金属材质的折射率

金属材质的折射率
金属材质的折射率

金属材质的折射率

金属颜色RGB 色彩亮度光亮度慢射镜面光泽度反射BMP(分形噪声)单位:英寸凹凸%

铝箔180,180,180 有0 32 90 中65 .0002,.00002,.0002 8

铝箔(钝) 180,180,180 有0 50 45 低35 .0002,.00002,.0002 15

铝220,223,227 有0 35 25 低40 .0002,.00002,.0002 15

磨亮的铝220,223,227 有0 35 65 中50 .0002,.00002,.0002 12

黄铜191,173,111 有0 40 40 中40 .0002,.00002,.0002 20

磨亮的黄铜191,173,111 有0 40 65 中50 .0002,.00002,.0002 10

镀铬合金150,150,150 无0 40 40 低25 .0002,.00002,.0002 35

镀铬合金2 220,230,240 有0 25 30 低50 .0002,.00002,.0002 20

镀铬铝220,230,240 有0 15 60 中65 .0002,.00002,.0002 15

镀铬塑料220,230,240 有0 15 60 低50 .0002,.00002,.0002 15

镀铬钢220,230,240 有0 15 60 中70 .0002,.00002,.0002 5

纯铬220,230,240 有0 15 60 低85 .0002,.00002,.0002 5

铜186,110,64 有0 45 50 中40 .0002,.00002,.0002 10

18K金234,199,135 有0 45 50 中65 .0002,.00002,.0002 10

24K金218,178,115 有0 35 50 中65 .0002,.00002,.0002 10

未精练的金255,180,66 有0 35 50 中45 .0002,.00002,.0002 25

黄金242,192,86 有0 45 50 中65 .0002,.00002,.0002 10

石墨87,33,77 无0 42 90 中15 .0001,.0001,.0001 10

铁118,119,120 有0 35 50 低25 .0002,.00002,.0002 20

铅锡锑合金250,250,250 有0 30 40 低15 .0002,.00002,.0002 10

银233,233,216 有0 15 90 中45 .0002,.00002,.0002 15

钠250,250,250 有0 50 90 低25 .0002,.00002,.0002 10

废白铁罐229,223,206 有0 30 40 低45 .0002,.00002,.0002 30

不锈钢128,128,126 有0 40 50 中35 .0002,.00002,.0002 20

磨亮的不锈钢220,220,220 有0 35 50 低25 .0002,.00002,.0002 35

锡220,223,227 有0 50 90 低35 .0001,.0001,.0001 20

透明材质的折射率

材质折射率

真空10000

空气10003

液态二氧化碳12000

冰13090

水13333

丙酮13600

乙醇13600

糖溶液(30%)13800

酒精13900

萤石14340

融化的石英14600

Calspar2 14860

糖溶液(80%)14900

玻璃15000-18900

玻璃,锌冠15170

玻璃,冠15200

氯化钠15300

氯化钠(食盐)1 15440

聚苯乙烯15500

石英2 15530

翡翠15700

绿宝石15700

轻火石玻璃15750

青金石,杂青金石16100

黄玉16100

二硫化碳16300

石英1 16440

氯化钠(食盐)2 16440

重火石玻璃16500

Calspar2 16600

二碘甲烷17400

红宝石17700

蓝宝石17700

超重火石玻璃18900

水晶20000

钻石24170

氧化铬27050

非晶质硒22920

碘晶体33400

以K为单位的光色度对照表

光源K

烛焰1500

家用白灯

2500-3000

60瓦的充气钨丝灯2800

100瓦的钨丝灯2950

1000瓦的钨丝灯3000

500瓦的投影灯2865

500瓦钨丝灯3175

3200K的泛光灯3200

琥珀闪光信号灯3200

R32反射镜泛光灯3200

锆制的浓弧光灯3200

1号,2号,4号泛光灯,反射镜泛光灯3400 暖色的白荧光灯3500

切碎箔片,清晰闪光灯信号3800

冷色的白荧光灯4500

白昼的泛光灯4800

白焰碳弧灯5000

M2B闪光信号灯5100

正午的日光5400

高强度的太阳弧光灯5550

夏季的直射太阳光5800

早上10点到下午3点的直射太阳光6000 蓝闪光信号灯6000

白昼的荧光灯6500

正午晴空的太阳光6500

阴天的光线6800-7000

高速电子闪光管7000

来自灰蒙天空的光线7500-8400

来自晴空蓝天的光线10000-20000

在水域上空的晴朗蓝天20000-27000

常见金属电阻率

常用金属导体在20℃时的电阻率材料电阻率(Ωm) (1)1.65×10-8 (2)1.75×10-8 (3)2.40×10-8 (4)2.83×10-8 (55.48×10-8 (6)9.78×10-8 (7)2.22×10-7 (8)4.4×10-7 (9)9.6×10-7 (10)5.0×10-7 (11)镍铬1.0×10-6 (12)铁铬1.4×10-6 (13)铝镍铁合金1.6×10-6 可以看出金属的电阻率较小,合金的电阻率较大,非金属和一些更大,而的电阻率极大。锗、硅、硒、氧化铜、硼等的电阻率比绝缘体小而比金属大,我们把这类材料叫做(semiconductors)。 另外一些金属和非金属的电阻率 金属温度(0℃)ρ(×10-8Ωm),αo(×10-3) 锌20 5.94.2

铝(软)202.754.2 铝(软)–781.64 (8~13)×10-6 阿露美尔合金20331.2 锑038.75.4 铱206.53.9 铟08.25.1 殷钢0752 锇209.54.2 镉207.44.2 钾206.95.1① 钙204.63.3 金202.44.0 银201.624.1 铬(软)2017 镍铬合金(克露美尔)—70—110.11—.54钴a06.376.58 康铜—50–.04–1.01 锆30494.0 黄铜–5—71.4–2 水银094.080.99 水银2095.8

锶030.33.5 青铜–13—180.5 铯20214.8 铋201204.5 铊20195 钨205.55.3 钨100035 钨3000123 钨–783.2 钽20153.5 金属温度(0℃)ραo,100杜拉铝(软)—3.4 铁(纯)209.86.6 铁(纯)–784.9 铁(钢)—10—201.5—5 铁(铸)—57—114 铜(软)201.724.3 铜(软)1002.28 铜(软)–781.03 铜(软)–1830.30 钍20182.4

椭偏仪测量薄膜厚度与折射率

椭偏仪测量薄膜厚度和折射率 近代科学技术中对各种薄膜的研究和应用日益广泛。因此,能够更加迅速和精确地测量薄膜的光学参数例如厚度和折射率已变得非常迫切。 在实际工作中可以利用各种传统的方法来测定薄膜的光学参数,如布儒斯特角法测介质膜的折射率,干涉法测膜。另外,还有称重法、X 射线法、电容法、椭偏法等等。其中,椭圆偏振测量(椭偏术)是研究两媒质界面或薄膜中发生的现象及其特性的一种光学方法,其原理是利用偏振光束在界面或薄膜上的反射或透射时出现的偏振变换。因为椭偏法具有测量精度高,灵敏度高,非破坏性等优点,已广泛用于各种薄膜的光学参数测量,如半导体、光学掩膜、圆晶、金属、介电薄膜、玻璃(或镀膜)、激光反射镜、大面积光学膜、有机薄膜等,也可用于介电、非晶半导体、聚合物薄膜、用于薄膜生长过程的实时监测等测量。 实验目的 了解椭圆偏振测量的基本原理,并掌握一些偏振光学实验技术。 实验原理 光是一种电磁波,是横波。电场强度E 、磁场强度H 和光的传播方向构成一个右旋的正交三矢族。光矢量存在着各种方位值。与光的强度、频率、位相等参量一样,偏振态也是光的基本量之一。 在一光学材料上镀各向同性的单层介质膜后,光线的反射和折射在一般情况下会同时存在的。通常,设介质层为n 1、n 2、n 3,φ1为入射角,那么在1、2介质交界面和2、3介质交界面会产生反射光和折射光的多光束干涉。 这里我们用2δ表示相邻两分波的相位差,其中222cos /dn δπφλ=,用r 1p 、 r 1s 表示光线的p 分量、s 分量在界面1、2间的反射系数, 用r 2p 、r 2s 表示光线的p 分量、s 分量在界面2、3间的反射系数。 由多光束干涉的复振幅计算可知: 2122121i p p rp ip i p p r r e E E r r e ?δ --+= + (1) 2122121i s s rs is i s s r r e E E r r e ? δ --+=+ (2) 其中E ip 和E is 分别代表入射光波电矢量的p 分量和s 分量,E rp 和E rs 分别代表反射光波电矢量的p 分量和s 分量。现将上述E ip 、E is 、E rp 、E rs 四个量写成一个量G ,即:

测定金属电阻率-

测定金属的电阻率 实验目的: 学会用伏安法测量电阻的阻值,测定金属的电阻率。 实验原理: 用刻度尺测一段金属导线的长度L ,用螺旋测微器测导线的直径d ,用伏安法测 导线的电阻R ,根据电阻定律,金属的电阻率ρ=RS /L =πd 2 R /4L 实验器材: 金属丝、千分尺、安培表、伏特表、(3伏)电源、(20Ω)滑动变阻器、电键一个、导线几根 【点拨】被测金属丝要选用电阻率大的材料,如铁铬铝合金、镍铬合金等或300瓦电炉丝经细心理直后代用,直径0.4毫米左右,电阻5~10欧之间为宜,在此前提下,电源选3伏直流电源,安培表选0 0.6安量程,伏特表选0 3伏档,滑动变阻器选0 20欧。 实验步骤: (1)用螺旋测微器三次测量导线不同位置的直径取平均值D 求出其横 截面积S =πD 2 /4. (2)将金属丝两端固定在接线柱上悬空挂直,用毫米刻度米尺测量接入电路的金属丝长度L ,测三次,求出平均值L 。 (3)根据所选测量仪器和选择电路的原则画好电路图1,然后依电路图按顺序给实物连线并将滑动变阻器的阻值调到最大。 【点拨】为避免接线交叉和正负极性接错,接线顺序应遵循:电源正极→电键(断开状态)→滑动变阻器→用电器→安培表正极→安培表负极→电源负极,最后将伏特表并接在待测电路的两端,即先接干路,后接支路。 (4)检查线路无误后闭合电键,调节滑动变阻器读出几组I 、U 值,分别计算电阻R 再求平均值,设计表格把多次测量的D 、L 、U 、I 记下来。 【点拨】测量时通过金属丝的电流应控制在1.00A 以下,本实验由于安培表量程0~0.60A ,每次通电时间应尽量短(以能读取电表数据为准),读数完毕立即断开电键S ,防止温度升高使金属丝长度和电阻率发生明显变化。 计算时,务必算出每次的电阻值再求平均值,不能先分别求电压U 和电流I 的平均值,再由欧姆定律得平均值,否则会带来较大计算误差。 实验记录 图1

电阻选型:厚膜、薄膜电阻特性优缺点比较

电阻选型:厚膜、薄膜电阻特性优缺点比较 薄膜电阻由陶瓷基片上厚度为50 ? 至250 ? 的金属沉积层组成(采用真空或溅射工艺)。薄膜电阻单位面积阻值高于线绕电阻或Bulk Metal? 金属箔电阻,而且更为便宜。在需要高阻值而精度要求为中等水平时,薄膜电阻更为经济并节省空间。 它们具有最佳温度敏感沉积层厚度,但最佳薄膜厚度产生的电阻值严重限制了可能的电阻值范围。因此,采用各种沉积层厚度可以实现不同的电阻值范围。薄膜电阻的稳定性受温度上升的影响。薄膜电阻稳定性的老化过程因实现不同电阻值所需的薄膜厚度而不同,因此在整个电阻范围内是可变的。这种化学/机械老化还包括电阻合金的高温氧化。此外,改变最佳薄膜厚度还会严重影响 TCR。由于较薄的沉积层更容易氧化,因此高阻值薄膜电阻退化率非常高。

由于金属量少,薄膜电阻在潮湿的条件下极易自蚀。浸入封装过程中,水蒸汽会带入杂质,产生的化学腐蚀会在低压直流应用几小时内造成薄膜电阻开路。改变最佳薄膜厚度会严重影响 TCR。由于较薄的沉积层更容易氧化,因此高阻值薄膜电阻退化率非常高。 如前所述,受尺寸、体积和重量的影响,线绕电阻不可能采用晶片型。尽管精度低于线绕电阻,但由于具有更高的电阻密度(高阻值/小尺寸)且成本更低,厚膜电阻得到广泛使用。与薄膜电阻和金属箔电阻一样,厚膜电阻频响速度快,但在目前使用的电阻技术中,其噪声最高。虽然精度低于其他技术,但我们之所以在此讨论厚膜电阻技术,是由于其广泛应用于几乎每一种电路,包括高精密电路中精度要求不高的部分。 厚膜电阻依靠玻璃基体中粒子间的接触形成电阻。这些触点构成完整电阻,但工作中的热应变会中断接触。由于大部分情况下并联,厚膜电阻不会开路,但阻值会随着时间和温度持续增加。因此,与其他电阻技术相比,厚膜电阻稳定性差(时间、温度和功率)。 由于结构中成串的电荷运动,粒状结构还会使厚膜电阻产生很高的噪声。给定尺寸下,电阻值越高,金属成份越少,噪声越高,稳定性越差。厚膜电阻结构中的玻璃成分在电阻加工过程中形成玻璃相保护层,因此厚膜电阻的抗湿性高于薄膜电阻。 金属箔电阻 将具有已知和可控特性的特种金属箔片敷在特殊陶瓷基片上,形成热机平衡力对于电阻成型是十分重要的。然后,采用超精密工艺光刻电阻电路。这种工艺将低、长期稳定性、无感抗、无感应、低电容、快速热稳定性和低噪声等重要特性结合在一种电阻技术中。

椭偏光法测量薄膜的厚度和折射率

椭偏法测薄膜厚度和折射率 摘要 本实验通过椭圆偏振光法测量了氟化镁(MgF2)、氧化锆(ZrO2)及二氧化钛(TiO2)等介质薄膜的厚度和折射率,以及Cu和Al金属薄膜的厚度和消光系数。 关键词 椭圆偏振光法介质薄膜金属薄膜椭偏参数复折射率消光系数 一、引言 椭圆偏振测量(椭偏术)是研究两媒质界面或薄膜中发生的现象及其特性的一种光学方法,其原理是利用偏振光束在界面或薄膜上的反射或透射时出现的偏振变换。椭圆偏振测量的应用范围很广,如半导体、光学掩膜、圆晶、金属、介电薄膜、玻璃(或镀膜)、激光反射镜、大面积光学膜、有机薄膜等,也可用于介电、非晶半导体、聚合物薄膜、用于薄膜生长过程的实时监测等测量。结合计算机后,具有可手动改变入射角度、实时测量、快速数据获取等优点。 二、实验原理 在一光学材料上镀各向同性的单层介质膜后,光线的反射和折射在一般情况下会同时存在的。通常,设介质层为n1、n2、n3,φ1为入射角,那么在1、2介质交界面和2、3介质交界面会产生反射光和折射光的多光束干涉,如图(1-1) 图(1-1)

这里我们用2δ表示相邻两分波的相位差,其中δ=2πdn2cosφ2/λ,用r1p、r1s表示光线的p分量、s分量在界面1、2间的反射系数,用r2p 、r2s表示光线的p分、s分量在界面2、3间的反射系数。由多光束干涉的复振幅计算可知: 其中Eip和Eis 分别代表入射光波电矢量的p分量和s分量,Erp和Ers分别代表反射光波电矢量的p分量和s分量。现将上述Eip、Eis 、Erp、Ers四个量写成一个量G,即: 我们定义G为反射系数比,它应为一个复数,可用tgψ和Δ表示它的模和幅角。上述公式的过程量转换可由菲涅耳公式和折射公式给出: G是变量n1、n2、n3、d、λ、φ1的函数(φ2 、φ3可用φ1表示) ,即ψ=tg-1f,Δ=arg| f |,称ψ和Δ为椭偏参数,上述复数方程表示两个等式方程: [tgψe iΔ]的实数部分= 的实数部分 [tgψe iΔ]的虚数部分= 的虚数部分 若能从实验测出ψ和Δ的话,原则上可以解出n2和d (n1、n3、λ、φ1已知),根据公式(4)~(9),推导出ψ和Δ与r1p、r1s、r2p、r2s、和δ的关系:

四探针测量金属薄膜电阻率

实验三(I)探针测量半导体或金属薄膜电阻率 一.实验目的 1.熟悉四探针测量半导体或金属薄膜电阻率的原理 2.掌握四探针测量材料电阻率的方法 二.实验原理 薄膜材料是支持现代高新技术不断发展的重要材料之一,已经被广泛地应用在微电子器件、微驱动器/ 微执行器、微型传感器中。金属薄膜的电阻率是金属薄膜材料的一个重要的物理特性,是科研开发和实际生产中经常要测量的物理特性,对金属薄膜电阻率的测量也是四端法测量低电阻材料电阻率的一个实际的应用,它比传统的四端子法测量金属丝电阻率的实验更贴近现代高新技术的发展。 直流四探针法也称为四电极法,主要用于半导体材料或超导体等的低电阻率的测量。使用的仪器以及与样品的接线如图3-1所示。由图可见,测试时四根金属探针与样品表面接触,外侧两根1、4为通电流探针,内侧两根2、3为测电压探针。由电流源输入小电流使样品内部产生压降,同时用高阻抗的静电计、电子毫伏计或数字电压表测出其他二根探针的电压即V23(伏)。 (a)仪器接线(b)点电流源(c)四探针排列 图3-1 四探针法测试原理示意图 若一块电阻率为ρ的均匀半导体样品,其几何尺寸相对于探针间距来说可以看作半无限大。当探针引入的点电流源的电流为I,由于均匀导体内恒定电场的等位面为球面,则在半径为r处等位面的面积为2πr2,电流密度为 j=I/2πr2(3-1)

根据电导率与电流密度的关系可得 E =2222r I r I j πρσπσ== (3-2) 则距点电荷r 处的电势为 r I V πρ2= (3-3) 半导体内各点的电势应为四个探针在该点形成电势的矢量和。通过数学推导可得四探针法测量电阻率的公式为: I V C r r r r I V 2313413241223)1111(2=+--?=-πρ (3-4) 式中,134 132412)1111(2-+--=r r r r C π为探针系数,单位为cm ;r 12、r 24、r 13、r 34分别为相应探针间的距离,见图3-1c 。若四探针在同一平面的同一直线上,其间距分别为S 1、S 2、S 3,且S 1=S 2=S 3=S 时,则 S I V S S S S S S I V ππρ2)1111(223133221123=++-+-?=- (3-5) 这就是常见的直流等间距四探针法测电阻率的公式。 为了减小测量区域,以观察电阻率的不均匀性,四根探针不—定都排成—直线,而可排成正方形或矩形,此时,只需改变计算电阻率公式中的探针系数C 。 四探针法的优点是探针与半导体样品之间不要求制备合金结电极,这给测量带来了方便。四探针法可以测量样品沿径向分布的断面电阻率,从而可以观察电阻率的不均匀情况。由于这种方法可迅速、方便、无破坏地测量任意形状的样品且精度较高,适合于大批生产中使用。但由于该方法受针距的限制,很难发现小于0.5mm 两点电阻的变化。 根据样品在不同电流(I )下的电压值(V )计算出该样品的电阻值及电阻率,例如某一种薄膜样品,在薄膜的面积为无限大或远大于四探针中相邻探针间距的时候,金属薄膜的电阻率ρ可以由以下式算出。

物理实验金属薄膜电阻率的测量

银薄膜电阻率测量数据记录表 膜厚:44.4nm 电流I/mA 正向电压U+/Mv 反向电压U-/mV 平均电压U/mV 0.151 0.162 0.163 0.163 0.172 0.186 0.185 0.186 0.193 0.207 0.208 0.208 0.223 0.241 0.240 0.241 0.281 0.301 0.302 0.302 0.316 0.340 0.339 0.340 0.356 0.383 0.384 0.384 0.402 0.433 0.434 0.434 0.448 0.482 0.483 0.483 电阻率为216.879(Ω/nm) 膜厚:88.8nm 电流I/mA 正向电压U+/Mv 反向电压U-/mV 平均电压U/mV 0.532 0.121 0.126 0.124 1.743 0.404 0.409 0.407 3.264 0.759 0.764 0.762 4.744 1.105 1.110 1.108 5.642 1.314 1.320 1.317 7.539 1.758 1.763 1.761 9.163 2.138 2.143 2.141 10.679 2.492 2.497 2.495 12.221 2.854 2.859 2.857 电阻率为94.11(Ω/nm) 膜厚:133.2nm 电流I/mA 正向电压U+/Mv 反向电压U-/mV 平均电压U/mV 0.794 0.107 0.112 0.110 2.372 0.327 0.332 0.330 3.988 0.553 0.558 0.556 5.235 0.727 0.732 0.730 6.904 0.960 0.965 0.963 8.488 1.181 1.187 1.184 9.785 1.362 1.368 1.365 13.193 1.839 1.844 1.842 14.871 2.073 2.079 2.076 电阻率为84.35(Ω/nm) 膜厚:222nm 电流I/mA 正向电压U+/Mv 反向电压U-/mV 平均电压U/mV 3.970 0.376 0.382 0.379 10.090 0.962 0.967 0.965 14.480 1.382 1.387 1.385

常见金属电阻率

常用金属导体在20℃时的电阻率 材料电阻率(Ω m) (1)银 1.65 × 10-8 (2)铜 1.75 × 10-8 (3)金 2.40×10-8 (4)铝 2.83 × 10-8 (5钨 5.48 × 10-8 (6)铁9.78 × 10-8 (7)铂 2.22 × 10-7 (8)锰铜 4.4 × 10-7 (9)汞9.6 × 10-7 (10)康铜 5.0 × 10-7 (11)镍铬合金 1.0 × 10-6 (12)铁铬铝合金1.4 × 10-6 (13) 铝镍铁合金1.6 × 10-6 可以看出金属的电阻率较小,合金的电阻率较大,非金属和一些金属氧化物更大,而绝缘体的电阻率极大。锗、硅、硒、氧化铜、硼等的电阻率比绝缘体小而比金属大,我们把这类材料叫做半导体(semiconductors)。

另外一些金属和非金属的电阻率 金属温度(0℃)ρ(×10-8Ω m), αo(×10-3) 锌 20 5.9 4.2 铝(软) 20 2.75 4.2 铝(软)–78 1.64 石墨(8~13)×10-6 阿露美尔合金 20 33 1.2 锑 0 38.7 5.4 铱 20 6.5 3.9 铟 0 8.2 5.1 殷钢 0 75 2 锇 20 9.5 4.2 镉 20 7.4 4.2 钾20 6.9 5.1① 钙 20 4.6 3.3 金 20 2.4 4.0 银 20 1.62 4.1 铬(软) 20 17 镍铬合金(克露美尔)— 70—110 .11—.54 钴a 0 6.37 6.58 康铜— 50 –.04–1.01 锆 30 49 4.0 黄铜– 5—7 1.4–2 水银 0 94.08 0.99 水银 20 95.8 锡 20 11.4 4.5 锶 0 30.3 3.5 青铜– 13—18 0.5 铯 20 21 4.8 铋 20 120 4.5 铊 20 19 5 钨 20 5.5 5.3 钨 1000 35 钨 3000 123 钨–78 3.2 钽 20 15 3.5 金属温度(0℃)ραo , 100

常见金属电阻率

常见金属的电阻率,都来看看哦 很多人对镀金,镀银有误解,或者是不清楚镀金的作用,现在来澄清下。。。 1。镀金并不是为了减小电阻,而是因为金的化学性质非常稳定,不容易氧化,接头上镀金是为了防止接触不良(不是因为金的导电能力比铜好)。 2。众所周知,银的电阻率最小,在所有金属中,它的导电能力是最好的。 3。不要以为镀金或镀银的板子就好,良好的电路设计和PCB的设计,比镀金或镀银对电路性能的影响更大。 4。导电能力银好于铜,铜好于金! 现在贴上常见金属的电阻率及其温度系数: 物质温度t/℃电阻率电阻温度系数aR/℃-1 银20 1.586 0.0038(20℃) 铜20 1.678 0.00393(20℃) 金20 2.40 0.00324(20℃) 铝20 2.65480.00429(20℃) 钙0 3.91 0.00416(0℃) 铍20 4.00.025(20℃) 镁20 4.45 0.0165(20℃) 钼 0 5.2

铱20 5.3 0.003925(0℃~100℃) 钨27 5.65 锌20 5.196 0.00419(0℃~100℃) 钴20 6.64 0.00604(0℃~100℃) 镍20 6.84 0.0069(0℃~100℃) 镉0 6.83 0.0042(0℃~100℃) 铟208.37 铁209.71 0.00651(20℃) 铂20 10.6 0.00374(0℃~60℃) 锡0 11.0 0.0047(0℃~100℃) 铷20 12.5 铬0 12.9 0.003(0℃~100℃) 镓20 17.4 铊0 18.0 铯20 20.0 铅20 20.684 0.00376 (20℃~40℃) 锑0 39.0

常见金属电阻率

常见金属电阻率 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

常用金属导体在20℃时的电阻率材料电阻率(Ωm) (1)1.65×10-8 (2)1.75×10-8 (3)2.40×10-8 (4)2.83×10-8 (55.48×10-8 (6)9.78×10-8 (7)2.22×10-7 (8)4.4×10-7 (9)9.6×10-7 (10)5.0×10-7 (11)镍铬1.0×10-6 (12)铁铬1.4×10-6 (13)铝镍铁合金1.6×10-6 可以看出金属的电阻率较小,合金的电阻率较大,非金属和一些更大,而的电阻率极大。锗、硅、硒、氧化铜、硼等的电阻率比绝缘体小而比金属大,我们把这类材料叫做(semiconductors)。 另外一些金属和非金属的电阻率 金属温度(0℃)ρ(×10-8Ωm),αo(×10-3)

锌20 5.94.2 铝(软)202.754.2 铝(软)–781.64 (8~13)×10-6 阿露美尔合金20331.2 锑038.75.4 铱206.53.9 铟08.25.1 殷钢0752 锇209.54.2 镉207.44.2 钾206.95.1① 钙204.63.3 金202.44.0 银201.624.1 铬(软)2017 镍铬合金(克露美尔)—70—110.11—.54钴a06.376.58 康铜—50–.04–1.01 锆30494.0 黄铜–5—71.4–2 水银094.080.99

水银2095.8 锡2011.44.5 锶030.33.5 青铜–13—180.5 铯20214.8 铋201204.5 铊20195 钨205.55.3 钨100035 钨3000123 钨–783.2 钽20153.5 金属温度(0℃)ραo,100杜拉铝(软)—3.4 铁(纯)209.86.6 铁(纯)–784.9 铁(钢)—10—201.5—5 铁(铸)—57—114 铜(软)201.724.3 铜(软)1002.28 铜(软)–781.03 铜(软)–1830.30

金属膜电阻规格书

文件修订记录 版本修订内容日期 文件汇签记录 版本签名日期版本签名日期

1、目的 确保本公司所生产的金属膜电阻都有一个统一的标准 2、范围 本规格仅适用于本厂所生产之金属膜固定电阻器成品规格。 3、定义 3.1 型号(type):具有相似的设计和制造工艺,在鉴定批准或质量一致性检验中可以将它们组合在一起的 一组电子元件 3.2 额定温度:在该温度的耐久性试验条件下,可连续施加额定功耗的最高环境温度,本规范指70℃。 3.3 额定功耗:在70℃环境温度下进行70℃耐久试验,而且阻值变化不超过该试验的允许值时所允许的 最大功耗。 3.4 额定电压:用标称阻值和额定功耗乘积的平方根计算出的直流电压或交流电压有效值。 3.5元件极限电压:可经连续施加在电阻器两个引出端上的最大直流电压或交流电压有效值。即本规范所 指的最高使用电压。 3.6 绝缘电压:在连续工作条件下,在电阻器的各个引出端与任何导电安装面之间可以施加的最大峰值电 压。 3.7 电阻温度系数:两个规定温度之间的阻值相对变化除以产生这个变化的温度之差。 4、职责 本规格书执行标准GB/T 5729—2003/IEC 60115-1:2001 5、程序内容 5.1 类型命名:类型依种类、 功率、标称电阻值及阻值容许差等,如下列符号之排列构成 种类 功率 标称电阻值 电阻值容许差 RN 1/4W 150KΩ F 5.2符号之意义 5.2.1种类:以大写英文字母RN表示为金属膜固定电阻器(或以商用通称MF代表,或以RJ来表示)。 5.2.2功率:以W代表额定电功率,如加一英文字母“S”即表示小型化,例1/4WS,即表示额定功率为 1/4W之小型化Size。 5.2.3 标称电阻值:标称电阻值之单位为欧姆,以符号Ω表示,其电阻值以Ω、KΩ(103Ω)、MΩ(106 Ω)、mΩ(10-3Ω)表示之。 5.2.4电阻值容许差:电阻值容许差符号如F(±1%)、G(±2%)、J(±5%)、D(±0.5%)、C(±0.25%) 及B(±0.1%)等表示之 5.2.5形状:大写英文母表示“P”表示外形构造(其外形如图四),或者加工成型如PU、PUG、PF等到, (如图五) 5.3涂装要求 5.3.1电阻器1/8W为焊点不涂漆,≧1/4W均为焊点涂漆(除非客户特殊要求)。 5.3.2 正常尺寸以蓝色漆表示,小型化尺寸以淡蓝色漆表示

测定金属电阻率.

测定金属的电阻率 实验目的 学会用伏安法测量电阻的阻值,测定金属的电阻率。 实验原理 用刻度尺测一段金属导线的长度,用螺旋测微器测导线的直径,用伏安法测导线 的电阻,根据电阻定律,金属的电阻率。 实验器材 被测金属导线、米尺、螺旋测微器、电流表、电压表、直流电源、电键、滑动变阻器、导线若干。 实验步骤 1. 用螺旋测微器在被测金属导线上的三个不同位置各测一次直径,求出其平均值d; 2. 按图所示的电路图连接好用伏安法测电阻的实验电路; 3. 用毫米刻度尺测量接入电路中的被测金属导线的有效长度,反复测量3次,求 出其平均值L ; 4. 把滑动变阻器的滑动片调节到使接入电路中的电阻值最大的位置,电路经检查 确认无误后,闭合电键K。改变滑动变阻器滑动片的位置,读出几组相应的电流表、电压表的示数I和U的值,记入记录表格内,断开电键求出导线电阻R的平均值; 5. 将测得R、L、d的值,代入电阻率计算公式中,计算出金属导线的电阻率; 6. 拆去实验线路,整理好实验器材。 实验结论 P = = 根据电阻定律,得金属的电阻率,所以只要先用伏安法测出金属丝 电阻,用刻度尺测金属丝长度,用螺旋测微器测金属丝直径,然后代入公式即可。在测电阻时,如果是小电阻,则电流表用外接法;反之,如果电阻较大,则电流表用内接法。由于金属丝电阻一般较小(相对于电压表内阻来说),故做本实验时应采用电流表外接法.至于滑动变 阻器是采用限流式还是分压式,可根据实验所提供的器材及要求而灵活选取.若无特别要求, 一般可用限流式。 实验考点 通过本实验考查刻度尺和螺旋测微器的读数;伏安法测电阻(注意电流表的内、外接和滑动变阻器的限流、分压接法);电阻定律。

金属电阻应变片的种类、材料及粘贴

1.金属电阻应变片的种类金属电阻应变片种类繁多,形式多样,但常见的基本结构有金属丝式应变片、金属箔式应变片和薄膜式应变片。其中金属丝式应变片使用最早、最多,因其制作简单、性能稳定、价格低廉、易于粘贴而被广泛使用。 2.电阻应变片的结构金属丝式电阻应变片由敏感栅、基底、盖层、黏合层和引线等组成。图2-2为金属丝式应变片的典型结构图。其中敏感栅是应变片内实现应变——.电阻转换的最重要的传感元件,一般采用的栅丝直径为0. 015~ mm。敏感栅的纵向轴线称为应变片轴线,L为栅长,n为基宽。根据不同用途,栅长可为~200 mm。基底用以保持敏感栅及引线的几何形状和相对位置,并将被测件上的应变迅速、准确地传递到敏感栅上,因此基底做得很薄,一般为0. 02~ mm。盖层起防潮、防腐、防损的作用,用以保护敏感栅。用专门的薄纸制成的基底和盖层称为纸基,用各种黏合剂和有机树脂薄膜制成的称为胶基,现多采月后者。黏合剂将敏感栅、基底及盖层黏合在一起。在使用应变片时也采用黏合剂将应变片与被测件黏牢。引线常用直径为~ mm的镀锡铜线,并与敏感栅两输出端焊接。 金属箔式应变片的基本结构如图2-3所示,其敏感栅是由很薄的金属箔片制成的,厚度只有0. 01~ mm,用光刻、腐蚀等技术制作。箔式应变片的横向部分特别粗,可大大减少横向效应,且敏感栅的粘贴面积大,能更好地随同试件变形。此外与金属丝式应变片相比,金属箔式应变片还具有散热性能好、允许电流大、灵敏度高、寿命长、可制成任意形状、易加工、生产效率高等优点,所以其使用范围日益扩大,已逐渐取代丝式应变片而占主要的地位。 但需要注意,制造箔式应变片的电阻值的分散性要比丝式的大,有的能相差几十欧姆,故需要作阻值的调整。对金属电阻应变片敏感栅材料的基本要求如下。 ①灵敏系数K。值大,并且在较大应变范围内保持常数。 ②电阻温度系数小。 ③电阻率大。 ④机械强度高,且易于拉丝或辗薄。 ⑤与铜丝的焊接性好,与其他金属的接触热电势小。

《金属薄膜电阻率的测量》鉴定报告.

金属薄膜电阻率的测量》鉴定报告 一、主题把当今高新技术领域中的科研开发和生产中实际应用的物理测量技术放到大学本科的普通物理实验教学中,不断提高和更新普通物理实验教学的档次,使普通物理实验教学更贴近当今高新技术的发展,从而使学生们在学校期间就能够接触到一些同高新技术领域相关的实验内容,对于提高学生们的学习兴趣和培养将来实际科研开发能力将起到很大的帮助。培养创新型人才,使高等学校培养的毕业生进入社会后能够更快的担负起发展国家高新技产业的重担,这是当前普通物理实验教学改革的重要方向之一。 把科研开发中实际应用的方法向工科物理实验教学转化。科研开发中实际应用的方法包括二部分——(1)具体的实验方法、原理和设备(统称:硬件);(2)提出问题、分析问题和解决问题的思维方法(统称:软件)。 本实验是把科研开发中实际应用的方法——用四探针法测量金属薄膜电阻率引入到工科物理实验教学中。 二、目的 1.让同学们直接地接触薄膜材料,对薄膜材料有一个直观的感性认识;了解和学会现在科研开发和生产中使用的四探针法测量金属薄膜电阻率的原理和方法; 2.了解薄膜的膜厚对金属薄膜电阻率的影响(即,金属薄膜电阻率的尺寸效应);薄膜材料同普通块体材料的差异; 3.分析用四探针法测量金属薄膜电阻率时可能产生误差的根源;4.使学生们在直接感受到工科物理实验在当今高新技术中的应用实例,从而提高学生们的学习兴趣和探索自然的积极性; 5.培养学生们提出问题、分析问题和解决问题的科研开发能力,培养学生们的创新能力; 6.使低价格同时又具有一定科学实用价值的实验仪器进入工科物理实验教学中,降低实验教育的成本。 三、实验讲义 《实验讲义》在内容上有以下几个特点:(1)主要标题中的[引言]、[实验目的]、[实验仪器]、[实验原理]、[实验测量及数据处理]、[讨论]、[结论]、[参考文献]为通常科学论文所用的形式,其目的是让学生们在阅读实验讲义和写实验报告时能够熟悉科学论文的写作方式。(2)讲义中的[引言]部分主要介绍了与相关实验有关的应用背景、在物理学发展史 中的作用等知识,其目的是提高学生们的学习兴趣、探索自然奥秘的积极性以及开阔学生们的眼界。(3)讲义中的[讨论]、[研究性题目]和[思考题]部分主要分不同层次地给学生们提出一些与实验相关的问题,要求学生们认真思考后,通过自己设计、编排实验,用实验数据回答提出的问题,其目的是提高学生们提出问题、分析问题、解决问题能力,培养创新意识和创新能力,体现分层次教育的思想。(4)讲义中的[结论]部分让学生们通过实验给出自己想说的结论,其目的是让同学们从自己感兴趣的视角给出结论,拓宽学生们的思维空间,培养学生们的科学概括、总结能力。(5)讲义中的[参考文献]部分提醒、培养同学们在科研开发工作中应该养成参考学习前人的结果的工作习惯和实事求是的科学道德。 四、实验内容 1.实验仪器 主要实验仪器包括,四探针组件、SB118精密直流电流源、PZ158A直流数字电压表、 具有七种不同膜厚的金薄膜材料、具有七种不同膜厚的铁薄膜材料。 SB118精密直流电流源是精密恒流源,它的输出电流在1微安(1微安=10-6安培)一一 200毫安(1毫安=10-3安培)范围内可调,其精度为土0.03%。PZ158A直流数字电压表是具

椭偏仪测量薄膜度折射率

椭偏仪测量薄膜度折射率

————————————————————————————————作者:————————————————————————————————日期:

椭偏仪测量薄膜厚度和折射率 近代科学技术中对各种薄膜的研究和应用日益广泛。因此,能够更加迅速和精确地测量薄膜的光学参数例如厚度和折射率已变得非常迫切。 在实际工作中可以利用各种传统的方法来测定薄膜的光学参数,如布儒斯特角法测介质膜的折射率,干涉法测膜。另外,还有称重法、X 射线法、电容法、椭偏法等等。其中,椭圆偏振测量(椭偏术)是研究两媒质界面或薄膜中发生的现象及其特性的一种光学方法,其原理是利用偏振光束在界面或薄膜上的反射或透射时出现的偏振变换。因为椭偏法具有测量精度高,灵敏度高,非破坏性等优点,已广泛用于各种薄膜的光学参数测量,如半导体、光学掩膜、圆晶、金属、介电薄膜、玻璃(或镀膜)、激光反射镜、大面积光学膜、有机薄膜等,也可用于介电、非晶半导体、聚合物薄膜、用于薄膜生长过程的实时监测等测量。 实验目的 了解椭圆偏振测量的基本原理,并掌握一些偏振光学实验技术。 实验原理 光是一种电磁波,是横波。电场强度E 、磁场强度H 和光的传播方向构成一个右旋的正交三矢族。光矢量存在着各种方位值。与光的强度、频率、位相等参量一样,偏振态也是光的基本量之一。 在一光学材料上镀各向同性的单层介质膜后,光线的反射和折射在一般情况下会同时存在的。通常,设介质层为n 1、n 2、n 3,φ1为入射角,那么在1、2介质交界面和2、3介质交界面会产生反射光和折射光的多光束干涉。 这里我们用2δ表示相邻两分波的相位差,其中222cos /dn δπφλ=,用r 1p 、 r 1s 表示

常见金属电阻率

常见金属的电阻率,都来看看哦 很多人对镀金,镀银有误解,或者是不清楚镀金的作用,现在来澄清下。。。 1。镀金并不是为了减小电阻,而是因为金的化学性质非常稳定,不容易氧化,接头上镀金是为了防止接触不良(不是因为金的导电能力比铜好)。 2。众所周知,银的电阻率最小,在所有金属中,它的导电能力是最好的。 3。不要以为镀金或镀银的板子就好,良好的电路设计和PCB的设计,比镀金或镀银对电路性能的影响更大。 4。导电能力银好于铜,铜好于金! 现在贴上常见金属的电阻率及其温度系数: 物质温度t/℃电阻率电阻温度系数aR/℃-1 银20 1.586 0.0038(20℃) 铜20 1.678 0.00393(20℃) 金20 2.40 0.00324(20℃) 铝20 2.65480.00429(20℃) 钙 0 3.91 0.00416(0℃) 铍20 4.00.025(20℃) 镁20 4.45 0.0165(20℃) 钼 0 5.2 铱20 5.3 0.003925(0℃~100℃) 钨27 5.65 锌20 5.196 0.00419(0℃~100℃) 钴20 6.64 0.00604(0℃~100℃) 镍20 6.84 0.0069(0℃~100℃) 镉0 6.83 0.0042(0℃~100℃) 铟208.37 铁209.71 0.00651(20℃) 铂20 10.6 0.00374(0℃~60℃) 锡0 11.0 0.0047(0℃~100℃) 铷20 12.5 铬0 12.9 0.003(0℃~100℃) 镓20 17.4 铊0 18.0 铯20 20.0 铅20 20.684 0.00376 (20℃~40℃) 锑0 39.0 钛20 42.0 汞50 98.4 锰23~100 185.0 金是一种贵重金属,是人类最早发现和开发利用的金属之一。它是制作首饰和钱币的重要原料,又是国家的重要储备物资,素以"金属之王"著称。它不仅被视为美好和富有的象征,而且还以其特有的价值,造福于人类的生活。随着科学技术和现代工业的发展,黄金在宇宙航 行、医学、电子学和其它工业部门,日益发挥着重要的作用。金的用途越来越广,消耗量也越来越大,因

四探针测试仪测量薄膜的电阻率题库

四探针测试仪测量薄膜的电阻率 一、 实验目的 1、掌握四探针法测量电阻率和薄层电阻的原理及测量方法; 2、了解影响电阻率测量的各种因素及改进措施。 二、实验仪器 采用SDY-5型双电测四探针测试仪(含:直流数字电压表、恒流源、电源、 DC-DC 电源变换器)。 三、实验原理 电阻率的测量是半导体材料常规参数测量项目之一。测量电阻率的方法很 多,如三探针法、电容---电压法、扩展电阻法等。四探针法则是一种广泛采用的标准方法,在半导体工艺中最为常用。 1、半导体材料体电阻率测量原理 在半无穷大样品上的点电流源, 若样品的电阻率ρ均匀, 引入点电流源的 探针其电流强度为I ,则所产生的电场具有球面的对称性, 即等位面为一系列以点电流为中心的半球面,如图1所示。在以r为半径的半球面上,电流密度j的分布是均匀的: 若E 为r处的电场强度, 则: 由电场强度和电位梯度以及球面对称关系, 则: 取r为无穷远处的电位为零, 则: (1) dr d E ψ -=dr r I Edr d 22πρψ-=-=???∞∞I -=-=)(022r r r r dr Edr d ψπρ ψ r l r πρψ2)(=

图3 四探针法测量原理图 上式就是半无穷大均匀样品上离开点电流源距离为r的点的电位与探针流 过的电流和样品电阻率的关系式,它代表了一个点电流源对距离r处的点的电势 的贡献。 对图2所示的情形,四根探针位于样品中央,电流从探针1流入,从探针4 流出, 则可将1和4探针认为是点电流源,由1式可知,2和3探针的电位为: 2、3探针的电位差为: 此可得出样品的电阻率为: 上式就是利用直流四探针法测量电阻率的普遍公式。 我们只需测出流过1、 4 探针的电流I 以及2、3 探针间的电位差V 23,代入四根探针的间距, 就可以 求出该样品的电阻率ρ。实际测量中, 最常用的是直线型四探针(如图3所示), 即四根探针的针尖位于同一直线上,并且间距相 等, 设r 12=r 23=r 34=S ,则有:S I V πρ223= 需要指出的是: 这一公式是在半无限大样 品的基础上导出的,实用中必需满足样品厚度及 边缘与探针之间的最近距离大于四倍探针间距, 这样才能使该式具有足够的精确度。 如果被测样品不是半无穷大,而是厚度,横向尺寸一定,进一步的分析表明, 在四探针法中只要对公式引入适当的修正系数B O 即可,此时: (223I V πρ=134132412)1111-+--r r r r )11(224122r r I -=πρψ)11(234 133r r I -=πρψ)1111(234 1324123223r r r r I V +--=-=πρψψS IB V πρ20 23=

金属反射膜材料简介

金属反射膜材料简介 李秉璋1, 王正和2 1 工业材料研究所研究员 2 工业材料研究所副研究员 一、前言 When God began creating the heavens and the earth, the earth was at first a shapeless, chaotic mass, with the Spirit of God brooding over the dark vapors. Then God said “Let there be light.”. And lig ht appeared. And God was pleased with it, and divided the light from the darkness. 从旧约圣经的记载, “光”起源于混沌之初。由于大气中的水分子把太空中的X光(短波长)与微波(长波长)吸收, 只让特定频谱范围的光线(太阳光)照射到地球表面, 因此孕育了地球上亿万个依赖太阳能量的物种。 “光”是什么? 光具有波动(电磁波)及粒子(俗称光子,photon)两种特性, 例如短波 长的X-光会被电子散射的现象,必须以粒子理论来解释。当把光当成电磁波的时候, 可以用三个物理量来描述它的性质, 这三个物理量分别是波向量(k)、电场(E)及磁场(B)。图一简单地把三者之间的关系, 以三个互相垂直的向量来表示?并且以电磁正弦振荡(sinusoidal oscillation)的波长(wave length)来表示光的能量。图二以对数指标列出各种不同波长(或频率)的电磁波, 其中波长在4x10-5到8x10-5公分(400~800 nm)之间的电磁波称为可见光。 随着半导体科技的突飞猛进, 光电工业开发了大量的消费产品, 进入了我们每一个人的生活。表一把光电产品依据照明、电子装置及雷射等分类,分别介绍各种光电技术及组件。各种光电组件除了充份运用各种半导体材料的光特性之外, 金属反射膜也扮演相当重要的地位。另外, 金属膜在传统光学组件中也是不可或缺的角色。利用金属的反射、半反射、分光、滤光等特性, 设计出不同的半反射镜、光线分割棱镜与中性光密滤光片等光学组件。

金属电阻率及其温度系数

金属电阻率及其温度系数金属电阻率及其温度系数 物质物质 温度温度 t/℃ t/℃ t/℃ 电阻率电阻率 Ω·m 电阻温度系数电阻温度系数 a a R /℃-1 银 20 1.586×10-8 0.0038(20℃) 铜 20 1.678×10-8 0.00393(20℃) 金 20 2.40×10-8 0.00324(20℃) 铝 20 2.6548×10-8 0.00429(20℃) 钙 0 3.91×10-8 0.00416(0℃) 铍 20 4.0×10-8 0.025(20℃) 镁 20 4.45×10-8 0.0165(20℃) 钼 0 5.2×10-8 铱 20 5.3×10-8 0.003925(0℃~100℃) 钨 27 5.65×10-8 锌 20 5.196×10-8 0.00419(0℃~100℃) 钴 20 6.64×10-8 0.00604(0℃~100℃) 镍 20 6.84×10-8 0.0069(0℃~100℃) 镉 0 6.83×10-8 0.0042(0℃~100℃) 铟 20 8.37×10-8 铁 20 9.71×10-8 0.00651(20℃) 铂 20 10.6×10-8 0.00374(0℃~60℃) 锡 0 11.0×10-8 0.0047(0℃~100℃) 铷 20 12.5×10-8 铬 0 12.9×10-8 0.003(0℃~100℃) 镓 20 17.4×10-8 铊 0 18.0×10-8 铯 20 20×10-8 铅 20 20.684×10-8 0.00376(20℃~40℃) 锑 0 39.0×10-8 钛 20 42.0×10-8 汞 50 98.4×10-8 锰 23~100 185.0×10-8 锰铜 20 44.0×10-8 康铜 20 50.0×10-8 镍铬合金 20 100.0×10-8 铁铬铝合金 20 140.0×10-8 铝镍铁合金 20 160.0×10-8 不锈钢 0~900 70~130×10-8 不锈钢304 20 72×10-8 不锈钢316 20 74×10-8

相关文档
最新文档