电力系统规划与可靠性答案

电力系统规划与可靠性答案
电力系统规划与可靠性答案

1.某地区拟建200MW火力发电厂,预计年利用小时数为5000h,现有两种类型的发电机组可选(相关指标见下表),试用年费用法进行选择比较。(20分)

表2.1 各类发电机组相关技术经济指标

解:分别计算两种类型机组单位千瓦的年费用

a.机组类型A:初始投资ZΣ=4500元

年运行成本C=1KW×5000h×0.15元/kWh=750元

工程寿命期末的残值S=4500元×5%=225 元

行业贴现率i=0.15

工程寿命n=25

单位KW等额年金成本:

EUAC A=

(1)

(1)1(1)1

n

n n

i i i

Z C S

i i

+

+-

+-+-

=

25

2525

0.15(10.15)0.15 4500750225

(10.15)1(10.15)1

+

+-

+-+-

=1445(元)

b.机组类型B:初始投资ZΣ=3500元

年运行成本C=1KW×5000h×0.22元/kWh=1100元

工程寿命期末的残值S=3500元×3%=105元

行业贴现率i=0.15

工程寿命n=20

单位KW等额年金成本:

EUAC B=

(1)

(1)1(1)1

n

n n

i i i

Z C S

i i

+

+-

+-+-

=

20

2020

0.15(10.15)0.15 35001100105

(10.15)1(10.15)1

+

+-

+-+-

=1658(元)

显然,EUAC A

2. 煤矿C1和C2的产量分别为3880万吨和5000万吨;三个发电厂P1、P2和P3的耗煤量分别为3200万吨、2500万吨和3000万吨。煤炭运输成本如下表所示。问,如何调运使煤炭运输总成本最低(要求写出目标函数、约束条件、并求出最优结果)。(20分)

表3.1 煤矿到各发电厂的运输成本(单位:元/吨)

解:依题意,得:

设煤矿C1运给P1、P2、P3的煤量分别为X 11、X 12、X 13(单位:万吨),煤矿C2运给P1、P2、P3的煤量分别为X 21、X 22、X 23(单位:万吨)。那么约束条件为:

煤矿C1 :X 11+X 12+X 13≤3880 煤矿C2 :X 21+X 22+X 23≤5000 发电厂P1:X 11+X 21=3200 发电厂P2:X 12+X 22=2500

发电厂P3:X 13+ X 23=3000(X ij ≥0,i=1,2;j=1,2,3)

因此,使煤炭运输总成本最低的目标函数为:

minF=90 X 11+100 X 12+120 X 13+80 X 21+140 X 22+120 X 23(万元) 计算得最优结果为:minF=866000(万元)

其中:X 11=0,X 12=2500,X 21=3200,X 22=0,由于煤矿C1和C2运给P3的运输成本相同,因此,X 13和X 23只需满足下列条件即可:

13231323X X 3000

0X 13800X 1800+=??

≤≤??≤≤?

3. 已知某系统年最高发电负荷为1000MW ,系统负荷和电源装机数据如表

4.1~4.2所示。试计算系统LOLE 、HLOLE 和EENS 等可靠性指标(假设系统全年52周的负荷相同)。(20分)

解:依题意得:

(一)根据递推式()()()()q c X P q X P X P old old new -+-=1计算累积概率,则当取步长MW x 100=?时,计算系统的容量模型,得结果如下表所示:

表4-1 系统容量模型

表4.1 系统典型周负荷曲线

(二)建立系统负荷模型

系统一周内各天的日最高负荷为:

表4-2 系统日最高负荷

系统典型日24小时负荷数据如下:

表4-3 系统典型日各小时负荷率

(三)根据系统容量模型和负荷模型计算可靠性指标 (1) 计算LOLE

算出每天日最高负荷L 时的系统备用R=C-L ,然后根据系统容量模型查出每天的LOLP 值。系统装机容量C=100×3+200×2+300×2=1300(MW)。

例如:对于星期一,L=900MW,故R=C-L=1300-900=400MW 。根据表4-1得,停运容量≥400MW 的累积概率即为所求的LOLP 值=0.074151775。同理,其它各天可依此法求得,具体结果如下表所示:

表4-4 每天的LOLP 值

因此,()()周周/0.608445

7

1

d LOLP LOLE i ==∑ (2) 计算HLOLE

方法同上,区别是用每小时的备用容量查表4-1的日容量模型数据。然后

将24小时的结果累加,即得一天的指标。例如,对于第一天星期一,它的日容量模型数据如下:

表4-5 星期一的日容量模型数据

解得,HLOLE(星期一)= 0.6915292125(h/d) 同理可得一周各天的HLOLE ,如下表所示:

表4-6 各天的HLOLE (单位:h/d)

因此,()∑===7

1

55.16635902)(i i HLOLE HLOLE 天周(h/周)

(3) 计算EENS

根据公式()??

????-?=∑+=εC R X X P x E E N S 1)1(小时 MW

以及修正量

()()X N P N X R ?+-?=1)(ε求得,其中X

R

N ?=

取整。 例如:对于星期一的第1个小时,系统装机C=1300MW ,负荷L=630MW ,

则R=670MW 。修正量()()=?+??

?

??-=100166100670P ε0.0035638225

因此,()???

???-=?

??? ??∑=13006710035638225.01001X X P EENS 小时第星期一 =100×0.00424614=0.424614(MW·h)

同理,求出星期一24小时的EENS ,结果如下表所示:

表4-7 星期一24小时的EENS 值(MW·h)

EENS (星期一)==∑241

)(i EENS 小时61.36653375(MW·h) 同理,分别算出一个星期各天的EENS 值,结果如下表所示:

表4-8各天的EENS 值(MW·h)

因此,()∑=7

1

i EENS EENS 周5625494.010369=(MW·h)

4. 图

5.1所示六节点电力系统(含两个发电节点,两个负荷节点,无可调变压器),若已知各负荷节点并联电容器的单位投资为C 0,固定安装费用为C M ,其余参数按常规选取。试建立该系统无功优化配置的数学模型,并给出基于微粒群算法(PSO )的求解流程。(20分) 解:

(一)建立系统无功优化配置的数学模型 (1) 目标函数:

模型以系统各种负荷水平下,节点安装的电容器无功补偿容量为规划变量,以系统有功损耗费用以及电容器安装费用最小作为目标函数,具体的数学表达式如下:

()

1

min ()L

C

N E i Li p LM c

j

j

i j N f q K T P K P a C q =∈=++∑∑ (5-1)

式中,第一项为该系统线路年电能损耗费用:K E 是线路电量损耗的单位费用;N L 是该系统的负荷水平数;P Li 、T i 为第i 个负荷水平下的系统有功损耗和年利用小时数;第二项为该系统的最大有功网损费用:P LM 、K p 为系统最大的有功网损及其单位费用;第三项为该系统电容器的投资费用:a c 为加权系数;N c 为负荷节点序号,在该系统中为2、4;C j (q j )为第j 个负荷节点所安装的电容器的投资费用,可表示为:

()0j j M j

C q C C q =+ (5-2)

其中,C M 为电容器固定安装费用;C 0为补偿电容器的单位购买价格。 (2) 列出约束条件:

(a) 节点有功和无功潮流约束:

11

(c o s s i n ),(s i n c o s ),N

G j L j j k j k j k j k j k C j N G j C j L j j j j k j k j k j k C j P P V V G B j N Q Q Q V V G B j N δδδδ==?

-=+∈??

??+-=-∈??∑∑ (5-3)

(b) 控制变量约束:

.min .max .min .max ,,Gi Gi Gi G Cj Cj Cj C

V V V i N Q Q Q j N ≤≤∈??

?≤≤∈?? (5-4)

(c) 状态变量约束:

图5.1 待规划输电网络

.min .max .min .max .min .max ,,,Gi Gi Gi G Dj Dj Dj C bl bl bl b

Q Q Q i N V V V j N q q q l N ?≤≤∈?

≤≤∈??

≤≤∈? (5-5)

(二)基于微粒群算法的求解流程 (1) 输入原始数据

包括网络拓扑、线路参数、各节点发电出力及负荷、各控制变量和状态变量的约束范围,还包括粒子群算法所需参数,如微粒适应度函数公式和微粒位置、速度修正公式中所需的参数等等。 (2) 初始化微粒群

模型的控制变量为该系统在各种不同的负荷水平下安装在负荷节点处的电容器补偿容量(或安装组数),并将其作为PSO 算法种群中的一个粒子,表示如下:

1

1222424

2

4

,,,,

,,T NL

NL n Q q q q q q q ??=?? (5-6)

以Q 表示种群的集合(设种群数目为m ),则:

[]

1,

,,

,n m Q Q Q Q = (5-7) 在式(5-4)的约束条件下,对各个粒子采用随机的方法赋初始值,得到:

(0)(0)

(0)

(0)

1,

,,

,n m Q Q Q Q ??=??

(5-8)

(3) 通过潮流计算检验各变量是否满足约束;

(4) 运用优化模型计算该系统电能损耗费用及电容器投资费用; (5) 通过适应度函数计算各微粒的适应度 适应度函数如下所示:

(){}

2

fitness

,max 111

max 0,L C

N NL N

E i Li p LM c j j VU i j i j N i j

F K T P K P a C q V V γ=∈==??

=+++-??∑∑∑∑

{

}2

m i n ,

11

max 0,NL N

VL i

j i j V V γ==??+-??

∑∑ (5-9) (6) 确定微粒本身和群体的当前最优解()i k j P 和

()

i k g P ;

(7) 修正微粒的位置和速度

利用下述公式对第k 次迭代后各微粒的位置(即每次迭代所得到的值)和速

度进行修正:

(1)()()()()()1122(1)()(1)()()i k i k i k i k i k i k j

j j j g j i k i k i k j

j j V V c r P Q c r P Q Q Q V ω+++?=+-+-??=+?? (5-10)

同时,在每次迭代之后将微粒本身和群体的当前最优解

()

i k j P 和

()

i k g P 更新为

(1)

i k j P +和

(1)

i k g P +。

(8) 判断是否满足终止条件,如果是的话,则输出优化结果;如果否的话,则再进入第(3)步;

综上所述,可以得到详细的流程图,如下所示:

蒙特卡洛法在电力系统可靠性评估中的应用

3 蒙特卡洛法在电力系统可靠性评估中的应用 3.1电力系统可靠性评估的内容与意义 可靠性指的是处于某种运行条件下的元件、设备或系统在规定时间内完成预定功能的概率。电力系统可靠性是指电网在各种运行条件下,向用户持续提供符合一定质量要求的电能的能力。电力系统可靠性包括充裕度(Adequacy)和安全性(seeurity)两个方面。充裕度是指在考虑电力元件计划与非计划停运以及负荷波动的静态条件下,电力系统维持连续供应电能的能力,因此又被称为静态可靠性。安全性指的是电力系统能够承受如突然短路或未预料的失去元件等事件引起的扰动并不间断供应电能的能力,安全性又被称为动态可靠性。目前国内外学者对充裕度评估的算法和应用关注较多,且在理论和实践中取得了大量的研究成果,但随着研究的深入也出现了很多函待解决的新课题。电力系统的安全性评估以系统暂态稳定性的概率分析为基础,在原理、建模、算法和应用等方面都处于起步和探索阶段。由于电力系统的规模很大,通常根据功能特点将其分为不同层次的子系统,如发电、输电、发输电组合、配电等子系统,对电力系统的可靠性评估通常也是对上述子系统单独进行。不同层次的子系统的可靠性评估的任务、模型、算法都有较大区别。电力系统在正常运行情况下,系统能够正常供电,不会出现切负荷的事件。如果系统受到某些偶发事件的扰动,如元件停运(包括机组、线路、变压器等电力元件的计划停运与故障停运)、负荷水平变化等,可能会引起系统功率失衡、线路潮流越限和节点电压越限等故障状态,进而导致切负荷。电力系统可靠性研究的主要内容是基于系统偶发故障的概率分布及其后果分析,对系统持续供电能力进行快速和准确的评价,并找出影响系统可靠性水平的薄弱环节以寻求改善可靠性水平的措施,为电力系统规划和运行提供决策支持。 3.2电力系统可靠性评估的基本方法 电力系统可靠性评估方法可分为确定性方法和概率性方法两类。确定性方法主要是对几种确定的运行方式和故障状态进行分析,校验系统的可靠性水平。在电源规划中,典型的确定性的可靠性判据有百分备用指标和最大机组备用指标;电网规划

电力系统规划试题 (2)

一、名词解释 1、净现值:是用折现率将项目计算期内各年的净效益折算到工程建设初期的现值之和。 2、净现值率:是反映该工程项目的单位投资取得效益的相对指标,使净效益现值与投资指之比。 3、将来值F:把资金换算为将来某时刻的等效金额,此金额称为将来值。资金的将来值有时也叫终值。 4、等年值A:把资金换算为按期等额支付的金额,通常每期为一年,故此金额称作等年值。 5、电力系统安全性:是指电力系统经受住突然扰动并且不间断地向用户供电的能力,也成为动态可靠性。 6、电力系统充裕性:是指电力系统在同时考虑到设备计划检修停运及非停运的的情况下,能够保证连续供给用户总的电能需求量的能力,这是不应该出现主要设备违反容量定额与电压越限的情况,因此又称为静态可靠性。 7、电力系统可靠性:电力系统按可接受的质量标准和所需的数量不间断地向用户提供电能的能力的度量。 8、电力系统的可靠性评价:通过一套定量指标来度量电力供应企业向用户提供连续不断的质量合格的电力的能力,包括对系统充裕性和安全性两方面的衡量。 二、填空题 1、电力工程投资方案的基础数据主要包括有____ 投资、年运行费、残值、使用年限等 2、电力系统备用容量包括__负荷备用______事故备用,____和检修备用_____ 。 3、电力系统规划按其环节划分包括有_ 电源规划、输电网规划、配电网规划______。 4、电源规划的优化模型类型主要包括有_按机组类型和电厂类型优化__________。 5、发电规划的等备用系数法是指 _备用容量____和__供电负荷_____比例大致相同方法。 6、分析可修复元件的可靠性特性包括_元件故障特性和元件修复特性 7、工程经济分析中的投资指标包括_概略指标____和__预算指标_______。 8、构成电力系统的需要容量包括有___ 系统工作容量和备用容量____________________。 9、灰色模型对原始数据进行生成的目的是__强化规律____和__削弱干扰____。 10、火电厂的技术经济特点有受__最小出力_____限制和__运行小时_____高。 11、影响线路输送能力的主要因素是__电压等级_____和__输电距离_____。 12、有效载荷容量少于机组额定容量的部分是用于_满足系统可靠性要求的需要______。 13、预测技术方法主要划分为_外推法______和__相关法_____两大类。 14、元件可用度和不可用度的表示式分别为_ A=u/λ+u=MTTF/MTTF+MTTR _____和__A=λ/λ+u=MTTR/MTTF+MTTR ____。 15、直流潮流方程主要的特点是__ 线性_____电路和_实数______运算。 16、指数平滑法是对整个_时间序列______进行__加权平均_____方法。 17、最小费用法的资金支出流包括___投资____和__年运行费用_____。 18、使用指数平滑法需要事先确定的两个数据是__平滑系数和初始值________。 19、计算发电机组有效载荷容量的方法包括有__绘图法和解析法________。 20、经济评价方法中的年费用法简明表示式为_ ()C P A K AC+ =, i, / _________。 三、判断题 1、AW与NPV法的主要区别是对资金的等值计算角度不同。√

电力系统可靠性评估方法的分析

电力系统可靠性评估方法的分析 李朝顺 (沈阳电力勘测设计院辽宁沈阳 110003) 摘要:可靠性贯穿在产品和系统的整个开发过程,形成可靠性工程这门新兴学科。可靠性工程涉及原件失效数据的统计和处理、系统可靠性的定量评定、运行维护、可靠性和经济性的协调等各方面,是一门边缘科学,它具有实用性、科学性和实间性三大特点。其可靠性评估方法是可靠性研究领域一直探索的方向,本文对现有可靠性评估方法进行论述和分析,为可靠性工作者提供参考。 关键词:系统可靠性评估分析 1电力系统可靠性概述 可靠性(Reliability)是指一个元件、设备或系统在预定时间内,在规定条件下完成规定功能的能力。可靠度则用来作为可靠性的特性指标,表示元件可靠工作的概率,可靠度高,就意味着寿命长,故障少,维修费用低;可靠度低,就意味着寿命短,故障多,维修费用高。 现代社会对电力的依赖越来越大,电能的使用已遍及国民经济及人民生活的各个领域,成为现代社会的必需品。电力系统是由发电、变电、输电、配电、用电等设备和相应的辅助设施,按规定的技术经济要求组成的一个统一系统。发电厂将一次能源转换为电能,经过输电网和配电网将电能输送和分配给电力用户的用电设备,从而完成电能从生产到使用的整个过程。电力系统的基本结构如图1所示。 图1电力系统基本结构图 60年代中期以后,随着电力工业的发展,可靠性工程理论开始逐步引入电力工业,电力系统可靠性也应运而生,并逐步发展成为一门应用学科,成为电力工业取得重大经济效益

的一种重要手段。目前已渗透到电力系统规划、设计、制造、建设安装、运行和管理等各方面,并得到了广泛的应用,

如图2所示。 图2可靠性工程在电力系统中的应用 所谓电力系统可靠性,就是可靠性工程的一般原理和方法与电力系统工程问题相结合的应用科学。电力系统可靠性包括电力系统可靠性工程技术与电力工业可靠性管理两个方面。电力系统可靠性实质就是用最科学,经济的方式充分发挥发、供电设备的潜力,保证向全部用户不断供给质量合格的电力,从而实现全面的质量管理和全面的安全管理。因此,一切为提高电力系统、设备健康水平和安全经济运行水平的活动都属于电力工业可靠性工作的范畴,都是为了提高电力工业可靠性水平所从事的服务活动。 通常,评价电力系统可靠性从以下两方面入手[2]。 (1) 充裕性(adequacy)—充裕性是指电力系统维持连续供给用户总的电力需求和总的电能量的能力,同时考虑到系统元件的计划停运及合理的期望非计划停运.又称为静态可靠性,即在静态条件下电力系统满足用户电力和电能量的能力。充裕性可以用确定性指标表示,如系统运行时要求的各种备用容量(检修备用、事故各用等)百分比,也可以用概率指标表示,如电力不足概率(LOLP),电力不足时间期望值(LOLE),电量不足期望值(EENS)等。 (2) 安全性(security)—安全性是指电力系统承受突然发生的扰动,如突然短路或未预料到的失去系统元件的能力,也称为动态可靠性, 即在动态条件下电力系统经受住突然扰动且不间断地向用户提供电力和电能量的能力。安全性现在一般采用确定性指标表示,例如最常用的可靠 性工 程在 电力 系统 中的 应用 元件故障数据统计和处理 可靠性数学理论 电源可靠性 输电系统可靠性 配电系统可靠性 大电力系统可靠性 可靠性管理 电气主接线可靠性 负荷预测 可靠性设备预诊断 故障分析 可靠性指标预测 建设安装质量管理 最佳检修和更换周期的确定 运行方式可靠性定量评估 可靠性工程教育

电网公司电力可靠性管理办法 - 制度大全

电网公司电力可靠性管理办法-制度大全 电网公司电力可靠性管理办法之相关制度和职责,华中电网有限公司(以下简称网公司)负责经营管理电网和本区域内保留的电力企业。为加强和促进华中电网电力可靠性管理,提高网公司的现代化管理水平,确保电网安全、稳定、可靠运行,根据中国电力... 华中电网有限公司(以下简称网公司)负责经营管理电网和本区域内保留的电力企业。为加强和促进华中电网电力可靠性管理,提高网公司的现代化管理水平,确保电网安全、稳定、可靠运行,根据中国电力企业联合会颁发的《〈电力可靠性管理暂行办法〉实施细则》及国家有关规定,结合华中电网的实际,特制订本办法。 第一章总则 第一条可靠性管理目标:建立完善的可靠性管理网络和科学的评价、分析、预测体系,提高华中电网的安全、可靠、经济运行水平。 第二条可靠性管理基本任务:指导和监督各企业建立、健全可靠性管理体系,评价和分析本企业电力设备及系统可靠性,研究和制订本企业电力设备、系统最佳可靠性目标,拟订改进方案并加以实施。 第三条本办法适用于网公司本部、公司所属各电力企业及受委托管理的电力企业。 第二章可靠性管理体系 第四条建立和完善网公司系统统一领导、分级管理的可靠性管理工作体系。 第五条组建网公司可靠性管理领导小组,领导小组组长由网公司主管生产的副总经理担任,可靠性管理领导小组办公室设在网公司生产运营部,由生产运营部负责归口开展网公司可靠性管理的各项日常工作。 第六条网公司可靠性管理领导小组主要职责: (一) 贯彻国家、电力行业有关可靠性管理的法规、制度及标准,制定适合华中电网实际的管理办法、实施细则。接受中国电力企业联合会可靠性管理中心(以下简称可靠性管理中心)的指导,并开展有关工作。 (二) 建立健全华中电网可靠性管理体系,定期采集各企业的发电、供电和输变电可靠性数据,建立华中电网可靠性信息库,按规定和要求审核所有数据、整理并上报可靠性管理中心。确保数据的准确性、及时性和完整性。 (三) 检查、监督、指导系统各企业建立可靠性管理组织机构及可靠性管理信息网络,开展可靠性有关工作。 (四) 定期分析设备、机组和电网的运行可靠性状况,协助有关部门做好全网发电设备、输变电设施的年度检修计划。 (五) 推行电力可靠性的目标管理,对有关企业下达可靠性考核指标,并把可靠性指标作为评价企业安全生产管理水平的一个重要内容。 (六) 与有关方面签定生产运营合同、购售电合同、并网调度协议、安全管理协议等文件中,对设备、机组和电网的可靠性水平提出具体要求。 (七) 组织有关可靠性应用课题研究和技术进步活动,开展国内外可靠性管理先进技术、交流与合作,不断提高华中电网和系统各企业可靠性管理水平。 (八) 每年召开一次电力可靠性指标发布会,全面评价规划设计、设备制造、施工安装、运行管理、检修质量等因素对设备可靠性的影响,并制定年度可靠性管理目标。

国外电力企业电网规划特点方法标准和经验借鉴研究(提交版)

国外电力企业电网规划特点方法标准和经验借鉴研究 上海久隆企业管理咨询有限公司 2013年1月20日

目录 一、国外电网规划的特点 (1) 1.1北美电网规划的特点 ..................................................................................- 1 -1.2英国电网规划的特点 ..................................................................................- 3 -1.3法国电网规划的特点 ..................................................................................- 5 -1.4俄罗斯电网规划的特点 ..............................................................................- 7 -1.5巴西电网规划的特点 ..................................................................................- 8 - 1.6日本电网规划的特点 ..................................................................................- 9 - 二、国外电网规划的方法 (9) 2.1负荷预测的方法 ..........................................................................................- 9 -2.2充裕性分析的方法 ................................................................................... - 11 -2.3对老化设备的概率性风险评估方法 ....................................................... - 13 - 2.4电网规划的方法 ....................................................................................... - 13 - 三、国外电网规划的准则 (15) 3.1北欧电网 ................................................................................................... - 15 -3.2西欧联合电力系统 ................................................................................... - 16 -3.3英国 ........................................................................................................... - 18 -3.4北美 ........................................................................................................... - 21 - 3.5俄罗斯 ........................................................................................................ - 27 - 四、国外电网规划的经验借鉴 (29) 4.1德国 ........................................................................................................... - 29 -4.2英国 ........................................................................................................... - 29 -4.3新加坡 ....................................................................................................... - 32 -4.4法国 ........................................................................................................... - 33 -4.5法国(巴黎) ........................................................................................... - 34 -

电力系统可靠性作业二

电力系统可靠性第二次作业 电卓1501 杨萌201554080101 1.什么是电力系统可靠性 电力系统可靠性是对电力系统按可接受的质量标准和所需数量不间断地向电力用户供应电力和电能能力的度量。包括充裕度和安全性两个方面。 2.什么是充裕性 充裕度( adequancy,也称静态可靠性),是指电力系统维持连续供给用户总的电力需求和总的电能量的能力,同时考虑系统元件的计划停运及合理的期望非计划停运 3.什么是安全性 安全性( security,也称动态可靠性),是指电力系统承受突然发生的扰动的能力。 4.电力系统可靠性包括哪几大类 发电系统可靠性,发输电系统可靠性,输电系统可靠性,配电系统可靠性及发电厂变电所电气主接线可靠性。 5.可靠性的经典定义 指一个元件或一个系统在预定时间内和规定条件下完成其规定功能的能力。 6.元件 是构成系统的基本单位 7.系统 是由元件组成的整体,有时,如果系统太大,又可分为若干子系统。 8.电力系统可靠性的评价 通过一套定量指标来量度电力供应企业向用户提供连续不断的、质量合格的电能的能力,包括对系统充裕性和安全性两方面的衡量。 9.不可修复元件的寿命 不可修复元件的寿命是指从使用起到失效为止所经历的时间。 10.故障率 假设元件已工作到t时刻,则把元件在t以后的△t微小时间内发生故障的条件概率密度定义为该元件的故障率。 11.可靠度与不可靠度

可靠度:表示元件能执行规定功能的概率,通常用可靠度函数R(t)表示,在给定环境条件下时刻t前元件不失效的概率:R(t)=P[T>t],R(t)=1-F(t) 不可靠度:F(t)只元件的损坏程度,称为元件的故障函数或不可靠函数。 R(t)=e^(-λt) F(t)=1- e^(-λt) 12.什么是可修复元件 指投入运行后,如损坏,能够通过修复恢复到原有功能而得以再投入使用。 13.元件描述修复特性指标有哪些? 修复率、未修复率、修复度、平均修复时间 14.元件修复率 表明可修复元件故障后修复的难易程度及效果的量成为修复率。 通常用表示,其定义是:元件在t时刻以前未被修复,而在t时刻后的△t 微小时间内被修复的条件概率密度: 15.元件未修复率 元件为修复率定义式: 即实际修复时间大于预定修复时间的概率。 16.元件平均修复时间与修复率之间的关系 元件修复度: 元件平均修复时间MTTR:当元件的修复时间Tu呈指数分布时,其平均修复时间MMTR=

电力系统可靠性评估指标

电力系统可靠性评估指标 1.1 大电网可靠性的测度指标 1. (电力系统的)缺电概率 LOLP loss of load probability 给定时间区间内系统不能满足负荷需求的概率,即 ∑∈=s i i P LOLP 式中:i P 为系统处于状态i 的概率;S 为给定时间区间内不能满足负荷需求的系统状态全集。 2. 缺电时间期望 LOLE loss of load expectation 给定时间区间内系统不能满足负荷需求的小时或天数的期望值。即 ∑∈=s i i T P LOLE 式中:i P 、S 含义同上; T 为给定的时间区间的小时数或天数。缺电时间期望LOLE 通常用h/a 或d/a 表示。 3. 缺电频率 LOLF loss of load frequency 给定时间区间内系统不能满足负荷需求的次数,其近似计算公式为 ∑∈=S i i F LOLF 式中:i F 为系统处于状态i 的频率;S 含义同上。LOLF 通常用次/年表示。 4. 缺电持续时间 LOLD loss of load duration 给定时间区间内系统不能满足负荷需求的平均每次持续时间,即 LOLF LOLE LOLD = LOLD 通常用小时/次表示。 5. 期望缺供电力 EDNS expected demand not supplied 系统在给定时间区间内因发电容量短缺或电网约束造成负荷需求电力削减的期望数。即 ∑∈=S i i i P C EDNS 式中:i P 为系统处于状态i 的概率;i C 为状态i 条件下削减的负荷功率;S 含义同上。期望缺供电力EDNS 通常用MW 表示。

公示内容大规模复杂电力系统可靠性技术与_南方电网科学研究院

项目名称大规模复杂电力系统可靠性评估技术及工程应用 推荐单位重庆市科学技术委员会 推荐单位意见 我单位认真审阅了该项目推荐书及附件材料,确认全部材料真实有效,相关栏目均符合国家科学技术奖励工作办公室的填写要求。按照要求,我单位和项目完成单位都已对该项目的拟推荐情况进行了公示,目前无异议。 该项目实现了大规模复杂电力系统可靠性评估技术的重大突破,主要成果包括:①提出新能源时空关联特性表征方法,攻克变流器等场站设备可靠性评估技术,解决了场站可靠性评估的难题。②发明特高压直流输电系统可靠性评估分层方法,填补了国际空白;提出系统状态的均匀设计和智能缩减技术,突破了交直流大电网可靠性快速评估技术。③揭示上级电网、同杆架设、新能源等可靠性影响机理,提出配电网可靠性评估分块方法,大幅提升了可靠性评估的计算精度和速度。④创建设备对系统可靠性影响的跟踪理论,提出基于薄弱环节快速辨识的可靠性和经济性协调优化方法,开发了电力系统可靠性优化软件。 该项目有力推动了电力技术进步,获省部级科技一等奖2项,授权发明专利31项、软件著作权6项,制定国家标准1项、电力行业标准5项,出版著作5部,发表SCI/EI论文230余篇。成果受到国际同行的广泛关注和高度评价,受邀在IEEE PES等国际会议特邀报告10余次。项目成果整体达到国际先进水平,部分技术国际领先。该成果已应用于全国29个省级行政区、300余个地市供电公司得到广泛应用,取得了显著的经济和社会效益。 推荐该项目为国家科学技术进步奖一等奖。 项目简介 电力系统可靠性关乎经济发展和社会公共安全,中国、美国每年停电损失高达数百亿元。电力系统可靠性评估是确定可靠性水平,进行可靠性精细化管控,实现可靠性-经济性协调的关键支撑技术。美加8.14大停电事故调查组指出“可靠性评估和有效计算工具”是避免该类事件发生的重要手段之一;加拿大哥伦比亚输电公司应用可靠性评估技术实现电缆建设工程节支1.49亿加元、年均停电损失减少1.26亿加元。立项以来,我国电力系统发生深刻变化:负荷迅猛增长,可再生能源大规模开发,超大型特高压交直流电网、高密

电网规划设计指导书(可编辑修改word版)

电网规划设计指导书 设计的目的 电网规划设计是学完《电力系统规划与可靠性》课程后的一次综合性练习。教学目的在于通过对地区电网的设计,巩固和运用前面所学到的基础理论知识,掌握电网规划设计的一般原则和方法,培养分析问题和解决问题的能力。电网规划设计要求完成一个比较完整的电力网的初步设计。在设计过程中,要考虑到各方面的相互关系和相互影响,综合地运用课程中所学到的知识,进行独立思考。 设计的基本要求 ·熟悉电力网初步设计的有关技术规程,树立安全、可靠和经济的观点。 ·掌握电力网初步设计的基本方法和内容 ·熟悉电力网正常运行的基本计算。 ·学习工程设计说明书的撰写。 设计内容 ·设计题目: 地区电力网规划设计 ·设计的原始资料:(附录A) 1、发电厂及变电所的地理位置图; 2、各变电所及发电厂负荷的最大有功功率、年最大有功功率、年最大负荷利用小时数、功率因数、变压器二次侧电压和调压要求及供电可靠性要求。 3、各发电厂的装机台数、单机容量、型号及功率因数等。 4、地区最热月平均空气温度等。 ·设计的基本内容: 1、功率平衡计算 功率平衡计算,包括有功功率平衡和无功功率平衡两部分; (1)有功功率平衡 为了维持频率的稳定,满足用户对功率的要求,电力系统装设的发电机额定容量必须大于当前的最大负荷。因此必须进行最大负荷时有功功率平衡计算,以

校验系统备用容量是否符合要求。 有功功率负荷按下式计算: ·用电负荷 P LD = K 1 ∑ P max i i =1 ·供电负荷 ·发电负荷 P g = P f = 1 1 - K 2 1 1 - K 3 P LD (P g + P y ) 式中 ∑ P max i — n 个变电所最大负荷之和; i =1 K 1 —同时率 K 2 —网损率 K 3 —厂用电率 P y —发电厂的机压负荷(一般不超过机组容量的 5%) 同时率 K 1 的大小与电力用户的多少、各用户的用电特点等有关,一般应根 据实际统计资料确定。当无实际统计资料时,可参考附表 B —1 的同时率 K 1 。 网损率 K 2 以供电负荷的百分数表示,一般为5% ~ 10% 。 厂用电率 K 3 以厂用电负荷占发电负荷的百分数表示,通常发电厂厂用电率 如附表 B —2 所示。 为保证系统的频率稳定和供电可靠性,系统内的总装机容量应大于发电负荷,即系统中应有足够的备用容量。按规定,系统的总备用不得低于系统最发电负荷的 20%,即系统的总装机容量,应大于或等于发电负荷的 1.2 倍,即 P G ∑ ≥ 1.2P f (2) 无功功率平衡 电力系统的无功功率平衡,是系统电压质量得根本保证。对系统作无功功率平衡计算的主要目的,在于初步估计系统中发电机的容量是否能够满足系统最大 n n

电力系统可靠性评估发展

电力系统可靠性评估发展 发表时间:2019-07-15T11:39:19.827Z 来源:《河南电力》2018年23期作者:薛琦 [导读] 电力系统的作用和任务就是保证用户用电的可靠性和经济性,并且要保证供电的质量。 (国网河北省电力有限公司石家庄供电分公司 050000) 摘要:电力系统的作用和任务就是保证用户用电的可靠性和经济性,并且要保证供电的质量。随着经济的增长,电网向远距离、超高压甚至特高压方向的发展也越来越快,网络的规模日益庞大,结构也日益复杂。本文在对电力系统可靠性评估的研究现状进行学习的基础上,介绍了可靠性分析中的两个准则即N-1准则和概率性指标或变量的准则,在概率、频率、平均持续时间、期望值等指标框架内,讨论了解析法和蒙特卡洛法的基本原理及其在电力系统可靠性评估中的应用。 关键词:系统可靠性解析法;蒙特卡洛模拟法 一、可靠性产生背景 20世纪50年代,可靠性概念的提出开始于工业,并首先在军用的电子设备中得到应用。到了60年代中期,美国、西欧和日本以及前苏联等国家电力系统陆续出现稳定性的破坏事故,导致了大面积的停电,因此可靠性技术引入了电力系统。 1968年成立了美国电力可靠性协会,在美国的12个区各自制定可靠性准则,保证电力系统能经受较大事故的冲击,避免由于连锁反应导致大面积停电。 1981 年随着加拿大和墨西哥的加入改名为北美电力可靠性协会。 20世纪90年代电力市场的出现和1996年美国西部发生的两次停电事故成为影响电力系统可靠性进一步发展的因素。 近些年来不断发生大范围的停电事故,事故发生的同时也给人们带来了一些启示:确定性准则在大电网的规划和运行中受到了诸多限制,因此需要一些新的方法和观点来全面反映电网的状态,如需要考虑电网的一些随机事件。 二、可靠性在电力系统中的应用 电力系统的作用和任务就是保证用户用电的可靠性和经济性,并且要保证供电的质量。随着电力系统规模的扩大,对电力系统可靠性的评估也要求更加准确,但是系统元件的不断增加,系统自动化程度不断提高,所以在可靠性评估中的难度也越来越大。发输电系统可靠性评估方法及发展单一的对发电系统或输电系统进行可靠性评估,结果在实际中就会有一定的局限性。 由于评估中要考虑元件的响应、网络结构、电压的质量等因素,所以计算量比较大计算也极其复杂。同时,回顾各大连锁停电故障,可以观察到的一个现象是电力系统的运行状态随着故障的连锁发生而不断恶化,系统内其他元件承受的负荷不断增加,系统趋近于某种临界状态,此时某些小概率故障(例如输电线路悬垂增加与树木接触,保护的隐性故障等)发生的概率显著增加,且一个小的事件可能会导致一个大事件乃至突变。而且,调度人员可能由于对当前系统的状态缺乏估计和了解,忽视了某些看起来平常的扰动,结果却可能导致无法估计的停电损失;或者出于对连锁大停电故障的过分担忧,实施相对保守但更加安全的控制方案,在一定程度上损害了运行经济性。因此针对上述出现的问题,如何利用新的方法更加准确和全面的反映电力系统的可靠性,并提高计算的速度,具有重要的理论研究意义和工程应用价值。 三、可靠性评估准则 电力系统是由发电、变电、输电、配电、用电等设备和相应的辅助设施,按照规定的技术经济要求组成的统一系统。随着电力工业的发展,可靠性发展成为一门应用学科,成为电力工业取得重大经济效益的一种重要手段。电力系统可靠性实质就是用最科学、经济的方式充分发挥发、供电设备的潜力,保证向全部用户不断供给质量合格的电力,从而实现全面的质量管理和全面的安全管理。 可靠性是指一个元件、设备或系统在预定时间内,在规定条件下完成规定功能的能力。可靠度则用来作为可靠性的特性指标,表示元件可靠工作的概率,可靠度高,就意味着寿命长,故障少,维修费用低;可靠度低,就意味着寿命短,故障多,维修费用高。 可靠性评估准则,因为在电力系统中所需要的可靠性水平应达到一定的条件,所以可靠性评估应该对应相应的可靠性准则。在可靠性分析中有两个准则分别是N-1准则和概率性指标或变量的准则。在传统的可靠性评估中主要采用的是N-1准则。确定性的N-1准则已经在电力系统可靠性评估中广泛的使用了许多年,该准则概念清晰,可操作性好。N-1准则是指正常运行方式下电力系统中任意一元件(如线路、发电机、变压器等)无故障或因故障断开后,电力系统应能保持稳定运行和正常供电,并且其他元件不过负荷,电压和频率均在允许的范围内。 这一准则要求单个系统元件的停运不会造成任何损害或者负荷削减。但同时N-1准则有两个缺点:第一个是没有考虑多元件失效;第二是只分析了单一元件失效的后果,而没有考虑其发生的概率多大。如果选择的故障事件不是非常严重,但是发生的概率比较高,基于该类故障事件的确定性分析得出的结果仍然会使系统有较高的风险。相反,即使一个具有严重后果的故障事件发生但是它的的概率可忽略不计,基于这类事件的确定性分析就会导致规划评估中过分投资。 概率评估不仅可计及多重元件的失效事件,而且可以同时考虑事件的严重程度和事件发生的概率,将二者适当结合可以得到如实反映系统可靠性的指标。使用概率性指标评估的目的是在系统评估过程中增加新的考虑因素,而不是代替已经在可靠性评估中使用了多年的N-1准则,两者之间并无冲突,将二者结合起来可更加全面准确的反映系统的可靠性水平。 四、可靠性评估方法 电力系统可靠性是通过定量的可靠性指标来度量的。为了满足不同场合的需要和便于进行可靠性预测,已提出大量的指标,其中较多的主要有以下几类: (1)概率:如可靠度,可用率等; (2)频率:如单位时间内的平均故障次数; (3)平均持续时间:如首次故障的平均持续时间、两次故障间的平均持续时间、故障的平均持续时间等; (4)期望值:如一年中系统发生故障的期望天数。 上述几类指标各自从不同角度描述了系统的可靠性状况,各自有其优点及局限性。在实际应用过程中往往是采用多种指标来描述一个

浅谈电力系统可靠性

浅谈电力系统可靠性 随着电力工业引入市场机制,市场条件下的电力系统可靠性和系统运营经济性之间的矛盾便逐渐显现出来,如何在电力市场的运营过程中保证系统运行的可靠性已成为研究的热点。本文简单论述了电力系统的可靠性以及在电力市场环境下电力系统可靠性的发展、所面临的问题、挑战等。 标签:电力系统可靠性发展挑战 1 基本概念 1.1 可靠性可靠性是指元件、设备、系统等在规定的条件下和预定的时间内完成其额定功能的概率。 1.2 电力系统可靠性电力系统可靠性包括两方面的内容:即充裕度和安全性。前者是指电力系统有足够的发电容量和足够的输电容量,在任何时候都能满足用户的峰荷要求,表征了电网的稳态性能,后者是指电力系统在事故状态下的安全性和避免连锁反应而不会引起失控和大面积停电的能力,表征了电力系统的动态性能。 2 电力系统可靠性的重要性 向用户提供源源不断、质量合格的电能是电力系统的主要任务。因为电力系统设备很复杂,包括发电机、变压器、输电线路、断路器等一次设备及与之配套的二次设备,这些设备都可能发生不同类型的故障,从而影响电力系统正常运行和对用户的正常供电。如果电力系统发生故障,将对电力企业、用户和国民经济,都会造成不同程度的经济损失。社会现代化速度越来越快,生产和生活对电源的依赖性也越来越强,停电造成的损失以及给人们带来的不便也将日益显现。因此,要求电力系统应有很高的可靠性。 3 电力市场环境下的可靠性 现如今人们普遍思索的问题是怎样揭示电力系统可靠性背后所隐含的经济意义。一些新的研究成果有:怎样将客户的可靠性需求货币化、如何评价发输电系统的可靠性以及新的适应电力市场需求的可靠性指标怎样设定等。这些研究仍面临一个普遍问题:即使人们已经认识到可靠性是一种稀缺的资源,并感觉到其背后所蕴涵的经济意义,但在对可靠性的价值研究时,却往往摆脱不了对可靠性进行“收费”的思想。我们应当在市场的环境中使电力系统的可靠性发挥作用。为此就要去探索如何利用市场的供给需求机制实现统一可靠性和经济性的目的。有些资料中提到了可靠性价值的概念,但并没有就在市场条件下的可靠性的供给和需求关系以及这种关系对系统可靠性带来的影响展开讨论,而这些也正是电力市场环境下可靠性研究面临的新挑战。

基于大数据技术的配电网运行可靠性提升思考

基于大数据技术的配电网运行可靠性提升思考 发表时间:2019-12-17T10:24:42.940Z 来源:《中国电业》2019年17期作者:赵亮[导读] 随着我国经济以及科技的发展,用电量越来越大。摘要:随着我国经济以及科技的发展,用电量越来越大。配电网运行的可靠程度对供电系统的稳定性有很大的影响,直接关系到供电系统能否正常运行。基于大数据技术的配电网的配电网运行机制,进一步配网供电系统的稳定性。本文将分析阐述大数据技术对配电网运行可靠性的影响,并指出配电网运行中大数据发挥的作用以及带来的影响。 关键词:大数据技术;配电网运行;可靠性;实际应用引言现代社会生产生活对电能需求量明显提高,一定程度上推动了电力供应系统的建设。虽然国内电力系统铺设里程与供电系统技术能力明显改善,但在配电网管理中仍面临较大挑战。伴随现代信息技术发展速度的加快,大数据技术在各领域中得到了广泛应用且趋于成熟。所以,要想不断提高配电系统运行的可靠性,必须充分利用大数据技术开展管理工作。可见,深入研究并分析基于大数据技术的配电网运行可靠性提升路径具有一定的现实意义。 1大数据技术对配电网运行可靠性的影响随着时代的发展和社会的进步,各行各业的发展都呈现出了勃勃生机,随之而来的就是工作事务的增加。在当今竞争激烈的时代背景之下,人们对工作的要求已经不再仅仅满足于机械化地完成工作,更重要的是要讲究在相同的时间内工作的质量,追求工作效率。在这种工作需求之下,大数据技术应用而生。大数据技术主要是针对各行各业工作过程中的信息和报表做详细且有条理的分类整理,并进行全天候地监控和分析。人工设定程序之后,机械化设备的实时监控,可以保障企业运营的安全性,可以及时地发现问题,在提高了工作效率的同时为国家的经济发展贡献了力量。现代社会是一个能源社会,企业和工厂的运营生产和人们的日常生活都离不开各种能源。随着时代的发展,人们对能源的质量要求也越来越高。以前为了保证提供的能源的质量,评估人员往往会比较平均数、中位数等等数据,但这些数据只是一个模糊的界限,并不能详细地对整体数据的优劣性做出具体的分析。大数据技术作为数据分析的专业性技术,可以采集配电网管理中的关键数据,反应整体能源的质量。并且可以对配电网管理中的数据进行采集、收集、分析、预测,减少电能的生产过程中出现突发情况,进一步提高电能的质量。 2基于大数据技术的配电网运行可靠性提升路径 2.1配电网运行可靠性指标机制构建通常,可靠性分析的单位是年,对长时间系统不同运行状态平均可靠性展开系统研究。常见的指标主要是系统指标与负荷指标。前者涵括系统的平均停电持续时间与频率指标、线路指标以及变压器重过载指标等,后者则涵括故障平均停电持续时间和负荷点平均故障几率等。开展可靠性评估工作,可为规划设计系统提供必要帮助。运行可靠性指标在运行调度中运用。所以,配电网运行的可靠性必须反映系统本身负荷损失的状况,同时也需反映负荷裕度。另外,应真实反映线路的过载状况、潮流与电压安全裕度,在此基础上描述并反映系统的整体可靠性、关键区域、节点、元件与环节可靠性等。根据以上要求,有必要科学拓展常规性可靠性指标,构建四维指标机制。 2.2以主成分分法为依据的主要指标提取运行可靠性指标机制涵括了大量指标变量,且建模和计算均相对复杂,加之不同指标间有大量冗余信息,逐一分析会增加冗余工作量。其中,主成分分析属于多元统计分析法,主要作用是简化对象模型,提取主要信息,尽量降低变量维度。开展主成分分析,主要是利用方差或者是离差平方和等计算不同指标信息大小,删除重复指标等,提取相关性不明显同时涵盖大量原信息的指标。随后,系统化筛选影响系统运行可靠性的薄弱环节、关键性元件以及区域等,不断缩小评估范围。第一,标准化的评估指标。一般情况下,不同的运行可行性指标量纲存在差异且分布不同,要求针对指标参数实施标准处理。为此,应以配电大数据为基础获取不同指标分布函数,针对不同指标变量展开正态分布的标准处理,进而转变成正态分布变量。第二,相关矩阵构建与特征值计算。所谓的变量间存在的相关关系,具体指的是已知某变量亦或是一组变量,可对另一变量数值加以确定,亦或是明确变化规律。一般情况下,在统计学中会借助Pearson相关系数度量两随机变量间存在的相关性程度。第三,主成分的确定。根据以上计算数值,确定第n个指标变量方差贡献率与累计方差贡献率。第四,确定主要评估指标。 2.3依托并行关系挖掘主要影响因素在配电网实际运行期间,对其可靠性产生影响的因素很多,很难构建准确性较高的预测模型,且速度精度易受到限制。在这种情况下选择使用关联规则挖掘法,在配电网异构多源数据中挖掘主要的影响因素,为输入预测模型提供帮助,尽量降低输入维度,不断加快预测速度。在关联规则中,各样本均可用T代表,而n个事务即可构成数据库,用D表示。需要注意,各事务均通过多属性确定,并被称作“项”。多个项所构建的集合就是“项集”,其中各子集事务均为一项集。对于最小支持度阀值和最小置信度阀值而言,用户应结合实际需求做出定义。强规则即支持度和置信度都不低于最小阀值规则,最终获得对配电网运行可靠性产生影响的因素。 2.4训练人工神经预测模型所谓的运行可靠性预测,具体指参考历史与配电实时大数据信息,对后续特定时间段内的可行性指标参数的推测过程。一般情况下,预测方法主要有人工智能方法和传统方法2种。其中,传统方法是依托回归分析方法,而人工智能方法则涵盖了深度学习与神经网络等多种方法。在配电系统运行可靠性指标数值方面,通常需参考运行期间记录的统计数据信息内容,对无法构建精确性解析模型的情况做出科学化预测。可将实时获得的数据信息主要影响因素数据当做输入人工神经网络中的主要内容,进而对特定时间段后的可靠性指标数值实施必要预测。选择各预测时间计算相应的指标,进而获取相对时限类的指标,并在不同场合中应用。 2.5大数据技术客队配电网的电能质量进行实时地检测和预估随着人们日常生活和企业的生产发展对电能的要求,电力覆盖的地区也越来越广,电路也越来越多。电路的生产线路和输电线路越来越多,汇集在配电网处,形成了大、中、小规模的有源配电网。电能的传输过程中会伴随着功率的震动,配电网电能的质量也会随之受到影响。通过收集配电脑网中的运行数据、负荷数据、分布式电源运行等数据,可对配电网的电能质量做出判断,并对影响质量的原因做出具体的分析,制定详细的改善政策,从而得出精细的配电网网架和无功源的调解方案等。结语

面向供电可靠性的配电网规划方法与实践应用

面向供电可靠性的配电网规划方法与实践应用 配电网是电力输送及电网运行的核心。电网的运行要求安全稳定。文章针对面向供电可靠性的配电网规划方法与实践应用进行探究,重点分析面向供电网可靠性的配电网规划方法,先针对供电可靠性影响因素进行分析,然后再探究提升供电可靠性的配电网规划方法,以促进配电网规划方法更加完善,同时促进面向供电可靠性的配电网规划方法在实际生活中得以成熟应用。 标签:供电可靠性;配电网规划方法;实践应用 人们的生活处处离不开电力,电网是居民用电的基础电力设施,电网的可靠性直接影响居民用电的安全性与稳定性。而配电网的规划是电网运行与工作性能设计的基础,其关系到整个电网运行的质量与效率,因此,配电网的规划应该建立在供电可靠性的基础之上,电网企业应该积极探究面向供电可靠性的配电网规划方法,并积极将面向供电可靠性的配电网规划方法应用于实践,进而提升电网运行的稳定性与安全性。 1 影响供电可靠性的原因 1.1 配电网网络接线对供电可靠性的影响 配电网网络接线质量及水平直接影响电网故障修复效率。高水平及高质量的电网网络接线可以使故障检修的时间大大缩短,通常情况下,配电网网络接线水平由接线模式的典型化率来评价。电网网络线路的分段直接影响电网故障的影响范围,一般情况下,一个线路分段中出现电路故障会影响整个分段线路电力的正常供给,因此,缩小电网接线分段的范围可以降低故障的影响范围,但过小的电网接线分段范围会增加电网运行管理的成本,因此,在配电网接线分段时要经过综合的考量,选择适中的分段范围,以在电网运行管理成本控制的基础之上减小故障的影响范围。此外,电网各分段线路之间的相互联系与变电站具备的备用主变性能对故障发生后各电网分段之间负载的转移具有十分重要的作用。 1.2 配电网设施的性能对供电可靠性的影响 配电网的设施主要包括线缆与主要的供电机械设备。配电网线缆是电网运行与配电工作的重要设施,配电网线缆主要分为电缆与架空线缆两部分。架空线缆长期暴露于外界环境中,线缆会长期受到自然环境中各种因子的侵蚀,且影响架空电缆质量的不定因素较多,架空电缆的质量控制十分困难,再加之配电网线缆数量、长度十分众多,分布范围十分广泛,线缆的维护与检修工作量十分之大,配电网线缆的质量很难得到保障。供电机械设备的质量主要玉器本身性能有关,其次,机械设备的防雷工作与接地工作也十分重要。此外,各个机械设备之间的信息交互与联系及机械设备的运行状况也是影响供电可靠性的主要原因。 1.3 供电技术对供电可靠性的影响

相关文档
最新文档