高_中数学解析几何知识点大总结

高_中数学解析几何知识点大总结
高_中数学解析几何知识点大总结

高中数学解析几何知识点大总结

第一部分:直线

一、直线的倾斜角与斜率

1.倾斜角α

(1)定义:直线l 向上的方向与x 轴正向所成的角叫做直线的倾斜角。 (2)范围:?<≤?1800α

2.斜率:直线倾斜角α的正切值叫做这条直线的斜率.

αt a n

=k (1).倾斜角为?90的直线没有斜率。

(2).每一条直线都有唯一的倾斜角,但并不是每一条直线都存在斜率(直线垂直于x 轴时,其斜率不存在),这就决定了我们在研究直线的有关问题时,应考虑到斜率的存在与不存在这两种情况,否则会产生漏解。

(3)设经过),(11y x A 和),(22y x B 两点的直线的斜率为k , 则当21x x ≠时,2

121tan x x y y k --=

=α;当21x x =时,o

90=α;斜率不存在;

二、直线的方程

1.点斜式:已知直线上一点P (x 0,y 0)及直线的斜率k (倾斜角α)求直线的方程用点斜式:y-y 0=k(x-x 0)

注意:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =;

2.斜截式:若已知直线在y 轴上的截距(直线与y 轴焦点的纵坐标)为b ,斜率为k ,则直线方程:b kx y +=;特别地,斜率存在且经过坐标原点的直线方程为:kx y =

注意:正确理解“截距”这一概念,它具有方向性,有正负之分,与“距离”有区别。 3.两点式:若已知直线经过),(11y x 和),(22y x 两点,且(2121,y y x x ≠≠则直线的方程:

1

21

121x x x x y y y y --=--;

注意:①不能表示与x 轴和y 轴垂直的直线;

②当两点式方程写成如下形式0))(())((112112=-----x x y y y y x x 时,方程可以适应在于任何一条直线。

4截距式:若已知直线在x 轴,y 轴上的截距分别是a ,b (0,0≠≠b a )则直线方程:

1=+b

y

a x ;

注意:1).截距式方程表不能表示经过原点的直线,也不能表示垂直于坐标轴的直线。

2).横截距与纵截距相等的直线方程可设为x+y=a;横截距与纵截距互为相反数的直线方程可设为x-y=a

5一般式:任何一条直线方程均可写成一般式:0=++C By Ax ;(B A ,不同时为零);反之,任何一个二元一次方程都表示一条直线。

注意:①直线方程的特殊形式,都可以化为直线方程的一般式,但一般式不一定都能化为特殊形式,这要看系数C B A ,,是否为0才能确定。

②指出此时直线的方向向量:),(A B -,),(A B -,???

?

??+-+222

2,B A A

B

A B (单位向量);直线的法向量:),(B A ;(与直线垂直的向量)

6(选修4-4)参数式??

?+=+=bt

y y at

x x 00(t 参数)其中方向向量为),(b a ,

单位向量???? ??++222

2,b a b

b

a a ; a

b k =;22||||b

a t PP o +=; 点21,P P 对应的参数为21,t t ,则

2

2

2121||||b

a t t P P +-=;

???+=+=α

α

sin cos 00t y y t x x (t 为参数)其中方向向量为)sin ,(cos αα, t 的几何意义为||o PP ;斜率

为αtan ;倾斜角为)0(παα<≤。 三、两条直线的位置关系

222111=++C y B x A 设两直线的方程分别为:

222111:b x k y l +=或0

:22221111=++C y B x A l ;当2

1k k ≠或

1221B A B A ≠时它们相交,交点坐标为方程组???+=+=2211b x k y b x k y 或???=++=++00222

111C y B x A C y B x A 解; 注意:①对于平行和重合,即它们的方向向量(法向量)平行;如:),(),(2211B A B A λ= 对于垂直,即它们的方向向量(法向量)垂直;如0),(),(2211=?B A B A

②若两直线的斜率都不存在,则两直线 平行 ;若一条直线的斜率不存在,另一直线的斜率

为 0 ,则两直线垂直。

③对于02121=+B B A A 来说,无论直线的斜率存在与否,该式都成立。因此,此公式使用起来更方便.

④斜率相等时,两直线平行(或重合);但两直线平行(或重合)时,斜率不一定相等,因为斜率有可能不存在。 四、两直线的交角

(1)1l 到2l 的角:把直线1l 依逆时针方向旋转到与2l 重合时所转的角;它是有向角,其范围

是πθ<≤0;

注意:①1l 到2l 的角与2l 到1l 的角是不一样的;②旋转的方向是逆时针方向;③绕“定点”是指两直线的交点。

(2)直线1l 与2l 的夹角:是指由1l 与2l 相交所成的四个角的最小角(或不大于直角的角),它的取值范围是2

θ<

≤;

(3)设两直线方程分别为:

222111::b x k y l b x k y l +=+=或0

:0:22221111=++=++C y B x A l C y B x A l ①若θ为1l 到2l 的角,12121tan k k k k +-=

θ或2

1211

221tan B B A A B A B A +-=θ;

②若θ为1l 和2l 的夹角,则12121tan k k k k +-=

θ或2

1211

221tan B B A A B A B A +-=θ;

③当0121=+k k 或02121=+B B A A o

注意:①上述与k 有关的公式中,其前提是两直线斜率都存在,而且两直线互不垂直;当有一

条直线斜率不存在时,用数形结合法处理。 ②直线1l 到2l 的角θ与1l 和2l 的夹角α:)2

θθα≤=或)2

θθπα>

-=;

五、点到直线的距离公式:

1.点),(00y x P 到直线0:=++C By Ax l 的距离为:2

2

00|

|B

A C By Ax d +++=

2.两平行线0:11=++C By Ax l ,0:22=++C By Ax l 的距离为:2

2

21||B

A C C d +-=;

六、直线系:

(1)设直线0:1111=++C y B x A l ,0:2222

=++C y B x A l ,经过21,l l 的交点的

直线方程为0)(222111=+++++C y B x A C y B x A λ(除去2l )

; 如:①011=--?+=kx y kx y ,即也就是过01=-y 与0=x 的交点)1,0(除去0=x 的直线方程。

②直线5)12()1(:-=-+-m y m x m l 恒过一个定点 。

注意:推广到过曲线0),(1=y x f 与0),(2=y x f 的交点的方程为:0)()(21=+x f x f λ; (2)与0:=++C By Ax l 平行的直线为01=++C By Ax ; (3)与0:=++C By Ax l 垂直的直线为01=+-C Ay Bx ; 七、对称问题: (1)中心对称:

①点关于点的对称:

该点是两个对称点的中点,用中点坐标公式求解,点),(b a A 关于),(d c C 的对称点

)2,2(b d a c --

②直线关于点的对称:

Ⅰ、在已知直线上取两点,利用中点公式求出它们关于已知点对称的两点的坐标,再

由两点式求出直线方程; Ⅱ、求出一个对称点,在利用21//l l 由点斜式得出直线方程; Ⅲ、利用点到直线的距离相等。求出直线方程。

如:求与已知直线0632:1=-+y x l 关于点)1,1(-P 对称的直线2l 的方程。 (2)轴对称:

①点关于直线对称:

Ⅰ、点与对称点的中点在已知直线上,点与对称点连线斜率是已知直线斜率的负倒数。 Ⅱ、求出过该点与已知直线垂直的直线方程,然后解方程组求出直线的交点,在利用中点坐标公式求解。

如:求点)5,3(-A 关于直线0443:=+-y x l 对称的坐标。

②直线关于直线对称:(设b a ,关于l 对称)

Ⅰ、若b a ,相交,则a 到l 的角等于b 到l 的角;若l a //,则l b //,且b a ,与l 的距离

相等。

Ⅱ、求出a 上两个点B A ,关于l 的对称点,在由两点式求出直线的方程。

Ⅲ、设),(y x P 为所求直线直线上的任意一点,则P 关于l 的对称点'P 的坐标适合a 的

方程。

如:求直线042:=-+y x a 关于0143:=-+y x l 对称的直线b 的方程。 八、简单的线性规划:

(1)设点),(00y x P 和直线0:=++C By Ax l ,

①若点P 在直线l 上,则000=++C By Ax ;②若点P 在直线l 的上方,则

0)(00>++C By Ax B ;

③若点P 在直线l 的下方,则0)(00<++C By Ax B ; (2)二元一次不等式表示平面区域:

对于任意的二元一次不等式)0(0<>++C By Ax ,

①当0>B 时,则0>++C By Ax

0<++C By Ax 表示直线:=++C By Ax 下方的区域;

②当0++C By Ax 表示直线:=++C By Ax 下方的区域;

0<++C By Ax 表示直线:=++C By Ax 上方的区域;

注意:通常情况下将原点)0,0(代入直线C By Ax ++中,根据0>或0<来表示二元一次不等式表示平面区域。 (3)线性规划:

求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。

满足线性约束条件的解),(y x 叫做可行解,由所有可行解组成的集合叫做可行域。生产实际中有许多问题都可以归结为线性规划问题。

注意:①当0>B 时,将直线0=+By Ax 向上平移,则By Ax z +=的值越来越大; 直线0=+By Ax 向下平移,则By Ax z +=的值越来越小;

②当0

如:在如图所示的坐标平面的可行域内(阴影部分且包括周界),目标函数ay x z +=取得最小值的最优解有无数个,则a 为 ; 第二部分:圆与方程

2.1圆的标准方程:2

2

2

)()(r b y a x =-+-圆心),(b a C ,半径r 特例:圆心在坐标原点,半径为r 的圆的方程是:222

r y x

=+.

2.2点与圆的位置关系:

1. 设点到圆心的距离为d ,圆半径为r : (1)点在圆上

d=r ;(2)点在圆外

d >r ;(3)点在圆内

d <r .

2.给定点),(00y x M 及圆222)()(:r b y a x C =-+-.

①M 在圆C 内22020)()(r b y a x <-+-? ②M 在圆C 上22020)()r b y a x =-+-?( ③M 在圆C 外22020)()(r b y a x >-+-? 2.3 圆的一般方程:022=++++F Ey Dx y x .

当042

2

>-+F E D 时,方程表示一个圆,其中圆心???

??--2,2

E D C ,半径2

422F

E D r -+=

.

当0422=-+F E D 时,方程表示一个点???

??--2,2

E D .

当0422<-+F E D 时,方程无图形(称虚圆).

注:(1)方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的充要条件是:0=B 且0≠=C A 且0422>-+AF E D .

圆的直径系方程:已知AB 是圆的直径

0))(())((),(),(21212211=--+--?y y y y x x x x y x B y x A

2.4 直线与圆的位置关系: 直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种,d 是圆心到直线的距离,(2

2

B

A C Bb Aa d +++=

(1)

相离r d ;

(2)

=???=相切r d ;(3)

0>???<相交r d 。

2.5 两圆的位置关系

设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21。

(1)条公切线外离421??+>r r d ;(2)条公切线外切321??+=r r d ; (3)条公切线相交22121??+<<-r r d r r ;(4)条公切线内切121??-=r r d ; (5)无公切线内含??-<<210r r d ;

外离 外切 相交 内切 内含 2.6 圆的切线方程:

1.直线与圆相切:(1)圆心到直线距离等于半径r ;(2)圆心与切点的连线与直线垂直(斜率互为负倒数)

2.圆222r y x =+的斜率为k 的切线方程是r k kx y 21+±=过圆022=++++F Ey Dx y x 上一点

),(00y x P 的切线方程为:02

20

000=++++++F y y E x x D

y y x x . 一般方程若点(x 0 ,y 0)在圆上,则(x – a)(x 0 – a)+(y – b)(y 0 – b)=R 2. 特别地,过圆222r y x =+上一点),(00y x P 的切线方程为200r y y x x =+.

若点(x 0 ,y 0)不在圆上,圆心为(a,b)则?

?

?

??+---=-=-1)()(2110101R x a k y b R x x k y y ,联立求出?k 切线方程. 2.7圆的弦长问题:1.半弦2L 、半径r 、弦心距d 构成直角三角形,满足勾股定理:2

22

2d R L -=??

? ??

2.弦长公式(设而不求):]

4)[(1)(212

2122

21221x x x x k y y x x AB -++=-+-=)()(

第三部分:椭圆

一.椭圆及其标准方程

1.椭圆的定义:平面内与两定点F 1,F 2距离的和等于常数()

212F F a >的点的轨迹叫做椭圆,即点集M={P| |PF 1|+|PF 2|=2a ,2a >|F 1F 2|=2c};

这里两个定点F 1,F 2叫椭圆的焦点,两焦点间的距离叫椭圆的焦距2c 。 (c F F a 2221==时为线段21F F ,c F F a 2221=<无轨迹)

2.标准方程: 2

22c

a b =-

①焦点在x 轴上:122

22=+b

y a x (a >b >0); 焦点F (±c ,0)

②焦点在y 轴上:122

22=+b

x a y (a >b >0); 焦点F (0, ±c )

注意:①在两种标准方程中,总有a >b >0,2

2

2

c b a +=并且椭圆的焦点总在长轴上;

②一般形式表示:

22

1x y m n

+=或者 ),0,0(122n m n m ny mx ≠>>=+ 二.椭圆的简单几何性质: 1.范围

(1)椭圆122

22=+b

y a x (a >b >0) 横坐标-a ≤x ≤a ,纵坐标-b ≤x ≤b

(2)椭圆122

22=+b

x a y (a >b >0) 横坐标-b ≤x ≤b,纵坐标-a ≤x ≤a

2.对称性

椭圆关于x 轴y 轴都是对称的,这里,坐标轴是椭圆的对称轴,原点是椭圆的对称中心,椭圆的对称中心叫做椭圆的中心 3.顶点

(1)椭圆的顶点:A 1(-a ,0),A 2(a ,0),B 1(0,-b ),B 2(0,b )

(2)线段A 1A 2,B 1B 2 分别叫做椭圆的长轴长等于2a ,短轴长等于2b ,a 和b 分别叫做椭圆的长半轴长和短半轴长。

4.离心率

(1)我们把椭圆的焦距与长轴长的比

22c a ,即a

c

称为椭圆的离心率, 记作e (10<

2

2

1()b e a a

==-c

e 越接近于0 (e 越小),椭圆就越接近于圆;

e 越接近于1 (e 越大),椭圆越扁;

注意:离心率的大小只与椭圆本身的形状有关,与其所处的位置无关。

(2)椭圆的第二定义:平面内与一个定点(焦点)和一定直线(准线)的距离的比为常数e ,

(0<e <1)的点的轨迹为椭圆。(

e d

PF =|

|) ①焦点在x 轴上:122

22

=+b

y

a x (a >

b >0)准线方程:

c a x 2±

=

②焦点在y 轴上:122

22=+b

x a y (a >b >0)准线方程:c a y 2

±=

小结一:基本元素

(1)基本量:a 、b 、c 、e 、(共四个量), 特征三角形 (2)基本点:顶点、焦点、中心(共七个点) (3)基本线:对称轴(共两条线) 5.椭圆的的内外部

(1)点00(,)P x y 在椭圆22221(0)x y a b a b

+=>>的内部2200221x y a b ?+<. (2)点00(,)P x y 在椭圆22

22

1(0)x y

a b a b +=>>的外部2200

221x y a b

?+>.

6.几何性质

(1) 焦半径(椭圆上的点与焦点之间的线段):c a MF c a +≤≤-

(2)通径(过焦点且垂直于长轴的弦)a

b AB 2

2=

(3)焦点三角形(椭圆上的任意一点与两焦点够成的三角形):2

tan

2

21θ

?=?b S F MF 其中

θ=∠21MF F

7直线与椭圆的位置关系:

(1)判断方法:联立直线方程与椭圆方程消y(或x)得到关于x 的一元二次方程,根据判别式?的符号判断位置关系:

没有交点

相离有一个交点相切相交有两个交点???000 联立?????=++=+0

12

2

22C By Ax b y a x 消y 得:

()(

)

(

)

2

22

22222212

22

2221222222222

2

20

2B b A a B b C a x x B b A a AC

a x x B

b C a ACx a x B b A

a +-=+-=+=-+++

联立?????=++=+0

12

222C By Ax b y a x 消x 得: ()(

)

(

)

2

22

22222212

22

2221222222222

2

20

2B b A a A a C b y y B b A a BC

b y y A a C b BCy b y B b A

a +-=+-=+=-+++

(2)弦中点问题:斜率为k 的直线l 与椭圆),0,0(12

2

22n m n m n y m x ≠>>=+交于两点

),(),(2211y x B y x A 、)

(00,y x M 是AB 的中点,则:0

22y x m n k AB ?-=

(3)弦长公式:]

4)[(1)(212

2122

212

21x x x x k y y x x AB -++=-+-=)()(

两焦点的距离叫焦

补充知识点:

等轴双曲线的主要性质有:

(1)半实轴长=半虚轴长;

(2)其标准方程为C y x =-2

2

其中C≠0; (3)离心率2=

e ;

(4)渐近线:两条渐近线 y=±x 互相垂直;

(5)等轴双曲线上任意一点到中心的距离是它到两个焦点的距离的比例中项;

(6)等轴双曲线上任意一点P 处的切线夹在两条渐近线之间的线段,必被P 所平分; 7)等轴双曲线上任意一点处的切线与两条渐近线围成三角形面积恒为常数2

a

第五部分:抛物线知识点总结

1. 直线与抛物线的位置关系

直线,抛物线,,消y 得:

(1)当k=0时,直线l 与抛物线的对称轴平行,有一个交点; (2)当k ≠0时,

Δ>0,直线l 与抛物线相交,两个不同交点; Δ=0, 直线l 与抛物线相切,一个切点; Δ<0,直线l 与抛物线相离,无公共点。

(3)若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定) 2. 关于直线与抛物线的位置关系问题常用处理方法 直线l :

b kx y += 抛物线

,)0( p

① 联立方程法:

???=+=px

y b

kx y 22

?0)(2222=+-+b x p kb x k 设交点坐标为),(11y x A ,),(22y x B ,则有0 ?,以及2121,x x x x +,还可进一步求出

b

x x k b kx b kx y y 2)(212121++=+++=+,

2212122121)())((b x x kb x x k b kx b kx y y +++=++=

在涉及弦长,中点,对称,面积等问题时,常用此法,比如 a. 相交弦AB 的弦长

212212

212

4)(11x x x x k

x x k AB -++=-+=a

k ?+=2

1 或 212212

2124)(1111y y y y k y y k AB -++=-+

=a

k ?+=2

1 b. 中点),(00y x M , 2210x x x +=

, 2

2

10y y y += ② 点差法:

设交点坐标为),(11y x A ,),(22y x B ,代入抛物线方程,得

1212px y = 22

22px y =

将两式相减,可得

)(2))((212121x x p y y y y -=+- 2

121212y y p

x x y y +=

--

a. 在涉及斜率问题时,2

12y y p

k AB +=

b. 在涉及中点轨迹问题时,设线段AB 的中点为),(00y x M ,

021*******y p

y p y y p x x y y ==+=--,

即0

y p k AB =

, 同理,对于抛物线)0(22

≠=p py x ,若直线l 与抛物线相交于B A 、两点,点),(00y x M 是

弦AB 的中点,则有p

x p x p x x k AB 0

021222==+=

(注意能用这个公式的条件:1)直线与抛物线有两个不同的交点,2)直线的斜率存在,且

不等于零)

高中解析几何知识点

曲线与方程 (2)求曲线方程的基本方法 直线 一、直线的倾斜角与斜率 1、倾斜角的概念:(1)倾斜角:当直线 与x 轴相交时,取x 轴作为基准,x 轴正向与直线 向上方向之间所成的角 叫做直线 的倾斜角。 (2)倾斜角的范围:当 与x 轴平行或重合时,规定它的倾斜角 为0°因此0°≤ <180°。 2、直线的斜率 (1)斜率公式:K=tan ( ≠90°) (2)斜率坐标公式:K=12 1 2x x y y -- (x1≠x 2) (3)斜率与倾斜角的关系:一条直线必有一个确定的倾斜角,但不一定有斜率。当 =0°时,k=0;当0°< <90°时,k >0,且 越大,k 越大;当 =90°时,k 不存在;当90°< <180°时,k <0,且 越大,k 越大。 二、两直线平行与垂直的判定 1、两直线平行的判定: (1)两条不重合的直线的倾斜角都是90°,即斜率不存在,则这两直线平行; (2)两条不重合的直线,若都有斜率,则k1=k2 1 ∥2 2、两直线垂直的判定:

已知直线l 经过点00(,)P x y ,且斜率为k ,则方程00()y y k x x -=-为直线的点斜式方程. 直线l 与y 轴交点(0,)b 的纵坐标b 叫做直线l 在y 轴上的截距.直线y kx b =+叫做直线的斜截式方程. 已知直线上两点112222(,),(,)P x x P x y 且1212(,)x x y y ≠≠,则通过这两点的直线方程为11 12122121(,) y y x x x x y y y y x x --=≠≠--, 由于这个直线方程由两点确定,所以我们把它叫直线的两点式方程,简称两点式 已知直线l 与x 轴的交点为(,0)A a ,与y 轴的交点为(0,)B b ,其中0,0a b ≠≠,则直线l 的方程1 =+b y a x 叫做直线 的截距式方程. 注意:直线与x 轴交点(a ,0)的横坐标a 叫做直线在x 轴上的截距;直线与y 轴交点(0,b )的纵坐标b 叫做直线在y 轴上的截距. 关于,x y 的二元一次方程0Ax By C ++=(A ,B 不同时为0)叫做直线的一般式方程,简称一般式. 已知平面上两点111222(,),(,)P x y P x y ,则22122121()()PP x x y y =-+-. 特殊地:(,)P x y 与原点的距离为 22 OP x y =+. 直线名称 已知条件 直线方程 使用范围 点斜式 111(,),P x y k 11() y y k x x -=- k 存在 斜截式 b k , y kx b =+ k 存在 两点式 ) ,(11y x (),22y x 11 2121 y y x x y y x x --= -- 12x x ≠ 12y y ≠ 截距式 b a , 1x y a b += 0a ≠ 0b ≠

空间解析几何考题

《 空 间 解 析 几 何 》 试卷A 班级: 姓名: 学号: 分数: 我已阅读了有关的考试规定和纪律要求,愿意在考试中遵守《考场规则》,如有违反将愿接受相应的处理。 试卷共 5 页,请先查看试卷有无缺页,然后答题。 一.选择题(每小题3分,共10分) 1. 平面的法式方程是 ( ). A. 0=+++D Cz By Ax B. 1=++r z q y p x C. ()0,1cos cos cos 0cos cos cos 2 2 2 >=++=-++p p z y x γβαγβα其中 D. ()0,1cos cos cos 0 cos cos cos 2 22>=++=+++p p z y x γβαγβα其中 2. 两向量 21,n n 互相垂直的充要条件是 ( ). A. 021=?n n B. 021=?n n C. 21n n λ=. D. 以上都不对 3. 平面 0:11111=+++D z C y B x A π 与平面 0:22222=+++D z C y B x A π 互相垂直 的充要条件是 ( ). A. 2 12 12 1C C B B A A == B. 0212121=++C C B B A A C. 021212121=+++D D C C B B A A D. 以上都不对. 4. 1 11 11 11: n z z m y y l x x l -= -= -与2 22 22 22: n z z m y y l x x l -= -= -是异面直线,则必有 ( ). A.0212121=++n n m m l l B. 0212121≠++n n m m l l C. 021212122 2 1 11 =---z z y y x x n m l n m l D. 02 1212122 2 1 11 ≠---z z y y x x n m l n m l . 5. 若向量γβα ,,线性无关,则在该向量组中必有 ( ) A. 每个向量都可以用其它向量表示。 B. 有某个向量可以用其它向量表示。

第八章向量代数与空间解析几何教案(同济大学版高数)

第八章 向量代数与空间解析几何 第一节 向量及其线性运算 教学目的:将学生的思维由平面引导到空间,使学生明确学习空间解析几何的意义和目的。使学生对(自由)向量有初步了解,为后继内容的学习打下基础。 教学重点:1.空间直角坐标系的概念 2.空间两点间的距离公式 3.向量的概念 4.向量的运算 教学难点:1.空间思想的建立 2.向量平行与垂直的关系 教学内容: 一、向量的概念 1.向量:既有大小,又有方向的量。在数学上用有向线段来表示向量,其长度表示向量的大小,其方向表示向量的方向。在数学上只研究与起点无关的自由向量(以后简称向量)。 2. 量的表示方法有: a 、i 、F 、OM 等等。 3. 向量相等b a =:如果两个向量大小相等,方向相同,则说(即经过平移后能完全重合的向量)。 4. 量的模:向量的大小,记为a 。 模为1的向量叫单位向量、模为零的向量叫零向量。零向量的方向是任意的。 5. 量平行b a //:两个非零向量如果它们的方向相同或相反。零向量与如何向量都平行。 6. 负向量:大小相等但方向相反的向量,记为a - 二、向量的线性运算 1.加减法c b a =+: 加法运算规律:平行四边形法则(有时也称三角形法则),其满足的运算规律有交换率和结合率见图7-4

2.c b a =- 即c b a =-+)( 3.向量与数的乘法a λ:设λ是一个数,向量a 与λ的乘积a λ规定为 0)1(>λ时,a λ与a 同向,||||a a λλ= 0)2(=λ时,0a =λ 0)3(<λ时,a λ与a 反向,||||||a a λλ= 其满足的运算规律有:结合率、分配率。设0 a 表示与非零向量a 同方向的单位向量,那么 a a a 0= 定理1:设向量a ≠0,那么,向量b 平行于a 的充分必要条件是:存在唯一的实数λ, 使b =a λ 例1:在平行四边形ABCD 中,设a =AB ,b =AD ,试用 a 和 b 表示向量MA 、MB 、MC 和MD ,这里M 是平行 四边形对角线的交点。(见图7-5) 图7-4 解:→→==+AM AC 2b a ,于是)(2 1 b a +- =→ MA 由于→ → -=MA MC , 于是)(21 b a += → MC 又由于→→==+-MD BD 2b a ,于是)(2 1 a b -=→MD 由于→→-=MD MB , 于是)(2 1 a b --=→MB 三、空间直角坐标系 1.将数轴(一维)、平面直角坐标系(二维)进一步推广建立空间直角坐标系(三维)如图7-1,其符合右手规则。即以右手握住z 轴,当右手的四个手指从正向x 轴以2 π 角度转向正向y 轴时,大拇指的指向就是z 轴的正向。

必修二平面解析几何初步知识点及练习带答案(全)

1.直线的倾斜角与斜率: (1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着 交点按逆时针方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角. 倾斜角)180,0[?∈α,?=90α斜率不存在. (2)直线的斜率:αtan ),(211 21 2=≠--= k x x x x y y k .(111(,)P x y 、222(,)P x y ). 2.直线方程的五种形式: (1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ). 注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =. (2)斜截式:b kx y += (b 为直线l 在y 轴上的截距). (3)两点式: 1 21 121x x x x y y y y --=-- (12y y ≠,12x x ≠). 注:① 不能表示与x 轴和y 轴垂直的直线; ② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示 任意直线. (4)截距式: 1=+b y a x ( b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ) . 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示 过原点的直线. (5)一般式:0=++C By Ax (其中A 、B 不同时为0). 一般式化为斜截式:B C x B A y -- =,即,直线的斜率:B A k -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =. 已知直线横截距0x ,常设其方程为0x my x =+(直线斜率k 存在时,m 为k 的 倒数)或0y =. 已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或0x x =. (2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合. (3)指出此时直线的方向向量:),(A B -,),(A B -,) , ( 2 2 2 2 B A A B A B +-+ (单位向量); 直线的法向量:),(B A ;(与直线垂直的向量) (6)参数式:?? ?+=+=bt y y at x x 00(t 为参数)其中方向向量为),(b a ,) ,(2222b a b b a a ++; a b k = ; 22||||b a t PP o += ;

高中平面解析几何知识点总结

高中平面解析几何知识点总结 一.直线部分 1.直线的倾斜角与斜率: (1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把 x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α 叫做直线 的倾斜角. 倾斜角)180,0[?∈α,?=90α斜率不存在. (2)直线的斜率: αtan ),(211 21 2=≠--= k x x x x y y k .两点坐标为111(,)P x y 、222(,)P x y . 2.直线方程的五种形式: (1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ). 注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =. (2)斜截式:b kx y += (b 为直线l 在y 轴上的截距). (3)两点式:121 121x x x x y y y y --= -- (12y y ≠,12x x ≠). 注:① 不能表示与x 轴和y 轴垂直的直线; ② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意 直线.

(4)截距式:1=+b y a x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ). 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线. (5)一般式:0=++C By Ax (其中A 、B 不同时为0). 一般式化为斜截式: B C x B A y - - =,即,直线的斜率: B A k -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =. 已知直线横截距0x ,常设其方程为0x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =. 已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或0x x =. (2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合. 3.直线在坐标轴上的截矩可正,可负,也可为0. (1)直线在两坐标轴上的截距相等?直线的斜率为1-或直线过原点. (2)直线两截距互为相反数?直线的斜率为1或直线过原点. (3)直线两截距绝对值相等?直线的斜率为1±或直线过原点. 4.两条直线的平行和垂直: (1)若111:l y k x b =+,222:l y k x b =+,有

空间解析几何试题

空间解析几何试卷 一、填空题(本大题共计30分,每空3分。请把正确答案填在横线上) 1. 设向量{}{}1,1,2,0,1,1=--=→→b a ,则→→b a 在上的射影是_____________,→ a 是_______________. 2. 设向量{}3,5,4-=→a ,向量225共线,反向且模为与→→a b ,那么向量→ b 的坐标是 ________________. 3. 已知向量{}{}3,2,,1,1,1x b a ==→→, 如果→ →b a ,垂直, 那么x =_________. 4. 已知向量{}{},0,3,2,1,0,1=-=→→b a {}2,1,0=→c ,则由这3个向量张成的平行六面体的体积是_________. 5. 直线z y x -=-+=-3212与直线2 112-+=-=z y x 间的距离是_____________. 6. 若直线1 23z y a x ==- 与平面x-2y+bz=0平行,则a,b 的值分别是______________. 7. 经过直线???=-+-=-+0 201z y x y x 且与直线z y x 2==平行的平面的方程是_________________. 8. 空间曲线? ??+==-+1022x z z y x 在y x 0坐标面上的射影曲线和射影柱面的

方程分别是_____________________________. 9. 顶点在原点、准线为抛物线???==1 22z x y 的锥面方程是 ________________(请用x y x ,,的一个方程表示). 10.曲线?????==-0 19422y z x 绕x 轴旋转后产生的曲面方程是__________________,此曲面表示______________曲面. 二、单项选择题(本大题共10小题,每小题3分,共30分) 1. 若=?-+=+-=→ →→→→→→→→→b a k j i b k j i a 则,23,532( ) A. 7 B. -7 C. -1 D. 0 2. 已知→→b a ,不共线, 与→→b a ,同时垂直的单位向量是( ) A. →→?b a B. →→?a b C. ||→→→ →??±b a b a D. ||→→→→??b a b a 3. 在空间右手直角坐标系下,点P(-1,2,-3)在第( )卦限. A. II B. III C. V D. VI 4. 若两个非零向量→→b a ,满足|→→+b a |=|→→-b a |,则一定有( ) A. →→⊥b a B. →→b a // C. →→b a 与同向 D. → →b a 与反向 5. 点M(1,-3,-2)关于y 轴的对称点N 的坐标是( )

向量代数与空间解析几何练习题讲课教案

向量代数与空间解析几何练习题

第4章 向量代数与空间解析几何练习题 习题4.1 一、选择题 1.将平行于同一平面的所有单位向量的起点移到同一点, 则这些向量的终点构成的图形是( ) (A )直线; (B ) 线段; (C ) 圆; (D ) 球. 2.下列叙述中不是两个向量a 与b 平行的充要条件的是( ) (A )a 与b 的内积等于零; (B )a 与b 的外积等于零; (C )对任意向量c 有混合积0)(=abc ; (D )a 与b 的坐标对应成比例. 3.设向量a 的坐标为 31 3 , 则下列叙述中错误的是( ) (A )向量a 的终点坐标为),,(z y x ; (B )若O 为原点,且a =, 则点A 的坐标为 ),,(z y x ; (C )向量a 的模长为222z y x ++;(D ) 向量)2/,2/,2/(z y x 与a 平行. 4.行列式2 131323 21的值为( ) (A ) 0 ; (B ) 1 ; (C ) 18 ; (D ) 18-. 5.对任意向量a 与b , 下列表达式中错误的是( ) (A )||||a a -=; (B )||||||b a b a +>+; (C ) ||||||b a b a ?≥?; (D ) ||||||b a b a ?≥?. 二、填空题 1.设在平行四边形ABCD 中,边BC 和CD 的中点分别为M 和N ,且p AM =, q =,则BC =_______________,CD =__________________.

2.已知ABC ?三顶点的坐标分别为A(0,0,2),B(8,0,0),C(0,8,6),则边BC上的中线长为______________________. 3.空间中一动点移动时与点)0,0,2(A和点)0,0,8(B的距离相等, 则该点的轨迹方程是 _______________________________________. 4.设力k + 2+ =, 则F将一个质点从)3,1,0(A移到)1,6,3(, B所做的功为 F5 j i 3 ____________________________. ?_____________________; 5.已知)2,5,3(A, )4,7,1(B, )0,8,2( C, 则= ?____________________;ABC = ?的面积为_________________. 三、计算题与证明题 1.已知1 | |= c, 并且0 |= b, 5 | a, 4 |= | a? b + + ?. b ? +c + c b = c a.计算a 2.已知3 ?b || a?. |= |b a, 求| | |= ?b a, 4 | 3.设力k - =作用在点)1,6,3(A, 求力F对点)2 ,7,1(,- + B的力矩的大小. i j F5 3 2+

平面解析几何初步(知识点 例题)

个性化简案 个性化教案(真题演练)

个性化教案

平面解析几何初步 知识点一:直线与方程 1. 直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角.倾斜角)180,0[?∈α,?=90α斜率不存在. 2. 直线的斜率:αtan ),(211 21 2=≠--= k x x x x y y k .(111(,)P x y 、222(,)P x y ). 3.直线方程的五种形式 【典型例题】 例1:已知直线(2m 2+m -3)x +(m 2-m)y =4m -1.① 当m = 时,直线的倾斜角为45°.②当m = 时,直线在x 轴上的截距为1.③ 当m = 时,直线在y 轴上的截距为-2 3.④ 当m = 时,直线与x 轴平行.⑤当m = 时,直线过原点. 【举一反三】 1. 直线3y + 3 x +2=0的倾斜角是 ( ) A .30° B .60° C .120° D .150° 2. 设直线的斜率k=2,P 1(3,5),P 2(x 2,7),P (-1,y 3)是直线上的三点,则x 2,y 3依次是 ( ) A .-3,4 B .2,-3 C .4,-3 D .4,3 3. 直线l 1与l 2关于x 轴对称,l 1的斜率是-7 ,则l 2的斜率是 ( ) A .7 B .- 77 C .77 D .-7 4. 直线l 经过两点(1,-2),(-3,4),则该直线的方程是 . 例2:已知三点A (1,-1),B (3,3),C (4,5).求证:A 、B 、C 三点在同一条直线上. 练习:设a ,b ,c 是互不相等的三个实数,如果A (a ,a 3)、B (b ,b 3)、C (c ,c 3)在同一直线上,求证:a+b+c=0. 例3:已知实数x,y 满足y=x 2-2x+2 (-1≤x≤1).试求:2 3 ++x y 的最大值与最小值.

向量代数与空间解析几何教案.doc

第八章向量代数与空间解析几何 第一节向量及其线性运算 教学目的:将学生的思维由平面引导到空间,使学生明确学习空间解析几何的意义和目的。使学生对(自由)向量有初步了解,为后继内容的学习打下基础。教学重点: 1. 空间直角坐标系的概念 2.空间两点间的距离公式 3.向量的概念 4.向量的运算 教学难点: 1. 空间思想的建立 2.向量平行与垂直的关系 教学内容: 一、向量的概念 1.向量:既有大小,又有方向的量。在数学上用有向线段来表示向量,其长度表示向 量的大小,其方向表示向量的方向。在数学上只研究与起点无关的自由向量(以后简称向量)。 2.量的表示方法有: a 、i、F、 OM 等等。 3.向量相等a b :如果两个向量大小相等,方向相同,则说(即经过平移后能完全 重合的向量)。 4.量的模:向量的大小,记为 a 、OM。 模为 1 的向量叫单位向量、模为零的向量叫零向量。零向量的方向是任意的。 5.量平行a // b:两个非零向量如果它们的方向相同或相反。零向量与如何向量都平行。 6.负向量:大小相等但方向相反的向量,记为 a 二、向量的线性运算 b c 1.加减法a b c:加法运算规律:平行四边形法则(有 时也称三角形法则),其满足的运算规律有交换率和结合率见图7 a -4

2.a b c 即 a ( b) c 3.向量与数的乘法 a :设是一个数,向量 a 与的乘积a规定为 (1) 0 时, a 与a 同向, | a | | a | (2) 0 时, a 0 (3) 0 时, a 与a反向,| a | | || a | 其满足的运算规律有:结合率、分配率。设 a 0表示与非零向量 a 同方向的单位向量,那么 a 0a a 定理 1:设向量,那么,向量 b 平行于 a 的充分必要条件是:存在唯一的实数 λ , a≠ 0 使b=a 例 1:在平行四边形ABCD中,设AB a ,AD b ,试用 a 和b表示向量 MA 、MB 、MC 和 MD ,这里M是平行四边形对角线的交点。(见图7-5)图 7- 4 解: a b AC 2 AM ,于是 MA 1 (a b) 2 由于 MC MA ,于是 MC 1 b) (a 2 1 (b a) 又由于 a b BD 2 MD ,于是 MD 1 (b 2 由于 MB MD ,于是 MB a) 2 三、空间直角坐标系 1.将数轴(一维)、平面直角坐标系(二维)进一步推广建立空间直角坐标系(三维) 如图 7- 1,其符合右手规则。即以右手握住z 轴,当右手的四个手指从正向x 轴以角度 2 转向正向 y 轴时,大拇指的指向就是z 轴的正向。 2.间直角坐标系共有八个卦限,各轴名称分别为:x轴、y轴、z轴,坐标面分别 为 xoy 面、yoz面、zox面。坐标面以及卦限的划分如图7-2 所示。 图 图 7-1 右手规则演示 7- 2 空间直角坐标系图图7-3空间两点 M 1 M 2的距离图3.空间点M ( x, y, z)的坐标表示方法。 通过坐标把空间的点与一个有序数组一一对应起来。注意:特殊点的表示

解析几何学习知识重点情况总结复习资料

一、直线与方程基础: 1、直线的倾斜角α: [0,)απ∈ 2 、直线的斜率k : 21 21 tan y y k x x α-== -; 注意:倾斜角为90°的直线的斜率不存在。 3、直线方程的五种形式: ①点斜式:00()y y k x x -=-; ②斜截式:y kx b =+; ③一般式:0Ax By C ++=; ④截距式:1x y a b +=; ⑤两点式: 121 121 y y y y x x x x --=-- 注意:各种形式的直线方程所能表示和不能表示的直线。 4、两直线平行与垂直的充要条件: 1111:0l A x B y C ++=,2222:0l A x B y C ++=, 1l ∥2l 1221 1221 A B A B C B C B =???≠?; 1212120l l A A B B ⊥?+= . 5、相关公式: ①两点距离公式:11(,)M x y ,22(,)N x y ,

MN = ②中点坐标公式:11(,)M x y ,22(,)N x y , 则线段MN 的中点1122 ( ,)22 x y x y P ++; ③点到直线距离公式: 00(,)P x y ,:0l Ax By C ++=, 则点P 到直线l 的距离d = ; ④两平行直线间的距离公式:11:0l Ax By C ++=,22:0l Ax By C ++=, 则平行直线1l 与2l 之间的距离d = ⑤到角公式:(补充)直线1111:0l A x B y C ++=到直线2222:0l A x B y C ++=的角为 θ,(0,)(,)22 ππ θπ∈U ,则2112 tan 1k k k k θ-=+? .(两倾斜角差的正切) 二、直线与圆,圆与圆基础: 1、圆的标准方程:222()()x a y b r -+-=; 确定圆的两个要素:圆心(,)C a b ,半径r ; 2、圆的一般方程:220x y Dx Ey F ++++=,(22 40D E F +->); 3、点00(,)P x y 与圆222:()()C x a y b r -+-=的位置关系: 点00(,)P x y 在圆内? 22200()()x a y b r -+-<; 点00(,)P x y 在圆上? 22200()()x a y b r -+-=; 点00(,)P x y 在圆外? 222 00()()x a y b r -+->; 4、直线:0l Ax By C ++=与圆222:()()C x a y b r -+-=的位置关系: 从几何角度看: 令圆心(,)C a b 到直线:0l Ax By C ++=的距离为d , 相离?d r >;

空间解析几何练习题

习题一 空间解析几何 一、填空题 1、过两点(3,-2)和点(-1,0)的直线的参数方程为 。 2、直线2100x y --=方向向量为 。 3、直角坐标系XY 下点在极坐标系中表示为 。 4、平行与()6,3,6a =-的单位向量为 。 5、过点(3,-2,1)和点(-1,0,2)的直线方程为 。 6、过点(2,3)与直线2100x y +-=垂直的直线方程为 。 7、向量(3,-2)和向量(1,-5)的夹角为 。 8、直角坐标系XY 下区域01y x ≤≤≤≤在极坐标系中表示为 。 9、设 (1,2,3),(5,2,1)=-=-a b , 则(3)?a b = 。 10、点(1,2,1)到平面2100x y z -+-=的距离为 。 二、解答题 1、求过点(3,1,1)且与平面375120x y z -+-=平行的平面方程。 2、求过点(4,2,3) 且平行与直线 31215 x y z --==的直线方程。 3、求过点(2,0,-3) 且与直线247035210x y z x y z -+-=??+-+=? 垂直的平面方程。 4、一动点与两定点(2,3,2)和(4,5,6)等距离, 求这动点的方程。

5、求222,01z x y z =+≤≤在XOZ 平面上的投影域。 6、求222 19416 x y z ++=在XOY 平面上的投影域。 7、求2z z =≤≤在XOZ 平面上的投影域。 8、求曲线222251x y z x z ?++=?+=? 在XOY 平面上的投影曲线。 9、求曲线 22249361x y z x z ?++=?-=? 在XOY 平面上的投影曲线。 10、求由曲面22z x y =+与曲面2222x y z ++=所围成的区域在柱面坐标系下的表示。

平面解析几何知识点归纳

平面解析几何知识点归纳

平面解析几何知识点归纳 ◆知识点归纳 直线与方程 1.直线的倾斜角 规定:当直线l 与x 轴平行或重合时,它的倾斜角为0 范围:直线的倾斜角α的取值范围为),0[π 2.斜率:)2 (tan πα≠=a k ,R k ∈ 斜率公式:经过两点),(1 1 1 y x P ,),(2 2 2 y x P ) (21 x x ≠的直线的斜率公 式为1 21 22 1x x y y k P P --= 3.直线方程的几种形式

能力提升 斜率应用 例1.已知函数) 1(log )(2+=x x f 且0>>>c b a ,则c c f b b f a a f ) (, )(,)(的大小关系 例2.已知实数y x ,满足) 11(222 ≤≤-+-=x x x y ,试求2 3++x y 的最大值和最小值

的夹角α:)2(πθθα≤=或)2 (π θθπα>-=; 距离问题 1.平面上两点间的距离公式 ) ,(),,(222111y x P y x P 则 )()(1 2 1 2 2 1y y x x P P -+-= 2.点到直线距离公式 点),(0 y x P 到直线0:=++C By Ax l 的距离为:2 2 00B A C By Ax d +++= 3.两平行线间的距离公式 已知两条平行线直线1 l 和2 l 的一般式方程为1 l :0 1 =++C By Ax , 2 l :0 2 =++C By Ax ,则1 l 与2 l 的距离为2 2 21B A C C d +-= 4.直线系方程:若两条直线1 l :011 1 =++C y B x A ,2 l :0 2 2 2 =++C y B x A 有交点,则过1 l 与2 l 交点的直线系方程为)(1 1 1 C y B x A +++ )(222=++C y B x A λ或 ) (222C y B x A +++0)(1 1 1 =++C y B x A λ (λ为常数) 对称问题 1.中点坐标公式:已知点),(),,(2 2 1 1 y x B y x A ,则B A ,中点),(y x H 的坐标公式为 ??? ??? ? +=+=222121y y y x x x 点),(0 y x P 关于),(b a A 的对称点为)2,2(0 y b x a Q --,直线关于点对 称问题可以化为点关于点对称问题。 2.轴对称: 点),(b a P 关于直线)0(0≠=++B c By Ax 的对称点为

高中解析几何知识点

解析几何知识点 一、基本内容 (一)直线的方程 1、直线的方程 确定直线方程需要有两个互相独立的条件,而其中一个必不可少的条件是直线必须经过一已知点.确定直线方程的形式很多,但必须注意各种形式的直线方程的适用范围. 2、两条直线的位置关系 两条直线的夹角,当两直线的斜率k1,k2都存在且k1·k2≠ 外注意到角公式与夹角公式的区别. (2)判断两直线是否平行,或垂直时,若两直线的斜率都存在,可用斜率的关系来判断.但若直线斜率不存在,则必须用一般式的平行垂直条件来判断. 3、在学习中注意应用数形结合的数学思想,即将对几何图形的研究,转化为对代数式的研究,同时又要理解代数问题的几何意义. (二)圆的方程 (1)圆的方程 1、掌握圆的标准方程及一般方程,并能熟练地相互转化,一般地说,具有三个条件(独立的)才能确定一个圆方程.在求圆方程时,若条件与圆心有关,则一般用标准型较易,若

已知圆上三点,则用一般式方便,注意运用圆的几何性质,去简化运算,有时利用圆系方程也可使解题过程简化. 2、 圆的标准方程为(x -a )2+(y -b )2=r 2;一般方程x 2+y 2+Dx+Ey +F =0,圆心坐标 (,)22D E -- 3、 在圆(x -a )2+(y -b )2=r 2,若满足a 2+b 2 = r 2条件时,能使圆过原点;满足a=0,r >0条件时,能使圆心在y 轴上;满足b r =时,能使圆与x 轴相切;r =条件时, 能使圆与x -y =0相切;满足|a |=|b |=r 条件时,圆与两坐标轴相切. 4、 若圆以A (x 1,y 1)B (x 2,y 2)为直径,则利用圆周上任一点P (x ,y ), 1PA PB k k =-求出圆方程(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0 (2) 直线与圆的位置关系 ①在解决的问题时,一定要联系圆的几何性质,利用有关图形的几何特征,尽可能简化运算,讨论直线与圆的位置关系时,一般不用△>0,△=0,△<0,而用圆心到直线距离d <r ,d=r ,d >r ,分别确定相关交相切,相离的位置关系.涉及到圆的切线时,要考虑过切点与切线垂直的半径,计算交弦长时,要用半径、弦心距、半弦构成直角三角形,当然,不失一般性弦长式 ③已知⊙O 1:x 2+y 2 = r 2,⊙O 2:(x -a )2+(y -b )2=r 2;⊙O 3:x 2+y 2+Dx+Ey +F =0则以M (x 0,y 0)为切点的⊙O 1切线方程为xx 0+yy 0=r 2;⊙O 2切线方程 条切线,切线弦方程:xx 0+yy 0=r 2. (三)曲线与方程 (1)在平面内建立直角坐标系以后,坐标平面内的动点都可以用有序实数对x 、y 表示,这就是动点的坐标(x ,y ).当点按某种规律运动而形成曲线时,动点坐标(x ,y )中的变量x ,y 存在着某种制约关系.这种制约关系反映到代数中,就是含有变量x ,y 方程F (x ,y )=0. 曲线C 和方程F (x ,y )=0的这种对应关系,还必须满足两个条件: (1)曲线上的点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都在曲线上,这时,我们才能把这个方程叫做曲线的方程,

向量代数与空间解析几何复习题

第七章 向量代数与空间解析几何 (一) 空间直角坐标系、向量及其线性运算 一、判断题 1. 点(-1,-2,-3)是在第八卦限。 ( ) 2. 任何向量都有确定的方向。 ( ) 3. 任二向量b a , =.则=同向。 ( ) 4. 若二向量, + ,则,同向。 ( ) 5. 若+=+,则= ( ) 6. 向量, ,同向。 ( ) 7.若={ z y x a a a ,,},则平行于向量的单位向量为| |a x | |a a | |a z 。( ) 8.若一向量在另一向量上的投影为零,则此二向量共线。 ( ) 二、填空题 1. 点(2,1,-3)关于坐标原点对称的点是 2. 点(4,3,-5)在 坐标面上的投影点是M (0,3,-5) 3. 点(5,-3,2)关于 的对称点是M (5,-3,-2)。 4. 设向量与有共同的始点,则与,共面且平分与的夹角的向量为 5. 已知向量与方向相反,且|2|a b =,则由表示为= 。 6. ,与轴l 的夹角为 6 π,则a l prj = 7. 已知平行四边形ABCD 的两个顶点A (2,-3,-5)、B (-1,3,2)。以及它的对角线交 点E (4,-1,7),则顶点C 的坐标为 ,则顶点D 的坐标为 。 8. 设向量与坐标轴正向的夹角为α、β、γ,且已知α =ο 60,β=ο 120。则γ= 9. 设的方向角为α、β、γ,满足cos α=1时,垂直于 坐标面。 三、选择题 1.点(4,-3,5)到oy 轴的距离为 (A )2225)3(4+-+ (B ) 225)3(+- (C )22)3(4-+ (D )2254+ 已 知 梯 形 OABC 、 21AB 2 1 -b a 21-a b -21a b 21-b a ,⊥b

(完整版)(整理)第七章空间解析几何

第七章空间解析几何与向量代数内容概要

习题7-1 ★★1.填空: (1) 要使b a b a -=+成立,向量b a , 应满足b a ⊥ (2) 要使 b a b a +=+成立,向量b a , 应满足 //b a ,且同向 ★2.设c b a v c b a u -+-=+-=3 , 2,试用c b a , , 表示向量v u 32- 知识点:向量的线性运算 解:c b a c b a c b a v u 711539342232+-=+-++-=- ★3.设Q , P 两点的向径分别为21 , r r ,点 R 在线段PQ 上,且 n m RQ PR = ,证明点R 的向径为 n m m n += +r r r 12 知识点:向量的线性运算 证明:在OPQ ?中,根据三角形法则PQ OP OQ =-,又)(21r r -+=+= n m m n m m , ∴n m m n n m m PR OP OR ++=-++ =+=22r r r r r 1 11)( ★★4.已知菱形 ABCD 的对角线b a ==B , ,试用向量b a , 表示 , , , 。 知识点:向量的线性运算 解:根据三角形法则, b a ==-==+B D AD , AB AC BC AB ,又ABCD 为菱形, ∴ =(自由向量), ∴222 AB AC BD AB CD DC AB --=-=-?=?=-=-= u u u r u u u r u u u r u u u r u u u r u u u r u u u r a b b a a b ∴2b a +==,2 DA +=-u u u r a b ★★5.把ABC ?的BC 边五等分,设分点依次为4321 , , , D D D D ,再把各分点与点 A 连接,试以 a c ==BC AB , 表示向量 , , 321A D A D A D 和A D 4。

解析几何初步

解析几何初步复习提纲 一、直线方程 1、 倾斜角:当直线l 与x 轴相交时,x 轴的正方向与直线l 向上的方向所成的角,叫直线l 的倾斜角;当直线l 与 x 轴平行或重合时,倾斜角等于00 。倾斜角的取值范围是____[)π,0________。 2、 直线的斜率 (1).定义:倾斜角不是90°的直线,它的倾斜角的正切值叫这条直线的斜率k ,即k =tan α(α≠90°);倾斜角为90°的直线没有斜率; (2).斜率公式:经过两点111(,)P x y 、222(,)P x y 的直线的斜率为 ()212 12 1x x x x y y k ≠--=; (3).应用:证明三点共线: AB BC k k =。 注:①当 90=α或12x x =时,直线l 垂直于x 轴,它的斜率不存在. ②每一条直线都存在惟一的倾斜角,除与x 轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定. 注:1、直线Ax+By+C=0(B ≠0)的斜率k=___。 2、几种特殊的直线方程 平行与x 轴的直线___ _; x 轴___________ y b =;0y = 平行与y 轴的直线___ __;y 轴_______ _____ x a =;0x = 经过原点(不包括坐标轴)的直线________________ y kx = 4.设直线方程的一些常用技巧: 1.知直线纵截距b ,常设其方程为y kx b =+; 2.知直线过点00(,)x y ,当斜率k 存在时,常设其方程为00()y k x x y =-+,当斜率k 不存在时,则其方程为0x x =; 3.与直线:0l Ax By C ++=平行的直线可表示为10Ax By C ++=; 4.与直线:0l Ax By C ++=垂直的直线可表示为10Bx Ay C -+=. 5、过直线l 1、l 2交点的直线系方程:(A 1x +B 1y +C 1)+λ( A 2x +B 2y +C 2)=0 (λ?R )注:该线系不含l 2.

必修二平面解析几何初步知识点及练习带答案

1直线的倾斜角与斜率: (1 )直线的倾斜角:在平面直角坐标系中,对于一条与x轴相交的直线,如果把x轴绕着 交点按逆时针方向旋转到和直线重合时所转的最小正角记为叫做 直线的倾斜角? 倾斜角[0,180 ), 90斜率不存在■ (2)直线的斜率:k y2 X2 —^(为X2), k X1 tan . ( R(X1, yj、巳佑y:)) 2 ?直线方程的五种形式: (1)点斜式: 注:当直 y y1 k(x X1)(直线1过点R(X1,y1),且斜率为k ). 1■线斜率不存在时,不冃匕用点斜式表示,此时万程为X X0 . (2)斜截式:y kx b ( b为直线1在y轴上的截距). (3)两点式: y y1 x X1 ( (% y2, X1 X2). y2 y1 X2 X1 注:①不能表示与x轴和y轴垂直的直线; ②方程形式为:(x2 x1)(y y1) (y2y1 )(x x1) 0时,方程可以表示任意直线. (4)截距式: X y 1 ( a,b分别为x轴y轴上的截距,且a 0,b 0). a b 注:不能表示与x轴垂直的直线,也不能表示与y轴垂直的直线,特别是不能表示过原点的直线. (5) —般式:Ax By C 0 (其中A、B不同时为0). AC A 一般式化为斜截式:y x ,即,直线的斜率:k B B B 注:(1)已知直线纵截距b,常设其方程为y kx b或x 0. 已知直线横截距x0,常设其方程为x my x0(直线斜率k存在时,m为k的倒数)或y 0 . 已知直线过点(X。,y°),常设其方程为y k(x x°) y或x x°. (2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合. 3.直线在坐标轴上的截矩可正,可负,也可为0. (1 )直线在两坐标轴上的截距相等直线的斜率为1或直线过原点. (2 )直线两截距互为相反数直线的斜率为1或直线过原点. (3 )直线两截距绝对值相等直线的斜率为1或直线过原点. 4.两条直线的平仃和垂直: (1 )若11 : y k1x b1,12 : y k2X b2 ① 11//12k1k2,b1 b2 ;② 1112k1k2 1 (2 )若11 : A1x B1y C1 0, 1 2 : A Q X B2 y C2 0,有 ① 11 //12 A i B2 A2 B i 且 A C? A2C1.② 11 12 A i A2 B i B2 0 . 5.平面两点距离公式:

高中数学解析几何知识点总结

高中数学解析几何知识 点总结 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

§0 7. 直线和圆的方程 知识要点 一、直线方程. 1. 直线的倾斜角:一条直线向上的方向与x 轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与x 轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是 )0(1800παα ≤≤. 注:①当 90=α或12x x =时,直线l 垂直于x 轴,它的斜率不存在. ②每一条直线都存在惟一的倾斜角,除与x 轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定. 2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式. 特别地,当直线经过两点),0(),0,(b a ,即直线在x 轴,y 轴上的截距分别为)0,0(,≠≠b a b a 时,直线方程是:1=+b y a x . 注:若23 2--=x y 是一直线的方程,则这条直线的方程是23 2--=x y ,但若 )0(23 2 ≥-- =x x y 则不是这条线. 附:直线系:对于直线的斜截式方程b kx y +=,当b k ,均为确定的数值时,它表示一条确定的直线,如果b k ,变化时,对应的直线也会变化.①当b 为定植,k 变化时,它们表示过定点(0,b )的直线束.②当k 为定值,b 变化时,它们表示一组平行直线. 3. ⑴两条直线平行: 1l ∥212k k l =?两条直线平行的条件是:①1l 和2l 是两条不重合的直线. ②在1l 和2l 的斜 率都存在的前提下得到的. 因此,应特别注意,抽掉或忽视其中任一个“前提”都会导致结论的错误. (一般的结论是:对于两条直线21,l l ,它们在y 轴上的纵截距是21,b b ,则 1l ∥212k k l =?,且21b b ≠或21,l l 的斜率均不存在,即2121A B B A =是平行的必要不充分条 件,且21C C ≠)

相关文档
最新文档