阻抗检测方法

阻抗检测方法

(2)采用DNA自组装技术,利用阻抗的变化实现对Tb3+浓度的检测

传感策略如下图所示:首先,将捕获探针组装在电极表面,当加入辅助探针l、2、3后,四者即可进行级联式杂交,并最终在电极表面形成长距“三明治”DNA 结构,该结构可使电极阻抗大大增加。而后加入稀土Tb3+ ,它能够与辅助探针2形成G四倍体结构,从而使长距“三明治”DNA结构解体,电极恢复成只有单链捕获探针的结构,此时阻抗就大大的减小。因此可以通过检测稀土Tb3+ 加入前后阻抗的变化值,来实现对其高灵敏检测;

一级结构:

CP AP

3-HS-GAGAAATTCCCAATCCCAAT-5 添加该DNA1.5小时,然后固定要1小时

5-CTCTTTAAGGGTTAGGGTTA GGGTTAGGGTAAAAA-3 2小时

3-CCCAATCCCATTTTT CGTGGACCCCCTCAT-5 2小时

5-GCACCTGGGGGAGTA GGGTTAGGGTAAAAA-3

3-CCCAATCCCATTTTT CGTGGACCCCCTCAT-5……

二级结构:

DNA分子由两条多聚脱氧核糖核苷酸链(简称DNA单链)组成。两条链沿着同一根轴平行盘绕,形成右手双螺旋结构。螺旋中的两条链方向相反,即其中一条链的方向为5′→3′,而另一条链的方向为3′→5′

阻抗匹配基本认识

阻抗匹配基本認識 阻抗匹配是指信号源或者传输线跟负载之间的一种合适的搭配方式得到最大功率输出的一种工作状态。对于不同特性的电路,匹配条件是不一样的。阻抗匹配分为低频和高频两种情况讨论。我们先从直流电压源驱动一个负载入手。由于实际的电压源,总是有内阻的(请参看输出阻抗一问),我们可以把一个实际电压源,等效成一个理想的电压源跟一个电阻r串联的模型。假设负载电阻为R,电源电动势为U,内阻为r,那么我们可以计算出流过电阻R的电流为:I=U/(R+r),可以看出,负载电阻R越小,则输出电流越大。负载R上的电压为:Uo=IR=U×[1+(r/R)],可以看出,负载电阻R越大,则输出电压Uo越高。再来计算一下电阻R消耗的功率为: P=I2×R=(U/(R+r))2×R=U2×R/(R2+2×R×r+r2) =U2×R/((R-r)2+4×R×r) =U2/(((R-r)2/R)+4×r) 对于一个给定的信号源,其内阻r是固定的,而负载电阻R则 是由我们来选择的。注意式中((R-r)2/R),当R=r时,(R-r)2/R可 取得最小值0,这时负载电阻R上可获得最大输出功率 Pmax=U2/(4×r)。即,当负载电阻跟信号源内阻相等时,负载可 获得最大输出功率,这就是我们常说的阻抗匹配之一。 对于纯电阻电路,此结论同样适用于低频电路及高频电路。 当交流电路中含有容性或感性阻抗时,结论有所改变,就是需 要信号源与负载阻抗的的实部相等,虚部互为相反数,这叫做共厄匹配。 Z=R+jX ﹐Z=R-jX 在低频电路中,我们一般不考虑传输线的匹配问题,只考虑信号源跟负载之间的情况,因为低频信号的波长相对于传输线来说很长,传输线可以看成是“短线”,反射可以不考虑(可以这么理解:因为线短,即使反射回来,跟原信号还是一样的)。从以上分析我们可以得出结论:如果我们需要输出电流大,则选择小的负载R;如果我们需要输出电压大,则选择大的负载R;如果我们需要输出功率最大,则选择跟信号源内阻匹配的电阻R。 有时阻抗不匹配还有另外一层意思,例如一些仪器输出端是在特定的负载条件下设计的,如果负载条件改变了,则可能达不到原来的性能,这时我们也会叫做阻抗失配。 在高频电路中,我们还必须考虑反射的问题。当信号的频率很高时,则信号的波长就很短,当波长短得跟传输线长度可以比拟时,反射信号叠加在原信号上将会改变原信号的形状。如果传输线的特征阻抗跟负载阻抗不相等(即不匹配)时,在负载端就会产生反射。为什么阻抗不匹配时会产生反射以及特征阻抗的求解方法,牵涉到二阶偏微分方程的求解,在这里我们不细说了,有兴趣的可参看电磁场与微波方面书籍中的传输线理论。 传输线的特征阻抗(也叫做特性阻抗)是由传输线的结构以及材料决定的,而与传输线的长度,以及信号的幅度、频率等均无关。 例如,常用的闭路电视同轴电缆特性阻抗为75Ω,而一些射频设备上则常用特征阻抗为50Ω的同轴电缆。另外还有一种常见的传输线是特性阻抗为300Ω的扁平平行线,这在农村使用的电视天线架上比较常见,用来做八木天线的馈线。因为电视机的射频输入端输入阻抗为75Ω,所以

电压与阻抗的测量技术与方法

电压与阻抗的测量技术与方法 一、测量特点 (一)电压测量 (1)频率范围宽 除直流外,交流电压的频率从Hz(甚至更低)~Hz。 (2)电压范围广 ①微弱信号:心电医学信号、地震波等,纳伏级(V); ②超高压信号:电力系统中,数百千伏。 (3)电压波形的多样化 电压信号波形是被测量信息的载体。 各种波形:纯正弦波、失真的正弦波、方波、三角波、阶梯波。 (4)测量精度的要求差异很大:~。 (5)测量速度的要求差异很大 ①静态测量:直流(慢变化信号),几次/秒; ②动态测量:高速瞬变信号,数亿次/秒(几百MHz); ③精度与速度存在矛盾,应根据需要而定。 (6)被测电路的输出阻抗匹配 在多级系统中,输出级阻抗对下一输入级有影响。 ①直流测量中,输入阻抗与被测信号源等效内阻形成分压,使测量结果偏小。如:采用电压表与电流表测量电阻,当测量小电阻时,应采用电压表并联方案;当测量大电阻时,应采用电流表串联方案; ②交流测量中,输入阻抗的不匹配引起信号反射。 (7)抗干扰性能:工业现场测试中,存在较大的干扰。 (二)阻抗测量 ①保证测量条件与工作条件尽量一致;测量时所加的电流、电压、频率、

环境条件等必须尽可能接近被测元件的实际工作条件,否则,测量结果很可能无多大价值; ②了解RLC的自身特性;在选用RLC元件时就要了解各种类型元件的自身特性。例如,线绕电阻只能用于低频状态;电解电容的引线电感较大;铁芯电感要防止大电流引起的饱和。 二、测量原理 (一)电压测量 ①绝对误差 ②相对误差 要减少误差,就必须使电压表的输入电阻远大于。 (二)阻抗测量 三、测量方法 (一)电压测量的分类 ①交流电压的模拟测量方法 表征交流电压的三个基本参量:有效值、峰值和平均值。以有效值测量为主。 方法:交流电压(有效值、峰值和平均值)→直流电流→驱动表头→指示。 ②数字化直流电压测量方法 模拟直流电压→A/D转换器→数字量→数字显示(直观)→数字电压表(DVM),数字多用表(DMM)。 ③交流电压的数字化测量

阻抗测试系统

作为PCB制造商,你现在完全有把握为客户生产控制阻抗PCB — 据估计,此类电路板将在几年后占有70%左右的市场分额。但是,你怎么检验PCBs的特性,怎么控制生产流程,如何证 明质量符合客户的要 求? 单击图打开应用视图 CITS800s8 - 8通道 单端 差动CITS800s4 - 4通道阻抗测量很容易 专用于PCB生产环境 是CEM内部检查的理想选择 测量PCB和样品测试 客户一致性报告 自动数据记录日志 提高紧藕合线路的精确度 CITS800s2是Polar推出的第六代阻抗测试系统,对于刚刚涉足阻抗控制的客户来说,它是最具代表性受欢迎的型号。CITS800s 具备差动测量和单端测量功能,适用于低等到中等的测试量。 CITS800s4适用于中等规模、混合生产大量的单端和差动阻抗控制的PCB制造商。 CITS800s8适用于大规模、混合生产大量单端和差动控制阻抗PCB的制造商,CITS800s8也可与RITS520a飞针阻抗测试系统一起使用,用于重复量大、产量大的场合。 如果你需要测试大量试样或电路板上的试样,请参看RITS510a 自动试样测试系统或RITS520a 飞针阻抗测试系统。 在许多情况下应用控制阻抗PCB,以确保高频信号的完整性。只要数字信号的边沿速度大于1纳秒,或者模拟信号的频率在

单端 差动CITS800s2 - 2通道 单端 差动适用于有大量混合试样类型的应用场合,或者单端和差动试样混合的 应用场合Polar生产各种与特殊阻抗相匹配的测试探头,包括这里所展示的IPD-100差动型。IP-50V是改进后的可变节距型, 也可供实验室使用。300MHz以上,设计师总是指定使用这些类型的PCB。 PCB线路的特征阻抗由线路尺寸和PCB材料的特性所决定,每批特性都不一样。为了控制线路阻抗,PCB制造商通常靠改变线宽来补偿不同批次的PCB材料。以前,他们不得不使用象时域反射计(TDR)这样的专业实验室设备,来测量电路板上有代表性的蚀刻线路特性,或者测试试样的特性。这种方法很复杂,成本高,离理想的生产环境要求相差很远。 很多电子工程师,特别是在国防/航天、通信和IT行业想不断提高性能极限的工程师们,通过采用差动信号和平衡线路提高噪声抑制能力,从而减少高速互接结构的时间错误,现在将控制阻抗PCB提高到一个新的阶段。对于为这些迅速增长的电子行业提供服务的PCB制造商来说,检验这些平衡线路的差动阻抗现在是易如反掌。 非常易于使用 CITS阻抗测试系统非常容易使用。功能强大基于Windows的软件使测试的每个方面都实现自动化,只需单击一下鼠标或踩一下脚踏开关即可控制整个过程。你只需定位微带线探头,选择一个内有正常PCB测试阻抗和容差的文件,然后踩一下脚踏开关。这里无需进行与复杂TDR测量在通常情况下有关的任何调节,例如设置垂直增益、脉冲时间延迟和时基值。CITS可以自动执行一系列阻抗测试,在适当的时候提示你重新定位探头,从而达到最大的测试量。 测试结果简单易懂 — CITS自动处理数据,生成并显示明确的特性阻抗同距离的关系,直观显示合格/不合格状态。 自动数据记录日志功能使测试结果 — 与系统设置数据和测量标准 — 可以很容易地导出到很多第三方数据库或电子表格软件包,便于进行实时统计过程控制。每次测试的合格/不合格状态也可以通过仪器后面板上的光隔离信号输出,以便于同其他工厂自动化设备集成。 测试控制灵活 可跟踪测量精度令CITS的操作异常简单。此外,QA专家仍然可以自如地指定复杂的测试参数,例如传播速度和损失补偿,以及合/不合格限定、结果处理和数据日志记录等标准测试功能。 你可以打印测试结果,以便给客户提供一致性报告,将数据存在磁盘里便于存档或是日后分析,或者将数据导出来便于实时SPC处理。可选的宏报告生成器有多种标准报告可供选择,可

特征阻抗

一、50ohm特征阻抗 终端电阻的应用场合:时钟,数据,地址线的终端串联,差分数据线终端并联等。 终端电阻示图 B.终端电阻的作用: 1、阻抗匹配,匹配信号源和传输线之间的阻抗,极少反射,避免振荡。 2、减少噪声,降低辐射,防止过冲。在串联应用情况下,串联的终端电阻和信号线的分布电容以及后级电路的输入电容组成RC滤波器,消弱信号边沿的陡峭程度,防止过冲。 C.终端电阻取决于电缆的特性阻抗。 D.如果使用0805封装、1/10W的贴片电阻,但要防止尖峰脉冲的大电流对电阻的影响,加30PF的电容. E.有高频电路经验的人都知道阻抗匹配的重要性。在数字电路中时钟、信号的数据传送速度快时,更需注意配线、电缆上的阻抗匹配。 高频电路、图像电路一般都用同轴电缆进行信号的传送,使用特性阻抗为Zo=150Ω、75Ω的同轴电缆。 同轴电缆的特性阻抗Zo,由电缆的内部导体和外部屏蔽内径D及绝缘体的导电率er 决定:

另外,处理分布常数电路时,用相当于单位长的电感L和静电容量C的比率也能计算,如忽略损耗电阻,则 图1是用于测定同轴电缆RG58A/U、长度5m的输入阻抗ZIN时的电路构成。这里研究随着终端电阻RT的值,传送线路的阻抗如何变化。 图1 同轴传送线路的终端电阻构成 只有当同轴电缆的特性阻抗Zo和终端阻抗FT的值相等时,即ZIN=Zo=RT称为阻抗匹配。 Zo≠RT时随着频率f,ZIN变化。作为一个极端的例子,当RT=0、RT=∞时可理解其性质(阻抗以,λ/4为周期起伏波动)。 图2是RT=50Ω(稍微波动的曲线)、75Ω、dOΩ时的输人阻抗特性。当Zo≠RT时由于随着频率,特性阻抗会变化,所以传送的电缆的频率特上产生弯曲.

阻抗测量完整解决方案

是德科技 LCR 表、阻抗分析仪 和测试夹具 材料、半导体和元器件测试及在线测量解决方案 选型指南

使用作为行业标准的仪器, 成功完成阻抗测量 过去的半个多世纪中,惠普、安捷伦和是德科技不断创新,为业界提供了卓越的阻抗分析产品。无论研发、生产、质控、进货检查或者其他应用,能够帮助客户成功完成任务是我们最大的荣耀。从阻抗分析仪到全面的测试附件,我们将一如既往地为您提供完整解决方案,满足您的需求。选择是德科技阻抗测量解决方案,实现业务成功。是德科技提供: 卓越的产品性能:是德科技产品可提供同类产品中更出 色的精度和可重复性,以及超快的测量速度。表 1 中列出的三种阻抗测量解决方案可满足不同的测量需求。 全面的解决方案:是德科技的阻抗分析仪产品系列可在 从 5 Hz 到 3 GHz 的频率范围内执行测量,使您能在十分广阔的范围内根据测量需求做出更好的选择。本选型指南为您概括 介绍可以选择的所有产品和附件。 适合应用所需的频率范围: 是德科技产品提供出色的性能,而且丰富的频率选件可以经济的价格满足您的需求。您可以选择更适合自身应用的频率范围,也可以灵活选择各种频率升级选件。您可以用少量投资只购买当前所需的性能,而后再根据需求变化进行升级。 专业技术:是德科技在提供阻抗测量解决方案方面拥有几十 年的经验。多年的经验和持续的技术创新已经融入是德科技各种 LCR 表和阻抗分析仪的设计和制造过程当中。是德科技还有大量相关的技术资料,帮助您更加正确高效地完成各种测量任务(这些资料的清单在第 15 页列出)。 应用范围十分广泛的先进测量技术 图 1 是 Keysight LCR 表和阻抗分析仪所使用的不同测试技术的比较,正如您所看到的那样,每一种技术都有其特别的测量优势: –自动平衡桥法的阻抗测量范围最宽,典型的测量频率在 20 Hz 到 120 MHz 之间,这项技术适用于低频和通用测试。 100M 10M 1M 100K 10K 1K 100101100m 10m 1m 是德科技阻抗分析仪/LCR 表测量方法比较 10% 精度范围 1 10 100 1K 10K 100K 1M 10M 100M 1G 10G 测量频率范围(Hz ) 阻抗测量范围(Ω) 自动平衡桥法 I-V RF I-V 图 1. 阻抗分析仪/LCR 表的阻抗测量技术

USB识别及阻抗匹配

USB识别及阻抗匹配 2016/11/22 修改记录: 目录 https://www.360docs.net/doc/d713606283.html,B传送数率......................................................................................................................... https://www.360docs.net/doc/d713606283.html,B接口定义......................................................................................................................... https://www.360docs.net/doc/d713606283.html,B识别................................................................................................................................. 2.1.全速和低速识别...................................................................................................................... 2.2.高速识别.................................................................................................................................. https://www.360docs.net/doc/d713606283.html,B匹配.................................................................................................................................

阻抗测试方法

成品阻抗测试方法: 1、仪器设置: 网络分析仪:CENTER:200MHz SPAN:2MHz(视被测电缆的长度进行设定)MEAS:S12 或S21 FORMA T:Phase 直通校准 注意:校准完毕为一条数值为零的直线,SPAN更改不同的数值需要重新校准。 2、电容测量仪测试电容值。(数值现实稳定可以读取数值)。 3、相位差的测量: 网络分析仪连接被测电缆,显示相位值,按照以下方式进行读取数值: 打开菜单MARKER SERACH,target value设置为0,打开multi target search , 记录两个标记点的频率值(注意:选择红圈内数值最接近的标记点)。 如上图所示:应选择标记点1、2。 δf=(f m -f n )/m-n 4、按照特性阻抗的公式: 平均特性阻抗=1000/(δf*c) δf单位为MHz, C为测量的电容值:单位nf。 注意事项:1、测试频率差时被测电缆的接头状态必须和测试电容的接头状态保持一致。 2、target value设置为0,以避免产生误差。 3、保证校准状态有效。

相对传播速度的测量方法: 1:相对传播速度的定义:信号在介质中的传播速度与自由空间的传播速度之比。 2、仪器的设置: 网络分析仪进行测试: CENTER:200MHz SPAN:1MHz MEAS:S12 或S21 FORMA T:Group delay 直通校准 校准后为一条数值为零的直线。 3、连接被测电缆,打开Marker Factions ,将统计功能打开。读取平均值即为延迟时间t。 4、按照下列公式计算相对传播速度: V =L/(t?c) ?100% V:相对传播速度。L:电缆的实际长度(米)c=3.0?108米/秒 t :延迟时间(秒)。 电缆相位及电长度测试及计算方法: 1、仪器的设置: 网络分析仪设置: CENTER:要求测试频点SPAN:10MHz(或者按照通知单要求设置起始终止频率)MEAS:S12 或S21 FORMA T:Extend Phase 直通校准 校准后为一条数值为零的直线。 2、连接被测电缆,读取要求频率点的数值。

实验四__阻抗测量(归一化阻抗测试实例)

实验四 阻抗测量(归一化阻抗测试实例) 一、实验目的和要求 应用所学的理论知识,学会并掌握利用微波测量线系统测量微波负载阻抗(或导纳)的方法,熟悉阻抗园图应用。 二、实验内容 利用微波测量线系统测量电容性膜片和电感性膜片的阻抗。其中需先测量出驻波比和电压波节点到终端开口处的距离,然后利用阻抗园图求出它们阻抗的归一化值。 三、实验原理 在微波波段内,测量阻抗的方法很多。最常用的方法就是本实验所采用的利用微波测量线系统测量阻抗的方法,基本原理如下: 首先利用微波测量线系统测量(在给定终端负载条件下)沿线驻波比(ρ)及第一电压波节点到终端的距离(1l )。然后利用阻抗园图求出归一化负载阻抗(L Z ~)。 1. 测量驻波比 在实验过程中,可按如下方法估算驻波比。使晶体检波器工作于小信号状态(加大信号源输出的衰减量),测出沿线电压波腹点处对应的选频放大器电流表表头指示的最大值(Imax )及电压波节点处对应的选频放大器电流表表头指示的最小值(Imin ),沿线驻波比可按下式估算: Imin Imax / =ρ 另外本实验使用的YM3892选频放大器,已近似按平方律基本的规律刻度了驻波比,由此也可估算驻波比。具体方法是:先在电压波腹点调选频放大器的衰减旋钮,使其电流表表头指示值达满刻度,然后调节测量线小探针位置旋钮至电压波节点,此时对应的选频放大器电流表指针所指的驻波比刻度值即为晶体按平方律基本时的驻波比的近似值。

应该指出,此方法为视检波晶体按平方律检波时而给出的驻波比的近似值。 2. 测量第一电压波节点到终端的距离 由于受到测量线所开缝隙的限制,小探针无法移到接负载的位置,也即不能直接测量第一电压波节点到终端的距离(1l ),可以采用间接测量法如下。 首先将短路片与测量线终端连接。此时,沿线为驻波状态。终端为电压波节点,并且,由终端向信号源方向沿线每移动半个相波长(2/P )的距离就会出现一个电压波节点。因此,总会有几个电压波节点落在测量线刻度区之内,取测量线中间部分的一个电压波节点作为测量的起点(测量线开缝边缘部分泄漏误差较大),记该点位置(由游标卡尺读出)为Zoa ,该点可视为终端负载的(参考)位置。[ 参见图六(a )] 然后,将被测负载加匹配负载与测量线终端连接。此时,沿线呈行驻波状态。电压波节点在图六(a )的基础上依次向右(负载方向)平移1l 长度[ 参见图六(b )]。测出在负载一侧离Zoa 位置最近的一个(新)电压波节点的位置(记为Zob ),则被测负载加匹配负载时,第一电压波节点到终端的距离求为: Zob Zoa Z -= 由驻波比ρ和d 的值,在阻抗园图上即可求出被测负载的归一化阻抗。 本实验在微波传输系统中插入电感性膜片和电容性膜片。用上述方法测出电感性膜片加匹配负载和电容性膜片加匹配负载的归一化阻抗和阻抗。 Z Z Zob Zoa 0 E 图 (a (b )

阻抗特性

https://www.360docs.net/doc/d713606283.html,微机继电保护仪 阻抗特性 本测试模块主要是针对距离保护的动作特性,搜索其阻抗动作边界。可以搜索出圆特性、多边形特性、弧形以及直线等各种特性的阻抗动作边界。本测试模块提供了“单向搜索”和“双向搜索”两种不同的搜索方式。如下图所示: ●可搜索圆、多变形,及其它阻抗特性图 ●依提示设定定参数,由软件能画出大概的图形,方便与搜索的图形对照 第一节界面说明 测试项目 每次试验只能选择“阻抗边界搜索”、“Z(I)特性曲线”或“Z(V)特性曲线”中的一个项目进行试验。 ●故障类型提供了各种故障类型,用于测试各种类型距离保护。对接地型距离继电器应选择单相接地故障,对相间型距离保护,应选择相间故障。 ●计算模型有“电流不变”和“电压不变”两种计算模型。选择“电流不变”时,在下面的方框内可以设置短路电流,软件根据短路电流和短路阻抗计算出相应的短路电压;选择“电压不变”时,在下面的方框内可以设置短路电压,软件根据短路电压和短路阻抗计算出相应的短路电流。 ●搜索方式有“单相搜索”和“双向搜索”两种方法。详细介绍请参考“差动保护”章节的相关说明。“分辨率”只对双向搜索方式有效,它决定了双向搜索方式的测试精度。 ●故障触发方式在“时间控制”触发方式下,软件按“故障前延时”—“最

https://www.360docs.net/doc/d713606283.html,微机继电保护仪 大故障时间”—“测试间断时间”这样的顺序循环测试,详细说明请参考“线路保护”章节的有关说明。 ●最小动作确认时间在“最大故障时间”内,保护多段可能动作。如果保护动作的时间小于“最小动作确认时间”,则尽管是保护的动作信号,软件也不予认可,因可能是其他段抢动。这个时间专门用来在“双向搜索”方式下,躲开某段阻抗动作。例如,要搜索Ⅱ段阻抗边界,“双向搜索”方式下扫描点肯定会进入Ⅰ段阻抗范围,而Ⅰ段的动作时间较Ⅱ段要短,从而造成Ⅰ段保护抢动。 ●故障方向依据保护定值菜单进行设置,适用于方向性阻抗保护。 ●零序补偿系数若做接地距离继电器的试验,要注意正确设置零序补偿系数,请参考“线路保护”章节的有关说明。 ●自动设定搜索线参数在“整定参数”页中有这个按钮,点击此按钮后,软件会根据所设定的整定阻抗自动计算出搜索线的长度以及搜索中心。可以在“搜索阻抗边界”页面中查看。 搜索阻抗边界 选择“搜索阻抗边界”测试项目时,需设置 放射状扫描线,如右图所示。扫描线的设置参照 以下方法: ●扫描中心扫描中心应尽可能设置在保护的 理论阻抗特性图的中心位置附近。扫描中心可以 直接输入数据,也可以用鼠标直接点击选择扫描 中心。修改扫描中心后,坐标系的坐标轴将自动 调整,以保证扫描圆始终在图形中心位置,即扫 描中心在图形中心。 ●扫描半径扫描半径应大于保护阻抗整定值 的一半,以保证扫描圆覆盖保护的各个动作边界。搜索时是从非动作区(扫描线外侧点)开始扫描。试验期间,如果发现在扫描某条搜索线的外侧起点时,保护 就动作了,则说明这条扫描线没有跨过实际的阻抗 边界,即整个搜索线都在动作区内,不符合“每条 搜索线都应一部分在动作区内,另一部分在动作区 外”的原则。这时,请适当增大“扫描半径”。 ●扫描步长只对“单向搜索”方式有效,直接影 响“单向搜索”方式时的测试精度。

交流阻抗怎么测量

交流阻抗怎么测量 交流阻抗法是电化学测试技术中一类十分重要的方法,是研究电极过程动力学和表面现象的重要手段。特别是近年来,交流阻抗的测试精度越来越高,超低频信号阻抗谱也具有良好的重现性,再加上计算机技术的进步,对阻抗谱解析的自动化程度越来越高,这就使我们能更好的理解电极表面双电层结构,活化钝化膜转换,孔蚀的诱发、发展、终止以及活性物质的吸脱附过程。 (1)交流阻抗:交流阻抗即阻抗,在电子学中,是指电子部件对交流激励信号呈现出的电阻和电抗的复合特性;在电化学中,是指电极系统对所施加的交流激励信号呈现出的电阻和电抗的复合特性。阻抗模的单位为欧姆,阻抗辐角(相角)的单位为弧度或度。 (2)交流阻抗谱:在测量阻抗的过程中,如果不断地改变交流激励信号的频率,则可测得随频率而变化的一系列阻抗数据。这种随频率而变的阻抗数据的集合被称为阻抗频率谱或阻抗谱。阻抗谱是频率的复函数,可用幅频特性和相频特性的组合来表示;也可在复平面上以频率为参变量将阻抗的实部和虚部展示出来。测量频率范围越宽,所能获得的阻抗谱信息越完整。RST5200电化学工作站的频率范围为:0.00001Hz~1MHz,可以很好地完成阻抗谱的测量。 (3)电化学阻抗谱:电化学阻抗谱是一种电化学测试方法,采用的技术是小信号交流稳态测量法。对于电化学电极体系中的溶液电阻、双电层电容以及法拉第电阻等参量,用电化学阻抗谱方法可以很精确地测定;而用电流阶跃、电位阶跃等暂态方法测定,则精度要低一些。另外,像扩散传质过程等需要用较长时间才能测定的特性,用暂态法是无法实现的,而这却是电化学阻抗谱的长项。 (4)电化学阻抗谱测量的特殊性:就测量原理而言,在电化学中测量电极体系的阻抗谱与在电子学中测量电子部件的阻抗谱并没有本质区别。通常,我们希望获得电极体系处于某一状态时的电化学阻抗谱。而维持电极体系的状态,须使电极电位保持不变。通常认为,电极电位变化50mV以上将会破坏现有的状态。因此,在电化学阻抗谱测量中,必须注意两个关键点,即:偏置电位和正弦交流信号幅度。 (5)正弦交流信号的幅度:为了避免对电化学电极体系产生大的影响以及希望其具有较好的线性响应,正弦交流信号的幅度通常可设在2~20mV之间。 (6)自动去偏:在电化学阻抗谱测量过程中,由于偏置电位不一定等于开路电位以及少量的非线性作用,在工作电极电流中还会含有直流成分。去除这个直流成分(偏流),可扩大交流信号的动态范围、提高信噪比。RST5200电化学工作站,可在测量过程中动态地调整去偏电流,使获得的阻抗谱数据更精准。另外,在软件界面的状态栏中,可实时显示工作电极的极化电流,供操作者参考。 以上为交流阻抗的相关说明,下面我们就实验设置过程中遇到的专业名词

电路基础实验实验十一rlc元件阻抗特性的测定

实验十一 R、L、C元件阻抗特性的测定 实验成员: 班级: 整理人员:

实验十一 R 、L 、C 元件阻抗特性的测定 一、实验目的 1.验证电阻,感抗、容抗与频率的关系,测定R~f ,X L ~f 与X C ~f 特性曲线。 2.加深理解R 、L 、C 元件端电压与电流间的相位关系。 二、原理说明 1.在正弦交变信号作用下,电阻元件R 两端电压与流过的电流有关系式 在信号源频率f 较低情况下,略去附加电感及分布电容的影响,电阻元件的阻值信号源频率无关,其阻抗频率特性R~f 如图9-1。 如果不计线圈本身的电阻R L ,又在低频时略去电容的影响,可将电感元件视为电感,有关系式 I jX U L L ? ? = 感抗 fL X L π2= 感抗随信号源频率而变,阻抗频率特性X L ~f 如图9-1。 在低频时略去附加电感的影响,将电容元件视为纯电容,有关系式 I jX U C C ? ? - = 容抗 fC X C π21 = 容抗随信号源频率而变,阻抗频率特性X C ~f 如图9-1. 2.单一参数R 、L 、C 阻抗频率特性的测试电路如图9-2所示。 途中R 、L 、C 为被测元件,r 为电流取样电阻。改变信号源频率,测量R 、L 、

C 元件两端电压U R 、U L 、U C ,流过被测元件的电流则可由r 两端电压除以r 得到。 3.元件的阻抗角(即相位差φ)随输入信号的频率变化而改变同样可用实验方法测得阻抗角的频率特性曲线φ~f 。 用双踪示波器测量阻抗角(相位差)的方法。 将欲测量相位差的两个信号分别接到双踪示波器Y A 和Y B 两个输入端。调节示波器有关旋钮,使示波器屏幕上出现两条大小适中、稳定的波形,如图9-3所示,荧光屏上数的水平方向一个周期占n 格,相位差占m 格,则实际的相位差φ(阻抗角)为 度n 360m ? ? =φ 三、实验设备 四、实验内容 1.测量R 、L 、C 元件的阻抗频率特性。

阻抗测量

人体阻抗的测量原理 阻抗信号的测量通常借助于置于体表的电极系统,向收件对象注入低于兴奋阈值的恒定交流电流,同时检测相应的电压变化,获得被测组织的阻抗信息。《多路独立人体阻抗测量和信号分析》 一般的生物阻抗信号测量系统包括4个部分:恒定交流电流源,信号拾取,放大及解调部分和阻抗信号分析处理部分。目前常用的检测系统工作过程如下:首先用一对电极把恒流源产生的电流注入被检测的生物组织,同时使用另一对电极拾取在电流激励下被检组织产生的电压、经放大、解调后传送给信号处理部分;信号分析处理的主要任务是提取复合信号中有意义的部分,用于临床诊断和生理参数计算。 根据上述检测方法以及有关生物学原理表明:1)可以认为检测到的电压信号与恒流源注入交流信号频率相同,,其峰值包络维阻抗信号的描记; 图1 皮肤的结构 1.皮肤阻抗的特性及其物理机制 皮肤的结构示意图( 图 1 ) 中, 皮肤的最外层是表皮 , 包括角质层, 其中有汗腺孔 , 下面是真皮及皮下组织, 其中有大量血管。由于真皮及皮下组织导电性较好, 可模拟为纯电阻 R 。皮肤的阻抗大小主要取决于角质层, 角质层相当于一层很薄的绝缘膜 , 类似于电容器的中间介质, 真皮和电极片类似于电容器的两个极板, 如图 1 所示。由于汗腺孔里有少量离子通过, 所以我们把表皮模拟为漏电的电容器。其表皮的阻抗可看成纯电容 C 和纯电阻R ’的并联 , 其表皮阻抗大小可用公式: 计算得之, 其中2f ωπ=。表皮下面的真皮和皮下组织电阻不太高, 其电性能象纯电阻R , 故皮肤阻抗电路模拟为图 2,从上面公式和图2中, 以显示出皮肤阻抗实质上具有容性阻抗的特性, 其皮肤阻抗大小随电流频率 f 增大而减小。

实验7.8.9.RLC特性阻抗测试

实训项目七 R 、L 、C 元件阻抗特性的测定 一、实验目的 1.验证电阻、感抗、容抗与频率的关系,测定R ~f 、L X ~f 、C X ~f 特性曲线。 2.加深理解R 、L 、C 元件端电压与电流间的相位关系。 二、原理说明 1.在正弦交变信号作用下,电阻元件两端电压与流过的电流有关系式 I R U = 在信号源频率f 较低情况下,略去附加电感及分布电容的影响,电阻元件的阻值与信号源频率无关,其阻抗频率特性R ~f 如图3-20。 如果不计线圈本身的电阻1R ,又在低频时略去电容的影响,可将电感元件视为纯电感,有关系式, I jX U L = 感抗 fL X L π2= 感抗随信号源频率而变,阻抗频率特性L X ~f 如图3-20所示。 在低频时略去附加电感的影响,将电容元件视为纯电容,有关系式, I jX U C -= 容抗 fC X C π21 = 容抗随信号源频率而变,阻抗频率特性C X ~f 如图3-20。 图3-20 阻抗特性测试电路 2.单一参数R 、L 、C 阻抗率特性的测试电路如图3-20所示。 图中R 、L 、C 为被测元件,r 为电流取样电阻。改变信号源频率,测量R 、L 、C 元件两端电压R U 、L U 、C U 流过被测元件的电流则可由r 两端电压除以r 得到。 元件的阻抗角(即相位差?)随输入信号的频率变化而改变,同样可用实验方法测得阻

抗角频率特性曲线?~f 。 3.用双踪示波器测量阻抗角(相位差)的方法。 将欲测量相位差的两个信号分别接到双踪示波器A Y 和B Y 两个端。调节示波器有关旋钮,使示波器屏幕上出现两条大小适中、稳定的波形,如下图3-21所示,荧光屏上数得水 平方向一个周期占n 格,相位差占m 格,则实际的相位差?(阻抗角)为n m 360?=?。 图3-21 相位差测定波形图 三、实验设备 四、实验内容 1.测量单一参数R 、L 、C 元件的阻抗频率特性。 实验线路如图3-20所示,取mH L K R 10,1=Ω= ,Ω==200,1r F C μ。通过电缆线将函数信号发生器输出的正弦信号接至电路输入端,作为激励源U ,并用交流毫伏表测量,使激励电压的有效值为U =3V ,并在整个实验过程中保持不变。 改变信号源的输出频率从200Hz (用频率计测量),并使开关S 分别接通R 、L 、C 三个元件,用交流毫伏表分别测量R U 、r U ;L U 、r U ;C U 、r U ,并通过计算得到各频率点时的R 、L X 、C X 之值,记录表中。

网络分析仪原理与测量阻抗

网络分析仪组成框图 图1所示为网络分析仪内部组成框图。为完成被测件传输/反射特性测试,网络分析仪包含; 1.激励信号源;提供被测件激励输入信号 2.信号分离装置,含功分器和定向耦合器件,分别提取被测试件输入和反射信号。 3.接收机;对被测件的反射,传输,输入信号进行测试。 4.处理显示单元; 对测试结果进行处理和显示。 图1 网络分析仪组成框图 传输特性是被测件输出与输入激励的相对比值,网络分析仪要完成该项测试,需分别得到被测件输入激励信号和输出信号信息。 网络分析仪内部信号源负责产生满足测试频率和功率要求的激励信号,信号源输出通过功分器均分为两路信号,一路直接进入R接收机,另一路通过开关输入到被测件相应测试口,所以,R 接收机测试得到被测输入信号信息。 被测件输出信号进入网络分析仪B接收机,所以,B接收机测试得到被测件输出信号信息。B/R为被测试件正向传输特性。当完成反向测试测试时,需要网络分析仪内部开关控制信号流程。

图2 网络分析仪传输测试信号流程 反射特性是被测件反射与输入激励的相对比值,网络分析仪要完成该项测试,需分别得到被测件输入激励信号和测试端口反射信号。 网络分析仪内部信号源负责产生满足测试频率和功率要求的激励信号,信号源输出通过功分器均分为两路信号,一路直接进入R接收机,另一路通过开关输入到被测件相应测试口,所以,R 接收机测试得到被测输入信号信息。 激励信号输入到被测件后会发射反射,被测件端口反射信号与输入激励信号在相同物理路径上传播,定向耦合器负责把同个物理路径上相反方向传播的信号进行分离,提取反射信号信息,进入A接收机。 A/R 为被测试件端口反射特性。当需要测试另外端口反射特性时,需网络分析仪内部开关将激励信号转换到相应测试端口。

用AD5933做的阻抗测量仪设计--带完整程序资料

基于AD5933的阻抗测量仪 摘要:设计采用阻抗测量芯片AD5933,以低功耗高性能处理器LUMINARY615作为控制器,利用比例测量,DFT数字解调,软件校准和补偿等技术实现了对阻抗的高精度测量。通过外接模拟开关并通过软件设计实现了量程自动转换,并能在不同频率下进行测量,能通过良好的人机界面来实时控制与显示。测试结果表明,在一定范围内测量阻抗的幅值相对误差小于1%,实现了较高精度的阻抗测量。 关键词: 阻抗测量; AD5933 ;自动量程转换;Luminay615

目录1. 系统设计 1.1 设计要求 1.2 方案比较与论证 1.2.1 系统方案比较与论证 1.2.2 系统方案 2. 系统硬件电路设计 2.1 处理器电路设计 2.2 阻抗测量电路设计 2.2.1 AD5933 简介 2.2.2 AD5933工作原理 2.2.4 测量电路 3.软件设计 3.1 开发环境简介 3.2 I2C通行协议简介 3.2 软件设计 4.系统测试 4.1 测试仪器 4.2 测试方法及结果 4.3 误差分析 5.总结 6.参考文献 附录

1.系统设计 1.1设计要求 要求设计一个较高精度的阻抗测量系统,并实现对阻抗的自动测量。 1.2方案论证与比较 1.2.1系统方案比较与论证 方案一:电桥法 电桥法是指在桥式电路的某部分施加一电压,通过调节电桥内部标准,一直到接于电桥电路中的平衡指示器获得平衡指示。这时,位于电路未知端的器件和电桥电路的其它元件之间存在确定关系。一般来说,电桥法是传统阻抗测量中准确度最高方法,特别适于中值阻抗的测量。测量原理如图1.1所示。 图1.1 电桥电路原理图 图1.1中Z1,Z2,Z3,Z4为电桥的四臂的阻抗,E为电桥的信号源,G为电桥的平衡指示器。当电桥桥路平衡时,Uab=0,桥路平衡指示器上无电流流过,根据基尔霍夫定律, I1=I2,I3=I4, Uca=Ucb,Uad=Ubd。 故I1Z1=I3Z3;I2Z2=I4Z4;以上两式相比得:Z1/Z2=Z3/Z4。 这就是四臂电桥平衡的条件,当桥路中有3个桥臂为已知时,则未知量才可求得。因为阻抗包含电阻分量和电抗分量,在调节已知阻抗使电桥达到平衡时,至少需要调节两个。在直流电桥中,因为各臂皆由纯电阻组成,故不需要考虑相位问题。对于交流电桥,各臂阻抗都等效为电阻分量和电抗分量。为了使电桥的平衡调节简单化,这两个调节阻抗元件的选择是非常重要的。最理想的调节参数是能够分别平衡被测阻抗中的电阻分量和电抗分量。 因为阻抗电桥平衡的调节和相应的计算极为复杂,所以测量操作繁琐、费时,且测量范围受限,这给测量带来极大不便。

阻抗测试

PCB的差分阻抗测试技术 作者: 周英航上网日期: 2006年11月10日打印版订阅 关键字:PCB电路板TDR真差分TDR特征阻抗Coupon 为了提高传输速率和传输距离,计算机行业和通信行业越来越多的采用高速串行总线。在芯片之间、板卡之间、背板和业务板之间实现高速互联。这些高速串行总线的速率从以往USB2.0、LVDS以及FireWire1394的几百Mbps到今天的PCI-Express G1/G2、SATA G1/G2 、XAUI/2XAUI、XFI的几个Gbps乃至10Gbps。计算机以及通信行业的PCB客户对差分走线的阻抗控制要求越来越高。这使PCB生产商以及高速PCB设计人员所面临的前所未有的挑战。本文结合PCB行业公认的测试标准IPC-TM-650手册,重点讨论真差分TDR测试方法的原理以及特点。 IPC-TM-650手册以及PCB特征阻抗测试背景 IPC-TM-650测试手册是一套非常全面的PCB行业测试规范,从PCB的机械特性、化学特性、物理特性、电气特性、环境特性等各方面给出了非常详尽的测试方法以及测试要求。其中PCB板电气特性要求在第2.5节中描述,而其中的2.5.5.7a(IPC-TM-650官方网站下载链接https://www.360docs.net/doc/d713606283.html,/4.0_Knowledge/4.1_Standards/test/2-5-5-7a.pdf)则全面的介绍了PCB特征阻抗测试方法和对相应的测试仪器要求,重点包括单端走线和差分走线的阻抗测试。 TDR的基本原理及IPC-TM-650对TDR设备的基本要求 1.TDR的基本原理 图1是一个阶跃信号在传输线(如PCB的走线)上传输时的示意图。而传输线是通过电介质与GND分隔的,就像无数个微小的电容的并联。电信号到达某个位置时,就会令该位置上的电压产生变化,就像是给电容充电。因此,传输线在此位置上是有对地的电流回路的,因

PCB阻抗测量技术

PCB阻抗测量技术 安捷伦科技(中国)有限公司:孙灯亮 PCB传输线的特征阻抗和差分阻抗 现代的智能手机,计算机,通信设备等电子产品都内含复杂的PCB,这些PCB上的传输线负责把各种芯片连接在一起,并进行互相通信。 图1 现代高速电路中的传输线互连 衡量PCB上传输线的最重要指标是特征阻抗,或叫特性阻抗,简称阻抗。PCB传输线的特征阻抗不是直流电阻,它属于长线传输中的概念。在高频范围内,信号传输过程中,信号边沿到达的地方,信号线和参考平面(电源或地平面)间由于电场的建立,会产生一个瞬间电流,如果传输线是各向同性的,那么只要信号在传输,就始终存在一个瞬态电流I,而如果信号的瞬态电压为V,在信号传输过程中,传输线就会等效成一 个电阻,大小为,把这个等效的电阻称为传输线的特性阻抗。信号在传输的过程 中,如果传输路径上的特性阻抗发生变化,信号就会在阻抗不连续的结点产生反射。 图2 传输线用等效的集中参数电路RLCG描述 传输线的特征阻抗主要与传输线的结构有关系。把传输线分成一小段一下段,如图2所示,每一段用等效的集中参数RLCG电路表示,传输线即可用电报方程来表达: 电报方程的通解为: 其中:

为传播常数 为特征阻抗由于R, G 远小于jwL,jwC,所以通常所说的特征阻抗或阻抗是指: 这个是最终的特征阻抗公式,从公式中可见,传输线的特征阻抗只与寄生电感和寄生电容有关,而与频率没有关系,单位也直接用欧姆来表示。 寄生电感和寄生电容与传输线结构和介电常数有关,而介电常数与频率也有一些关系,所以特征阻抗与频率也有微弱的关系。 PCB中常见的几种传输线结构如图3所示。 图3 PCB中常见的单端传输线结构 微带线指的是处于PCB板外层的线路。微带线的电场穿透两种不同的介电质,相对较难控制阻抗。空气的介电常数较PCB为低,所以整体微带线的等效介电常数较低(约为2)。信号在微带线上的传输速率较快(约为每英寸145ps)。因为在微带线分布在PCB的表面,可以节省层数进行高密度布线,但是较容易受到干扰。 带状线是指处于PCB板内层的线路。带状线的电场只在PCB的范围内,相对较易控制阻抗。带状线周围介质的介电常数较高(约为 4.4),信号传输速度相对较慢(约为每英寸185ps)。因为在PCB的里面,所以不容易受干扰。 图4 微带线和带状线电场和磁场分布 对于微带线或带状线,都有如下特征:阻抗与走线宽度和走线厚度成反比;阻抗与叠层

交流阻抗实验报告

正弦交流电路中的阻抗和频率特性研究 1、实验目的 1)加深对正弦交流电路的KVL 定律认识。 2)学习正弦交流电路中阻抗的测量方法。 3)掌握L c X X 、阻抗频率特性测量方法。 2.实验原理及步骤 (1)测量阻抗 1)用“向量法”测量空心电感线圈两端的阻抗Lr Z ,如图3-1所示,r 是电感线圈的直流电阻。输入电压的频率在200~300Hz 中任选两个,分别测量计算。 测量出R U 、Lr U 的值,选取R U 作为参考相量,做出回路的向量图。相量图如图3-2所示。显然,θ满足Lr R Lr R U U U U U 2cos 2 2 2-+=θ。通过计算θ从而求出L U 、r U 的 值进而可求出电阻电感值。 2)按下图所示电路,从a ,b 端口用“向量法”测量内带电容的阻抗ab Z ,输入电压的频率在1~3kHz 中任选两个,分别测量计算。 Lr U U R U θ r U U 图3-2 电感阻抗测量电路向量图 图3-1 测量阻抗电路原

测量出R U 、Cr U 以及I 的值,选取Cr U 为参考相量,作出由回路的向量图。相量图如图3-4所示,同理,通过求出θ角可得到电容阻抗值。 (2)测量频率特性 测量L X 、C X 阻抗频率特性,做频率特性曲线。 1)点测—L X f 特性。自选电感(L :50~400mH )与电阻R 串联(R :200Ω~1k Ω)自拟表格,做—L X f 特性曲线(f 从50Hz~3kHz )。 2)点测—C X f 特性。自选电容(C :0.1~2μF )与电阻R 串联(R :200Ω~1k Ω)自拟表格,做—C X f 特性曲线(f 从50Hz~3kHz )。 (3)观察电压、电流相位关系 如图3-5、3-6所示,用示波器分别观察下面电感、电容中电压、电流相位。 图3-5 电感阻抗测量电路 I U 图3-2 电容阻抗测量电路向量图 图3-3 电容阻抗测量电路原理图 R Cr U 2+ -

相关文档
最新文档