冷却塔余热回收

冷却塔余热回收
冷却塔余热回收

冷却塔余热回收

更新时间: 5/29/2008 来源:点击数: 939

一. 冷却塔余热回收机

1.本项目适用任何形式的中央空调余热回收节能改造;

2.热回收机体积小、结构紧凑、回收效率高、换热速度快、经济效益好,是其它加热设备(电能锅炉、燃气锅炉)能耗的1/3—1/4;

3.改造简单,施工速度快捷,对中央空调机组不做任何改动;

4.既能提高中央空调机组的制冷效率节约电能,又能取得优质稳定的生活热水;

原理:众所周知,夏季中央空调是将室内热量及机组运行的热量转移到室外,通常采用冷却水泵将热量输送至冷却塔,再由风机散发到大气中。与此同时一般的生活热水由燃油锅炉、燃气锅炉或电锅炉制取获得。如何找到一种有效的热能利用方法和设备将中央空调冷凝热量集中利用到生活热水中去,是中央空调热回收机技术的关键。根据热力学第二定律:热量从高温热源自发向低温热源转移时不需附加任何条件,相反,当热量从低温热源向高温热源转移则必须是有条件的,增加做功设备或增加低温热源内能。在这里热回收机利用了卡诺逆循环原理,因此只需消耗很少的做功能源就可以转移大量热能。

本项技术的核心:热回收机将10℃~15℃的低温热源排放到25℃~35℃的中央空调冷却水中,与此同时吸收中央空调冷却水中的热量,降低中央空调冷却水温度。根据有关资料及我公司多年的实测数据表明:中央空调冷却水温度每降低一度,能效比要增加2%~5%左右[理论cop= T1/(T2- T1)]。热回收机将高温热源排放到所需生活热水中,可以产生45℃~63℃的生活热水。

中央空调热回收机:本机是由我公司和沈一冷共同开发的一种中央空调热回收专用机组,其工作工质介于10℃~15℃的低温热源(蒸发器工作温度)和45℃~63℃高温热源中(冷凝器温度)。由于热回收机工作介质及工况选择合理,因而热利用效率高。通常热回收机的能效比可达到4.2~6.3,即:消耗一千瓦的电能能够吸收中央空调冷却水3.2~5.3千瓦的热能,同时释放4.2~6.3千瓦的热能给生活热水。回收机结构紧凑、体积小、安装位置灵活、运行可靠、工况宽泛、可全天候运行。

二.客户关心问题:

利用中央空调热回收技术制取的热水量能否满足用户使用?

答:完全可以满足45℃~50℃生活热水的要求。因为中央空调热回收机的释放热源为50℃~63℃的高温热源故而可以达到客户的一般生活热水要求,而且中央空调制冷时排掉的热量要比制取的冷量多,通常排掉热量是制取冷量的1.3倍,一般用户所需生活热水的热量只是排掉热量的10%~20%,所以中央空调余热回收完全可以满足用户制取热水的需求。

余热回收改造是否增加空调机组的耗电量?机组的制冷效率是否下降?

1 / 15

答:不会。制取比冷凝温度高的热水是否增加空调机组的耗电量是许多用户担心的问题。我们只是在中央空调机组冷却水循环系统上并联中央空调热回收机,实质是降低冷却水水温,使制冷剂得到充分的冷却,降低冷凝压力,因此,加装热回收机不但不会增加中央空调机组耗电量反而会提高中央空调机组的制冷效率。

中央空调热回收机安装是否复杂?运行费用如何?

答:中央空调热回收机安装并不复杂,我们技术人员只是在中央空调冷却水循环系统上并联回收机。热回收机可以根据用户对生活热水的需求量灵活选型,因此,安装快捷、占用空间小。由我公司和沈一冷共同开发的中央空调热回收机运行费用很低,能效比高达4.2~6.3(COP=4.2~6.3),是其它加热设备(电能锅炉、燃气锅炉)运行费用的1/3~1/4。

三.中央空调热回收技术原理图:

四.经济分析

中央空调机组加入热回收机可以收到良好的经济收益,每生产1吨生活热水就可以节省4~6元的加热成本。根据用水量的不同热回收机的一次性投资可在1~3个制冷季节内收回。

※主要测试仪器

1、综合电能分析仪(含自动打印)

2、多点温度巡检仪(含自动打印12个测点温度)

中央空调变频节能

2 / 15

更新时间: 5/29/2008 来源:点击数: 894

北京地区制冷季一般按120天计算,一台没有变频控制的37KW中央空调冷却水泵每个制冷季耗电106560度,电费近8万元,变频改造后每制冷季可节约电费2万~4万元!中央空调是城市大厦里的耗电大户,每年的电量消耗空调约占60%左右,因此中央空调的节能改造显得由为重要。由于设计时,中央空调系统必须按天气最热、负载最大设计,并且留有10%--20%的设计余量,所以其节能潜力很大。

对于风扇、通风机、鼓风机、水泵、油泵等流体机械,随叶轮的转动,其工作介质如空气、水、油等对叶片的阻力在一定转速范围内大致与转速n的二次方成比例变化。在低速时,由于流体的流速低、阻力矩小,所以负载只需很小的启动转矩,而随着异步电动机转速的增加,流速加快,所需转矩越来越大,其转矩大小按转速的二次方的比例增减,它们的特点是负载转距与转速的二次方成正比,即T=kn2,较小的速度变化将使机械出力有较大变化,这样的负载称为二次方降转矩负载。因为风机、泵类负载所消耗的能量正比于转速的三次方,所以通过变频控制流体机械的转速可以得到显著的节能效果。

目前大多数中央空调还采用以往旧的控制方式,即:通过改变压缩机机组、水泵、风机启停台数,以达到调节温度的目的。该调节方式缺点集中表现为如下几点:

●设备长时间全开或全闭,轮流运行,浪费电能惊人;

●电机直接工频启动,冲击电流大,严重影响设备使用寿命;

●温控效果不佳。当环境或冷热负荷发生变化时,只能通过增减冷热水泵的数量或使用挡风板来调节室内温度,温度波动大,舒适感差;

中央空调系统采用变频调节后有如下优点:

●变频可软启动电机,大大减小冲击电流,降低电机轴承磨损,延长轴承寿命;

●调节水泵风机流量、压力,可直接通过更改变运行频率来完成,可减少或取消挡板、阀门;

●系统耗电大大下降,噪声减小;

●若采用温度闭环控制方式,系统可通过检测环境温度,自动调节风量,随天气、热负荷的变化自动调节,温度变化小,调节迅速;

●系统可通过现场总线与中央控制室联网,实现集中远程监控;

冷却塔风机功率一般都较小,节电不如水泵明显。但风机采取变频控制能有助于冷却水恒温。冷却塔风扇低转速运行能大幅度减少漂水,节省水源、延缓水质劣化、减少水雾对周围的影响。

中央空调系统变频改造后由于风机水泵经常低负荷运行,能大幅度延长风机水泵的使用寿命,同时因没有启动、停止的冲击,加上流量的减少,管路承压及所受冲击力减小,故对管道、阀门、末端设备也起到了保护作用。另一方面,设备噪音、震动均减小,保证了环境的舒适和安静。

3 / 15

专业承接中央空调改造工程:

1、针对原来因设计、施工、安装等存在的问题而造成的中央空调不制冷(热)或空调效果很差的情况,实施工程改造。

2、空间用途或装修发生改变,需要对中央空调管路,分布等进行的工程改造。

3、原新风量设计不足或过量,需进行的工程改造。

4、设计或设备导致的高能耗,产生具大的浪费,需进行的工程改造。

5、原安装质量低劣,给空调系统使用或安全造成故障隐患需改造。

6、空调系统经数年运转,出现周期性老化,需对原系统进行工程改造。

7、对使用R11、R12等制冷剂的淘汰机型,改为节能环保制冷剂的工程改造。

8、中央空调机组,冷却塔及管道的拆迁或设备收购以旧换新服务。

我公司可根据客户的要求进行现场考察,方案设计,设备论证,改造,售后服务,归入档案跟踪服务(可预约上门洽谈)。

冷却塔余热回收

中央空调冷却水(32~37摄氏度)蕴含的热量属于低品位热能,因为回收成本高、余热利用率低而一直未被广泛利用。由北京旗帜公司与沈一冷共同开发的冷却塔热回收机使低品位余热回收变得十分简单,一次性投资小、余热利用率高、回收成本低,它的出现为我们节约能源、降低消耗、保护环境提供了新的视角和思路。

热回收机组是新一代节能产品,具有运行可靠、噪音低、易安装、出水温度高(60~70摄氏度)等特点。该机使用清华大学专利环保冷媒及先进的电子节流控制,余热利用效率高,机组能效比已达到6,即:消耗1千瓦的电能吸收中央空调冷却水3-5千瓦的热能,并释放4-6千瓦的热能加热生活热水。与电锅炉、燃气锅炉相比每生产1吨热水可以节省5-6元的加热费用。同时,热回收机吸收中央空调冷却水热量,降低冷却水温度,对中央空调机组产生二次节能。根据用水量的不同热回收机的一次性投资可在2-3个制冷季节内全部收回,热回收机使用年限长达20年,可无人值守全自动运行。

中国人民解放军总医院第二附属医院(原309医院)2007年5月安装使用了一台150M型中央空调冷却塔余热回收机组,机组额定电功率36.8千瓦,制热功率142千瓦,每天可为医院提供50摄氏度以上热水50-70立方米,热回收机的一次性投资在3个制冷季节内可全部收回。该工程在节能效果上得到了使用方的认可,已入选全军生态节能示范推广项目。

4 / 15

5 /

15

余热回收机组

热电厂循环水余热利用方案

******技术发展有限公司 ******热电厂循环水利用方案 (溴化锂吸收式热泵) 联系人: 手机: 联系电话: 传真: 信箱: 2013年8月18日

目录 1 项目简介 (3) 1.1 吸收式热泵方案 (3) 1.2 吸收式热泵供暖工艺流程设计 (3) 1.3 蒸汽型吸收式热泵主机选型(31.7℃→25℃) (4) 1.4 节能运行计算 (4) 1.5 初投资与回报期计算 (5) 2 热泵机组简介 (6) 2.1 吸收式热泵供暖机组 (6) 2.2 溴化锂吸收式热泵采暖技术特点 (7) 2.3 标志性案例介绍 (7)

1 项目简介 ********热电厂,采暖季有温度为26.3~19.6℃的循环冷却水2800m3/h,需要通过降低汽轮机组凝汽器真空或提高汽轮机背压,使得冷却循环水的温度提升到到31.7℃,然后利用溴化锂吸收式热泵机组提取凝汽器冷却循环水中的热量,将循环冷却水温度降低到25℃,可以制备供水温度为74.7/55℃热网水2400 m3/h,对建筑物进行供暖,供暖期为152天。提高汽轮机背压大约2KPa左右,汽轮机的轴向推力几乎不变,对发电量影响不大。 1.1 吸收式热泵方案 采用蒸汽型吸收式热泵机组,通过0.49MPa的饱和蒸汽作为驱动热源,在冬季采暖期,将2800m3/h的循环冷却水从31.7℃降低到25℃,可以从循环冷却水中提取21.82MW的热量用于建筑物采暖。 1.2 吸收式热泵供暖工艺流程设计 使用吸收式热泵加热,供暖系统流程原理图如下: 由上图可以看出,实际应用流程非常简单,只是把工艺循环水引到热泵机房,把原来通过冷却塔排放到环境中的冷凝废热,通过溴化锂吸收式热泵机组将热量传递给供暖回水。此系统改造不影响循环水原系统的稳定性,节省大量的蒸汽,同时带来了大量的经济效益。

高炉冲渣水余热利用

昆明冶金高等专科学校 毕业论文 学院:冶金材料学学院 专业:冶金技术 班级:冶金1239班 姓名:起赵林 学号:1200000338 论文题目:高炉冲渣水余热回收利用 指导教师:余宇楠 2015年2月10日

高炉冲渣水余热回收利用 摘要 高炉冲渣是在高炉冶炼的末端工艺,高炉炼铁后产生的大量高温炉渣通过冲渣水进行冷切,在这个过程中能够产生大量温度在70℃-85℃的热水。高炉冲渣水作为一种废热能源,因其温度稳定、流量大的特点,正逐渐成为余热回收利用的研究热点。目前,对冲渣水余热的回收方式有利用冲渣水采暖、浴池用水和余热发电。将其回收利用既能做到节约能源,争取能源的最大化利用,又能保护环境,它将成为冶金工厂的一个焦点。正看到了这一点,本次,我结合了高炉冲渣水余热利用的可行性分析及高炉冲渣水余热利用的现状和技术发展分析与实践等的探究。让我更近一步的了解高炉冲渣水余热回收与利用。 关键词:高炉冲渣水能源环保余热回收利用

目录 摘要 1绪论 2 浅析高炉冲渣水余热利用 2.1高炉冲渣水简介 2.2 高炉冲渣水余热回收的意义 3 高炉冲渣水余热利用的可行性分析 3.1高炉冲渣水余热参数 3.2 高炉冲渣水余热回收利用效益分析 4 高炉冲渣水余热利用的现状 4.1 高炉冲渣水余热利用现状 4.2 高炉冲渣水用于冬季采暖 4.3 目前冲渣水余热利用存在问题 5 高炉冲渣水余热利用技术发展分析与思考 5.1高炉冲渣水余热利用技术发展分析

5.2高炉冲渣水余热利用技术的思考6高炉冲渣水余热利用技术的创新 6.1高炉冲渣水余热利用技术 6.2高炉冲渣水余热利用技术的创新 6.3 余热回收应用案例 7高炉冲渣水余热供暖工程中的应用 7.1 高炉冲渣水的过滤 7.2 水泵流量及扬程 7.3 泵房的布置 7.4水泵安装高度 7.5其他事项 8高炉冲渣水余热采暖实践 8.1 技术方案选择 8.2 工程实施 8.3开车调试 8.4运行效果 结论 参考文献

冷凝水余热回收系统节能效果明显

冷凝水余热回收系统节能效果明显 江苏华鑫化工机械厂一直采用开式凝结水回收系统。其中,凝结水箱为开放式结构,与大气相通,会产生大量的二次闪蒸蒸汽,以往这些热能和水分均被排放到环境中。2011年下半年,该厂技术人员经过综合测试分析,制定了回收系统的改造及余热利用方案。 首先,他们将原有的开式凝结水回收系统改为闭式回收系统。在生产、空调和其他冷凝水回收管道上安装阀门,阀门关闭后冷凝水不再直接回到凝结水箱。在这些管道上连接旁通管道,将凝结水分别接入多路共网器,将不同压力的凝结水汇流到一起形成高温热水进入凝结水闭式回收器。凝结水闭式回收器的水泵将高温热水送往用热点,在经过换热降温后回到容器罐实现供水循环。 他们还在闭式回收器的放空口设置了乏汽排放阀。通过乏汽排放阀的控制,将系统剩余热量通过蒸汽的形式排放掉,实现整个凝结水回收管道保持微背压甚至是零背压的运行方式。 其次,他们对凝结水热量进行综合利用。利用途径之一是加热锅炉给水。锅炉软化水经过换热器后温度可提高40℃~50℃,在锅炉软化水流量较小时温升可达到60℃,进入除氧器加热器前水温就已经达到90℃以上,从而大大节省了蒸汽耗用量。之二是冬季将高温水应用到采暖换热。之三是夏季将高温水应用到热水型溴化锂制冷机,作为制冷的热源。 改造完成后,该厂实现了热量回收和使用的平衡。目前系统可适应全年的工艺状况,全年余热平均利用率在90%以上。以年回用冷凝水6.5万吨计算,改造前只是回收凝结水,平均温度在70℃;改造后按照高温热水温度为135℃计算,年可节约能耗费用125.6万元。此外,改造后还彻底消除了因排放凝结水和闪蒸二次汽造成的热污染。整个冷凝水回收系统为完全密闭,既消除了安全隐患,实现了清洁生产,还彻底消除了凝结水箱的二次蒸汽,解决了地下室的潮湿和结露问题。凝结水泵在输送高温凝结水的状态下不发生汽蚀,可确保能源回收系统的长期安全运行。

电厂循环水余热利用可行性研究报告

电厂循环水余热利用建议书 编制: 朱明峰 审核: 批准: 中海油节能环保服务有限公司 2013年9月19日

目录 一概述 (1) 1.1项目背景 (1) 1.2余热资源现状 (1) 1.3项目实施条件 (1) 1.4遵循的标准及规范 (2) 二余热回收方案设计 (3) 2.1现有补水加热流程图 (3) 2.2改造方案 (3) 2.3改造主要工作量 (5) 2.4技改效果 (6) 2.5改造投资及静态回收期 (6) 三节能环保效益分析 (7) 3.1节能效益 (7) 3.2环保效益 (7) 四结论与建议 (7)

一概述 1.1项目背景 **热电厂全年供应蒸汽。由于外供蒸汽的凝结水回收比例较低,需要大量的除盐补充水,新厂补充除盐水的流量常年在100~150t/h,平均温度约为25℃,本方案将回收电厂发电后的大量循环水余热,用于加热锅炉补充除盐水,从而减少部分除氧器加热蒸汽耗量,节省的蒸汽可用于外送或发电。 充分利用电厂循环水余热,提高能源利用效率,对节能减排工作得推动起到了重要的作用。 1.2余热资源现状 **热电循环冷却水总流量约为15000t/h,上下塔温度夏季为40/30℃、冬季为30/20℃,最冷时下塔温度约为15~18℃。 循环冷却水余热若按照温差10℃提取,可回收的余热量为:ΔQ =4.1868MJ/t·℃×15000t×10℃/3600s=174.4MW 1.3项目实施条件 蒸汽压力:0.5-0.8MPa(饱和蒸汽) 除盐水补水平均温度:25℃ 预热除盐水温度:90℃(夏)/80℃(冬) 除盐水量:100t/h 循环水温度(冬季):30/20℃ 循环水温度(夏季):40/30℃

高炉冲渣水余热回收技术

高炉冲渣水余热回收技术 通过对高炉冲渣水余热回收利用的几种方式的对比,分析了传统换热设备在余热回收项目中的优缺点,并提出真空相变换热技术在冲渣水余热回收中的优势,其较好地解决了传统冲渣水换热器设备堵塞、耗损、腐蚀、结晶等一系列问题。真空相变换热器有效地利用了此项技术,在钢厂高炉冲渣水余热回收利用中值得推广利用,具有广阔的应用前景,可以实现较好的经济效益和环保及社会效益。 标签:换热器;真空相变;高炉冲渣水;余热回收 1 概述 高温熔渣作为高炉炼铁的附属产物,其经过水淬工艺处理后将产生70~90℃的高温冲渣水,这些具有大量余热的冲渣水具有成分复杂、悬浮物多的特点,尤其是其中含有矿棉类纤维等成分,极易造成沉积钩挂、堵塞,同时其渣粒也会造成管道的严重磨损。长期以来,人们采用直接或间接的换热器来利用冲渣水的余热,都达不到理想的换热及运行效果。高炉冲渣水若直接作为采暖热水,会在采暖管道及散热器中产生淤积、堵塞;若间接换热,则同样会在传统的换热器中发生堵塞、腐蚀、结晶、磨损等问题,无法长周期有效使用。综上,如何全面、有效地利用高炉冲渣水便成了一个亟待解决的现实问题。 2 真空相变换热技术简介 由于水的沸点会随着压力的变化而相应地变化,所以,通过降低水所在周围环境的压力大小,从而使水在低压环境下沸腾,进而转化为水蒸气,这些水蒸气便可以被我们充分利用与循环水进行相变换热,从而达到了余热回收的目的。 2.1 高炉冲渣水的水质分析 高炉冲渣水的余热回收具有其鲜明的特点,有必要对其水质进行简单地分析。高炉渣的主要成分为CaO、SiO2、AL2O3等物质,冲渣水是高炉渣在1400℃左右的熔融状态下水淬形成的,故在其水淬过程中会将高炉渣的一些成分溶解在水中,再加上冲渣水作为冷却高炉渣的重复利用循环水,不断往复地冲渣过程中冲渣水也不断地被浓缩,从而使高炉渣中可以溶于水的物质达到了一个饱和的状态。 笔者从某钢厂冲渣水提供的水质报告得到以下数据。 根据表1中的数据显示,钢厂高炉冲渣水中含有大量的可溶于水的易结晶物质,而要利用这些高炉冲渣水就必然要使其与低温的冷水进行强制冷凝换热,高温状态下的冲渣水经过换热冷凝,温度降低的同时溶解在高炉渣中的以上成分就会呈现过饱和的状态,从而以晶体的形式析出并附着在换热壁表面上,造成换热

基于热泵技术的热电厂循环水余热回收方案研究

基于热泵技术的热电厂循环水余热回收方案研究 发表时间:2018-10-01T19:15:42.717Z 来源:《基层建设》2018年第26期作者:陈永山 [导读] 摘要:传统的热电厂进行供热的时候,能源选用上通常是煤、石油、天然气这样的能源,供热效率较低,且会产生一些对人类有害的气体。 身份证号码:37011219810311XXXX 摘要:传统的热电厂进行供热的时候,能源选用上通常是煤、石油、天然气这样的能源,供热效率较低,且会产生一些对人类有害的气体。而如果使用循环水余热回收技术,就能够改变这一点,通过该技术的使用使得整个供热过程变得清洁环保,且节约了大量的能源,供热的规模也大大增强了。由此可见,将循环水余热回收技术加以利用是非常重要的。 关键词:热泵技术;热电厂循环水余热;回收方案 引言 随着社会的不断发展,全球化石能源的储量随之急剧减少。伴随着化石燃料消耗量的急剧增加,环境问题又日益凸显出来。全球气候变暖、雾霆、大气层破坏等诸多环境问题对人类社会的长久稳定发展造成极大的影响。在我国的能源消耗构成中,电力企业占国家化石能源的消耗量的比重相对较大,近些年我国政府也出台针对电力企业节能减排的政策:重点推广能量梯级利用、低温余热发电和热泵机组供暖等节能减排技术。 1热泵的分类及基本工作原理 1.1热泵的基本种类 如图1所示,由热源来源进行种类划分,热泵主要可分为如下几类:①水源热泵。所利用的水源主要包括自然水源和人工排水源。自然水源主要为地下水、河川水及海洋水。人工排水源主要为城市生活污水、工业废水及热电冷却水。②地源热泵。③空气源热泵。具体至当前普遍应用于热电厂的热泵,我们具体又可将其划分为两大类:①压缩式热泵,包括蒸汽驱动压缩式热泵和电驱动压缩式热泵。②吸收式热泵。 图1热泵的基本种类结构示意 1.2热泵技术的基本工作原理 从本质上而言,热泵显然为一种热量提升装置。热泵主要从周围环境中吸收热量,并将其有效传递给被加热对象,也即是温度较高的物体。热泵的工作原理和制冷机类似。一般情况下,热泵主要有如下几个重要部分构成:①压缩机;②蒸发器;③冷凝器;④膨胀节流阀等。具体如图2所示。 图2热泵技术的基本工作原理示意 (1)压缩机为热泵机组的心脏,压缩机起到的作用主要为:压缩并输送循环工质,将其由低温、低压转变为高温、高压。蒸发器为热泵机组的输出冷量设备。(2)蒸发器可使经节流阀流入的制冷剂液体蒸发,进而吸收被冷却物体的热量,最终切实实现制冷的目的。(3)冷凝器为热泵机组输出热量的设备。压缩机消耗功转化的热量以及蒸发器中吸收的热量传输至冷凝器中之后,会被冷却介质带走,从而实现制热的基本目的。(4)热泵机组的膨胀阀亦或是节流阀可以对循环工质起到较好的节流降压作用,在此基础上还可起到对进入蒸发器的循环工质流量进行调节的重要作用。研究表明,采用热泵技术能够节约大量的电能。 2方案确定 在选择循环水余热回收方案时,首先要对各个方案的经济性进行分析并以此为方案选择依据,当热泵机组确定时,即使余热量无限大,但是热泵机组增加的热量不是无限增大的,热泵机组所能回收的热量存在一个极限值,也就是理论最大回收热量。因此,本文将针对吸收式热泵和压缩式热泵,以电厂实际条件为背景,分析其所能提供的最大供热量,来选择合适的热泵机组。 2.1应用吸收式热泵 采用吸收式热泵时,需要耗费部分抽汽作为热泵的驱动热源,吸收循环水的余热并将吸收的热量输送给一次网回水,使一次网回水温度升高。吸收式热泵的供热量为:

冷凝燃气锅炉烟气余热回收利用研究

冷凝燃气锅炉烟气余热回收利用研究 摘要近些年来,随着经济社会的快速发展,国家对环境保护、节约资源、能源综合利用等提出了较高的要求。在北京市集中供热系统中,燃气锅炉得到了广泛的应用,而燃气锅炉所排放的烟气具有较高的温度,可以采取有效措施来降低烟气排放温度,并实现对烟气余热的有效回收,其不仅可以使燃气锅炉的供热效率得到有效提升,而且还可以达到比较理想的节能效果。本文将会以北京市某热源厂为例来对冷凝燃气锅炉烟气余热回收利用技术进行探究。 关键词冷凝燃气锅炉;烟气余热;回收利用 如今,随着燃气锅炉在供热行业中的广泛应用,与燃煤锅炉相比具有热效率更高、污染更小等特点。在锅炉中天然气燃烧过程中,将会有大概92%左右能量转化为热量、7%左右为排烟热损失、1%左右表面散热损失掉。因此,做好烟气余热回收利用工作就显得尤为重要。通常情况下,很大一部分烟气中的余热存在于水蒸气中,在回收显热、降低烟气温度的同时,会有效回收烟气中的水蒸气潜热,从而实现烟气全热的正回收。烟气余热回收利用主要是以天然气为驱动源,借助回收型热泵机组,就能够使锅炉排烟从80℃降至30℃,从而使大量的水蒸气冷凝潜热被回收,这样既可以达到节省燃气锅炉燃气耗量的目的,而且还可以降低PM2.5雾霾形成物的排放,达到节能减排的双重效果。 1 冷凝燃气锅炉烟气余热回收利用技术 1.1 利用换热器烟气余热回收技术 在烟气余热回收利用技术中,换热器是比较常用的设备,对其进行科学、合理的选择尤为关键,根据换热方式的差异,可以将烟气余热回收利用方式划分为直接接触式换热型、间接接触式换热型[1]。 (1)直接接触式换热器。直接接触式换热通常是以直接接触的方式来实现两种介质相互传热传质的过程。通常情况可以根据接触结构的不同划分为折流盘型、多孔板鼓泡型和填料型如图1所示。因为我国供热供回水温度相对比较高,导致直接接触式换热型换热器在烟气余热回收利用过程中并未得到广泛的应用。(2)间接接触式换热器。间接换热通常是指在被壁面分隔来的空间里冷热介质可以实现独立流动,并通过壁面来使实现冷热介质的换热。在烟气余热回收利用技术中,常用的间接接触式换热器有热管换热器、翅片管换热器和板式换热器. 1.2 利用热泵回收烟气余热技术 在燃气锅炉中,天然气燃烧过程中所产生的烟气露点在55—65℃之间,在进行回收烟气冷凝余热阶段,一般要求供热回水温度在烟气露点温度范围以内。一旦供热回水温度超过了烟气露点温度,则需要借助热泵回收烟气冷凝余热来实现预热供热回水。目前,在烟气余热回收利用过程中,吸收式热泵回收烟气余热

电厂循环水余热回收供暖节能分析与改造技术

电厂循环水余热回收供暖节能分析与改造技术 摘要:当今世界,节能已成为一项重要的研究课题。发电厂作为耗能大户,存在大量循环水余热没有得到有效利用,浪费严重。因此,如何利用循环水余热成为电厂节能的重要任务。 1.回收电厂循环水余热的意义 能源是国民经济发展的基础,深入开展节能工作,不仅是缓解能源矛盾和保障国家经济安全的重要措施,而且也是提高经济增长质量和效益的重要途径。本世纪的头20 年,我国工业化和城镇化进程将进一步加快,需要较高的能源增长作为支撑。因此,节能工作对促进整个经济社会发展的作用日益凸显,国家已经把节能作为可持续发展的大政策。 目前,我国大中型城市普遍存在着集中供热热源不能满足迅速增加的供热需求的情况,而新建大型热源投资高、建设周期长,并受到城市环境容量的强烈制约。 为了缓解供热紧张的局面,一些地方盲目发展小型燃煤锅炉房,严重恶化了城市的大气环境;一些城市盲目发展燃气采暖、甚至电热采暖,在带来高采暖成本的同时,也引发了城市的燃气和电力资源的全面紧张。一方面,是燃用高品位的化石燃料来提供低品位的热能用于供暖和提供生活热水。另一方面,城市周边的火力发电厂在发电过程中,通过冷却塔将大量的低品位热量排放到大气中,造成了巨大的能源浪费和明显的环境湿热影响。因此,如果能将循环冷却水余热用于供热(采暖、生活热水等),不仅能够减少电厂冷却水散热造成的水蒸发损失和环境的热污染,而且能够缓解采暖带来燃气和电力资源的紧张局面。同时,实现能源的梯级利用,节约大量燃料,提高能源综合利用率。 北京五大热电厂和热力集团所属六个供热厂的供热能力都已达到极限。北京热电厂普遍采用的抽凝式汽轮机组,即使在冬季最大供热工况下,也有占热电厂总能耗10~20%的热量由循环水(一般通过冷却塔)排放到环境。根据调研,北京并入城市热网的四大热电厂在冬季可利用的循环水余热量就达1000MW 以上,远期规划余热量将达约1700MW。如果将这些余热资源加以利用,仅仅考虑有效利用现有的余热量,就相当于在不新增电厂装机容量和不增加当地污染物排放的情况下,可新增供热面积3000 万平方米以上。因此,利用电厂循环水余热供热是一种极具吸引力的城市集中供热新形式。 2.电厂循环水余热供热技术现状 2.1汽轮机低真空运行供热技术 凝汽式汽轮机改造为低真空运行供热后,凝汽器成为热水供热系统的基本加热器,原来的循环冷却水变成了供暖热媒,在热网系统中进行闭式循环,可有效利用汽轮机凝汽所释放

高炉冲渣水余热回收解决方案-仟亿达

仟亿达高炉冲渣水余热回收利用解决方案一、高炉冲渣水余热利用背景 钢铁厂在高炉炼铁工艺中,产生的炉渣温度大约为1000℃。目前,大多数炼铁企业的处 理方法是:将此炉渣在冲渣箱内由冲渣泵提供的高速水流急冷冲成水渣并粒化,以供生产水泥之用。这一过程中能够产生大量温度在80~95℃的热水。通常,为了保证冲渣水的循环 利用效果,需要将这部分冲渣水在沉淀过滤后引入空冷塔,降温到50℃以下再次循环冲渣。这样就使得很大一部分热量在空冷塔中流失,既造成了能源的浪费,又对环境造成了热污染。 目前,高炉冲渣水余热回收利用技术主要应用于余热发电、冬季采暖和浴池用水。 二、高炉冲渣水余热利用解决方案 2.1余热发电 基本原理为:炼铁厂高炉冲渣水排出时温度为80~95℃,经沉淀清除杂质预处理后进人 特殊设计的蒸发换热器和预热换热器,将高炉冲渣水热量传递给换热介质,温度降至约5O℃,再送回高炉冲渣,从而回收一定量的余热。换热介质在换热器内吸收热量后变成80℃的过 热蒸气,然后进入气轮机膨胀做功,带动发电机转动,输出电能。做功后的换热介质变成低压过热蒸气,进入冷凝器放出热量,变成低温、低压的液体换热介质,然后由泵送至换热器中吸热,再次变成过热蒸气推动气轮机膨胀做功。如此连续循环,将高炉冲渣水中的热量源源不断地提取出来,转换成电能。

图1、高炉冲渣水余热发电工艺流程图 冷凝器冷却方式包括水冷式和风冷式2种。其中,水冷式冷凝器投资较低,投资回收期较短,但运行过程需补充冷却水;风冷式冷凝器净发电量较少,但不需要冷却水,比较适合干旱缺水地区。 2.2螺杆膨胀机余热发电简介 螺杆膨胀机是一种专门回收各种低品位热能发电的高新技术新型发电机组,具有通用性强、热能适用广、使用维护安全便捷、节能高效等技术特点,在不影响用户正常生产的前提下实现节能减排和经济增效的投运效果。

电厂循环水余热利用可行性研究报告

电厂循环水余热利用建议书 编制: _________朱明峰____________ 审核: ___________________________ 批准: ___________________________ 中海油节能环保服务有限公司 2013年9月19日

一概述................................................................. 1.. 1.1项目背景...................................................... 1.. 1.2余热资源现状.................................................. 1. 1.3项目实施条件................................................... 1. 1.4遵循的标准及规范............................................... 2. 二余热回收方案设计.................................................... 2. 2.1现有补水加热流程图............................................ 2. 2.2改造方案....................................................... 2. 2.3改造主要工作量................................................. 4. 2.4技改效果....................................................... 5. 2.5改造投资及静态回收期.......................................... 5. 三节能环保效益分析..................................................... 5. 3.1节能效益....................................................... 5. 3.2环保效益....................................................... 6. 四结论与建议......................................................... 6..

高炉冲渣水余热利用项目技术方案

高炉冲渣水余热利用项目技术方案

目录 1 概述 (1) 1.1项目名称 (1) 1.2编写单位 (1) 1.3设计依据 (1) 1.4设计原则 (2) 1.5设计范围 (2) 2 技术条件及指标 (3) 2.1气象资料 (3) 2.2设计条件 (3) 2.3项目简述 (4) 2.4工艺简述 (4) 3 工艺技术方案 (6) 3.1建筑物采暖热指标 (6) 3.2供热能力分析 (7) 3.3工艺技术方案 (8) 3.4冲渣水换热站 (9) 3.5备用热源 (11) 3.6.能源介质管网 (11) 3.7主要设备清单 (12) 4 土建部分 (13) 4.1概述 (13)

4.3厂区自然条件 (13) 4.4建构筑物 (14) 4.5计算采用的程序 (14) 5 供配电设施 (15) 5.1设计范围 (15) 5.2设计依据 (15) 5.3 供电及负荷计算 (15) 5.4电气传动及控制 (16) 5.5电缆敷设 (16) 5.6 照明 (17) 5.7防雷与接地 (17) 5.8电气设施防灾 (18) 6 自动化仪表及控制要求 (20) 6.1设计范围 (20) 6.2装备水平 (20) 6.3主要检测 (20) 6.4控制要求 (20) 6.5仪表选型 (21) 6.6控制室 (21) 6.7通讯 (21) 7 给水、排水 (22)

7.2生活给水 (22) 7.3 排水 (22) 8 采暖、通风、空调设施 (23) 8.1采暖设施 (23) 8.2通风设施 (23) 8.3通风设施 (23) 9 项目组织机构和人员 (24) 9.1施工条件 (24) 9.2 大件运输 (24) 9.3 建厂物资 (24) 9.4 劳动定员 (24) 10 运行管理 (26) 10.1调试和试运行 (26) 10.1日常运行管理 (26) 10.3异常运行 (26) 11 投资概算 (27) 11.1工程概况 (27) 11.2 编制依据 (27) 11.3费用构成 (28) 11.4成本及收益分析 (29)

高炉冲渣水余热利用现状分析

高炉冲渣水余热回收 1、高炉冲渣水余热利用背景。 高炉炉渣余热回收是中国未来10年节能的方向之一。在高炉冲渣水低温余热回收工艺中,过滤和换热是一个永恒的课题,而相对应的过滤器和换热器就是一个非常关键的工艺设备。 以高炉冲渣余热为代表的低温余热亦蕴含着巨大的能量,高炉熔渣的潜热储量大,以中国2014年8.23亿吨的粗钢产量计算,高炉炉渣产量约2.59亿吨,其热量可折算为1411万吨标煤的热量,如这部分热量完全利用可冬季为1亿平米的城市民用住宅建筑供暖,占全国集中供暖面积的11.6%。自2015开始,随着我国环境保护和城市雾霾治理的力度不断加大,城市燃煤供暖很难满足排放指标,高炉冲渣水余热供暖以其成本低、无排放等优势得到了热力公司的青睐,成为不少城市的“蓝天工程”。 冲渣水中含有较细微的高炉渣成份,主要化学成份是Ca、Si、Mg、O等离子化合物,在水中极易水解板结,造成末端管网堵塞严重。 冲渣水温度越低,其炉渣制成的水泥活性越高。因此提取冲渣水余热,降低其循环使用温度,既有助于提高炉渣质量,同时能够降低冷却塔负荷,节约水泵和风机耗功。 目前,提出对冲渣水余热的回收方式有:利用冲渣水采暖或作浴池用水;冲渣水余热发电。 2、高炉冲渣水处理工艺。 A、明特法处理工艺。利用冲制箱将冶金炉熔渣冲制成水渣混合物,由搅笼机将水渣混合物中渣分离出,并脱水成干渣,外运销售;冲渣水经过过滤器过滤成

干净水,由冲渣泵循环供冲制箱冲渣使用。明特法水渣处理系统作为第三代水渣处理技术(即水渣领域的最新技术),其主要特点是彻底克服渣池法(第一代水渣处理技术:平流法、侧滤法、底滤法)、转鼓法(第二代水渣处理技术:INBA、图拉法)的不足,以全自动化方式对水渣进行处理。即通过操作员的一个按钮动作,使水渣的分离自动完成,实现从设备出来的渣为干渣;出来的水为干净水,直接循环使用。 B、嘉恒法处理工艺。由高炉放出的高温熔渣经熔渣沟流到出铁厂平台边缘的冲制箱前方,被冲制箱喷出的急速水流水淬,形成渣水混合物。渣水混合物经水渣沟输送到脱水器中,实现渣水分离。成品渣通过受料斗落到皮带机上,运至渣场或渣仓,水则透过筛网流入水池。回水经过沉淀后被泵打到各用水点循环使用,沉淀池的细渣通过抓斗捞至皮带机上方漏斗,由皮带机运走。 C、因巴法INBA 法水冲渣工艺。INBA法水冲渣是保尔沃特公司的专利技术,将熔渣水淬后通过渣浆泵输入到转鼓实现脱水,最终获得水渣的办法。 3、高炉冲渣水余热利用工艺。 A、余热发电。高炉冲渣水排出时温度大约85℃,经过沉淀除杂预处理后进入特殊设计的换热器,在此将热量传递给工质,温度降到50℃左右,再送到高炉供冲渣使用,从而回收了一定量的余热。工质在换热器内吸收热量后变成80℃的过热蒸汽,然后进入气轮机膨胀做功,带动发电机转动,对外输出电能。做功后的工质变成低低压过热蒸汽,低低压过热蒸汽进入冷凝器放出热量,变成低温低压的液体工质,然后由工质泵送到热交换器中吸热,再次变成过热蒸汽去推动汽轮机作功。如此连续循环,将热水中的热量源源不断的提取出来,生成高品位的电能。

电厂循环水余热回收供暖节能分析与改造技术知识讲解

电厂循环水余热回收供暖节能分析 与改造技术 摘要:当今世界,节能已成为一项重要的研究课题。发电厂作为耗能大户,存在大量循环水余热没有得到有效利用,浪费严重。因此,如何利用循环水余热成为电厂节能的重要任务。 1.回收电厂循环水余热的意义 能源是国民经济发展的基础,深入开展节能工作,不仅是缓解能源矛盾和保障国家经济安全的重要措施,而且也是提高经济增长质量和效益的重要途径。本世纪的头20 年,我国工业化和城镇化进程将进一步加快,需要较高的能源增长作为支撑。因此,节能工作对促进整个经济社会发展的作用日益凸显,国家已经把节能作为可持续发展的大政策。 目前,我国大中型城市普遍存在着集中供热热源不能满足迅速增加的供热需求的情况,而新建大型热源投资高、建设周期长,并受到城市环境容量的强烈制约。 为了缓解供热紧张的局面,一些地方盲目发展小型燃煤锅炉房,严重恶化了城市的大气环境;一些城市盲目发展燃气采暖、甚至电热采暖,在带来高采暖成本的同时,也引发了城市的燃气和电力资源的全面紧张。一方面,是燃用高品位的化石燃料来提供低品位的热能用于供暖和提供生活热水。另一方面,城市周边的火力发电厂在发电过程中,通过冷却塔将大量的低品位热量排放到大气中,造成了巨大的能源浪费和明显的环境湿热影响。因此,如果能将循环冷却水余热用于供热(采暖、生活热水等),不仅能够减少电厂冷却水散热造成的水蒸发损失和环境的热污染,而且能够缓解采暖带来燃气和电力资源的紧张局面。同时,实现能源的梯级利用,节约大量燃料,提高能源综合利用率。 北京五大热电厂和热力集团所属六个供热厂的供热能力都已达到极限。北京热电厂普遍采用的抽凝式汽轮机组,即使在冬季最大供热工况下,也有占热电厂总能耗10~20%的热量由循环水(一般通过冷却塔)排放到环境。根据调研,北京并入城市热网的四大热电厂在冬季可利用的循环水余热量就达1000MW 以上,远期规划余热量将达约1700MW。如果将这些余热资源加以利用,仅仅考虑有效利用现有的余热量,就相当于在不新增电厂装机容量和不增加当地污染物排放的情况下,可新增供热面积3000 万平方米以上。因此,利用电厂循环水余热供热是一种极具吸引力的城市集中供热新形式。 2.电厂循环水余热供热技术现状 2.1汽轮机低真空运行供热技术

循环水余热利用收益的算法讨论

循环水余热利用收益的算法讨论 利用热泵吸收电厂循环水中的余热用于冬季采暖,有节能减排的社会效益,但对于电厂自身而言,其获得的收益和其投入相比并不十分理想。就目前可供参考的此方面资料来看,其中对于电厂收益的计算都有或多或少的放大,热泵投运后的效果和预期相去较远。文章仅对热泵在电厂循环水余热利用中,就电厂自身所得收益的算法进行讨论、讨论中不涉及财务及税收问题,仅针对技术性的问题进行讨论。 标签:热泵;循环水余热利用;节能减排;算法 1 常见算法极其缺陷 1.1 按燃料价格计算 当下常见的算法之一,就是按燃料计算收益。持这种观点的人认为:电厂增加热泵后,其供热量就会增加且增加的供热量就是热泵所吸收的热量,电厂所得到的收益,就是热泵所吸收的热量折算燃料的费用,当然也考了热泵投入后所伴随的一些损失。这里的问题在于,对于电厂而言,热泵所吸收的热量并不能简单折算成燃料费用。下面详细解释一下。 为了使问题简化我们做一些假设,第一、热泵投入后不会对电厂产生任何附加损失,无论是汽轮机背压升高产生的损失还是由于管道阻力增加造成的热网循环泵电耗增加,第二,热泵自身不消耗任何形式的能量,其作用仅仅是将循环水中的余热吸收到供热系统中。 有了如上假设之后,可以这样描述热泵投入后的作用:当热泵投入后,就会有一些“白得的”热量进入热网系统,在供热量不变的情况下,供热抽汽就会相应的减少,减少的这部分抽汽当然会返回汽轮机中做功或者说发电。由于电厂发多少电,是由电网决定的,因此我们进一步假定,当供热抽汽被排挤到汽轮机中做功时,还需保证汽轮机组的发电功率不变。为此只有减少主蒸汽的进汽量。显然,减少的主蒸汽,或者说省下来的这部分主蒸汽所发的电,应等于被排挤到汽轮机中的供热抽汽所发的电。增加热泵后,电厂所得的收益就是这部分被剩下来的主蒸汽,确切的说,就是加热这部分主蒸汽所消耗的燃料。由此可见,把热泵吸收的热量直接折算成燃料费用,并以此作为电厂的收益,显然不尽合理。 为了此后叙述方便,把上面这种算法叫做“排挤抽汽法”。显然这种算法更为合理。需要指出的是,当电厂的供热抽汽量达到最大,再也无法增加供热时,这时热泵所吸收的热量可以按燃料费用计算收益,但也只有超出电厂最大供热能力的那部分热量可以如此计算。有关这一点在后面加以详细讨论。 1.2 按热价计算

吸收式热泵循环水余热回收方案在300MW机组的应用

吸收式热泵循环水余热回收方案在300MW机组的应用0引言 随着城市建筑的不断增加,需要集中供热网为更多的建筑物供暖,但是城市的热源严重不足,而新增热源又会带来环境问题,受到各地环保部门严格控制。热电厂循环水余热回收供热,可以实现能源的高效利用和循环利用,符合国家节能减排的大政方针,亦有利于缓解城市采暖供热用能的矛盾。 1系统现状 河北邢台国泰发电公司2×300MW工程10、11号汽轮机为东方汽轮机厂生产的N-300-16.7/537/537-8型亚临界、一次中间再热、单轴双缸双排汽采暖抽汽凝汽式汽轮机。汽机额定供汽量为:400t/h,汽机最大供汽量为:625t/h。 汽轮机厂采暖抽汽压力可在0.245MPa~0.688MPa范围调整,由高温热水网将130C°的高温热水送至各小区热力站。本工程最大供热能力为2875GJ/h,对外供热网循环水量11957t/h,厂区热网供水干管管径为2×DN1200。 循环冷却水带走的余热量主要是汽轮机排入凝汽器的蒸汽释放的凝结热。每台机组循环水系统配有两台流量为17640t/h循环水泵,冬季运行一台,凝汽器循环水进出口温度24/35℃。这就意味着有大量的热量通过循环水冷却水塔直接浪费掉,同时通过冷却水塔的蒸发、风吹损失大量循环水。 2余热回收方案 1)吸收式热泵基本原理(图1) 吸收式热泵以低温低压饱和蒸汽作为驱动力,从低温热源(循环水)中回收低品位余热。将蒸汽本身放热和回收余热同时传递给热网水。 蒸发器:吸热时,由冷剂泵将冷剂喷淋到蒸发器的传热管上,传热管表面的冷剂吸收管内热源水的热量而蒸发,使热源水的温度下降。 图1 吸收器:通过喷淋在吸收器传热管上的吸收溶液,吸收由蒸发器产生的冷剂蒸汽。吸收冷剂时产生的吸收热被管内流动的热水带走,使传热管表面的吸收作用持续进行。吸收冷剂蒸汽后,浓度下降的吸收液(以下称为稀溶液),由溶液泵经溶液热交换器送入发生器。 发生器:由溶液泵从吸收器送来的稀溶液,被供给发生器的蒸汽加热。被加热的稀溶液产生冷剂蒸汽,变成浓度较高的吸收液(以下称为浓溶液),通过溶液热交换器被送到吸收器。 冷凝器:在发生器中产生的冷剂蒸汽,被冷凝器传管内流动的热水冷却,冷凝后变成为冷剂液体。冷剂液返回蒸发器,再次被喷淋到蒸发器的传热管上。 溶液热交换器:由吸收器送往发生器的低温稀溶液,与来自发生器高温浓溶液进行热交换,从而提高热泵的热效率。 蒸汽调节阀:用蒸汽调节阀,通过从控制盘传来的信号,根据热负荷的变化调节供给发生器的蒸汽量。由此将热水出口温度控制在设定的值上。 溶液泵、冷剂泵:为了确保高真空,采用了完全封闭型的屏蔽泵。并利用各自的一部分排出液,润滑轴承及冷却电机。 溴化锂溶液的特性决定了它适用于吸收式热泵系统:溴化锂极易溶于水,是一种高效水蒸气吸收剂,44℃失去1分子结晶水,160℃时成为无水物,熔点550℃,沸点1265℃,在大气中不易变质不易分解,在容器中对钢铁有很强的腐

高炉冲渣水余热回收技术的创新与应用

高炉冲渣水余热回收技术的创新与应用 高炉熔融炉渣的温度高达1400℃~1500℃,其热量大,属于高品质的余热资源。我国高炉渣的处理工艺主要采用水淬处理,大量高温炉渣通过冲渣水进行冷却,产生大量温度为70℃~85℃的热水。通常,为了保证冲渣水的循环利用,需要将这部分冲渣水沉淀过滤后引入空冷塔,降温到50℃以下再次循环冲渣,或自然降温后继续循环冲渣。这个过程损失了大量的热量,既造成了能源的浪费,又对环境造成了污染。 高炉冲渣水作为一种废热能源,因其温度稳定、流量大的特点,正逐渐成为余热回收利用的研究热点。目前,对冲渣水余热的回收方式有利用冲渣水采暖、浴池用水和余热发电。冲渣水余热发电是一种最有价值的研发方向,但因其技术要求相对较高,投资回收期较长,目前还处于研究开发阶段。利用冲渣水采暖或作浴池用水,已经被北方地区的部分钢厂使用,并带来较好的经济效益。 高炉水渣含有CaO、SiO2、MgO、Al2O3和少量的Fe2O3,pH值大于7,呈弱碱性。高炉水渣杂质在冲渣水中以固体颗粒或悬浮物的形式存在,日积月累,杂质会使采暖系统中的管道、阀门、散热器发生大面积淤积、堵塞,所以高炉冲渣水作为采暖热源时不适于直接使用。通过间接换热的形式重复利用冲渣水进行采暖或作为浴池用水是高

炉冲渣水利用的技术点,而高炉冲渣水专用换热器适用于换热介质在高悬浮物、高黏度等恶劣工况下的实体应用。 冲渣水余热回收出利器 冲渣水专用换热器是由螺旋状扁管换热元件制造而成的新型高效换热器,螺旋扁管的截面为椭圆形,其管内外流道均呈螺旋状,获得国家实用新型专利。该换热器在使用过程中具有以下特点: 压降小。管壳式换热器在壳程为了减少死区和短路设置了一定数量的折流板,相应地增加了阻力,而螺旋扁管的应用使得壳程中介质的曲折流动变为直接螺旋流动,没有死区,不必设置折流板。取消折流板降低了阻力,并大大提高了热传递效率。冲渣水专用换热器和螺旋板式换热器的压降≤30kPa,而板式换热器和固定管板式换热器的压降均为50kPa~100kPa。 传热效率高。在管程,流体的螺旋流动增强了其湍流程度,减薄了作为传热主要热阻的滞流内层的厚度,使管内传热得到强化;在壳程,因螺旋扁管之间的流道也呈螺旋状,流体在其间运动时受离心作用而周期性地改变速度和方向,从而加强了流体的纵向混合。加之流体经

低温循环水余热回收

在工业生产上普遍采用蒸汽做为载热体。在各种换热设备中蒸汽的有效能利用率都较低,特别是在各种生产部门中,由工业余热产生的大量低品位付产蒸汽(二次蒸汽)也都没有得到充分的回收利用。本文介绍采用热泵一闪蒸一孔板疏水一加热等单元组成的热泵供热系统,利用蒸汽喷射式热泵回收二次蒸汽,使其增压提高能量品位后再供生产使用。利用疏水孔板,代替常规疏水器,漏汽率低,管理十分简单。一、热泵供热原理及节能指标热泵是开发和利用低品位能源的手段,即以输入高品位能量(机械能、电能及热能等),通过热力循环从环境中吸取低于热用户能源品位的… 世界最大余热回收吸收式热泵系统”启运仪式在江苏省江阴市举办[发表时间:2009-11-23 10:31:54 | 文章来源:新浪网] | 浏览:49次 ] 更多相关内容请关注河南节能网。河南节能网是中国唯一一家节能行业专业B2B网站。网站信息齐全,是河南节能服务网下重点网站!网站地址:https://www.360docs.net/doc/d67724671.html, 11月21日在江苏省江阴市举办“世界最大余热回收吸收式热泵系统”启运仪式。这是双良股份与国l阳新能合作的新开始,标志着双良股份近年来转型节能减排绿色产业又取得重要突破。 打造节能样板 即将发运的吸收式热泵系统,目前是世界上最大的热电余热回收机组,8台30兆瓦机组将为阳泉地区新建居民提供集中供暖。第一批将交付的6台机组,在不增加其他供热设备的前提下,充分利用热电厂的循环冷却水热量,收集余热进行加温,完全满足热电厂新增的144万平方米的供热需求,按照每平米24元成本计算,年采暖效益3500万元,节省冷却水补水量45万吨,节水效益180万元,相当于每年节省蒸气42万吨,节约5万吨标准煤,减少二氧化碳排放13万吨,减少二氧化硫及碳氧化物排放2200吨。 据了解,这是双良股份迄今最大的一笔余热利用设备订单,设备总价近5000万元。不过,在公司董事长缪志强看来,其意义更在于为双良股份开辟出广阔的市场空间和新的利润增长点。专家强调,在全国电力行业中,绝大多数企业都有专门供热的需求,存在低温热水

炼钢高炉冲渣水余热

高炉冲渣水 主要用于制作建筑材料也可用来制造渣棉、铸石和膨球等。高炉冲渣水作为一种低温废热源,具有温度稳定、流量大的特点,如何让冲渣水发挥余热利用的效益,也逐渐成为一个研究课题。目前我国高炉炉渣处理工艺主要是水淬渣工艺方式。高炉内1400度-1500度的高温炉渣,经渣口流出,在经渣沟进入冲渣流槽时,以一定的水量、水压及流槽坡度,使水与熔渣流成一定的交角,冲击淬化成合格的水渣。在炼铁工序中,冲渣消耗的新水占新水总耗的50%以上。冲制1吨水渣大约消耗新水11.2 吨,循环用水量约为10吨左右。按照我国钢铁生产产量5亿吨,按350千克渣比计算,仅用于冲渣的新水消耗就超过1.5亿吨,占钢铁工业新水消耗的4%。由冲渣水带走的高炉渣的物理热量占炼铁能耗的8%左右,大约相当于21千克,标煤(按350千克/吨铁计算)。循环水池的水温范围60-85度,属于工业低温废热源,如果不加以利用,这部分能量就会被浪费。目前对于高炉冲渣水的余热利用,主要还是直接利用显热提供冬季采暖,这种利用方式技术简单、改造成本很低,但存在一些问题:(1)冲渣水水量大,蕴含的热量很大,而一般厂区办公楼的采暖负荷较小,不能够将冲渣水的余热能力完全发挥出来;(2)采暖只适用于北方的城市冬季使用,夏季不需要,而南方城市一年四季都不需要采暖,因此这种方式存在局限性;(3)冲渣水含有大量的杂质,进入管网后易造成堵塞,且供热管网系统庞大,清洗难度很高。因此,研究高炉冲渣水余热利用的新技术,最大程度是回收高炉冲渣水的余热。 冲渣水余热利用 高炉冲渣水排出时温度大约85℃,将热量传递给工质,温度降到50℃左右,再送到高炉供冲渣之用,从而回收了一定量的余热。工质在换热器内吸收热量后变成80。C的过热蒸气,然后进入气轮机膨胀做功,带动发电机转动,对外输出电能。做功后的工质变成低压过热蒸气,低压过热蒸气进入冷凝器放出热量,变成低温低压的液体工质,然后由工质泵送到热交换器中吸热,再次变成过热蒸气去推动气轮机做功。如此连续循环,将热水中的热量源源不断的提取出来,生成高品位的电能。目前常用在低温发电系统中的工质有:低沸点有机物(如:氯乙烷、正戊烷、异戊烷等)、氟利昂工质(如:R134a、R123、R142b、R600等)。冲渣水利用双工质发电的经济性估算。以2000m3的高炉为例,各项基本参数均按常规考虑,采用双工质发电技术将其冲渣水的余热回收发电。采用双循环工质进行发电,其发电效率在3%左右,且系统复杂,可以考虑采用温差发电技术。目前最普通、最便宜的温差发电模块,其发电效率可达到4%左右,而且温差发电模块的发电效率随着纳米技术的应用以及使用温度的提高存逐步增加。 冲渣水发电技术 目前在其他行业(如水泥行业余热回收、地热发电项目)中,已经有双工质发电技术的成熟应用,系统工作温度都在100℃以上。而高炉冲渣水属于较低温的余热源,其利用温度只有70℃.80℃。今后发展方向主要在:①寻找适合冲渣水

相关文档
最新文档