微分方程及其解的定义

微分方程及其解的定义
微分方程及其解的定义

微分方程

什么是微分方程?它是怎样产生的?这是首先要回答的问题.

300多年前,由牛顿(Newton,1642-1727)和莱布尼兹(Leibniz,1646-1716)所创立的微积分学,是人类科学史上划时代的重大发现,而微积分的产生和发展,又与求解微分方程问题密切相关.这是因为,微积分产生的一个重要动因来自于人们探求物质世界运动规律的需求.一般地,运动规律很难全靠实验观测认识清楚,因为人们不太可能观察到运动的全过程.然而,运动物体(变量)与它的瞬时变化率(导数)之间,通常在运动过程中按照某种己知定律存在着联系,我们容易捕捉到这种联系,而这种联系,用数学语言表达出来,其结果往往形成一个微分方程.一旦求出这个方程的解,其运动规律将一目了然.下面的例子,将会使你看到微分方程是表达自然规律的一种最为自然的数学语言.

例1 物体下落问题

设质量为m的物体,在时间t=0时,在距地面高度为H处以初始速度v(0) = v0垂直地面下落,求此物体下落时距离与时间的关系.

解如图1-1建立坐标系,设为t时刻物体的位置坐标.于是物体下落的速度为

加速度为

质量为m的物体,在下落的任一时刻所受到的外力有重力mg和空气阻力,当速度不太大时,空气阻力可取为与速度成正比.于是根据牛顿第二定律

F = ma (力=质量×加速度)

可以列出方程

(·= )(1.1) 其中k >0为阻尼系数,g是重力加速度.

(1.1)式就是一个微分方程,这里t是自变量,x是未知函数,是未知函数对t

导数.现在,我们还不会求解方程(1.1),但是,如果考虑k=0的情形,即自由落体运动,此时方程(1.1)可化为

(1.2)

将上式对t积分两次得

(1.3)

其中和是两个独立的任意常数,它是方程(1.2)的解.

一般说来,微分方程就是联系自变量、未知函数以及未知函数的某些导数之间的关

系式.如果其中的未知函数只与一个自变量有关,则称为常微分方程;如果未知函数是两个或两个以上自变量的函数,并且在方程中出现偏导数,则称为偏微分方程.本书所介绍的都是常微分方程,有时就简称微分方程或方程.

例如下面的方程都是常微分方程

(1.4)

(1.5)

(·=)(1.6)

(′=)(1.7)

在一个常微分方程中,未知函数最高阶导数的阶数,称为方程的阶.这样,一阶常微分方程的一般形式可表为

(1.8)

如果在(1.8)中能将y′解出,则得到方程

(1.9)

或(1.10)

(1.8)称为一阶隐式方程,(1.9)称为一阶显式方程,(1.10)称为微分形式的一阶方程.

n 阶隐式方程的一般形式为

(1.11)n 阶显式方程的一般形式为

(1.12)

在方程(1.11)中,如果左端函数F对未知函数y和它的各阶导数y′,y″,…,y(n)的全体而言是一次的,则称为线性常微分方程,否则称它为非线性常微分方程.这样,一个以y 为未知函数,以x为自变量的n阶线性微分方程具有如下形式:

(1.13)

显然,方程(1.4)是一阶线性方程;方程(1.5)是一阶非线性方程;方程(1.6)是二阶线性方程;方程(1.7)是二阶非线性方程.

通解与特解

微分方程的解就是满足方程的函数,可定义如下.

定义1.1设函数在区间I上连续,且有直到n阶的导数.如果把

代入方程(1.11),得到在区间I上关于x的恒等式,

则称为方程(1.11)在区间I上的一个解.

这样,从定义1.1可以直接验证:

1. 函数y = x2+C是方程(1.4)在区间(-∞,+∞)上的解,其中C是任意的常数.

2. 函数是方程(1.5)在区间(-1,+1)上的解,其中C是任意常数.又方程(1.5)有两个明显的常数解y =±1,这两个解不包含在上述解中.

3. 函数是方程(1.6)在区间(-∞,+∞)上的解,其中和是独立的任意常数.

4. 函数是方程(1.7)在区间(-∞,+∞)上的解,其中和是独立的任意常数.

这里,我们仅验证3,其余留给读者完成.事实上,在(-∞,+∞)上有

所以在(-∞,+∞)上有

从而该函数是方程(1.6)的解.

从上面的讨论中,可以看到一个重要事实,那就是微分方程的解中可以包含任意常数,其中任意常数的个数可以多到与方程的阶数相等,也可以不含任意常数.我们把n 阶常微分方程(1.11)的含有n个独立的任意常数C1,C2,…,Cn的解

,称为该方程的通解,如果方程(1.11)的解不包含任意常数,则称它为特解.由隐式表出的通解称为通积分,而由隐式表出的特解称为特积分.

由上面的定义,不难看出,函数和

分别是方程(1.4),(1.5)和(1.6)的通解,函数是方程(1.7)的通积分,而函数y =±1是方程(1.7)的特解.通常方程的特解可对通解中的任意常数以定值确定,这种确定过程,需要下面介绍的初始值条件,或简称初值条件.

初值问题

例1中的函数(1.3)显然是方程(1.2)的通解,由于和是两个任意常数,这表明方程(1.2)有无数个解,解的图像见下面的图a和图b所示.

图a(C1>固定,C2>0)图b(C1=0,C2>0)而实际经验表明,一个自由落体运动仅能有一条运动轨迹.产生这种多解性的原因是因为方程(1.2)所表达的是任何一个自由落体,在任意瞬时t所满足的关系式,并未考虑运动的初始状态,因此,通过积分求得的其通解(1.3)所描述的是任何一个自由落体的运动规律.显然,在同一初始时刻,从不同的高度或以不同初速度自由下落的物体,应有不同的运动轨迹.为了求解满足初值条件的解,我们可以把例1中给出的两个初始值条件,即

初始位置x(0)= H 初始速度

代入到通解中,推得

于是,得到满足上述初值条件的特解为

(1.14)

它描述了初始高度为H,初始速度为v0的自由落体运动规律.

求微分方程满足初值条件的解的问题称为初值问题.

于是我们称(1.14)是初值问题

的解.

对于一个n 阶方程,初值条件的一般提法是

(1.15)

其中是自变量的某个取定值,而是相应的未知函数及导数的给定值.方程(1.12)的初值问题常记为

(1.16)

初值问题也常称为柯希(Cauchy)问题.

对于一阶方程,若已求出通解,只要把初值条件

代入通解中,得到方程

从中解出C,设为,代入通解,即得满足初值条件的解.

对于n 阶方程,若已求出通解后,代入初值条件(1.15),得到n个方程式

(1.17)

如果能从(1.17)式中确定出,代回通解,即得所求初值问题的

.

例2 求方程

的满足初值条件的解.

解方程通解为

求导数后得

将初值条件代入,得到方程组

解出和得

故所求特解为

积分曲线

为了便于研究方程解的性质,我们常常考虑解的图象.一阶方程(1.9)的一个特解

的图象是xoy平面上的一条曲线,称为方程(1.9)的积分曲线,而通解

的图象是平面上的一族曲线,称为积分曲线族.例如,方程(1.4)的通解

+C是xoy平面上的一族抛物曲线.而是过点(0,0)的一条积分曲线.以后,为了叙述简便,我们对解和积分曲线这两个名词一般不加以区别.对于二阶和二阶以上的方程,也有积分曲线和积分曲线族的概念,只不过此时积分曲线所在的空间维数不同,我们将在第4章详细讨论.

最后,我们要指出,本书中按习惯用

分别代表,

分别代表

本节要点:

1.常微分程的定义,方程的阶,隐式方程,显式方程,线性方程,非线性方程.

2.常微分方程解的定义,通解,特解,通积分,特积分.

3.初值问题及初值问题解的求法.

4.解的几何意义,积分曲线.

01-第一节-微分方程的基本概念

第八章常微分方程与差分方程 对自然界的深刻研究是数学最富饶的源泉. ---- 傅里叶 微积分研究的对象是函数关系,但在实际问题中,往往很难直接得到所研究的变量之间的函数关系,却比较容易建立起这些变量与它们的导数或微分之间的联系,从而得到一个关于未知函数的导数或微分的方程,即微分方程. 通过求解这种方程,同样可以找到指定未知量之间的函数关系. 因此,微分方程是数学联系实际,并应用于实际的重要途径和桥梁,是各个学科进行科学研究的强有力的工具. 如果说“数学是一门理性思维的科学,是研究、了解和知晓现实世界的工具” ,那么微分方程就是显示数学的这种威力和价值的一种体现. 现实世界中的许多实际问题都可以抽象为微分方程问题. 例如,物体的冷却、人口的增长、琴弦的振动、电磁波的传播等,都可以归结为微分方程问题. 这时微分方程也称为所研究问题的数学模型. 微分方程是一门独立的数学学科,有完整的理论体系. 本章我们主要介绍微分方程的一些基本概念,几种常用的微分方程的求解方法及线性微分方程解的理论. 第一节微分方程的基本概念 分布图示 ★引言 ★微分方程的概念★例1 ★ 例2★例3★ 例4 ★微分方程解的概念 ★ 例5★例6 ★内容小结★课堂练习 ★习题8-1 内容要点: 一、微分方程的概念我们把未知函数为一元函数的微分方程称为常微分方程. 类似地,未知函数为多元函数的微分方程称为偏微分方程, 本章我们只讨论常微分方程. 常微分方程的一般形式是: F(x,y,y ,y ,y(n)) 0, (1.5) 其中x 为自变量,y y(x) 是未知函数. 如果能从方程(1.5)中解出最高阶导数,就得到微分方程

01-第一节-微分方程的基本概念

01-第一节-微分方程的基本概念

第八章常微分方程与差分方程 对自然界的深刻研究是数学最富饶的源泉. -------傅里叶 微积分研究的对象是函数关系,但在实际问题中,往往很难直接得到所研究的变量之间的函数关系,却比较容易建立起这些变量与它们的导数或微分之间的联系,从而得到一个关于未知函数的导数或微分的方程,即微分方程. 通过求解这种方程,同样可以找到指定未知量之间的函数关系. 因此,微分方程是数学联系实际,并应用于实际的重要途径和桥梁,是各个学科进行科学研究的强有力的工具. 如果说“数学是一门理性思维的科学,是研究、了解和知晓现实世界的工具”,那么微分方程就是显示数学的这种威力和价值的一种体现.现实世界中的许多实际问题都可以抽象为微分方程问题. 例如,物体的冷却、人口的增长、琴

弦的振动、电磁波的传播等,都可以归结为微分方程问题. 这时微分方程也称为所研究问题的数学模型. 微分方程是一门独立的数学学科,有完整的理论体系. 本章我们主要介绍微分方程的一些基本概念,几种常用的微分方程的求解方法及线性微分方程解的理论. 第一节微分方程的基本概念 分布图示 ★引言 ★微分方程的概念★例1 ★例2★例3★例4 ★微分方程解的概念 ★例5★例6 ★内容小结★课堂练习

则称方程(1.7)为n 阶线性微分方程. 其中),(1x a ),(2x a , )(x a n 和)(x g 均为自变量x 的已知函数. 不能表示成形如(1.7)式的微分方程,统称为非线性方程. 在研究实际问题时,首先要建立属于该问题的微分方程,然后找出满足该微分方程的函数(即解微分方程),就是说,把这个函数代入微分方程能使方程称为恒等式,我们称这个函数为该微分方程的解. 更确切地说,设函数)(x y ?=在区间I 上有n 阶连续导数,如果在区间I 上,有 ,0))(,)(),(),(,() (='''x x x x x F n ???? 则称函数)(x y ?=为微分方程(1.5)在区间I 上的解. 二、 微分方程的解 微分方程的解可能含有也可能不含有任意常数. 一般地,微分方程的不含有任意常数的解称为微分方程的特解. 含有相互独立的任意常数,且任意常数的个数与微分方程的阶数相等的解称为微分方程的通解(一般解). 所谓通解的意思是指,当其中的任意常数取遍所有实数时,就可以得到微分方程的所有解(至多有个别例外). 注:这里所说的相互独立的任意常数,是指它们

微分方程的基础知识及解析解

微分方程的基础知识及解析解

微分方程的基础知识与练习 (一)微分方程基本概念: 首先通过一个具体的问题来给出微分方程的基本概念。 (1)一条曲线通过点(1,2),且在该曲线上任一点M (x ,y )处的切线的斜率为2x ,求这条曲线的方程。 解 设曲线方程为)(x y y =.由导数的几何意义可知函数)(x y y =满足 x dx dy 2= (1) 同时还满足以下条件: 1=x 时,2=y (2) 把(1)式两端积分,得 ?=xdx y 2 即 C x y +=2 (3) 其中C 是任意常数。 把条件(2)代入(3)式,得 1=C , 由此解出C 并代入(3)式,得到所求曲线方程: 12+=x y (4) (2)列车在水平直线路上以20s m /的速度行驶;当制动时列车获得加速度2/4.0s m -.问开始制动后多少时间列车才能停住,以及列车在这段时间里行驶了多少路程? 解 设列车开始制动后t 秒时行驶了s 米。根据题意,反映制动阶段列车运动规律的函数)(t s s =满足: 4.02 2-=dt s d (5) 此外,还满足条件: 0=t 时,20,0== =dt ds v s (6) (5)式两端积分一次得: 14.0C t dt ds v +-== (7) 再积分一次得

2122.0C t C t s ++-= (8) 其中21,C C 都是任意常数。 把条件“0=t 时20=v ”和“0=t 时0=s ”分别代入(7)式和(8)式,得 0 ,2021==C C 把21,C C 的值代入(7)及(8)式得 ,204.0+-=t v (9) t t s 202.02+-= (10) 在(9)式中令0=v ,得到列车从开始制动到完全停止所需的时间: )(504 .020s t ==。 再把5=t 代入(10)式,得到列车在制动阶段行驶的路程 ).(5005020502.02m s =?+?-= 上述两个例子中的关系式(1)和(5),(6)都含有未知函数的导数,它们都是微分方程。 1.微分方程的概念 一般地,凡含有未知函数、未知函数的导数及自变量的方程,叫做微分方程。未知函数是一元函数的方程叫做常微分方程;未知函数是多元函数的方程,叫做偏微分方程。我们只研究常微分方程。微分方程中所出现的未知函数的最高阶导数的阶数,叫做微分方程的阶。 例如,方程(1)是一阶微分方程;方程(5)是二阶微分方程方程。又如,方程 ()x y y y y y 2sin 5'12''10'''44=+-+-是四阶微分方程。 一般地,n 阶微分方程的形式是 ()(,,',...,)0,n F x y y y = (11) 其中F 是个2+n 变量的函数。这里必须指出,在方程(11)中,)(n y 是必须出现的,而 )1(,...,',,-n y y y x 等变量则可以不出现。例如n 阶微分方程

常微分方程基本概念习题附解答

§1.2 常微分方程基本概念习题及解答 1.dx dy =2xy,并满足初始条件:x=0,y=1的特解。 解:y dy =2xdx 两边积分有:ln|y|=x 2+c y=e 2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0 原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2 x . 2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。 解:y 2dx=-(x+1)dy 2y dy dy=-11+x dx 两边积分: -y 1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c 另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y=| )1(|ln 1+x c 3.dx dy =y x xy y 32 1++ 解:原方程为:dx dy =y y 21+31x x + y y 21+dy=3 1x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 2 4. (1+x)ydx+(1-y)xdy=0 解:原方程为: y y -1dy=-x x 1+dx 两边积分:ln|xy|+x-y=c

另外 x=0,y=0也是原方程的解。 5.(y+x )dy+(x-y)dx=0 解:原方程为: dx dy =-y x y x +- 令 x y =u 则dx dy =u+x dx du 代入有: -112++u u du=x 1dx ln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2x y . 6. x dx dy -y+22y x -=0 解:原方程为: dx dy =x y +x x ||-2)(1x y - 则令 x y =u dx dy =u+ x dx du 211 u - du=sgnx x 1dx arcsin x y =sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgx dx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=x c cos 另外y=0也是原方程的解,而c=0时,y=0. 所以原方程的通解为sinycosx=c. 8 dx dy +y e x y 32 +=0 解:原方程为:dx dy =y e y 2e x 3

第四章第一节微分方程的基本概念

第四章第一节微分方程的基本概念 基本内容 1. 微分方程:含有未知函数、未知函数的导数(或微分)与自娈量之间的关系的方程称为微分方程。未知函数是一元函数的微分方程称为常微分方程。微分方程中所出现的未知函数的最高阶导数的阶数称为微分方程的阶。 2. 微分方程的解:使微分方程成为恒等式的函数 ) (x y y=称为微分方程的解。如果微分方 程的解中含有任意常数,且任意常数的个数与微分方程的阶数相同,这样的解叫做微分方程的通解。 3.特解:确定微分方程通解中的任意常数的值的条件称为定解条件,确定了通解中的任意常数后得到的解称为微分方程的特解。 习题选解 1.试指出下列各微分方程的阶数 (1) 220 x dy y dx -= 解:一阶 (2) 4 3()0 y y y y '''''' -= 解:二阶 (3) 2 2 0 d Q dQ Q L R dt C dt ++= 解:二阶。 (4)(76)()0 x y dx x y dy -++= 解:一阶 (5) 2 sin d d ρ ρθθ += 解:一阶 (6) (5)20 y y y y '''' -++= 解:5阶 2.指出下列各题中的函数是否为所给微分方程的解

(1)30dy x y dx +=, 3 C y x = 解:因为34 3()dy C C dx x x '==-,代入微分方程,得: 左边=333330dy C C x y dx x x +=-+==右边,所以 3 C y x =是微分方程的解。 (2)22 2220d y dy x x y dx dx -+=, 223y x x =- 解:因为2 (23)26dy x x x dx '=-=-,22 (26)6d y x dx '=-=-代入微分方程,得: 左边22 22 2 2262(26)2(23)0d y dy x x y x x x x x dx dx =-+=---+-==右边,所以 223y x x =-是微分方程的解。 (3)022 2=+dt dS dt S d ω,t C t C S ωωsin cos 21+= 解:因为1212(cos sin )sin cos dS C t C t C t C t dt ωωωωωω'=+=-+, 22212122 (sin cos )cos sin d S C t C t C t C t dt ωωωωωωωω'=-+=--,代入微分方程,得: 左边22222212122cos sin (sin cos ) d S dS C t C t C t C t dt dt ωωωωωωωωω=+=--+-+ 22112[()cos ()sin ]0C C t C C t ωωω=--+≠=右边,所以t C t C S ωωsin cos 21+=不是 微分方程的解。 (4)0)(=++xdy dx y x , x x C y 22 -= 解:由x x C y 22-=,得:22x C xy -=,两边微分,得:2 )(2dx xy d -=,即 xdx xdy ydx 2)(2-=+。从而得0)(=++xdy dx y x ,所以x x C y 22 -= 是微分方程的解。

微分方程中的几个基础概念

微分方程中的几个基础概念 微分方程—基础 微分方程(Differential equation, DFQ)是一种用来描述函数与其导数之间关系的数学方程。与之前所接触初等数学代数方程的解不同,它的解不是数,而是符合方程关系的函数。 微分方程的起源约在十七世纪末,为了解决自然科学发展中遇到物理及天文学问题而产生,随着微积分的诞生与在各个科学领域中的广泛应用,很多问题被归化为某类微分方程的问题。 在微分方程分支中,存在很多各种各样已知类型的微分方程。实事上,提高对微分方程的理解的最好的方法之一是首先处理基本的分类系统。为什么?因为你可能永远不会遇到完全陌生的微分方程。大多数微分方程已经被解决了,因此,普遍适用的解决方法很可能已经存在。 除了描述方程本身的性质外,对微分方程进行分类和识别的真正附加值来自于为跳转点提供一张导图。求解微分方程的诀窍不是创造原始解法,而是对已证明的解法进行分类和应用;有时,可能需要几步把一类方程转换为另一类等效方程,以获得可实现的广义解。 最常用于描述微分方程的四个属性是: ?常微分与偏微分 ?线性与非线性 ?齐次与非齐次

?微分阶数 虽然这个列表并非详尽无遗,但是它是我们学习首先要掌握的知识,通常在微分方程学期课程的前几周会进行回顾;通过快速回顾每一个类别,我们将会配备基本的入门工具包来处理常见的微分方程问题。 常微分与偏微分 首先,我们在自然中所发现的微分方程最常见的分类来源于从我们手边的问题中所发现的导数类型;简单地说,方程是否包含偏导数? 如果不包含,那么它是一个常微分方程(, Ordinary differential equation)。如果包含,那么它是一个偏微分方程(, Partial differential equation)。 常微分方程是未知函数只含有一个自变量的微分方程,其微分基于该单一的自变量,通常是时间。一个常微分方程有一组离散的(有限的)变量;它们通常是一维动力系统的模型,例如:钟摆随时间的摆动。 另一方面,偏微分方程相当复杂,因为它们通常涉及多个自变量,其多种多样的偏微分方程可能基于也可能并不基于一个已知的自变量。偏微分方程常被用来描述自然界中各种各样的现象,例如:热,空间中的流体速度,或电动力学。这些似乎完全不同的物理现象被化为偏微分方程;它们在随机偏微分方程中得到推广。 下面的这些例子有助于我们分辨微分方程的导数类型包括:

最新01第一节微分方程的基本概念

01第一节微分方程的 基本概念

第八章常微分方程与差分方程 对自然界的深刻研究是数学最富饶的源泉. -------傅里叶 微积分研究的对象是函数关系,但在实际问题中,往往很难直接得到所研究的变量之间的函数关系,却比较容易建立起这些变量与它们的导数或微分之间的联系,从而得到一个关于未知函数的导数或微分的方程,即微分方程. 通过求解这种方程,同样可以找到指定未知量之间的函数关系. 因此,微分方程是数学联系实际,并应用于实际的重要途径和桥梁,是各个学科进行科学研究的强有力的工具. 如果说“数学是一门理性思维的科学,是研究、了解和知晓现实世界的工具”,那么微分方程就是显示数学的这种威力和价值的一种体现.现实世界中的许多实际问题都可以抽象为微分方程问题. 例如,物体的冷却、人口的增长、琴弦的振动、电磁波的传播等,都可以归结为微分方程问题. 这时微分方程也称为所研究问题的数学模型. 微分方程是一门独立的数学学科,有完整的理论体系. 本章我们主要介绍微分方程的一些基本概念,几种常用的微分方程的求解方法及线性微分方程解的理论. 第一节微分方程的基本概念 分布图示 ★引言

★微分方程的概念★例1 ★例2★例3 ★例4 ★微分方程解的概念 ★例5★例6 ★内容小结★课堂练习 ★习题8-1 内容要点: 一、微分方程的概念 我们把未知函数为一元函数的微分方程称为常微分方程. 类似地,未知函数为多元函数的微分方程称为偏微分方程, 本章我们只讨论常微分方程. 常微分方程的一般形式是: ?Skip Record If...? (1.5) 其中?Skip Record If...?为自变量,?Skip Record If...?是未知函数. 如果能从方程(1.5)中解出最高阶导数,就得到微分方程 ?Skip Record If...? (1.6) 以后我们讨论的微分方程组主要是形如(1.6)的微分方程,并且假设(1.6)式右端的函数?Skip Record If...?在所讨论的范围内连续. 如果方程(1.6)可表为如下形式: ?Skip Record If...? (1.7) 则称方程(1.7)为?Skip Record If...?阶线性微分方程. 其中?Skip Record If...??Skip Record If...??Skip Record If...? ?Skip Record If...?和?Skip Record If...?均为自变量?Skip Record If...?的已知函数. 不能表示成形如(1.7)式的微分方程,统称为非线性方程.

常微分方程基本知识点

常微分方程基本知识点 第一章 绪论 1. 微分方程的概念(常微分与偏微),什么是方程的阶数,线性与非线性,齐次与非齐次,解、特解、部分解和通解的概念及判断! (重要) 例:03)(22=-+y dx dy x dx dy (1阶非线性); x e dx y d y =+22sin 。 2.运用导数的几何意义建立简单的微分方程。(以书后练习题为主) (习题1,2,9题) 例:曲线簇cx x y -=3满足的微分方程是:__________. 第二章 一阶方程的初等解法 1.变量分离方程的解法(要能通过适当的变化化成变量分离方程);(重要) 2.齐次方程的解法(变量代换);(重要) 3.线性非齐次方程的常数变易法; 4.分式线性方程、贝努利方程、恰当方程的概念及判断(要能熟练的判断各种类型的一阶方程)(重要); 例题:(1).经变换_____y c u os =___________后, 方程1cos sin '+=+x y y y 可化为___线性_____方程; (2).经变换_____y x u 32-=____________后, 方程1 )32(1 '2+-=y x y 可化为____变量分离__方程; (3).方程0)1(222=+-dy e dx ye x x x 为:线性方程。

(4).方程221 'y x y -=为:线性方程。 5.积分因子的概念,会判断某个函数是不是方程的积分因子; 6.恰当方程的解法(分项组合方法)。(重要) 第三章 一阶方程的存在唯一性定理 1.存在唯一性定理的内容要熟记,并能准确确定其中的h ; 2.会构造皮卡逐步逼近函数序列来求第k 次近似解!(参见书上例题和习题 3.1的1,2,3题) 第四章 高阶微分方程 1.n 阶线性齐次(非齐次)微分方程的概念,解的概念,基本解组,解的线性相关与线性无关,齐次与非齐次方程解的性质; 2.n 阶线性方程解的Wronskey 行列式与解的线性相关与线性无关的关系; 3.n 阶线性齐次(非齐次)微分方程的通解结构定理!!(重要) 4.n 阶线性非齐次微分方程的常数变易法(了解); 5.n 阶常系数线性齐次与非齐次微分方程的解法(Eurler 待定指数函数法确定基本解组),特解的确定(比较系数法、复数法);(重要) 例题:t te x x 24=-'',确定特解类型? (习题4.2相关题目) 6.2阶线性方程已知一个特解的解法(作线性齐次变换)。(重要) 7.其他如Euler 方程、高阶方程降阶、拉普拉斯变换法等了解。

微分方程的基本概念

第一节 微分方程的基本概念 教学目的:理解并掌握微分方程的基本概念,主要包括微分方程的阶,微分方程 的通解、特解及微分方程的初始条件等 教学重点:常微分方程的基本概念,常微分方程的通解、特解及初始条件 教学难点:微分方程的通解概念的理解 教学内容: 1、首先通过几个具体的问题来给出微分方程的基本概念。 (1)一条曲线通过点(1,2),且在该曲线上任一点M (x ,y )处的切线的斜率为2x ,求这条曲线的方程。 解 设曲线方程为)(x y y =.由导数的几何意义可知函数)(x y y =满足 x dx dy 2= (1) 同时还满足以下条件: 1=x 时,2=y (2) 把(1)式两端积分,得 ?=xdx y 2 即 C x y +=2 (3) 其中C 是任意常数。 把条件(2)代入(3)式,得 1=C , 由此解出C 并代入(3)式,得到所求曲线方程: 12+=x y (4) (2)列车在平直线路上以20s m /的速度行驶;当制动时列车获得加速度2/4.0s m -.问开始制动后多少时间列车才能停住,以及列车在这段时间里行驶了多少路程? 解 设列车开始制动后t 秒时行驶了s 米。根据题意,反映制动阶段列车运动规律的函 数

)(t s s =满足: 4.02 2-=dt s d (5) 此外,还满足条件: 0=t 时,20,0== =dt ds v s (6) (5)式两端积分一次得: 14.0C t dt ds v +-== (7) 再积分一次得 2122.0C t C t s ++-= (8) 其中21,C C 都是任意常数。 把条件“0=t 时20=v ”和“0=t 时0=s ”分别代入(7)式和(8)式,得 0 ,2021==C C 把21,C C 的值代入(7)及(8)式得 ,204.0+-=t v (9) t t s 202.02+-= (10) 在(9)式中令0=v ,得到列车从开始制动到完全停止所需的时间: )(504 .020s t ==。 再把5=t 代入(10)式,得到列车在制动阶段行驶的路程 ).(5005020502.02m s =?+?-= 上述两个例子中的关系式(1)和(5)都含有未知函数的导数,它们都是微分方程。 2、 定义 一般地,凡表示未知函数、未知函数的导数与自变量之间的关系到的方程,叫做微分方程。未知函数是一元函数的方程叫做常微分方程;未知函数是多元函数的方程,叫做偏微分方程。本章只讨论常微分方程。 微分方程中所出现的求知函数的最高阶导数的阶数,叫做微分方程的阶。例如,方程(1)是一阶微分方程;方程(5)是二阶微分方程方程。又如,方程 ()x y y y y y 2sin 5'12''10'''44=+-+- 是四阶微分方程。

微分方程的基本概念

求函数关系是数学中的重要问题。然而,在实际中有时很难直接找出函数关系,我们所得到的仅是含有未知函数及其导数的关系式,称之为微分方程.我们的任务就是求解微分方程,找出未知函数。本章将介绍一些微分方程的基本概念和几种常用的微分方程的解法. 微分方程的基本概念 下面通过几个例题来说明微分方程的基本概念. 例1 一曲线通过)2,1(点,且在该曲线上任一点),(y x 处 的切线的斜率为x 2,求曲线的方程. 解 由导数的几何意义可得 x dx dy 2= ① 此外,未知函数)(x y y =还应满足条件 1=x 时,2=y (或写成21==x y ) ② 在式①两端积分,得 C x y +=2 , ③ 其中C 为任意常数.将条件②代入式③中,得1=C , 于是得所求曲线的方程为 ④ 12+=x y

我们知道式③表示一族曲线, 曲线族中的每一条曲线的函数 代入式①中都成为恒等式, 而式④仅表示是其中的一条,它是通过点()2,1的. 从以上例子中,可归纳出如下一些基本概念. (一)微分方程:含有自变量、未知函数以及未知函数导数或微分的方程叫微分方程(以下简称方程)。在方程中出现的未知函数导数的最高阶数成为微分方程的阶,n 阶微分方程的一般形式为 ()(,,,,,)0n F x y y y y '''=L ⑤ 如式①为一阶微分方程.

(二)解:一个函数代入微分方程后,使其成为恒等式,则该函数称为微分方程的解. 含有任意常数,且独立的任意常数的个数和微分方程的阶数相等的解,称为微分方程的通解或一般解.不含任意常数的解叫特解. 若I x x y ∈=),(?为方程⑤的解,则有 ()[,(),(),,()]0n F x x x x φφφ'≡L , I x ∈. 方程⑤的通解应含有n 个独立的任意常数, 其通解有时用隐函数表达式 12(,,,,,)0n x y C C C Φ=L 表示. ⑥ 例如:式③为方程①的通解.

常微分方程教材

第九章 微分方程 一、教学目标及基本要求 (1) 了解微分方程及其解、通解、初始条件和特解的概念。 (2) 掌握变量可分离的方程和一阶线性方程的解法,会解齐次方程。 (3) 会用降阶法解下列方程:),(),,(),()(y y f y y x f y x f y n '='''=''=。 (4) 理解二阶线性微分方程解的性质以及解的结构定理。 (5) 掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。 (6) 会求自由项多项式、指数函数、正弦函数、余弦函数,以及它们的和与二阶常系数非齐次线性微分方程的 特解和通解。 (7) 会用微分方程解决一些简单的应用问题。 二、本章教学内容的重点和难点 1、理解和熟悉微分方程的一些基本概念; 2、掌握一阶和高阶微分方程的各种初等积分法; 3、熟悉线性方程的基础理论,掌握常系数二阶线性齐次与非齐次方程的解法; 4、会列微分方程及其始值问题去解决实际问题。 三、本章教学内容的深化和拓宽: 1、分离变量法的理论根据; 2、常用的变量代换; 3、怎样列微分方程解应用题; 4、黎卡提方程; 5、全微分方程的推广; 6、二阶齐次方程; 7、高阶微分方程的补充; 8、求线性齐次方程的另一个线性无关的解; 9、求线性非齐次方程的一个特解; 10、常数变易法。 本章的思考题和习题 解下列方程(第1-6题) 1、2)0(,)1(==+'+y x y y x 2、()[]f dx x f e e x f x x x ,)(02?+=可微 3、212 22sin 22sin 1X e y x y y x ++='?+ 4、0)3(24=+-xydx dy x y 5、21)0(,1)0(,022- ='=='+''y y y x y 6、2y y y x y '-'+'= 7、已知可微函数)(x f 满足 ?-=+x x f f x f x x f dx x f 12)()1(,1)()()(和求; 8、已知)(,,1)(2 1)(10x f f x f da ax f 求可微+= ?; 9、求与曲线族C y x =+2232相交成ο45角的曲线; 10、一容器的容积为100L ,盛满盐水,含10kg 的盐,现以每分钟3L 的速度向容器内注入淡水冲淡盐水,又以同样的速度将盐水抽入原先盛满淡水的同样大小的另一容器内,多余的水便从容器内流出,问经过多少时间,两容器内的含盐量相等?

第一节微分方程的基本概念

第十二章 微分方程 一、 学时分配: 讲课学时:14 习题学时:2 共 16 学时 二、 基本内容: 1. 微分方程的基本概念 2. 可分离变量的微分方程 3. 齐次方程 4. 一阶线性微分方程 5. 全微分方程 6. 可降阶的高阶微分方程 7. 高阶线性微分方程 8. 一阶常系数齐次线性微分方程 9. 一阶常系数非齐次线性微分方程 三、 教学要求: 1.理解并掌握微分方程的基本概念,主要包括微分方程的阶,微分方程 的通解、特解及微分方程的初始条件等. 2.熟练掌握可分离变量的微分方程的解法. 3.熟练掌握齐次微分方程的解法 4.掌握一阶线性微分方程的形式,熟练掌握其解法;掌握利用变量代换解微分方程的方法;了解贝努利方程的形式及解法 5.掌握全微分方程成立的充要条件,掌握全微分方程的解法,会用观察法找 积分因子 6.掌握)()(x f y n =、),(///y x f y =、),(///y y f y =三种高阶微分方程的解法, 即降阶法,理解降阶法的思想 7.掌握二阶线性方程解的结构,齐次线性方程的通解,非齐线性方程的特解及通解的形式 8.掌握二阶常系数齐次线性微分方程的特征方程,特征根,及对应于特征根的三种情况,通解的三种不同形式 9.掌握自由项为x m e x P x f λ)()(=和x m m e x x Q x x P x f λωω]sin )(cos )([)(+=的二 阶常系数非齐次线性微分方程特解的方法 四、重点难点:

1.重点: 2.难点: 第一节 微分方程的基本概念 教学目的:理解并掌握微分方程的基本概念,主要包括微分方程的阶,微分方程 的通解、特解及微分方程的初始条件等. 教学重点:常微分方程的基本概念,常微分方程的通解、特解及初始条件 教学难点:微分方程的通解概念的理解 教学内容: 一、 两个实例 1.一条曲线通过点(1,2),且在该曲线上任一点),(y x M 处的切线的斜率为2x ,求这条曲线的方程。 解:设曲线方程为)(x y y =.由导数的几何意义可知函数)(x y y =满足 x dx dy 2= (1) 同时还满足以下条件: 1=x 时,2=y (2) 把(1)式两端积分,得 ?=xdx y 2 即 C x y +=2 (3) 其中C 是任意常数。 把条件(2)代入(3)式,得 1=C , 由此解出C 并代入(3)式,得到所求曲线方程: 12+=x y (4) 2.列车在平直线路上以20s m /的速度行驶;当制动时列车获得加速度2/4.0s m -.问开始制动后多少时间列车才能停住,以及列车在这段时间里行驶了多少路程? 解 设列车开始制动后t 秒时行驶了s 米。根据题意,反映制动阶段列车运动规律的函数)(t s s =满足:

微分方程(习题及解答)

第十二章 微分方程 § 微分方程基本概念、可分离变量的微分方程、齐次微分方程 一、单项选择题 1. 下列所给方程中,不是微分方程的是( ) . (A)2xy y '=; (B)222x y C +=; (C)0y y ''+=; (D)(76)d ()d 0x y x x y y -++=. 答(B). 2. 微分方程4(3)520y y xy y '''+-=的阶数是( ). (A)1; (B)2; (C)3; (D)4; 答(C). 3. 下列所给的函数,是微分方程0y y ''+=的通解的是( ). (A)1cos y C x =; (B)2sin y C x =; (C)cos sin y x C x =+; (D)12cos sin y C x C x =+ 答(D). 4. 下列微分方程中,可分离变量的方程是( ). (A)x y y e +'=; (B)xy y x '+=; (C)10y xy '--=; (D)()d ()d 0x y x x y y -++=. 答(A). 5. 下列微分方程中,是齐次方程是微分方程的是( ). (A)x y y e +'=; 2(B)xy y x '+=; (C)0y xy x '--=; (D)()d ()d 0x y x x y y -++=. 答(D). 二、填空题 1.函数25y x =是否是微分方程2xy y '=的解 . 答:是 . 2.微分方程 3d d 0,4x x y y y x =+==的解是 . 答:2225x y +=. 3.微分方程2 3550x x y '+-=的通解是 . 答:32 52 x x y C =++. 4.微分方程ln 0xy y y '-=的通解是 . 答: Cx y e =. 5'=的通解是 . 答:arcsin arcsin y x C =+. 6.微分方程 (ln ln )xy y y y x '-=-的通解是. 答: Cx y e x =. 三、解答题 1.求下列微分方程的通解. (1) 22sec tan d sec tan d 0x y x y x y +=; (2) 2()y xy a y y '''-=+; 解: 解: (3) d 10d x y y x +=; (4) 23d (1)0.d y y x x ++=

《常微分方程》课程大纲

《常微分方程》课程大纲 一、课程简介 课程名称:常微分方程学时/学分:3/54 先修课程:数学分析,高等代数,空间解析几何,或线性代数(行列式,矩阵与线性方程组,线性空间F n,欧氏空间R n,特征值与矩阵的对角化), 高等数学(多元微积分,无穷级数)。 面向对象:本科二年级或以上学生 教学目标:围绕基本概念与基本理论、具体求解和实际应用三条主线开展教学活动,通过该课程的教学,希望学生正确理解常微分方程的基本概念,掌握基本理论和主要方法,具有一定的解题能力和处理相关应用问题的思维方式,如定性分析解的性态和定量近似求解等思想,并希望学生初步了解常微分方程的近代发展,为学习动力系统学科的近代内容和后续课程打下基础。 二、教学内容和要求 常微分方程的教学内容分为七部分,对不同的内容提出不同的教学要求。(数字表示供参考的相应的学时数,第一个数为课堂教学时数,第二个数为习题课时数) 第一章基本概念(2,0) (一)本章教学目的与要求: 要求学生正确掌握微分方程,通解,线性与非线性,积分曲线,线素场(方

向场),定解问题等基本概念。本章教学重点解释常微分方程解的几何意义。 (二)教学内容: 1.由实际问题:质点运动即距离与时间关系(牛顿第二运动定律),放射性元素衰变过程,人口总数发展趋势估计等,通过建立数学模型,导出微分方程。 2.基本概念(常微分方程,偏微分方程,阶,线性,非线性,解,定解问题,特解,通解等)。 3.一阶微分方程组的几何定义,线素场(方向场),积分曲线。 4.常微分方程所讨论的基本问题。 第二章初等积分法(4,2) (一)本章教学目的与要求: 要求学生熟练掌握分离变量法,常数变易法,初等变换法,积分因子法等初等解法。 本章教学重点对经典的几类方程介绍基本解法,勾通初等积分法与微积分学基本定理的关系。并通过习题课进行初步解题训练,提高解题技巧。 (二)教学内容: 1. 恰当方程(积分因子法); 2. 分离变量法 3. 一阶线性微分方程(常数变易法) 4. 初等变换法(齐次方程,伯努利方程,黎卡提方程)

微分方程的基础知识与练习

微分方程的基础知识与练习 (一)微分方程基本概念: 首先通过一个具体的问题来给出微分方程的基本概念。 (1)一条曲线通过点(1,2),且在该曲线上任一点M (x ,y )处的切线的斜率为2x ,求这条曲线的方程。 解 设曲线方程为)(x y y =.由导数的几何意义可知函数)(x y y =满足 x dx dy 2= (1) 同时还满足以下条件: 1=x 时,2=y (2) 把(1)式两端积分,得 ?=xdx y 2 即 C x y +=2 (3) 其中C 是任意常数。 把条件(2)代入(3)式,得 1=C , 由此解出C 并代入(3)式,得到所求曲线方程: 12+=x y (4) (2)列车在水平直线路上以20s m /的速度行驶;当制动时列车获得加速度 2/4.0s m -.问开始制动后多少时间列车才能停住,以及列车在这段时间里行驶了 多少路程? 解 设列车开始制动后t 秒时行驶了s 米。根据题意,反映制动阶段列车运 动规律的函数)(t s s =满足: 4.02 2-=dt s d (5) 此外,还满足条件: 0=t 时,20,0== =dt ds v s (6) (5)式两端积分一次得: 14.0C t dt ds v +-== (7) 再积分一次得

2122.0C t C t s ++-= (8) 其中21,C C 都是任意常数。 把条件“0=t 时20=v ”和“0=t 时0=s ”分别代入(7)式和(8)式,得 0 ,2021==C C 把21,C C 的值代入(7)及(8)式得 ,204.0+-=t v (9) t t s 202.02+-= (10) 在(9)式中令0=v ,得到列车从开始制动到完全停止所需的时间: )(504 .020 s t == 。 再把5=t 代入(10)式,得到列车在制动阶段行驶的路程 ).(5005020502.02m s =?+?-= 上述两个例子中的关系式(1)和(5),(6)都含有未知函数的导数,它们 都是微分方程。 1.微分方程的概念 一般地,凡含有未知函数、未知函数的导数及自变量的方程,叫做微分方程。未知函数是一元函数的方程叫做常微分方程;未知函数是多元函数的方程,叫做偏微分方程。我们只研究常微分方程。微分方程中所出现的未知函数的最高阶导数的阶数,叫做微分方程的阶。 例如,方程(1)是一阶微分方程;方程(5)是二阶微分方程方程。又如,方程 ()x y y y y y 2sin 5'12''10'''44=+-+-是四阶微分方程。 一般地,n 阶微分方程的形式是 ()(,,',...,)0,n F x y y y = (11) 其中F 是个2+n 变量的函数。这里必须指出,在方程(11)中,)(n y 是必须出现的,而 )1(,...,',,-n y y y x 等变量则可以不出现。例如n 阶微分方程

§1常微分方程的基本概念

第十三章 常微分方程简介 本章介绍微分方程的有关概念及某些简单微分方程的解法。 微分方程是包含未知函数及其导数的方程。由微分方程能够求出未知函数的解析表达式,从而掌握所研究的客观现象的变化规律和发展趋势。因此,掌握这方面的知识,用之分析解决问题是非常重要的。 由于在大多数情况下,微分方程很难求出初等解(即解的形式是初等函数)。那么,就需要研究解的存在理论,借助计算机求出微分方程的数值解。 本章的内容,仅仅包含常微分方程的一些最初步的知识,特殊的一阶和部分二阶微分方程的初等解法;最后一节讨论微分方程的简单应用。 §1 常微分方程的基本概念 像过去我们研究其他许多问题一样,首先通过具体实际例子来引入微分方程的概念。 两个实例 例1.1 设某一平面曲线上任意一点),(y x 处的切线斜率等于该点处横坐标x 的2倍,且曲线通过点)2,1(,求该曲线的方程。 解 平面上的曲线可由一元函数来表示 设所求的曲线方程为)(x f y =,根据导数的几何意义,由题意得 x dx dy 2=(这是一个含未知函数)(x f y =的导数的方程)。 另外,由题意,曲线通过点)2,1(,所以,所求函数)(x f y =还满足2|1==x y 。 从而得到 12 (1.1)|2(1.2) x dy x dx y =ì??=?í??=??,。 为了解出)(x f y =,我们只要将的两端积分,得 ?+=+==C x C x xdx y 22 2 22, 我们说 C x y +=2对于任意常数C 都满足方程。 再由条件,将2|1==x y 代入C x y +=2,即

C +=2121=?C 。 故所求曲线的方程为12+=x y 。 再看一个例子: 例1.2 设质点以匀加速度a 作直线运动,且0=t 时0,0v v s ==。求质点运 动的位移与时间t 的关系。 解 这是一个物理上的运动问题。 设质点运动的位移与时间的关系为 )(t s s =。 则由二阶导数的物理意义,知a t d s d =22,这是一个含有二阶导数的方程。 再由题意000 |0 |t t s v v ==ì=??í ?=??,因此,)(t S S =应满足问题 22 000 (1.3)|0|(1.4)t t d s a dt s v v ==ì??=?í??==???,,。 要解这个问题,我们可以将两边连续积分两次,即 1C at dt ds +=, ??++=21C dt C tdt a s ,即 2122 C t C t a s ++=, 其中21,C C 为任意常数。 由条件,因为0|0==t s ,代入,得02=C ; 再由00|v v t ==,代入,得01v C =。 故得 t v t a s 02 2 += 为所求。 下面我们将通过分析这两个具体的例子,给出微分方程的一些基本概念。 微分方程的基本概念 总结所给出的两个具体的例子,我们看到: (1) 例的)1(式和例 的)1(式都是含有未知函数的导数的等式(例1含一阶导数,例2含二阶导数); (2) 通过积分可以解出满足这等式的函数;

01 第一节 微分方程的基本概念

第六章 微分方程 对自然界的深刻研究是数学最富饶的源泉. -------傅里叶 微积分研究的对象是函数关系,但在实际问题中,往往很难直接得到所研究的变量之间的函数关系,却比较容易建立起这些变量与它们的导数或微分之间的联系,从而得到一个关于未知函数的导数或微分的方程,即微分方程. 通过求解这种方程,同样可以找到指定未知量之间的函数关系. 因此,微分方程是数学联系实际,并应用于实际的重要途径和桥梁,是各个学科进行科学研究的强有力的工具. 如果说“数学是一门理性思维的科学,是研究、了解和知晓现实世界的工具”,那么微分方程就是显示数学的这种威力和价值的一种体现.现实世界中的许多实际问题都可以抽象为微分方程问题. 例如,物体的冷却、人口的增长、琴弦的振动、电磁波的传播等,都可以归结为微分方程问题. 这时微分方程也称为所研究问题的数学模型. 微分方程是一门独立的数学学科,有完整的理论体系. 本章我们主要介绍微分方程的一些基本概念,几种常用的微分方程的求解方法及线性微分方程解的理论. 第一节 微分方程的基本概念 一般地,含有未知函数及未知函数的导数或微分的方程称为微分方程. 微分方程中出现的未知函数的最高阶导数的阶数称为微分方程的阶. 在物理学、力学、经济管理科学等领域我们可以看到许多表述自然定律和运行机理的微分方程的例子. 分布图示 ★ 引 言 ★ 微分方程的概念 ★ 例1 ★ 例2 ★ 微分方程解的概念 ★ 例3 ★ 例4 ★ 内容小结 ★ 习题6-1 内容要点 一、微分方程的概念 我们把未知函数为一元函数的微分方程称为常微分方程. 类似地,未知函数为多元函数的微分方程称为偏微分方程, 本章我们只讨论常微分方程. 常微分方程的一般形式是: ,0),,,,()(='''n y y y y x F (1.5)

01-第一节-微分方程的基本概念

第八章 常微分方程与差分方程 对自然界的深刻研究是数学最富饶的源泉. -------傅里叶 微积分研究的对象是函数关系,但在实际问题中,往往很难直接得到所研究的变量之间的函数关系,却比较容易建立起这些变量与它们的导数或微分之间的联系,从而得到一个关于未知函数的导数或微分的方程,即微分方程. 通过求解这种方程,同样可以找到指定未知量之间的函数关系. 因此,微分方程是数学联系实际,并应用于实际的重要途径和桥梁,是各个学科进行科学研究的强有力的工具. 如果说“数学是一门理性思维的科学,是研究、了解和知晓现实世界的工具”,那么微分方程就是显示数学的这种威力和价值的一种体现.现实世界中的许多实际问题都可以抽象为微分方程问题. 例如,物体的冷却、人口的增长、琴弦的振动、电磁波的传播等,都可以归结为微分方程问题. 这时微分方程也称为所研究问题的数学模型. 微分方程是一门独立的数学学科,有完整的理论体系. 本章我们主要介绍微分方程的一些基本概念,几种常用的微分方程的求解方法及线性微分方程解的理论. 第一节 微分方程的基本概念 分布图示 ★ 引 言 ★ 微分方程的概念 ★ 例1 ★ 例2 ★ 例3 ★ 例4 ★ 微分方程解的概念 ★ 例5 ★ 例6 ★ 内容小结 ★ 课堂练习 ★ 习题8-1 内容要点: 一、微分方程的概念 我们把未知函数为一元函数的微分方程称为常微分方程. 类似地,未知函数为多元函数的微分方程称为偏微分方程, 本章我们只讨论常微分方程. 常微分方程的一般形式是: ,0),,,,()(='''n y y y y x F Λ (1.5) 其中x 为自变量,)(x y y =是未知函数. 如果能从方程(1.5)中解出最高阶导数,就得到微分方程

相关文档
最新文档