【CN209487632U】一种动力电池模组导热结构胶灌封结构及动力电池【专利】

【CN209487632U】一种动力电池模组导热结构胶灌封结构及动力电池【专利】
【CN209487632U】一种动力电池模组导热结构胶灌封结构及动力电池【专利】

(19)中华人民共和国国家知识产权局

(12)实用新型专利

(10)授权公告号 (45)授权公告日 (21)申请号 201920569184.1

(22)申请日 2019.04.24

(73)专利权人 天津市捷威动力工业有限公司

地址 300380 天津市西青区中北镇汽车工

业区开源路11号

(72)发明人 张志奇 张福增 陈保国 

(74)专利代理机构 太原倍智知识产权代理事务

所(普通合伙) 14111

代理人 张宏

(51)Int.Cl.

H01M 10/0525(2010.01)

H01M 10/058(2010.01)

H01M 2/06(2006.01)

H01M 2/08(2006.01)

(54)实用新型名称

一种动力电池模组导热结构胶灌封结构及

动力电池

(57)摘要

本实用新型涉及一种动力电池模组导热结

构胶灌封结构,包括铜排支架,铜排支架腔体内

设置有至少一个用于灌注导热胶的灌胶流道,灌

胶流道入口设置于铜排支架顶部,灌胶流道的一

侧或两侧设置汇流铜排安装腔,灌胶流道底部与

汇流铜排安装腔底部相通。本实用新型通过在铜

排支架上集成设计了灌胶流道,减少了灌胶模组

中胶的重量,提升模组成组效率,提升产品能量

密度。权利要求书1页 说明书2页 附图1页CN 209487632 U 2019.10.11

C N 209487632

U

权 利 要 求 书1/1页CN 209487632 U

1.一种动力电池模组导热结构胶灌封结构,包括铜排支架,其特征在于:所述铜排支架腔体内设置有至少一个用于灌注导热胶的灌胶流道,所述灌胶流道入口设置于铜排支架顶部,灌胶流道的一侧或两侧设置汇流铜排安装腔,灌胶流道底部与所述汇流铜排安装腔底部相通。

2.根据权利要求1所述的动力电池模组导热结构胶灌封结构,其特征在于:所述的汇流铜排、采样端子、采样线束分别与铜排支架通过卡口结构预固定,采样端子分别于汇流铜排和采样线束相连。

3.根据权利要求1所述的动力电池模组导热结构胶灌封结构,其特征在于;所述的灌胶流道底部设置有第一卡槽,与采样端子连接的采样线束通过第一卡槽后汇合于灌胶流道内。

4.根据权利要求1所述的动力电池模组导热结构胶灌封结构,其特征在于;所述的灌胶流道顶部一侧开有穿出并固定汇合后的采样线束的第二卡槽,第二卡槽外侧铜排支架上固定所述采样线束的输出端子。

5.一种动力电池,其特征在于:包括权利要求1-4中任意一项所述的动力电池模组导热结构胶灌封结构。

2

动力电池基础知识普及

动力电池基础知识普及 动力电池是纯电动汽车的唯一能量来源,同时也是整车成本较高的一个关键动力总成部件。自电动汽车诞生以来,铅酸电池、镍氢电池以及锂电池等具有较为广泛的应用。 1)最早应用于电动汽车上的是铅酸电池,并且在较长的一段时间内都是电动汽车的主要能源方案,其主要特点是原材料易得、安全耐用、价格低廉,并且技术较为成熟。尤其是20 世纪70 年代以后,密封免维护铅酸电池的出新极大提升了性能水平和使用方便程度,在市场中占据了较大的份额。但是比能量和比功率低是铅酸电池的最大缺点,能量密度大概在35Wh/kg 左右,一般400 次左右的循环寿命也在一定程度上制约了铅酸电池的应用。目前虽然在电动汽车市场上仍有应用,但一般都是局限在对整车性能水平要求不高且注重成本的车型上,如电动自行车以及一些场地用车等。 2)镍氢电池的比能量和比功率均在一定程度上优于铅酸电池,但其价格是同容量铅酸电池的5~8 倍,特性与镍镉电池相似,但不存在镍镉电池的重金属污染问题。快速充电和深度放电的性能较好,效率较高,且无需维护,目前主要是在混合动力汽车中应用较多。不过镍氢电池自放电率较高,且对环境温度较为敏感,尤其是单体电压较低约为 1.2V 左右,对于纯电动汽车来说,往往需串联大量的电池才能满足其高压系统需求,所以在纯电动汽车上的应用相对较少。 3)锂离子电池与其他电池相比,在单体电压、容量、比功率方面具有较大的优势,且可进行大电流充放电、循环充放电性能好、较为安全,目前在纯电动汽车、混合动力汽车以及燃料电池车上均有应用。随着锂电池材料技术以及加工工艺的进一步发展,已逐渐成为国内外电动汽车用动力电池的首选方案。 三类主要电池的性能对比

锂离子动力电池PACK部BMS系统

先给初学者一个简单的科普,因为几年前我和人家说起BMS,大部分是不知道是什么东西。BMS就是Battery Management System,中文就是电池管理系统,一般针对动力电池组,很多电芯串并的情况来说的。 BMS的作用是保护电池安全,延长电池的使用寿命,实时监测电池的状态并把电池的情况告诉给上位机系统。 为什么说BMS才是动力电池PACK厂的核心竞争力,两个方面的原因,第一个原因是电芯最终要成为一个标准品,第二个原因是BMS很复杂,且非常重要。 针对第一个原因,电芯最终要成为一个没有科技含量的标准品,一起来分析一下。 动力电池的电芯最后的发展会像手机电池一样,用不了几年的时间就会达到这种状态。最后能够在动力电池领域活的很好的电芯厂不会很多的,一大批电芯厂会慢慢出局的。 现在这个状态是因为动力电池的需求还没有完全起来,加之电芯的工艺还没有成熟和稳定,且电芯的尺寸和材料体系各式各样。 其实统一到几种电芯用不了多长时间。这是市场决定的,一旦动力电池放量,竞争就会加剧,成本的要求就会苛刻,市场就会趋于同质化竞争,慢慢把需求不大的类型淘汰掉,因为没有量的支撑就不会有竞争力(一些高性能或特殊领域的小众应用另当别论),这是自然竞争的结果。 不得不说另外一个事,所有的电芯厂,全球任何一家电芯厂,都是研究电化学和材料相关的,绝大部分的人才都是集中在这个领域的,他们对BMS这种对电子和系统要求极高的东西很难有好的理解,也不会有好的建树,更不可能做出有竞争力的BMS产品和电池PACK了。 因此最后电芯厂和PACK厂一定会分化,一定会专业分工,这是自然规律,市场竞争的规律。 针对第二个原因,BMS的复杂和系统要求较高,是PACK竞争的基础。 为什么说BMS比较复杂,因为BMS涉及到的东西很多,不但要求懂电池知识很多,还要对整个系统(电动汽车或储能等)很懂,不但要懂电子,还要懂结构,不仅要会硬件,还要会软件,要做好BMS,要对电子技术、电工技术、微电子及功率器件技术、散热技术、高压技术、通信技术、抗干扰及可靠性技术等很多东西都要专业才行,它是一个负责的系统工程。 BMS一般会涉及到几个功能: 1、电池保护及安全管理功能; 2、数据采集与分析; 3、SOC/SOH等功能; 4、电量均衡及控制; 5、充放电管理与控制; 6、数据通信与传输; 7、热管理与控制; 8、高压绝缘等检测; 9、异常诊断与分析等。 所有这些功能最终都围绕一个主题,电池与系统的安全。BMS的核心就是电池状态的检测与系统安全的控制。 BMS是整车或其他整个系统的核心部件,甚至是中央控制单元,设计之初就要结合整个系统去考虑结构,布线,散热,通信等很多问题。如果对BMS的认识还停留在消费电池的过充过放过温及过流保护的粗浅认识,那就不要去碰动力电池,也别想做好动力电池。 动力电池的PACK除了要考虑成组时电芯的分容配对等问题,更多的还要设计好BMS系

锂电池各个体系性能参数

钴酸锂 1.钴酸锂的概述 1992年SONY公司商品化锂电池问世,由于其具有工作电压高、能流密度高、循环压寿命长、自放电低、无污染、安全性能好等独特的优势,现已广泛用作移动电话、便携式计算机、摄像机、照相机等的电源。并已在航天、航海、人造卫星、小型医疗仪及军用通讯设备中逐步发展成为主流应用的能源电池。Sony公司推出的第一块锂电池中,正极材料是钴酸锂,负极材料为碳。其中,决定电池的可充电最大容量及开路电压的主要是正极材料。因此我国现有的生产正极材料公司,产品几乎全部是钴酸锂。与钴酸锂同属4伏正极材料的候选体系有镍酸锂和锰酸锂两大系列,这两个系列材料在性能上各有长短,锰酸锂在原料价格上优势明显。但在容量和循环寿命上存在不足。钴酸锂的实际使用比容量为130mAh/g,循环次数可达到300至500次以上:而锰酸锂的实际比容量在100mAh /g左右,循环次数为100至200次。另外,磷酸铁锂电池有安全性高。稳定性好、环保和价格便宜优势,但是导电性较差,而且振实密度较低。因此其在小型电池应用上没有优势。国内钴酸锂市场需求变化呈现典型的中国市场特征,历史较短,但发展较快,多数企业在很短时间进入,但生产企业规模不大,产品主要集中在中低档。 2002年,国内钴酸锂材料市场需求量为2400吨,大多数产品依靠进口,但随着国内主要生产企业的投产,产能和需求量得到了极大的提升,2006年需求量达到6500吨,2008年需求量接近9000吨。 2001年全球主要生产高性能钴酸锂、氧化钴材料的生产企业是比利时Umicore 公司,美国OMG和FMC公司,日本的SEIMEI和日本化学公司等国外企业。另外台湾地区的台湾锂科科技公司也是重要的生产企业。而国内的生产企业为北京当升科技、湖南瑞翔、中信国安盟固利、北大先行和西安荣华等。这些生产企业有些是从科研机构孵化而来,有些是具有上有资源优势的企业。 2.钴酸锂的材料构成 LiCoO2在目前商业化的锂离子电池中基本上选用层状结构的锂离子二次电池正极材料(钴酸锂)的液相合成工艺,它采用聚乙烯醇(PVA)或聚乙二醇(PEG)水溶液为溶剂,锂盐、钴盐分别溶解在PVA或PEG水溶液中,混合后的溶液经过加热,浓缩形成凝胶,生成的凝胶体再进行加热分解,然后在高温下煅烧,将烧成的粉体碾磨、过筛即得到钴酸锂粉。与现有技术相比,本发明具有合成温度低,得到的产品纯度高、化学组成均匀等优点。 3.钴酸锂的制备 1活性钴酸锂的制备方法,其特征是包括以下步骤:以原生钴矿石为原料,制取高纯钴盐溶

电动汽车动力电池PACK组件结构以及市场情况分析

电动汽车动力电池PACK组件结构以及市场情况分析 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 自1990年问世以来,锂电池因其能量密度高、电压高、环保、寿命长以及可快速充电等优点,深受3C数码、动力工具等行业的追捧,特别是对新能源汽车行业的贡献尤为突出。 作为提供新能源汽车动力来源的锂电池产业市场潜力巨大,不仅仅是国家战略发展的重要一环,预计未来5到10年,其产业链将实现行业生态的自我完善和发展,产业规模有望突破1600亿元。

众所周知,从锂电池单体电芯到自动化模组再到PACK生产线的整个过程中,组装线的自动化程度是决定产品质量与生产效率的重要因素。 PACK是包装、封装、装配的意思,其工序分为加工、组装、包装三大部分。 在讲动力电池PACK制造技术之前,我们可以简单了解下,动力电池PACK总成由哪些系统组成,每个系统又由哪些零件组成? 目前,汽车用动力电池基本上由以下5个系统组成: 1)动力电池模块 2)结构系统 3)电气系统 4)热管理系统 5)BMS 为了让大家更直观的了解电池PACK,以奥迪A3 Sportback-etron混合动力车的PACK为例。

一般来说,电动汽车动力电池PACK由以下几个部分构成: 1)动力电池模块系统 这个不用多说,如果把电池PACK比作一个人体,那么模块就是“心脏”,负责储存和释放能量,为汽车提供动力。锂电池模组是由几颗到数百颗电池芯经由并联及串联所组成的多个模组,除了机构设计部分,再加上电池管理系统和热管理系统就可组成一个较完整的锂电池包系统。 2)结构系统

动力电池pack箱体密封新材料的应用

动力电池pack箱体密封新材料的应用 1.动力电池是纯电动汽车的唯一动力能量来源,作为纯电动汽车的核心部件,电池包的安全性直接影响到整车的安全性。电池包应首先满足电气设备外壳防护等级IP67设计要求开发,才能保证电池包密封防水,电池组不会因为进水而短路。因此对电池包的密封防水就格外重要,直接关系到电池包设计的成败。 2.电池包密封结构分析 纯电动汽车动力电池组输出电压高达200V以上,电池箱体必须密封防水,防止进水导致电路短路,电池箱体防护 等级要求达到IP67。对于靠自然风冷的电池包,电池箱必须是密封的,在在上盖上加单向阀,起到防爆作用。对于靠强制风冷的电池包,除必需的通风孔外均不能与大气相通。密封箱内的要求主要考虑电池冷却气流的流动问题,不许在某处泄漏,避免冷却气流的流动性差造成电池模块工作温度的不一致,从而导致性能的一致性进一步的恶化。电池箱体上盖、下底必须保证没有穿孔和缝隙,上盖和下底装配时,之间必须加密封垫,所有插接头和进出风道安装处应该加密封垫或者进行防水处理。为保证良好的密封效果,上盖和下底之间的密封就格外重要。上盖和下底之间都是靠两个面,中间加密封材料。如图一 图一 打螺栓压缩密封条,从而起到密封作用,如图二 图二 上盖和下底通过螺钉紧固,靠上盖和下底的翻边平面挤压密封,靠上盖和下底的翻边之间加密封垫,,需要预紧力

特别大,对两翻边的平面度要求比较高。 3.目前常用的密封材料 1)密封条 目前pack箱用的密封条为合成橡胶和泡棉材料的居多。其优点是价格便宜,易于操作,随时可以开箱,方便维修。缺点是对箱体边缘平整度要求高,如果箱体有不平整的地方,则容易出现漏气现象。而且密封条时间久了,会出现弹性下降的问题,也会导致箱体渗漏。 2)密封胶 密封胶作为pack箱体密封的常用材料。其优点是易于操作,密封效果好,耐候性好。缺点是密封后,如果想打开箱体进行维修,则很困难。 4.pack箱体密封的新材料应用 是否有一种密封方案既可以像用密封胶一样,提供优异的密封性能和良好的耐候性,同时又可以像用密封条一样,便于以后开箱维修呢?答案是肯定的,现在我们已经有了一种新的密封材料,集合了传统密封胶和密封条的优点。一种新型的永不固化的密封胶MMD. MMD通用密封胶,亦称之为液态密封胶、液态垫片。它是一种呈液态状的新型高分子静密封材料。MMD液态密 封胶与液体密封腻子有所不同,液态密封胶需要给一定的外界紧固力,才能发挥其密封作用,因此有人称它为"液体垫片"。它与固体垫片,如橡胶、石棉、金属、纸质等材料做成的垫片不同,它具有流动性,因此不存在固体垫片起密封作用时必然产生的压缩变形,因而也没有内应力、松弛、蠕变和弹性疲劳破坏等导致泄漏的因素。由于它具有流动性,可以充满结合面之间的凹陷和缝隙,消除界面泄漏,因而是一种较理想的静密封材料。 MMD密封胶本身呈液态,因此流动性好,能在金属的接合面的窄缝中充满缝隙,形成一种具有粘性、粘弹性或可剥性的均匀的稳定的连续的薄膜,从而使在设备各部件的接合面之间起密封作用。液态密封胶在一定紧固力下密封性能好,耐压、耐热、耐油性能好。对介质(油、水)有良好的稳定性,对金属不腐蚀,同时,它是液态状,不像固体垫圈那样在起密封作用时必须要有压缩变形,因此也就不存在内应力、松弛、蠕变和弹性疲劳等导致泄漏因素,由于它具有流动性和触变性,可以充满接合面之间凹陷和缝隙,消除了固体垫圈在使用中出现的界面泄漏现象。密封胶是一种具有良好粘接弹性的物质,在受到振动、冲击以及过度压缩时,不会像固体垫圈那样产生龟裂、脱落等破坏性泄漏现象。这是一种理想的机械产品静密封材料。 MMD可以在-55℃-270℃的环境下正常工作,而且不会固化,同时保持着优异的密封性能。MMD可以单独用来密 封pack箱体,也可以配合密封圈使用,完全可以满足IP67的要求。在pack箱体需要维修时,可以随时打开,由于MM D永不固化,可以反复使用,不用去除残胶和二次打胶。 总结:使用MMD密封pack箱体,完美的解决了众多动力电池生产商目前遇到的箱体密封性能与维修便利性相矛盾 的问题。 原文地址:https://www.360docs.net/doc/d711733764.html,/tech/122654.html

动力电池材料体系及结构选择分析

动力电池材料体系及结构选择分析 材料体系选择分析 1、下表是理论上可以在锂离子电池中应用的正负及材料体系 正极材料(阳灿/^) 200 400 600 800 1000 负极材料比(阳八卜/妒 综合考虑材料体系的安全、成本、能量密度、电性能、原材料的自然界资源储量等条件,目前具备产业化条件,最有可能成为新一代车载动力电池的材料主要分为以下几个体系,1、 2、0^111204/01^11116 3、 4、 5、1^1^11204/1-14115012 几种常用的正极材料的特性以及优缺点分析

700:^3;^1:十2;胞:44; 7^1是材料容量的主要来源,^2^-14; 705在高电位时才能发生反应,^3^44,起到稳定晶体结构的作用; 7―保持44价不变,在―含量偏高时易出现价态变小的趋势,出现十3的\111; ^^的容量要高于尺0从,是目前容量最高的正极材料,其安全性能差是突出的问题;解决层状晶体材料安全性能差的问题主要从以下几个方面入手 ^表面涂层,减少反应活性区域的直接接触(八1203、 ^陶瓷隔膜技术; ^活性低的负极材料 ^正极材料的掺杂改性; 2、1^1^10204 ^成本低,储量丰富; 7能量密度偏低’高温性能差是其主要缺点; 改善高温循环的方法 ^元素掺杂,掺入低价态元素提高锰价态(灰1、^); ^表面修饰,包覆氧化物,减少材料与电解液的接触; ^采用新型电解质盐,0608; ^活性低的负极材料 3、01^?04 7成本低、储量丰富; 7循环性能优良、安全性能优良; 7材料稳定性差、合成过程质量控制困难; ^加工性能差工艺要求高; 7材料电子导电性差、低温性能差、能&密度偏低; 改善电子传导性差的手段 ^元素掺杂与表面包覆扣材料 ^纳米级导电材料、高效分散技术; ^箔材预处理技术; 几种常见的外部包装结构及分析 目前,在传统锂离子电池基础上发展起来的锂离子动力电池呈现出结构多样化,缺乏统一 的标准,而外部的结构对工艺布局有着决定性的影响,目前主流电池在外部封装结构上主 要可分为以下几类: 1、圆柱型电池 2、方型硬壳电池 3、方型软包装电池 几种不同类型结构的优缺点分析 1、圆柱型电池代表厂家(江森自控、八123、531^0、300)0 7工艺成熟度高、生产效率高、过程控制严格,成品率及产品一致性都较其他结构电池 高; 7壳体结构成熟,成本低; 7极片过长,卷绕方向上集流体电流密度分布不均匀,造成内部各部分反应程度不一致;^直径过大,电芯内部产生的热量很难得到快速释放,内部的热量累积,给电池的安全

锂离子电池极耳胶腐蚀机理

腐蚀研究 电芯从开始到结束共有三次阻抗测试,包括:极片Hi-pot测试、Foil电阻测试和内阻(IMP)测试。Hi-pot影响电芯的化成,内阻(IMP)影响电芯的自放电,它们只反应到电芯的电压、容量性能,可以通过现有的高精度设备将坏品挑出。但Foil电阻坏品有发生腐蚀的可能性,一般需要一段时间最终在客户出表现出来,它的失效表现为外观Al被腐蚀破烂,变黑,电芯胀气,无法使用,可以说是最严重的坏品表现,是一件非常恐怖的事情! Foil电阻坏品指的是电芯Nitab(阳极)与包装铝箔Al layer短路,目前定义Ni tab 与Al layer 电阻低于1.0×200Mohm(非OEM产品)和OEM产品为低于2.0×200Mohm的为电阻坏品,使用万用表测量挑出以避免电芯在客户处发生腐蚀。当然,电阻越大甚至无穷大,发生腐蚀的概率越低。对于这两个标准的选择是基于对电芯进行On-hold模拟测试而定,大概客户反应的腐蚀坏品为4ppm,个别案例除外(指由于特殊原因导致电芯必然会发生腐蚀)。 我们知道控制这种电阻坏品的目的是防止包装铝箔的铝层发生腐蚀,下面就从腐蚀发生原因、腐蚀防止、电阻坏品防止几个方面入手介绍。 腐蚀原因 引起电芯腐蚀必须具备两个短路的通道:一,离子短路通道,即包装铝箔铝层与阳极发生离子短路;二,电子短路通道,即包装铝箔铝层与阳极发生电子短路。这样包装铝箔的铝层就与阳极形成一个短路的回路,阳极即为电芯负极,处于低电势的部分,一旦与铝接触会通过电导率较高的电解液引起电化学反应,导致铝层的不断被消耗。空气中水分会进入电芯内部导致进一步反应产生大量气体。这两种短路是电芯发生腐蚀的必要条件,两者缺一不可。 腐蚀防止 我们知道离子短路和电子短路是发生腐蚀的必要条件,要防止腐蚀就必须弄清楚两种短路形成的原因。我们已经知道了包装铝箔的结构,内部为绝缘PP,PP的一个作用就是绝缘,将电解液环境与铝层隔离,保护铝层,发生离子短路是由于PP发生破损致使电解液渗透将铝层与阳极导通,因此腐蚀均发生在PP破损部位。电子短路必须是有导体在阳极和铝层(PP破损处)间能够导通电子或阳极通过Ni tab直接与铝层短路导通电子。要防止腐蚀的发生就必须杜绝两种短路的存在。在电芯的封装过程中,封边部位的PP受到热压后PP比较容易发生破损,所以会产生比较多的电阻坏品,因此只要发生电子短路,腐蚀必然发生,防止腐蚀,必须先从防止电子短路开始。 阳极通过Ni tab与包装铝箔铝层在顶封部位发生短路,PP绝缘胶失去保护作用,Ni tab与铝层接触,这种情况必然会发生腐蚀。目前Ni tab与包装铝层发生短路主要有两种情况:

纯电动汽车动力电池包结构静力分析及优化设计

纯电动汽车动力电池包结构静力分析及优化设计 摘要:动力电池包作为纯电动汽车的唯一动力源,承受着电池组等模块的质量,因此其强度、刚度必须满足使用要求才可以保证行驶的安全性。在建立其有限元模型的基础上,分析了电池包结构在弯曲工况、紧急制动工况、高速转弯工况、垂直极限工况以及扭转工况下的强度、刚度。分析结果显示,在垂直极限工况下,电池包底板的受力情况最为恶劣,因此对原有模型做出了改进,改变底板加强筋的布置形式。经过相同工况的模拟,发现在力学性能提升的基础上,整体质量得以减轻,实现了轻量化的目标。 关键词:动力电池包有限元法静力分析优化设计 Abstract:As the only power source of pure electrical vehicle,the power battery pack bears the weight of several models such as the battery model. To ensure the safety,the pack’s strength and stiffness must meet the fundamental requirements. This paper mainly analyzed the strength and stiffness under different working conditons on the base of a finite element model. The rsult shows that and the corresponding stress and deformation graphs are obtained.The structure of the battery pack is improved after analyzing the causes of the stress concentration.Also, the performance of the new model is compared with the original one.The results show that the weight of the structure is reduced while the performance of the structure is improved, and the lightweight of the vehicle is realized. Keywords:power battery pack finite element method static structural analysis optimal design

【CN209487632U】一种动力电池模组导热结构胶灌封结构及动力电池【专利】

(19)中华人民共和国国家知识产权局 (12)实用新型专利 (10)授权公告号 (45)授权公告日 (21)申请号 201920569184.1 (22)申请日 2019.04.24 (73)专利权人 天津市捷威动力工业有限公司 地址 300380 天津市西青区中北镇汽车工 业区开源路11号 (72)发明人 张志奇 张福增 陈保国  (74)专利代理机构 太原倍智知识产权代理事务 所(普通合伙) 14111 代理人 张宏 (51)Int.Cl. H01M 10/0525(2010.01) H01M 10/058(2010.01) H01M 2/06(2006.01) H01M 2/08(2006.01) (54)实用新型名称 一种动力电池模组导热结构胶灌封结构及 动力电池 (57)摘要 本实用新型涉及一种动力电池模组导热结 构胶灌封结构,包括铜排支架,铜排支架腔体内 设置有至少一个用于灌注导热胶的灌胶流道,灌 胶流道入口设置于铜排支架顶部,灌胶流道的一 侧或两侧设置汇流铜排安装腔,灌胶流道底部与 汇流铜排安装腔底部相通。本实用新型通过在铜 排支架上集成设计了灌胶流道,减少了灌胶模组 中胶的重量,提升模组成组效率,提升产品能量 密度。权利要求书1页 说明书2页 附图1页CN 209487632 U 2019.10.11 C N 209487632 U

权 利 要 求 书1/1页CN 209487632 U 1.一种动力电池模组导热结构胶灌封结构,包括铜排支架,其特征在于:所述铜排支架腔体内设置有至少一个用于灌注导热胶的灌胶流道,所述灌胶流道入口设置于铜排支架顶部,灌胶流道的一侧或两侧设置汇流铜排安装腔,灌胶流道底部与所述汇流铜排安装腔底部相通。 2.根据权利要求1所述的动力电池模组导热结构胶灌封结构,其特征在于:所述的汇流铜排、采样端子、采样线束分别与铜排支架通过卡口结构预固定,采样端子分别于汇流铜排和采样线束相连。 3.根据权利要求1所述的动力电池模组导热结构胶灌封结构,其特征在于;所述的灌胶流道底部设置有第一卡槽,与采样端子连接的采样线束通过第一卡槽后汇合于灌胶流道内。 4.根据权利要求1所述的动力电池模组导热结构胶灌封结构,其特征在于;所述的灌胶流道顶部一侧开有穿出并固定汇合后的采样线束的第二卡槽,第二卡槽外侧铜排支架上固定所述采样线束的输出端子。 5.一种动力电池,其特征在于:包括权利要求1-4中任意一项所述的动力电池模组导热结构胶灌封结构。 2

锂离子电池正极材料的几种体系

锂离子电池正极材料的几种体系 主要包括:锂钴氧化物、锂镍氧化物、锂锰氧化物和聚阴离子正极材料系列。 1. 锂钴氧化物 锂钴氧化物是现阶段商品化锂离子电池中应用最成功、最广泛的正极材料。其在可逆性、放电容量、充放电效率和电压稳定方面是比较好的。LiCoO2属于α-NaFeO2型结构,它具有二维层状结构,适合锂离子的脱嵌,其理论容量为274mAh/g,但在实际应用中,由于结构稳定性的限制,最多只能把晶格中的一半Li+脱出,因此实际比容量约为140mAh/g 左右,其平均工作电压高达3.7V。因其容易制备,具有电化学性能高,循环性能好、性能稳定和充放电性能优良等优点,成为最早大规模商业化应用于锂离子电池的正极材料,目前商品化锂离子电池70%以上仍然采用钴酸锂作为其正极材料。LiCoO2一般采用高温固相法制备,该种方法工艺简单、容易操作、适宜于工业化生产,但是也存在着以下缺点:反应物难以混合均匀,需要较高的反应温度和较长的反应时间,能耗大,产物颗粒较大,形貌不规则,均匀性差,并且难以控制,从而导致电化学性能重现性差。为了克服固相反应的缺点,溶胶-凝胶法、水热法、共沉淀法、模板法等方法被用来制备LiCoO2,这些方法的优点是可以使Li+和Co2+之间充分接触,基本达到原子水平的混合,容易控制产物的粒径和组成。但是这类制备方法工序比较繁琐,工艺流程复杂,成本高,不适用于工业化生产。 2. 锂镍氧化物 镍酸锂(LiNiO2)为立方岩盐结构,与LiCoO2相同,但其价格比LiCoO2低。LiNiO2理论容量为276mAh/g,实际比容量为140~180mAh/g,工作电压范围为2.5V~4.2V,无过充或过放电的限制,具有高温稳定性好,自放电率低,无污染,是继LiCoO2之后研究得较多的层状化合物。但LiNiO2作为锂离子电池正极材料存在以下问题亟待研究解决。首先,LiNiO2制备困难,要求在富氧气氛下合成,工艺条件控制要求较高且易生成非计量化合物。LiNiO2合成技术的关键是将低价的镍完全转变为高价镍,高温虽然可以实现LiNiO2的高效合成,但由于温度超过600℃时合成过程中的Ni2O3易分解成NiO2,不利于LiNiO2的形成,所以必须选用苛刻的低温合成方法。此外,在制备三方晶系的LiNiO2过程中,容易生成立方晶系的LiNiO2,由于立方晶系的LiNiO2在非水电解质溶液中无活性,因此,工艺条件控制不当,极易导致LiNiO2材料的电化学性能不稳定或下降。其次,LiNiO2与LixCoO2一样,在充放电过程中,也会发生从三方晶系到单斜晶系的转变,导致容量衰减[69],与此同时,相变过程中排放的O2可能与电解液反应,此外,LiNiO2在高脱锂状态下的热稳定性也较差,,易于引发安全性问题。可喜的是,通过掺入少量Cu、Mg、Al、Ti、Co等金属元素,可使LiNiO2获得较高的放电平台和电化学循环稳定性。 3. 锂锰氧化物 我国锰资源储量丰富,而且锰无毒,污染小,因此层状结构的LiMnO2和尖晶石型的LiMn2O4都成为了正极材料研究的热点。锂锰氧化物主要有层状LiMnO2和尖晶石型LiMn2O4两类。LiMnO2属于正交晶系,岩盐结构,氧原子分布为扭变四方密堆结构,其空间点群为Pmnm,理论比容量达到286mAh/g,充放电范围为2.5~4.3V,是一种较

锂电池四大核心材料发展解读

锂电池四大核心材料发展解读锂电池加速成长!四大核心材料大有可为

从中国汽车工业协会获悉,11月,新能源汽车产销量同比双双增长,动力电池的产量同样也增长。 数据显示,11月新能源汽车产销分别完成19.8万辆和20万辆,同比分别增长75.1%和104.9%,其单月产销第5次刷新了当月历史记录;动力电池产量共计12.7GWh,同比增长40.7%,环比增长29.1%。 累计方面,1-11月,我国动力电池产量累计68.3GWh,同比累计下降13.8%。 从细分产品来看,2020年11月,三元电池产量7.3GWh,占总产量57.3%,同比增长35.6%,环比增长32.1%;磷酸铁锂电池产量5.4GWh,占总产量42.5%,同比增长49.3%,环比增长25.1%。 锂电池的应用场景主要分为三类:消费类(消费电子、电动工具等)、动力类(电动汽车)、储能类(通信基站备用电源、电力电网储能、家庭电力储能等)。消费类中,由于钴酸锂

LCO的能量密度最高、成本最高(采用的贵金属钴最多),对电池价格并不敏感的消费电子多数使用钴酸锂LCO。在动力类领域,2009-2016年间,磷酸铁锂LFP凭借着低成本、高安全性,成为乘用车领域(即9座以下)、商用车领域(9座以上,或以载货为主要目的)的主流选择。2016年后,在汽车消费者对续航能力的高要求、政策对高能量密度电池的倾斜的背景下,三元材料凭借着高能量密度在乘用车领域异军突起,但商用车领域依然主要使用磷酸铁锂LFP。储能类中,国外主要采用三元材料,国内主要采用磷酸铁锂,尤其是是梯次利用的磷酸铁锂。随着国产磷酸铁锂LFP电池技术成熟、成本下降、安全性被验证,国产磷酸铁锂LFP逐渐渗透到全球储能市场。 当前动力电池行业内量产的三元软包动力电池平均电芯能量密度已达240-250Wh/kg,但同材料体系的三元方形动力电池能量密度为210-230Wh/kg。 三元软包动力电池单体电芯能量密度比三元方形动力电池平均高10%-15%。循环寿命方面,软包电池循环寿命更长,100次循环衰减比方形电池少4%-7%。电芯层面,三元软包动力电池电芯的尺寸以及形状设计灵活,企业可以依据自身产品设计、客户需求进行定制。

动力电池pack生产工艺流程

动力电池pack生产工艺流程_动力电池PACK四大工艺介绍 2018-04-17 17:13 ? 885次阅读 动力电池PACK四大工艺 1、装配工艺 动力电池PACK一般都由五大系统构成。 那这五大系统是如何组装到一起,构成一个完整的且机械强度可靠的电池PACK呢?靠的就是装配工艺。 PACK的装配工艺其实是有点类似传统燃油汽车的发动机装配工艺。 通过螺栓、螺帽、扎带、卡箍、线束抛钉等连接件将五大系统连接到一起,构成一个总成。

2、气密性检测工艺 动力电池PACK一般安装在新能源汽车座椅下方或者后备箱下方,直接是与外界接触的。当高压电一旦与水接触,通过常识你就可以想象事情的后果。因此当新能源汽车涉水时,就需要电池PACK有很好的密封性。 动力电池PACK制造过程中的气密性检测分为两个环节: 1)热管理系统级的气密性检测; 2)PACK级的气密性检测; 国际电工委员会(IEC)起草的防护等级系统中规定,动力电池PACK 必须要达到IP67等级。

2017年4月份的上海车展,上汽乘用车就秀出了自己牛逼的高等级气密性防护技术。将充电状态下的整个PACK放到金鱼缸中浸泡7天,金鱼完好无损,且PACK内未进水。 3、软件刷写工艺 没有软件的动力电池PACK,是没有灵魂的。 软件刷写也叫软件烧录,或者软件灌装。 软件刷写工艺就是将BMS控制策略以代码的形式刷入到BMS中的CMU和BMU中,以在电池测试和使用过程中将采集的电池状态信息数据,由电子控制单元进行数据处理和分析,然后根据分析结果对系统内的相关功能模块发出控制指令,最终向外界传递信息。

4、电性能检测工艺 电性能检测工艺是在上述三个工艺完成后,即产品下线之前必做的检测工艺。 电性能检测分三个环节: 1)静态测试: 绝缘检测、充电状态检测、快慢充测试等; 2)动态测试; 通过恒定的大电流实现动力电池容量、能量、电池组一致性等参数的评价。 3)SOC调整; 将电池PACK的SOC调整到出厂的SOC SOC:StateOfCharge,通俗的将就是电池的剩余电量。 关于电池PACK的电性能检测参数,每个公司其实都有自己定义的标准,都不一样。但是国家对于新能源汽车动力的电性能要求是有规定的,国标如下: 《GB/T31484-2015电动汽车用动力蓄电池循环寿命要求及试验方法》《GB/T31486-2015电动汽车用动力蓄电池电性能要求及试验方法》

动力电池项目申报材料

动力电池项目 申报材料 规划设计/投资分析/实施方案

报告说明— 该动力电池项目计划总投资21609.30万元,其中:固定资产投资16689.57万元,占项目总投资的77.23%;流动资金4919.73万元,占项目总投资的22.77%。 达产年营业收入48899.00万元,总成本费用37193.63万元,税金及附加422.04万元,利润总额11705.37万元,利税总额13741.94万元,税后净利润8779.03万元,达产年纳税总额4962.91万元;达产年投资利润率54.17%,投资利税率63.59%,投资回报率40.63%,全部投资回收期 3.96年,提供就业职位812个。 全球汽车电动化加速。近年来,各国政府陆续制定发展规划、给予补贴或者明确燃油车禁售时间表,汽车巨头纷纷发布电动化战略,全球电动化进程加速。特斯拉2018年7月与上海市签订纯电动车项目投资协议,计划年产能50万辆电动车。以戴姆勒、大众、宝马、丰田、福特等为代表的传统主流车企,将在未来5-10年内大力发展新能源汽车,制定了中长期发展规划和销售目标。在2020-2025年期间,众多国际车企的新能源汽车销量目标占其年度销量的10%-25%。全球主流车企将陆续密集推出新车型,全球新能源汽车产销量将迎来持续爆发。

第一章基本情况 一、项目概况 (一)项目名称及背景 动力电池项目 (二)项目选址 xx新区 场址应靠近交通运输主干道,具备便利的交通条件,有利于原料和产成品的运输,同时,通讯便捷有利于及时反馈产品市场信息。项目选址应符合城乡建设总体规划和项目占地使用规划的要求,同时具备便捷的陆路交通和方便的施工场址,并且与大气污染防治、水资源和自然生态资源保护相一致。对周围环境不应产生污染或对周围环境污染不超过国家有关法律和现行标准的允许范围,不会引起当地居民的不满,不会造成不良的社会影响。 (三)项目用地规模 项目总用地面积57075.19平方米(折合约85.57亩)。 (四)项目用地控制指标

0042.动力电池梯次利用技术:难点及解决方案

动力电池梯次利用技术:难点及解决方案 从技术角度来看,梯次利用技术的核心要求是保证目标产品的品质和安全。具体而言,一是来料的品质安全控制,二是目标产品的生产过程控制,还有目标产品的控制和设计。 如何控制退役电池的品质和安全?我认为,首先要建立大数据追溯系统平台。该平台包括三套系统,分别是电芯研发生产数据系统、电池包研发生产数据系统、电池包车载运行监控数据系统。三套系统对退役电池进行系统分析,以此获得能否进入梯次利用市场的大数据,数据包括设计信息、性能数据安全、来料检测等。 电芯研发生产数据系统包括初步检测数据和深层过程控制数据。在初步检测数据方面,每一个电芯都有唯一代码,通过代码可以找到初始的设计信息和生产信息。模组信息包括所有的梯次列表,从这里能够查出电芯在装配过程中具备哪些参数。 与此同时,电池包车载运行监控数据系统也至关重要,监控电池包在实际使用过程中的数据及运行状态。这些数据,除了帮助电池企业做好监控预警之外,对企业能否开展梯次利用业务非常有意义。 除了建立三套系统之外,对于梯次利用技术来讲,还有检测技术要求。宁德时代针对退役电池包进行健康指数评价,包括电芯评估、电池包电性能检测、电池包的可靠性检测、电池包/模组外观检测。 通常情况下,电芯的性能评估分为寿命评估、安全性评估和可靠性评估,包括电池包的可靠性、电池包连接件可靠性以及管理系统硬件的可靠性等。电池包电性能检测能够排除安全隐患。此外,直流内阻的变化、电压差的变化以及电池包外形的变化等,都在健康指数的评估内容中。其中,从电池包的外形来看,在车载过程中难免会发生意外,比如车祸、内涝,都会引起一系列外部构件的变化,因此电池包外形变化也需要评估。 对于新的检测技术来说,主要是排除安全隐患。从电池角度来看,电池处于什么状态最危险,如何在不需要打开电池的情况下检测是否产生锂枝晶的沉积?宁德时代开发了一项检测技术,通过对电池的负反应来判定它是否产生了锂枝晶的沉积。如果电池包退役后,企业无法判断电池是否经历了恶劣环境,或者在某充电情况下已经超出可承受的范围,这时就有可能把安全隐患留给下一阶段。所以,这项检测技术首先要确保安全隐患不会遗留到下一阶段。 值得注意的是,包括塑胶件、正负极保护盖、模组机械连接件、线束隔离板、绝缘膜等都需要评估。这些零部件如果不进行评估,那么它们经历了环境冲击、车载振动等情况,则将带来不可预测的结果。所以,在筛选梯次利用产品时,企业需要格外谨慎。

动力电池种类及新能源汽车

电池 ———新能源汽车电池(battery)指盛有电解质溶液和金属电极以产生电流的杯、槽或其他容器或复合容器的部分空间。随着科技的进步,电池泛指能产生电能的小型装臵。如太阳能电池。电池的性能参数主要有电动势、容量、比能量和电阻。 电池原理 在化学电池中,化学能直接转变为电能是靠电池内部自发进行氧化、还原等 化学反应的结果,这种反应分别在两个电 极上进行。负极活性物质由电位较负并在 电解质中稳定的还原剂组成,如锌、镉、 铅等活泼金属和氢或碳氢化合物等。正极 活性物质由电位较正并在电解质中稳定 的氧化剂组成,如二氧化锰、二氧化铅、 氧化镍等金属氧化物,氧或空气,卤素及 其盐类,含氧酸及其盐类等。电解质则是 具有良好离子导电性的材料,如酸、碱、 盐的水溶液,有机或无机非水溶液、熔融 盐或固体电解质等。当外电路断开时,两极之间虽然有电位差(开路电压),但没有电流,存储在电池中的化学能并不转换为电能。当外电路闭合时,在两电极电位差的作用下即有电流流过外电路。同时在电池内部,由于电解质中不存在自由电子,电荷的传递必然伴随两极活性物质

与电解质界面的氧化或还原反应,以及反应物和反应产物的物质迁移。电荷在电解质中的传递也要由离子的迁移来完成。因此,电池内部正常的电荷传递和物质传递过程是保证正常输出电能的必要条件。充电时,电池内部的传电和传质过程的方向恰与放电相反;电极反应必须是可逆的,才能保证反方向传质与传电过程的正常进行。因此,电极反应可逆是构成蓄电池的必要条件。G为吉布斯反应自由能增量(焦);F为法拉第常数=96500库=26.8安〃小时;n为电池反应的当量数。这是电池电动势与电池反应之间的基本热力学关系式,也是计算电池能量转换效率的基本热力学方程式。实际上,当电流流过电极时,电极电势都要偏离热力学平衡的电极电势,这种现象称为极化。电流密度(单位电极面积上通过的电流)越大,极化越严重。极化现象是造成电池能量损失的重要原因之一。极化的原因有三:①由电池中各部分电阻造成的极化称为欧姆极化;②由电极-电解质界面层中电荷传递过程的阻滞造成的极化称为活化极化;③由电极-电解质界面层中传质过程迟缓而造成的极化称为浓差极化。减小极化的方法是增大电极反应面积、减小电流密度、提高反应温度以及改善电极表面的催化活性。 2012年4月18日国务院总理温家宝主持召开国务院常务会议,研究部署今年政府信息公开重点工作,讨论通过《节能与新能源汽车产业发展规划(2012—2020年)》,会议指出,加快培育和发展节能与新能源汽车产业,对于缓解能源和环境压力,推动汽车产 业转型升级,培育新的经济增长点,具有重要意义。要以纯电驱动为汽车工业转型的 主要战略取向,当前重点推进纯电动汽车和插电式混合动力汽车产业化,推广普及非 插电式混合动力汽车、节能内燃机汽车,提升我国汽车产业整体技术水平。争取到2015年,纯电动汽车和插电式混合动力汽车累计产销量达到50万辆,到2020年超过500万辆;2015年当年生产的乘用车平均燃料消耗量降至每百公里6.9升,到2020年降至5.0升;新能源汽车、动力电池及关键零部件技术整体上达到国际先进水平

动力电池性能参数

动力电池性能参数 一、电性能 (1)电动势 电池的电动势,又称电池标准电压或理论电压,为电池断路时正负两极间的电位差。电池的电动势可以从电池体系热力学函数自由能的变化计算而得。 (2)额定电压 额定电压(或公称电压),系指该电化学体系的电池工作时公认的标准电压。例如,锌锰干电池为1.5V,镍镉电池为1.2V,铅酸蓄电池为2V,锂离子电池为 (3)开路电压 电池的开路电压是无负荷情况下的电池电压。开路电压不等于电池的电动势。必须指出,电池的电动势是从热力学函数计算而得到的,而电池的开路电压则是实际测量出来的。(4)工作电压 系指电池在某负载下实际的放电电压,通常是指一个电压范围。例如,铅酸蓄电池的工作电压在2V~1.8V;镍氢电池的工作电压在1.5V~1.1V;锂离子电池的工作电压在3.6V~2.75V。 (5)终止电压 系指放电终止时的电压值,视负载和使用要求不同而异。以铅酸蓄电池为例:电动势为2.1V,额定电压为2V,开路电压接近2.15V,工作电压为2V~1.8V,放电终止电压为1.8V~1.5V(放电终止电压根据放电率的不同,其终止电压也不同)。 (6)充电电压 系指外电路直流电压对电池充电的电压。一般的充电电压要大于电池的开路电压,通常

在一定的范围内。例如,镍镉电池的充电压在1.45V~1.5V;锂离子电池的充电压在4.1V~4.2V;铅酸蓄电池的充电压在2.25V~2.5V。 (7)内阻 蓄电池的内阻包括:正负极板的电阻,电解液的电阻,隔板的电阻和连接体的电阻等。 a. 正负极板电阻 目前普遍使用的铅酸蓄电池正、负极板为涂膏式,由铅锑合金或铅钙合金板栅架和活性物质两部分构成。因此,极板电阻也由板栅电阻和活性物质电阻组成。板栅在活性物质内层,充放电时,不会发生化学变化,所以它的电阻是板栅的固有电阻。活性物质的电阻是随着电池充放电状态的不同而变化的。 当电池放电时,极板的活性物质转变为硫酸铅(PbSO4),硫酸铅含量越大,其电阻越大。而电池充电时将硫酸铅还原为铅(Pb),硫酸铅含量越小,其电阻越小。 b. 电解液电阻 电解液的电阻视其浓度不同而异。在规定的浓度范围内一旦选定某一浓度后,电解液电阻将随充放电程度而变。电池充电时,在极板活性物质还原的同时电解液浓度增加,其电阻下降;电池放电时,在极板活性物质硫酸化的同时电解液浓度下降,其电阻增加。 c. 隔板电阻 隔板的电阻视其孔率而异,新电池的隔板电阻是趋于一个固定值,但随电池运行时间的延长,其电阻有所增加。因为,电池在运行过程中有些铅渣和其他沉积物在隔板上,使得隔板孔率有所下降而增加了电阻。 d. 连接体电阻 连接体包括单体电池串联时连接条等金属的固有电阻,电池极板间的连接电阻,以及正、负极板组成极群的连接体的金属电阻,若焊接和连接接触良好,连接体电阻可视为一固定电

三元锂动力电池体系

三元锂动力电池体系 锂离子电池的性能主要取决于其正极材料,而且锂离子电池也通常以正极材料来命名。市场上所说的三元材料电池大多是指以镍钴锰为正极材料的锂离子电池。 人们发现,镍钴锰三元正极材料中镍钴锰比例可在一定范围内调整,并且其性能随着镍钴锰的比例的不同而变化。因此,出于进一步降低钴镍等高成本过渡金属的含量,以及进一步提高正极材料的性能的目的,世界各国在镍钴锰三元材料的研究和开发方面做了大量的工作,提出了多个具有不同镍钴锰比例组成的三元材料体系,包括333,523,811 体系等。一些体系已经成功地实现了工业化生产和应用。 1.镍钴锰三元正极材料结构特征 镍钴锰三元材料通常可以表示为:LiNixCoyMnzO2 ,其中x+y+z=1。 依据3 种元素的摩尔比(x∶y∶z 比值)的不同,分别将其称为不同的体系,如组成中镍钴锰摩尔比(x∶y∶z)为1∶1∶1 的三元材料,简称为333 型;摩尔比为5∶2∶3 的体系,称之为523 体系等。 333 型、523 型和811 型等三元材料均属于六方晶系的α-NaFeO2 型层状岩盐结构,如图1。 图1 α-NaFeO2 型层状岩盐结构图 镍钴锰三元材料中,3 种元素的的主要价态分别是+2 价、+3 价和+4 价,Ni 为主要活性元素。其充电时的反应及电荷转移如下:

正极反应: LiMO2—→ Li1-xMO2 + xLi+ + xe- 负极反应: n C + x Li+ + x e- —→ LixCn 电池总反应: LiMO2 + n C —→ Li1-xMO2 + LixCn 一般来说,活性金属成分含量越高,材料容量就越大,但当Ni的含量过高时,会引起Ni2+占据Li+位置,加剧了阳离子混排,从而导致容量降低。Co也是活性金属,但能起到抑制阳离子混排的作用,从而稳定材料层状结构;Mn则不参与电化学反应,可提供安全性和稳定性,同时降低成本。 2.不同体系镍钴锰三元锂离子电池的特点 当前市场上存在许多镍钴锰三元体系电池,例如523,111,811体系等等,图2能帮助我们较直观的了解各体系的特点及相互之间的差异。 图2 镍钴锰三角模型规律图 作为车载动力电池,市场对其能量密度提出了越来越严苛的要求。但鱼和熊掌不可兼得,由图2可知,若想获得高能量密度且安全稳定的动力电池,必须增加Ni及Co在三元材料中的比重。伴随而来的,是由Ni的活泼特性带来的安全隐患及Co资源缺乏带来的成本增加。 针对各体系的镍钴锰三元电池,在这里也做下简单的介绍。 2.1 LiNi0.5Co0.2Mn0.302 523型三元材料是目前用量最大的三元材料,因为它具有较高的比容量和热稳定性,且工艺的成熟性和稳定性不断提升,国内市场占有率迅速扩大。523 型

相关文档
最新文档