可分为分立元件门电路、CMOS集成门电路、TTL集成门电路等。集成门电路通常封装在集成芯片内,一般有双列直插和表面贴装两种封装形式。实验中常用的封装形式为双列直插式。每个集成电路都有自己的代号,与代号对应的名称形象地说明了集成电路的用途。如74LS00是二输入端四与非门,它说明了这个集成电路中包含了四个二输入端的与非门。 四、实验内容 (1)测试74LS00四个与非门逻辑功能是否正常。用MULTISIM软件仿真之后,搭接实际电路图测试。 (2)用与非门实现“与”逻辑,用MULTISIM软件仿真之后,搭接实际电路图测试。

(3)用与非门实现“或”逻辑,用MULTISIM软件仿真之后,搭接实际电路图测试。 (4)用与非门实现“异或”逻辑,用MULTISIM软件仿真之后,搭接实际电路图测试。

五、实验结果 通过计算机仿真和搭建实际的电路图可得如下的真值表。 (1)测试74LS00四个与非门逻辑功能

(2)用与非门实现“与”逻辑 (3)用与非门实现“或”逻辑

(4)用与非门实现“异或”逻辑 思考题:用与非门实现 Y=AB+AC+BC,创建逻辑测试电路,记录测试真值表. (做了的同学请将电路图和真值表记在实验报告中.) (1)电路图如下:

模电实验报告一_西工大

模 拟 电 路 设 计 实 验 报 告 西北工业大学 赵致远2014302170 裘天成2014302171 2016年1月1日 实验一:电源 1.实验目的: ●学习开关型和线性型直流稳压电源原理。 ●认识电解电容与陶瓷电容的区别。 ●认识电感的作用。 ●学会通过芯片datasheet(数据表)了解其工作特性及参数指标 ●掌握直流稳压电源主要指标的意义与其测试方法。

熟悉开关型与线性型直流稳压电源的优缺点与其区别。 2.实验原理: a.线性稳压原理: 特点: 1.输出电压绝对值必须比输入电压绝对值低 2.输出三极管或者MOS管工作在放大状态,导通压降大,输入输 出电压压差大时效率较低。 3.输出电流能力较小 4.输出电压纹波小 5.无开关动作和EMI b.开关稳压原理: 降压 负压 升压

V SW I L V OUT ΔI L ΔV OUT T ON T 特点: 1.能够实现升压,降压,负压转换 2.采用开关传输能量,效率高。 3.具有大电流输出能力 4.输出纹波较大 5.开关动作产生较大EMI和系统电源噪声 3.实验内容: a.实验1:MC34063开关稳压电路 降压输出5V 负压输出-5V

1. 计算参数。 方法:依据MC34063 数据手册(datasheet)中,降压(step-down)和负压(Voltage-Inverting)部分提供的公式计算。 计算开关频率f和导通时间T ON:首先,依据选定的电容C T的值及其公式计算出T ON大小,之后根据T ON/T OFF比值公式计算出T OFF大小。T ON与T OFF之和为开关周期。计算得出开关频率大小。 通过反馈电阻R1,计算反馈电阻R2值。 已知确定R1,通过datasheet中提供的公式计算设定V OUT所需的电阻R2值。 并且调整好可调电阻大小。 计算最大输出电流I OUT(max) 2. 搭建电路。 3. 测试参数 A: 输出电压V OUT 电压表直接测量输出端的电压,并记录。 B:输出纹波 输入电压V IN=25V,负载电阻100Ω时,通过示波器AC档测试V OUT波形,读取纹波大小。 C: 开关频率f和导通时间T ON 输入电压V IN=25V,负载电阻100Ω时,测量开关节点引脚2的波形频率。 高电平时间为导通时间T ON。 D: 负载调整率 输入电压V IN=25V,在输出负载上串联电流表,接入V OUT端,调节负载电阻100Ω和50Ω变化。记录两个负载下输出电压值,计算负载调整率。 E:线性调整率 输入电压V IN在15V到25V变化,负载电阻100Ω时,记录输出电压变化值,计算线性调整率。 F:效率 输入电压V IN=25V,负载电阻100Ω时效率。 G:短路电流 输出负载0.1ohm,串联电流表,接入V OUT端,记录此时的输出电流值。b.实验2:LM7805线性降压电路

西工大_数电实验_第四次实验_实验报告

数电实验4 一.实验目的 熟悉用仿真法研究数字电路实验的过程,实现一个彩灯控制电路。 熟练使用VHDL语言 二.实验设备 1.Quartus开发环境 2.ED0开发板 三.实验内容 1、彩灯控制电路要求控制4个彩灯; 2、两个控制信号: K1K0= 00 灯全灭 01 右移,循环显示 10 左移,循环显示 11 灯全亮 3.彩灯正常工作的同时,四个七段数码管循环显示第一个同学的学号后四位一秒,第二个同学的学号后四位一秒,全黑一秒。 四.实验原理 1.彩灯控制电路的程序如下: LIBRARY IEEE; USE IEEE.std_logic_1164.ALL; USE IEEE.std_logic_ARITH.ALL; USE IEEE.std_logic_UNSIGNED.ALL; ENTITY led IS port( clk:in std_logic; data_in:IN STD_LOGIC_VECTOR(1 DOWNTO 0); data_out:out std_logic_vector(3 downto 0); data_out1,data_out2,data_out3,data_out4:out std_logic_vector(6 downto 0)); END led; ARCHITECTURE control OF led IS CONSTANT m : INTEGER:= 25000000; BEGIN PROCESS(data_in,clk) V ARIABLE cout : INTEGER:=0; V ARIABLE i : INTEGER:=0; BEGIN IF clk'EVENT AND clk='1' THEN cout:=cout+1; --计数器+1 i:=i+1; --计数器+1

西工大计算机网络实验三

实验报告 实验名称 --SOCKET编程 一、实验目的 (1)加深对TCP和UDP的理解; (2)实现两台计算机之间TCP/UDP通信。 二、实验过程 原理: socket是在应用层和传输层之间的一个抽象层,它把TCP/IP层复杂的操作抽象为几个简单的接口供应用层调用以实现进程在网络信。如下图所示:

TCP通信 原理如图: 代码: 服务器端: #pragma comment(lib, "WS2_32.lib")

#include #include #include using namespace std; int main() { int i=0; WSADATA wsaData; SOCKET oldSocket,newSocket; //客户地址长度 int iLen=0; //发送的数据长度 int iSend=0; //接收的数据长度 int ircv =0; //处世要发送给客户的信息 char buf[20]="I am a server"; //接收来自用户的信息 char fromcli[512]; //客户和服务器的SOCKET地址结构 struct sockaddr_in ser,cli; if(WSAStartup(MAKEWORD(2,2),&wsaData)!=0) { cout<<"failed to load winsock"<

西工大高频第二次实验报告

实验二调幅接收系统实验 一、实验目的和内容: 图2为实验中的调幅接收系统结构图(虚框部分为实验重点,低噪放电路下次实验实现,本振信号由信号源产生。)。通过实验了解和掌握调幅接收系统,了解和掌握三极管混频器电路、中频放大/AGC电路、检波电路。 图2 调幅接收系统结构图 二、实验原理: 1、晶体管混频电路: 给出原理图,并分析其工作原理。 原理:混频电路将高频载波信号或已调波信号经过滤波、放大,将其频率变换为固定频率的信号且该高频滤波信号的频谱内部结构和调制类型保持不变,仅仅改变其频率。 2、中频放大/AGC和检波电路: 给出原理图,并分析其工作原理。 原理:中频输入信号通过中放电路放大中频信号,抑制干扰信号,连接AGC电路实现自动增益控制,接着连接二极管检波电路和低通滤波器,从中取出调制信号。 3、调幅接收系统: 给出系统框图,并简述其工作原理。 检波 低噪放混频 中放 /AGC 本振

工作原理:天线接收信号通过滤波器滤波然后低噪放放大幅度,晶体振荡器振荡出所需的本振信号,让本振信号和其进行混频然后滤波,AGC对其进行放大,输出稳定值,再进行滤波并解调检波,经过功率放大器输出。 三、实验步骤: 1、晶体管混频电路: 1)先调整静态工作点,测量2R4两端电压,调节2W1,使2R4两端电压为0; 2)在V2-5输入10.455MHz,250mV的本振信号,在V2-1输入10MHz、30mV的单载波信号,在V2-3处观测,调节2C3和2B1的大小,改变中频输出,当输出为455KHz的最大不失真稳定正弦波时,完成调试并记录此时的中频输出峰峰值。 3)改变基极偏置电阻2W1,使2R4端电压分别为0.5,1,1.5,2,2.5,3V,重复上述步骤2),记录下不同静态工作点下的中频输出的峰峰值,并计算混频增益,完成表2-1. 2、中频放大/AGC和检波电路: 1)调节直流静态工作点:闭合开关K3,电路仅接入12v直流电压,调节可调电阻3W1、3W2,为使静态电流不超过1mA,应使3R7,3R13两端电压为0.5V,0.033V。 2)调节交流工作:第一,调节函数发生器产生频率455KHZ的标准正弦信号,接入3K1。将示波器接于V3-2。 第二,调节可调电容3C4,使输出波形幅度最大不失真。 第三,将示波器加于V3-4,调节可调电容3C7,使输出波形最大不失真。 3)测试动态范围:开关3K2断开,开关3K3闭合。调节输入信号Vi幅值,使其分别为10,20…100,200mv…1V,示波器分别接到V3-2、V3-4、V3-5,,将分别测得的波形峰峰值记入表2-2,即分别为V01,V02,Vc,同时用示波器接V3-6处记录电压值(即AGC检波输出电压)。 4)检波失真观测:第一,输入信号455KHz、10mVpp,调制1KHz信号,调制度50%调幅信号,将示波器接到V3-6处即可观察到正常无失真的波形输出并记录;第二,增大直流负载电阻3W4,观察示波器直到观测到失真波形,即为对角线失真,记录波形;第三,再次调整3W4使波形正常不失真,减小交流电阻即闭合3K4,观察示波器输出波形产生负峰切割失真,记录波形。 3、调幅接收系统: 1、晶体管混频电路:1)2K1接入调制频率1KHz正弦波,载波频率10MHz,幅度为30mVp-p ,调制度50%的调幅波信号。 2)2K3接入本振信号10.455MHz,250mVp-p的正弦信号,将示波器接在V2-3处观察波形,记录参数、波形。 2、中频放大电路3K1打至中频输入端。 3K2、3K4断开,3K3闭合,,将示波器接到V3-6观察检波输出的波形,调节3W4,使其达到最大不失真波形,记录波形。 3、测试系统性能:1)灵敏度。不断减小输入调幅波信号的幅值,同时观察检波输出波形,使示波器波形出现明显失真的输入幅值为该系统的最小可接收幅值。 四、测试指标和测试波形: 3.1.晶体管混频电路:

数电实验报告:实验4-计数器及应用161

广东海洋大学学生实验报告书(学生用表) 实验名称 课程名称 课程号 学院(系) 专业 班级 学生姓名 学号 实验地点 实验日期 实验4 计数器及其应用 一、实验目的 1、熟悉中规模集成计数器的逻辑功能及使用方法 2、掌握用74LS161构成计数器的方法 3、熟悉中规模集成计数器应用 二、实验原理 计数器是典型的时序逻辑电路,它是用来累计和记忆输入脉冲的个数.计数是数字系统中很重要的基本操作,集成计数器是最广泛应用的逻辑部件之一。计数器种类较多,按构成计数器中的多触发器是否使用一个时钟脉冲源来分,有同步计数器和异步计数器;根据计数制的不同,可分为二进制计数器、十进制计数器和任意进制计数器;根据计数的增减趋势,又分为加法、减法和可逆计数器。还有可预置数和可编程序功能计数器等。本实验主要研究中规模十进制计数器74LS161的功能及应用。 1、中规模集成计数器 74LS161 是四位二进制可预置同步计数器,由于它采用4 个主从JK 触发器作为记忆单元,故又称为四位二进制同步计数器,其集成芯片管脚如图1所示: 管脚符号说明:电源正端Vcc ,接+5V ;异步置零(复位)端Rd ;时钟脉冲CP ;预置数控制端 A 、B 、C 、D ;数据输出端 QA 、QB 、QC 、QD ;进位输出端 RCO :使能端EP ,ET ;预置端 LD ; 图1 74LS161 管脚图 GDOU-B-11-112

该计数器由于内部采用了快速进位电路,所以具有较高的计数速度。各触发器翻转是靠时钟脉冲信号的正跳变上升沿来完成的。时钟脉冲每正跳变一次,计数器内各触发器就同时翻转一次,74LS161的功能表如表1所示: 表1 74LS161 逻辑功能表 2、实现任意进制计数器 由于74LS161的计数容量为16,即计16个脉冲,发生一次进位,所以可以用它构成16进制以内的各进制计数器,实现的方法有两种:置零法(复位法)和置数法(置位法)。 (1) 用复位法获得任意进制计数器假定已有N进制计数器,而需要得到一个M进制计数器时,只要M<N,用复位法使计数器计数到M时置“0”,即获得M进制计数器。 (2) 利用预置功能获M进制计数器置位法与置零法不同,它是通过给计数器重复置入某个数值的的跳越N-M个状态,从而获得M进制计数器的,如图所法。置数操作可以在电路的任何一个状态下进行。这种方法适用于有预置功能的计数器电路。图2是上述二种方法的原理示意图。 图2(a) 图2(b) 三、实验内容与步骤 1、测试74LS161的逻辑功能。 2、在熟悉74LS161逻辑功能的基础上,利用74LS161设计9进制计数器。 附图74ls00和74ls20

西工大16秋网络安全在线作业

奥鹏17春西工大16秋《网络安全》在线作业 一、单选题(共30 道试题,共60 分。) 1. 最简单的防火墙结构是()。 A. 路由器 B. 代理服务器 C. 状态检测 D. 包过滤器 正确答案: 2. 虽然软件加密很流行,但商业和军事领域选择硬件加密的原因是()。 A. 易于升级 B. 可移植性强 C. 大众化 D. 处理速度快 正确答案: 3. 状态检测防火墙可以提供的额外服务有()。 A. 在网络应用层提供授权检查及代理服务功能 B. 将某些类型的连接重定向到审核服务中去 C. 能为用户提供透明的加密机制 D. 能灵活、完全地控制进出的流量和内容 正确答案: 4. 下列()是防火墙的重要行为。 A. 准许 B. 防范内部人员攻击 C. 日志记录 D. 问候访问者 正确答案: 5. 入侵者通过观察网络线路上的信息,而不是干扰信息的正常流动,这是属于()。 A. 系统缺陷 B. 漏洞威胁 C. 主动攻击 D. 被动攻击 正确答案: 6. Linux是一种与UNIX操作系统兼容的网络操作系统,安全级别达到TCSEC的安全级() A. C1 B. B1 C. A D. C2 正确答案: 7. 数据库系统的安全性可划分为三个层次,分别是DBMS层次、()和操作系统层次。 A. 应用软件层次 B. 硬件层次 C. 数据表示层次 D. 网络系统层次 正确答案:

8. 状态检测防火墙是新一代的防火墙技术,也被称为()防火墙。 A. 第二代 B. 第三代 C. 第四代 D. 第五代 正确答案: 9. 下列关于IP协议的叙述中,()是正确的。 A. 可靠,无连接 B. 不可靠,无连接 C. 可靠,面向连接 D. 不可靠,面向连接 正确答案: 10. 下列叙述中,正确的是()。 A. 所有计算机病毒只在可执行文件中传染 B. 计算机病毒通过读写软盘或Internet网络进行转播 C. 只要把带毒软盘片设置成只读状态,那么此盘片上的病毒就不会因读盘而传染给另一台计算机 D. 计算机病毒是由于软盘片表面不清洁而造成的 正确答案: 11. 下列关于入侵检测系统的叙述中,错误的一条是()。 A. 监视用户和系统的运行状况,查找非法用户和合法用户的越权操作 B. 有容错功能,即使系统崩溃也不会丢失数据或在重启后重建自己的信息库 C. 对异常行为模式进行统计分析 D. 入侵检测系统可以识别出所有的入侵行为并发出警报 正确答案: 12. 信息分析中用于事后分析的技术手段是()。 A. 模式匹配 B. 统计分析 C. 完整性分析 D. 都不对 正确答案: 13. ()是指在保证数据完整性的同时,还要使其被正常利用。 A. 可用性 B. 完整性 C. 保密性 D. 可靠性 正确答案: 14. 计算机病毒最重要的特点是()。 A. 可执行 B. 可传染 C. 可保存 D. 可潜伏 正确答案: 15. 根据防火墙的功能不同,可将防火墙分为()等专用防火墙。

西工大高频第二次实验报告

实验二 调幅接收系统实验 一、实验目的与内容: 图2为实验中的调幅接收系统结构图(虚框部分为实验重点,低噪放电路下次实验实现,本振信号由信号源产生。)。通过实验了解与掌握调幅接收系统,了解与掌握三极管混频器电路、中频放大/AGC 电路、检波电路。 图2 调幅接收系统结构图 二、实验原理: 1、晶体管混频电路: 给出原理图,并分析其工作原理。 原理:混频电路将高频载波信号或已调波信号经过滤波、放大,将其频率变换为固定频率的信号且该高频滤波信号的频谱内部结构和调制类型保持不变,仅仅改变其频率。 2、中频放大/AGC 和检波电路: 给出原理图,并分析其工作原理。 检波 低噪放 混频 中放 /AGC 本振

原理:中频输入信号通过中放电路放大中频信号,抑制干扰信号,连接AGC电路实现自动增益控制,接着连接二极管检波电路和低通滤波器,从中取出调制信号。 3、调幅接收系统: 给出系统框图,并简述其工作原理。 工作原理:天线接收信号通过滤波器滤波然后低噪放放大幅度,晶体振荡器振荡出所需的本振信号,让本振信号与其进行混频然后滤波,AGC对其进行放大,输出稳定值,再进行滤波并解调检波,经过功率放大器输出。 三、实验步骤: 1、晶体管混频电路: 1)先调整静态工作点,测量2R4两端电压,调节2W1,使2R4两端电压为0; 2)在V2-5输入10.455MHz,250mV的本振信号,在V2-1输入10MHz、30mV的单载波信号,在V2-3处观测,调节2C3和2B1的大小,改变中频输出,当输出为455KHz的最大不失真稳定正弦波时,完成调试并记录此时的中频输出峰峰值。 3)改变基极偏置电阻2W1,使2R4端电压分别为0.5,1,1.5,2,2.5,3V,重复上述步骤2),记录下不同静态工作点下的中频输出的峰峰值,并计算混频增益,完成表2-1. 2、中频放大/AGC和检波电路: 1)调节直流静态工作点:闭合开关K3,电路仅接入12v直流电压,调节可调电阻3W1、3W2,为使静态电流不超过1mA,应使3R7,3R13两端电压为0.5V,0.033V。 2)调节交流工作:第一,调节函数发生器产生频率455KHZ的标准正弦信号,接入3K1。将示波器接于V3-2。 第二,调节可调电容3C4,使输出波形幅度最大不失真。 第三,将示波器加于V3-4,调节可调电容3C7,使输出波形最大不失真。 3)测试动态范围:开关3K2断开,开关3K3闭合。调节输入信号Vi幅值,使其分别为10,20…100,200mv…1V,示波器分别接到V3-2、V3-4、V3-5,,将分别测得的波形峰峰值记入表2-2,即分别为V01,V02,Vc,同时用示波器接V3-6处记录电压值(即AGC检波输出电压)。 4)检波失真观测:第一,输入信号455KHz、10mVpp,调制1KHz信号,调制度50%调幅信号,

模电实验

模拟电子技术实验第十一次实验 波形发生电路 实验报告 2016.12.22 . .

. . 一、 实验目的 1、 学习用集成运放构成正弦波、方波和三角波。 2、 学会波形发生电路的调整和主要性能指标的测试方法。 二、 实验原理 由集成运放构成的正弦波、方波和三角波发生电路有多种形式,本实验采用 最常用且比较简单的几种电路来做分析。 1、 RC 桥式正弦波振荡电路 下图所示为RC 桥式正弦波振荡电路。其中RC 串并联电路构成正反馈支路, 同时起到选频网络的作用。R1、R2、Rw 及二极管等元件构成负反馈和稳幅环节。调节电位器Rw ,可以改变负反馈深度,以满足振荡的振幅条件和改善波形。利用两个反向并联二极管D1、D2正向电阻的非线性特性来实现稳幅。D1、D2采用硅管(温度稳定性好),且要求特性匹配,才能保持输出波形正、负半周对称。R3的接入是为了削弱二极管非线性的影响,以改善波形失真。 电路的振荡频率:12o f RC π= 起振的幅值条件:12f R R ≥ (具体推导见书第406页) 其中23(//)f w D R R R R r =++,D r 是二极管正向导通电阻 调整反馈电阻Rf (调Rw ),使电路起振,且波形失真最小。如不能起振,则

. . 说明负反馈太强,应当适当加大Rw ;如波形失真严重,则应当适当减小Rw 。 改变选频网络的参数C 或R ,即可调节振荡频率。一般采用改变电容C 作频率量程切换,而调节R 作量程的频率细调。 2、 方波发生电路 由集成运放构成的方波发生电路和三角波发生电路,一般均包括比较电路和 RC 积分电路两大部分。下图所示为由迟滞比较器及简单RC 积分电路组成的方波-三角波发生电路。它的特点是线路简单,但三角波的线性度较差。主要用于产生方波,或对三角波要求不高的场合。 电路振荡频率:211 22ln(1)o f f f R R C R =+ 式中11''w R R R =+,22'''w R R R =+ 方波输出幅值:om Z V V =± 三角波输出幅值:212 CM Z R V V R R =+ 调节电位器Rw (即改变R2/R1,),可以改变振荡频率,但三角波的幅值也随之变化。如要互不影响,则可以通过改变Rf 或Cf 来实现振荡频率的调节。 3、 三角波和方波发生电路 如把迟滞比较电路和积分电路首尾相接形成正反馈闭环系统,如下图所示, 则比较电路A1输出的方波经积分电路A2积分可以得到三角波,三角波又触发比较器自动翻转形成方波,这样既可构成三角波、方波发生电路。

西工大-数电实验-第二次实验-实验报告

数电实验2 一.实验目的 1.学习并掌握硬件描述语言(VHDL 或 Verilog HDL);熟悉门电路的逻辑功能,并用硬件描述语言实现门电路的设计。 2.熟悉中规模器件译码器的逻辑功能,用硬件描述语言实现其设计。 3.熟悉时序电路计数器的逻辑功能,用硬件描述语言实现其设计。 4.熟悉分频电路的逻辑功能,并用硬件描述语言实现其设计。 二.实验设备 1.Quartus开发环境 2.ED0开发板 三.实验内容 要求1:编写一个异或门逻辑电路,编译程序如下。 1)用 QuartusII 波形仿真验证; 2)下载到DE0 开发板验证。 要求2:编写一个将二进制码转换成 0-F 的七段码译码器。 1)用 QuartusII 波形仿真验证; 2)下载到 DE0 开发板,利用开发板上的数码管验证。 要求3:编写一个计数器。 1)用QuartusII 波形仿真验证; 2)下载到 DE0 开发板验证。 要求4:编写一个能实现占空比 50%的 5M 和50M 分频器即两个输出,输出信号频率分别为 10Hz 和 1Hz。 1)下载到 DE0 开发板验证。(提示:利用 DE0 板上已有的 50M 晶振作为输入信号,通过开发板上两个的 LED 灯观察输出信号)。 2)电路框图如下: 扩展内容:利用已经实现的 VHDL 模块文件,采用原理图方法,实现 0-F 计数自动循环显示,频率 10Hz。(提示:如何将 VHDL 模块文件在逻辑原理图中应用,参考参考内容 5) 四.实验原理 1.实验1实现异或门逻辑电路,VHDL源代码如下: LIBRARY IEEE; USE IEEE.STD_LOGIC_1164.ALL;

西工大计算机网络作业3

1.当两台计算机分别和中继器、二层交换机、三层交换、路由器相连时,请分别画出计算 机与交换设备五层参考模型; 计算机1 上图为计算机和路由器连接.。三层交换机与上图连接相同。二层路由器与计算机连接只经过数据链路层和物理层,中继器与计算机连接只经过物理层。 2.学习SOCKET编程,写出TCP、UDP通信流程;将实例程序两个同学一组,实现两台计算机之间通信。并写出学习报告; TCP通信流程 客户端服务器

UDP通信流程 客户端服务端 利用socket实现TCP,UDP通信的流程如上图所示。 SOCKET实验报告 一.实验目的 学习SOCKET编程,理解计算机通信的流程,分别实现TCP,UDP协议下两台计算机之间的通信。

Socket编程机制 客户端: (1)客户端程序在运行后,首先需要使调用WSAStartup 函数,确保进程加载socket 应用程序所必须的环境和库文件,如Ws2_32.dll。 (2)调用函数Socket 创建SOCKET,在创建时需指定使用的网络协议、连接类型等。 (3)填充SOCKADDR 结构,指定服务端的地址、端口等。 (4)调用connect 函数连接到服务端。 (5)如果连接成功,就可以使用send 和recv 函数发送和接收数据。 (6)在数据传输完成后,可调用closesocket 函数关闭Socket。 (7)调用WSACleanup 函数释放资源。 服务端: (1)程序在运行后,首先需要使调用WSAStartup 加载Ws2_32.dll。 (2)调用函数socket 创建用于监听的SOCKET,在创建时需指定使用的网络协议、连接类型等。 (3)1 调用bind 函数将Socket 绑定到网络地址和端口。 (4)调用listen 函数开始监听。 (5)调用accept 函数等待客户端连接。在客户端连接后,accept 函数返回,得到连接Socket。在accept 函数返回后,可立即再调用,以处理其他客户端的连接。 (6)得到连接Socket 后,可调用send 和recv 发送、接收数据。 (7)在数据传输完成后,可调用closesocket 函数关闭Socket。 (8)调用WSACleanup 函数释放DLL。 函数用法: 1.WSAStartup 函数的功能是加载Ws2_3 2.dll 等Socket 程序运行的环境。其返回值用来 判断程序是否调用成功。 2.WSACleanup 函数释放Ws2_32.dll 库,函数无参数。 3.Socket 函数的功能是建立一个绑定到指定协议和传输类型的Socket。用来指定网络地 址的类型,传输类型,传输协议。 4.send函数的功能是向连接的另一端发送数据。参数为套接字,发送的数据,发送数据长 度。Send成功则返回实际发送的数据,失败则返回SOCKET_ERROR. 5.recv函数的功能时是从连接的另外一端接收数据。 6.closesocket函数用于关闭socket。 7.bind函数的功能是将socket与网络地址和端口绑定起来。 8.listen的函数是将socket的状态设置为监听,以使客户端程序可以连接。 9.accept函数的功能是接收客户端的连接,accpet函数直到客户端有连接后才会返回。

数电实验报告1-数电实验报告实验一

实验一门电路逻辑功能及测试 一、实验目得 1、熟悉门电路逻辑功能。 2、熟悉数字电路学习机及示波器使用方法。 二、实验仪器及材料 1、双踪示波器 2、器件 74LS00 二输入端四与非门2片 74LS20 四输入端双与非门1片 74LS86二输入端四异或门1片 74LS04 六反相器1片 三、预习要求 1、复习门电路工作原理相应逻辑表达示。 2、熟悉所有集成电路得引线位置及各引线用途。 3、了解双踪示波器使用方法。 四、实验内容 实验前按学习机使用说明先检查学习机就是否正常,然后选择实验用得集成电路,按自己设计得实验接线图接好连线,特别注意Vcc及地线不能接错。线接好后经实验指导教师检查无误方可通电。试验中改动接线须先断开电源,接好线后在通电实验。 1、测试门电路逻辑功能。 (1)选用双输入与非门74LS20一只,插入面包板,按图 连接电路,输入端接S1~S4(电平开关输入插口),输 出端接电平显示发光二极管(D1~D8任意一个)。 (2)将电平开关按表1、1置位,分别测出电压及逻辑状态。(表1、1)

2、异或门逻辑功能测试 (1)选二输入四异或门电路74LS86,按图接线,输入端1﹑2﹑4﹑5接电平开关,输出端A﹑B﹑Y接电平显示发光二极管。 (2)将电平开关按表1、2置位,将结果填入表中。 表1、2 3、逻辑电路得逻辑关系

(1)选用四二输入与非门74LS00一只,插入面包板,实验电路自拟。将输入输出逻辑关系分 别填入表1、3﹑表1、4。 (2)写出上面两个电路得逻辑表达式。 表1、3 Y=A ⊕B 表1、4 Y=A ⊕B Z=AB 4、逻辑门传输延迟时间得测量 用六反相器(非门)按图1、5接线,输80KHz 连续脉冲,用双踪示波器测输入,输出相位差,计算每个门得平均传输延迟时间得tpd 值 : tpd =0、2μs/6=1/30μs 5、利用与非门控制输出。 选用四二输入与非门74LS00一只,插入面包板,输入接任一电平开关,用示波器观察S对输出脉冲得控制作用: 一端接高有效得脉冲信号,另一端接控制信号。只有控制信号端为高电平时,脉冲信号才能通过。这就就是与非门对脉冲得控制作用。 6.用与非门组成其她门电路并测试验证 (1)组成或非门。 用一片二输入端与非门组成或非门 Y = A+ B = A ? B 画出电路图,测试并填表1、5 中。 表1、5 图如下: (2)组成异或门 ① 将异或门表达式转化为与非门表达式。 A ⊕B={[(AA)'B]'[A( B B)']}' ② 画出逻辑电路图。 ③ 测试并填表1、6。表1、6

西工大模电实验报告总结计划晶体管单级放大器.docx

实验一晶体管共射极单管放大器 一、实验目的 1、掌握用 multisim仿真软件分析单级放大器主要性能指标的方法。 2、掌握晶体管放大器静态工作点的调试和调整方法,观察静态工作点对放 大器输出波形的影响。 3、测量放大器的放大倍数、输入电阻和输出电阻。 二、实验原理 实验电路如图 2.1 -1 所示,采用基极固定分压式偏置电路。电路在接通直流电源 V cc而未加入信号( V i =0)时,三极管三个极电压和电流称为静态工作点, 即 图2.1 -1 晶体管单级放大器 V BQ=R2V CC/(R 2+R3+R7) I CQ=I EQ=(V BQ-V BEQ)/R 4 I BQ=I EQ/ β V CEQ= V CC-I CQ( R5+R4) 1、放大器静态工作点的选择和测量 放大器的基本任务是不失真的放大小信号。为了获得最大不失真输出电压, 静态工作点应选在输出特性曲线上交流负载线的中点。若工作点选的太高,则容易引起饱和失真;而选的太低,又易引起截止失真。 静态工作点的测量是指在接通电源电压后放大器输入端不加信号时,测量晶

体管的集电极电流I CQ和管压 降 V CEQ。其中V CEQ可直接用万用表直流电压档测C-E 极间的电压既得,而I CQ的测量则有直接法和间接法两种: (1)直接法:将万用表电流档串入集电极电路直接测量。此法精度高,但 要断开集电极回路,比较麻烦。 ( 2)间接法:用万用表直流电压档先测出R5上的压降,然后根据已知R5算出I CQ,此法简单,在实验中常用,但其测量精度差。为了减小测量误差,应选用内 阻较高的电压表。 当按照上述要求搭好电路,在输入端引入正弦信号,用示波器观察输出。静态工作点具体的调节步骤如下: 现象出现截止失真动作减小 R 出现饱和失真 增大 R 两种失真都出 现 减小输入信号 无失真 加大输入信号 根据示波器上观察到的现象,做出不同的调整动作,反复进行。当加大输入信号,两种失真都出现,减小输入信号,两种失真同时消失,可以认为此时的静态工作点正好处于交流负载线的中点,就是最佳的静态工作点。去掉输入信号,测量此时的 V CQ, 就得到了静态工作点。 2.电压放大倍数的测量 Ui 输出电压 Uo 之比 电压放大倍数是指放大器的输入电压 Au=Uo/Ui(2.1-5) 用示波器分别测出 Uo 和 Ui ,便可按式( 2.1-5)求得放大倍数,电压放大倍数与负载 Rl 有关。 3.输入电阻和输出电阻的测量 ( 1)输入电阻 Ri 用电流电压法测得,电路如图电阻 R=1kΩ,用示波器分别测出电阻两端电压 2.1-3 所示。在输入回路中串接Ui 和 Us,则可求得输入电阻Ri 为 Ri=Ui/Ri=Ui×R/(Us-Ui )(2.1-6)

数电实验实验报告

数字电路实验报告

实验一 组合逻辑电路分析 一.试验用集成电路引脚图 74LS00集成电路 74LS20集成电路 四2输入与非门 双4输入与非门 二.实验内容 1.实验一 自拟表格并记录: 2.实验二 密码锁的开锁条件是:拨对密码,钥匙插入锁眼将电源接通,当两个条件同时满足时,开锁信号为“1”,将锁打开。否则,报警信号为“1”,则接通警铃。试分析密码锁的密码ABCD 是什么? X1 2.5 V A B C D 示灯:灯亮表示“1”,灯灭表示“0” ABCD 按逻辑开关,“1”表示高电平,“0”表示低电平

ABCD 接逻辑电平开关。 最简表达式为:X1=AB ’C ’D 密码为: 1001 A B C D X1 X2 A B C D X1 X2 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 1 0 1 1 0 0 1 1 0 0 0 1 0 0 1 1 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1 0 1 0 1 0 0 0 1 1 1 0 0 0 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1 1 1 三.实验体会: 1.分析组合逻辑电路时,可以通过逻辑表达式,电路图和真值表之间的相互转换来到达实验所要求的目的。 2.这次试验比较简单,熟悉了一些简单的组合逻辑电路和芯片 ,和使用仿真软件来设计和构造逻辑电路来求解。 实验二 组合逻辑实验(一) 半加器和全加器 一.实验目的 1. 熟悉用门电路设计组合电路的原理和方法步骤 二.预习内容 1. 复习用门电路设计组合逻辑电路的原理和方法步骤。 2. 复习二进制数的运算。 3. 用“与非门”设计半加器的逻辑图。 4. 完成用“异或门”、“与或非”门、“与 非”门设计全加器的逻辑图。 5. 完成用“异或”门设计的3变量判奇 电路的原理图。 三.元 件参考 U1A 74LS00D U1B 74LS00D U1C 74LS00D U1D 74LS00D U2A 74LS00D U2B 74LS00D U2C 74LS00D U3A 74LS20D X1 2.5 V X2 2.5 V VCC 5V A B C D

西工大网络与分布式计算简答题复习

1.1什么是服务、协议、实体? 协议定义了格式,网络实体间发送和接收报文顺序,和传输,收到报文所采取的动作。 三要素:<1>语法:规定信息格式 <2>语义:明确通信双方该怎样做 <3>同步:何时通信,先讲什么后讲什么,通信速度等。 1.2网络边缘:什么是无连接服务,面向连接? <1>无连接服务:不要求发送方和接收方之间的会话连接 <2>面向连接:在发送任何数据之前,要求建立会话连接 1.3电路交换和分组交换的区别,分组交换分为哪两种? 电路交换技术:很少用于数据业务网络,主要是因为其资源利用效率和可靠性低。 分组交换技术:通过统计复用方式,提高了资源利用效率。而且当出现线路故障时,分组交换技术可通过重新选路重传,提高了可靠性。 而另一个方面,分组交换是非面向连接的,对于一些实时性业务有着先天的缺陷,虽然有资源预留等一系列缓解之道,但并不足以解决根本问题。而电路交换技术是面向连接的,很适合用于实时业务。同时,与分组交换技术相比,电路交换技术实现简单且价格低廉,易于用硬件高速实现。 分组交换:<1>数据报方式:在目的地需要重新组装报文。优点:如有故障可绕过故障点、:不能保证按 顺序到达,丢失不能立即知晓。 <2>虚电路方式:在数据传输之前必须通过虚呼叫设置一条虚电路。它适用于两端之间长时间的数据交 换。优点:可靠、保持顺序;缺点:如有故障,则经过故障点的数据全部丢失。 1.4物理媒介 无线:无线电波,激光,微波有线:双绞线,同轴电缆,光纤 1.5分组电路交换中的时延(传输+处理+传播),每一个时延计算 时延和丢包产生的原因:分组在路由器缓存中排队:分组到达链路的速率超过输出链路的能力; 分组时延的四种来源:<1>节点处理<2>排队 <3>传输时延:R= 链路带宽 (bps)L= 分组长度 (比特)发送比特进入链路的时间= L/R <4>传播时延:d = 物理链路的长度s = 在媒体中传播的速度 (~2x108 m/sec)传播时延 = d/s dproc = 处理时延 通常几个微秒或更少 dqueue = 排队时延 取决于拥塞 dtrans = 传输时延= L/R 对低速链路很大 dprop = 传播时延 几微秒到几百毫秒 a= 平均分组到达速率 流量强度 = La/R La/R ~ 0: 平均排队时延小 La/R -> 1: 时延变大 La/R > 1: 更多“工作”到达,超出了服务能力,平均时延无穷大! 1.6什么是计算机网络体系结构? TCP/IP 模型: 应用层: 支持网络应用 为用户提供所需要的各种服务 运输层: 为应用层实体提供端到端的通信功能。 TCP, UDP 网络层: 解决主机到主机的通信问题 IP, 选路协议 链路层: 在邻近网元之间传输数据 PPP, 以太网 物理层: “在线上”的比特 prop trans queue proc nodal d d d d d +++=

西北工业大学自动控制原理实验报告

实验一、二 典型环节的时间特性研究 一、目的要求 1.掌握典型环节的模拟运算电路的组成原理。 2.掌握惯性环节,比例微分环节,比例积分环节,比例,微分,积分环节,振荡环节的时间特性的实验验方法和特点。 二、实验电路及运算观察、记录 1惯性环节: 其中:T=R1C ,K=R1/R0 (1)模拟电路 图 (1) 典型惯性环节模拟电路 (2)注:‘S ST ’不能用“短路套”短接 (3)安置短路套 (4)测孔联线 (5)虚拟示波器(B 3)的联接:示波器输入 端CH 1接到A6单元信号输出端OUT (U0). 注:CH 1选“X1”档。时间量程选‘X4’档 (6)运行、观察、记录 打开计算机→我的电脑→D 盘→Aedk →LABACT.exe 进入LABACT 程序。 选择自动控制菜单下的线性系统实域分析→典型环节模拟研究分析→ 开始试验,弹出示波器显示界面,按下信号发生器(B1)阶跃信号按 钮时(0→+5v 阶跃),点击开始。测完特征后点“停止”,开始读数。 用示波器观测A6输出端(Uo )的实际响应曲线(t ),且将结果记下。 改变电容C 值(即改变时间常数),加Ui ,测Uo ,并将结果记录下来和 第一次的比较。 2.比例微分环节: )1() ()(S Kp s Ui s Uo T D += 其中: ,R3很小 (1)模拟电路

图 典型比例微分环节模拟电路 (2)输入连线 a.为了避免积分饱和,将函数发生器(B5)所产生的周期性方波信号(OUT ),代替信号发生器(B1)中的阶跃输出0/5V 作为环节的信号输入(Ui )。 b.将函数发生器(B5)中的插针‘S ST ’用短路套短接。 c.将S1拨动开关置于最上档(阶跃信号)。 d.信号周期由拨动开关S2和“调宽”旋钮调节,信号幅度由“调幅”旋钮调节(正输出宽度在70ms 左右,幅度在400mV 左右)。 注:CH1选’X1’档。时间量程选’/2’档。 (6)运行,观察,记录6单元信号输出端OUT(Uo) 操作和惯性环节实验相同,用示波器观察A6输出端(Uo)的实际响应曲线Uo(t),并将结果记下来,改变参数R1值,重新测试结果,并记录比较。 3.比例积分环节 )11()()(S Kp s Ui s Uo T I += 其中,R R Kp 01= ,C R T I 11= (1) 模拟电路

相关文档
最新文档