01背包问题回溯算法

01背包问题回溯算法
01背包问题回溯算法

假设有7个物品,它们的重量和价值如下表所示。若这些物品均不能被分割,且背包容量M=150,使用回溯方法求解此背包问题。请写出状态空间搜索树。

参考答案:按照单位效益从大到小依次排列这7个物品为:FBGDECA。将它们的序号分别记为1~7。则可生产如下的状态空间搜索树。

其中各个节点处的限界函数值通过如下方式求得:

a. 40+40+30+50+35×(150-115)/40=190.625 (1,1,1,1,7/8,0,0)

b. 40+40+30+50+30×(150-115)/60=177.5 (1,1,1,1,0,7/12,0)

c.40+40+30+50+10×(150-115)/35=170 (1,1,1,1,0,0,1)

d. 40+40+30+35+30×(150-105)/60=167.5 (1,1,1,0,1,3/4,0)

e. 40+40+50+35+30×(150-130)/60=175 (1,1,0,1,1,1/3,0)

f. 40+40+50+35+10×(150-130)/35=170.71 (1,1,0,1,1,0,4/7)

g. 40+40+50+30=160 (1,1,0,1,0,1,0)

h. 40+40+35+30+10×(150-140)/35=146.85 (1,1,0,0,1,1,2/7)

i. 40+30+50+35+30×(150-125)/60=167.5 (1,0,1,1,1,5/12,0)

j. 40+30+50+35+30×(150-145)/60=157.5 (0,1,1,1,1,1/12,0)

在Q1处获得该问题的最优解为,背包效益为170。即在背包中装入物品F、B、G、D、A时达到最大效益,为170,重量为150。

动态规划与回溯法解决0-1背包问题

0-1背包动态规划解决问题 一、问题描述: 有n个物品,它们有各自的重量和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和? 二、总体思路: 根据动态规划解题步骤(问题抽象化、建立模型、寻找约束条件、判断是否满足最优性原理、找大问题与小问题的递推关系式、填表、寻找解组成)找出01背包问题的最优解以及解组成,然后编写代码实现。 原理: 动态规划与分治法类似,都是把大问题拆分成小问题,通过寻找大问题与小问题的递推关系,解决一个个小问题,最终达到解决原问题的效果。但不同的是,分治法在子问题和子子问题等上被重复计算了很多次,而动态规划则具有记忆性,通过填写表把所有已经解决的子问题答案纪录下来,在新问题里需要用到的子问题可以直接提取,避免了重复计算,从而节约了时间,所以在问题满足最优性原理之后,用动态规划解决问题的核心就在于填表,表填写完毕,最优解也就找到。 过程: a) 把背包问题抽象化(X1,X2,…,Xn,其中 Xi 取0或1,表示第i个物品选或不选),V i表示第i个物品的价值,W i表示第i个物品的体积(重量); b) 建立模型,即求max(V1X1+V2X2+…+VnXn); c) 约束条件,W1X1+W2X2+…+WnXn (V2X2+V3X3+…+VnXn)+V1X1;

贪心算法0-1背包问题(算法实验代码)

实验三、0-1背包问题(贪心算法) 实验代码: #include int max(int a,int b) { if(a>b) return a; else return b; } void Knapsack(int *v,int *w,int *x,int c,int n, int m[8][100]) { int i,j; for(j=0;j=1;i--) { for(j=w[i];j<=c;j++) m[i][j]=max(m[i+1][j],m[i+1][j-w[i]]+v[i]); } for(i=1;i

printf("物品总数为:7\n"); printf("物品重量和价值分别为:\n"); printf("\n重量价值\n"); for (i=1;i<=n;i++) printf("%d %d \n",w[i],v[i]); int m=15; int array[8][100]={0}; Knapsack(v,w,x,m,7,array); printf("背包能装的最大价值为: %d\n",array[1][m]); printf("贪心算法的解为: "); for(i=1;i<=n;i++) { if(i==1) printf("%d",x[i]); else printf(" %d",x[i]); } printf("\n"); return 0; } 测试截图为:

回溯算法解决0-1背包问题(DOC)

《算法分析与设计》实验报告 2015-2016年第2学期 实验班级: 学生姓名: 学号: 指导老师: 信息工程学院

实验项目名称:回溯算法解决0-1背包问题 实验日期:2016年5 月18 日 一、实验类型:□√验证性□设计性 二、实验目的 掌握0—1背包问题的回溯算法 三、实验内容及要求 给定n种物品和一背包。物品i的重量是wi,其价值为vi,背包的容量为C。问应如何选择装入背包的物品,使得装入背包中物品的总价值最大? 四、实验步骤 #include using namespace std; class Knap { friend int Knapsack(int p[],int w[],int c,int n ); public: void print() { for(int m=1;m<=n;m++) { cout<

int cw;//当前重量 int cp;//当前价值 int bestp;//当前最优值 int *bestx;//当前最优解 int *x;//当前解 }; int Knap::Bound(int i) { //计算上界 int cleft=c-cw;//剩余容量 int b=cp; //以物品单位重量价值递减序装入物品while(i<=n&&w[i]<=cleft) { cleft-=w[i]; b+=p[i]; i++; } //装满背包 if(i<=n) b+=p[i]/w[i]*cleft; return b; } void Knap::Backtrack(int i) { if(i>n) { if(bestp

算法分析与程序设计动态规划及回溯法解背包问题

动态规划法、回溯法解0-1背包问题 2012级计科庞佳奇 一、问题描述与分析 1.动态规划算法通常用于求解具有某种最优性质的问题。在这类问题中,可能会 有许多可行解。每一个解都对应于一个值,我们希望找到具有最优值的解。动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次。如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间。我们可以用一个表来记录所有已解的子问题的答案。 不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中。这就是动态规划法的基本思路。具体的动态规划算法多种多样,但它们具有相同的填表格式。 多阶段决策问题中,各个阶段采取的决策,一般来说是与时间有关的,决策依赖于当前状态,又随即引起状态的转移,一个决策序列就是在变化的状态中产生出来的,故有“动态”的含义,称这种解决多阶段决策最优化问题的方法为动态规划方法。任何思想方法都有一定的局限性,超出了特定条件,它就失去了作用。同样,动态规划也并不是万能的。适用动态规划的问题必须满足最优化原理和无后效性。1.最优化原理(最优子结构性质)最优化原理可这样阐述:一个最优化策略具有这样的性质,不论过去状态和决策如何,对前面的决策所形成的状态而言,余下的诸决策必须构成最优策略。简而言之,一个最优化策略的子策略总是最优的。一个问题满足最优化原理又称其具有最优子结构性质。2.无后效性将各阶段按照一定的次序排列好之后,对于某个给定的阶段状态,它以前各阶段的状态无法直接影响它未来的决策,而只能通过当前的这个状态。换句话说,每个状态都是过去历史的一个完整总结。这就是无后向性,又称为无后效性。3.子问题的重叠性动态规划将原来具有指数级时间复杂度的搜索算法改进成了具有多项式时间复杂度的算法。其中的关键在于解决冗余,这是动态规划算法的根本目的。动态规划实质上是一种以空间换时间的技术,它在实现的过程中,不得不存储产生过程中的各种状态,所以它的空间复杂度要大于其它的算法。 01背包是在M件物品取出若干件放在空间为W的背包里,每件物品的体积为W1,W2……Wn,与之相对应的价值为P1,P2……Pn。求出获得最大价值的方案。 2.回溯法(探索与回溯法)是一种选优搜索法,按选优条件向前搜索,以达到目 标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。 在包含问题的所有解的解空间树中,按照深度优先搜索的策略,从根结点出发深度探索解空间树。当探索到某一结点时,要先判断该结点是否包含问题的解,如果包含,就从该结点出发继续探索下去,如果该结点不包含问题的解,则逐层向其祖先结点回溯。(其实回溯法就是对隐式图的深度优先搜索算法)。若用回溯法求问题的所有解时,要回溯到根,且根结点的所有可行的子树都要已被搜索遍才结束。

算法设计实验_贪心算法背包问题

《算法分析与设计》 课程实验 专业年级:信息与计算科学 学生学号: 学生姓名: 实验题目:用贪婪法求解背包问题 指导老师: 实验时间:20xx年xx月x日 一、实验内容 用贪婪法求解背包问题 要求:用非递归实现 二、实验步骤 2.1、理解算法思想和问题要求; 2.2、写出每个操作的算法 非递归算法: greedbag() { int N; int c;

int[] w; int[] v; Scanner scan=new Scanner(System.in); System.out.print("输入背包的容量:"); c=scan.nextInt(); System.out.print("输入物品的数量:"); N=scan.nextInt(); System.out.print("分别输入物品的价值:"); v=new int[N]; for(int i=0;i

回溯法和分支限界法解决0-1背包题

0-1背包问题 计科1班朱润华 2012040732 方法1:回溯法 一、回溯法描述: 用回溯法解问题时,应明确定义问题的解空间。问题的解空间至少包含问题的一个(最优)解。对于0-1背包问题,解空间由长度为n的0-1向量组成。该解空间包含对变量的所有0-1赋值。例如n=3时,解空间为:{(0,0,0),(0,1,0),(0,0,1),(1,0,0),(0,1,1),(1,0,1),(1,1,0),(1,1,1)}然后可将解空间组织成树或图的形式,0-1背包则可用完全二叉树表示其解空间给定n种物品和一背包。物品i的重量是wi,其价值为vi,背包的容量为C。问:应如何选择装入背包的物品,使得装入背包中物品的总价值最大? 形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找一n元向量(x1,x2,…,xn,), xi∈{0,1}, ? ∑ wi xi≤c,且∑ vi xi达最大.即一个特殊的整数规划问题。 二、回溯法步骤思想描述: 0-1背包问题是子集选取问题。0-1 背包问题的解空间可以用子集树表示。在搜索解空间树时,只要其左儿子节点是一个可行节点,搜索就进入左子树。当右子树中有可能含有最优解时,才进入右子树搜索。否则,将右子树剪去。设r是当前剩余物品价值总和,cp是当前价值;bestp是当前最优价值。当cp+r<=bestp时,可剪去右子树。计算右子树上界的更好的方法是将剩余物品依次按其单位价值排序,然后依次装入物品,直至装不下时,再装入物品一部分而装满背包。 例如:对于0-1背包问题的一个实例,n=4,c=7,p=[9,10,7,4],w=[3,5,2,1]。这4个物品的单位重量价值分别为[3,2,3,5,4]。以物品单位重量价值的递减序装入物品。先装入物品4,然后装入物品3和1.装入这3个物品后,剩余的背包容量为1,只能装0.2的物品2。由此得一个解为[1,0.2,1,1],其相应价值为22。尽管这不是一个可行解,但可以证明其价值是最优值的上界。因此,对于这个实例,最优值不超过22。 在实现时,由Bound计算当前节点处的上界。类Knap的数据成员记录解空间树中的节点信息,以减少参数传递调用所需要的栈空间。在解空间树的当前扩展节点处,仅要进入右子树时才计算上界Bound,以判断是否可将右子树剪去。进入左子树时不需要计算上界,因为上界预期父节点的上界相同。 三、回溯法实现代码: #include "stdafx.h" #include using namespace std; template class Knap { template friend Typep Knapsack(Typep [],Typew [],Typew,int); private: Typep Bound(int i);

【精选】贪心算法的应用

贪心算法的应用 课程名称:算法设计与分析 院系:计算机科学与信息工程学院 学生姓名:**** 学号:********** 专业班级:********************************** 指导教师:****** 201312-27

贪心算法的应用 摘要:顾名思义,贪心算法总是作出在当前看来最好的选择。也就是说贪心算法并不从整体最优考虑,它所作出的选择只是在某种意义上的局部最优选择。当然,希望贪心算法得到的最终结果也是整体最优的。虽然贪心算法不能对所有问题都得到整体最优解,但对许多问题它能产生整体最优解。如单源最短路经问题,最小生成树问题等。在一些情况下,即使贪心算法不能得到整体最优解,其最终结果却是最优解的很好近似。贪心算法求问题一般具有两个重要性质:贪心选择性质和最优子结构性质。所谓贪心选择性是指所求问题的整体最优解可以通过一系列局部最优解的选择,即贪心选择达到。这是贪心算法可行的第一个基本要素,也是贪心算法与动态规划算法主要区别。当一个问题的最优解包含其子问题的最优解时,称此问题具有最优子结构性质。问题的最优子结构性质是该问题可用动态规划算法或贪心算法求解的关键特征。 背包问题是一个经典的问题,我们可以采用多种算法去求解0/1背包问题,比如动态规划法、分支限界法、贪心算法、回溯法。在这里我们采用贪心法解决这个问题。 关键词:贪心法背包问题最优化

目录 第1章绪论 (3) 1.1 贪心算法的背景知识 (3) 1.2 贪心算法的前景意义 (3) 第2章贪心算法的理论知识 (4) 2.1 问题的模式 (4) 2.2 贪心算法的一般性描述 (4) 第3章背包问题 (5) 3.1 问题描述 (5) 3.2 问题分析 (5) 3.3算法设计 (5) 3.4 测试结果与分析 (10) 第4章结论 (12) 参考文献 (13) 附件 (13)

回溯法实验(0-1背包问题)

算法分析与设计实验报告第五次附加实验

附录: 完整代码(回溯法) //0-1背包问题回溯法求解 #include using namespace std; template class Knap //Knap类记录解空间树的结点信息 { template friend Typep Knapsack(Typep [],Typew [],Typew,int); private: Typep Bound(int i); //计算上界的函数 void Backtrack(int i); //回溯求最优解函数

Typew c; //背包容量 int n; //物品数 Typew *w; //物品重量数组| Typep *p; //物品价值数组 Typew cw; //当前重量 Typep cp; //当前价值 Typep bestp; //当前最后价值 }; template Typep Knapsack(Typep p[],Typew w[],Typew c,int n); //声明背包问题求解函数template inline void Swap(Type &a,Type &b); //声明交换函数 template void BubbleSort(Type a[],int n); //声明冒泡排序函数 int main() { int n ;//物品数 int c ;//背包容量 cout<<"物品个数为:"; cin>>n; cout<<"背包容量为:"; cin>>c; int *p = new int[n];//物品价值下标从1开始 int *w = new int[n];//物品重量下标从1开始 cout<<"物品重量分别为:"<>w[i]; } cout<<"物品价值分别为:"<>p[i]; } cout<<"物品重量和价值分别为:"<

C语言版贪心算法背包问题

#include<> #define N 100 typedef struct bao{ int num; float w; float v; }; typedef struct avg{ int num; ( float val; float w; float v; }; struct bao b[N]; struct avg d[N]; int n; float c; ^ void Sort() { int i,j,k; struct avg temp[N]; for(i=0;i

float x[N],sum = 0; for(i=0;ic) break; x[d[i].num] = 1; sum += d[i].v; c -= d[i].w; } if(i

用回溯法解决0-1背包问题

#include int c; //背包容量 int n; //物品数 int weight[100]; //存放n个物品重量的数组 int price[100]; //存放n个物品价值的数组 int currentWeight=0; //当前重量 int currentPrice=0; //当前价值 int bestPrice=0; //当前最优值 int bestAnswer[100]; //当前最优解 int bp=0; int bA[100]; //当前最优解 int times=0; void Print(); void Backtracking(int i) { times+=1; if(i>n) { Print(); if(bestPrice>bp) { bp=bestPrice; for(int j=1;j<=n;j++) bA[j]=bestAnswer[j]; } return; } if(currentWeight+weight[i]<=c) { //将物品i放入背包,搜索左子树 bestAnswer[i] = 1; currentWeight += weight[i]; bestPrice += price[i]; Backtracking(i+1); //完成上面的递归,返回到上一结点,物品i不放入背包,准备递归右子树 currentWeight -= weight[i]; bestPrice -= price[i]; } bestAnswer[i] = 0; Backtracking(i+1); } void Print() {

背包问题(贪心算法)

算法分析与设计实验报告 第 4 次实验

}

附录:完整代码 #include #include #include struct node{ float value; float weight; }; float Value,curvalue=0; float Weight,curweight=0; //按价重比冒泡排序 void sort(node Node[],int M){ int i,j; node temp; for(i=0;i

回溯算法之0-1背包问题

1、实验目的 (1)掌握回溯法设计策略。 (2)通过0-1背包问学习回溯法法设计技巧2.实验内容 源程序: #include using namespace std; double c;//背包容量 int n; //物品数 double w[100];//物品重量数组 double p[100];//物品价值数组 double cw=0;//当前重量 double cp=0;//当前价值 double bestp=0;//当前最优值 double bound(int i) { double cleft,b; //计算上界 cleft=c-cw;//剩余容量 b=cp; //以物品单位重量价值递减序装入物品 while(i<=n&&w[i]<=cleft) { cleft-=w[i]; b+=p[i]; i++; } //装满背包 if(i<=n) b+=p[i]*cleft/w[i]; return b; } void Backtrack(int i) { if(i>n) { if(cp>bestp) bestp=cp; return;

} if(cw+w[i]<=c) //搜索左子树 { cw+=w[i]; cp+=p[i]; Backtrack(i+1); cp-=p[i]; cw-=w[i]; } if(bound(i+1)>bestp)//搜索右子树 Backtrack(i+1); } double Knapsack (double pp[],double ww[],double d) { int i; double TP=0,TW=0; cw=0.0;cp=0.0;bestp=0.0;//计算所有物品的重量及价值 for(i=1;i<=n;i++) { TP=TP+pp[i]; TW=TW+ww[i]; } if(TW<=d)//所有物品装入背包 bestp=TP; else { Backtrack(1); } return bestp; }; int main() {

贪心算法背包问题

算法设计与分析实验报告 题目:贪心算法背包问题 专业:JA V A技术xx——xxx班 学号: 姓名: 指导老师:

实验三:贪心算法背包问题 一、实验目的与要求 1、掌握背包问题的算法 2、初步掌握贪心算法 二、实验题: 问题描述:与0-1背包问题相似,给定n种物品和一个背包。物品i的重量是wi,其价值为vi,背包的容量为c。与0-1背包问题不同的是,在选择物品i装入背包时,背包问题的解决可以选择物品i的一部分,而不一定要全部装入背包,1< i < n。 三、实验代码 import java.awt.*; import java.awt.event.*; import javax.swing.*; public class er extends JFrame { private static final long serialVersionUID = -1508220487443708466L; private static final int width = 360;// 面板的宽度 private static final int height = 300;// 面板的高度 public int M; public int[] w; public int[] p; public int length; er() { // 初始Frame参数设置 this.setTitle("贪心算法"); setDefaultCloseOperation(EXIT_ON_CLOSE); setSize(width, height); Container c = getContentPane(); c.setLayout(new BoxLayout(c, BoxLayout.Y_AXIS)); setLocation(350, 150); // 声明一些字体样式 Font topF1 = new Font("宋体", Font.BOLD, 28); Font black15 = new Font("宋体", Font.PLAIN, 20); Font bold10 = new Font("宋体", Font.BOLD, 15); // 声明工具栏及属性设置 JPanel barPanel = new JPanel(); JMenuBar topBar = new JMenuBar(); topBar.setLocation(1, 1); barPanel.add(topBar); // 面板1和顶部标签属性设置 JPanel p1 = new JPanel(); JLabel topLabel = new JLabel("背包问题");

回溯法解0 1背包问题实验报告

实验4 回溯法解0-1背包问题 一、实验要求 1.要求用回溯法求解0-1背包问题; 要求交互输入背包容量,物品重量数组,物品价值数组;2.要求显示结果。3. 二、实验仪器和软件平台 仪器:带usb接口微机 软件平台:WIN-XP + VC++ 三、实验源码 #include \ #include #include #include<> #include using namespace std; template class Knap { public: friend void Init(); friend void Knapsack(); friend void Backtrack(int i); friend float Bound(int i); bool operator<(Knap a)const { if(fl< return true; else return false; } private: ty w; ; cout<>bag[i].v; for(i=0;i

{ bag[i].flag=0; bag[i].kk=i; bag[i].fl=*bag[i].v/bag[i].w; } }void Backtrack(int i){cw+=bag[i].w;if(i>=n) <=c) lag=1; cp+=bag[i].v; Backtrack(i+1); cw-=bag[i].w; cp-=bag[i].v; } if(Bound(i+1)>bestp)lag=0; Backtrack(i+1); }}<=cleft){; b+=bag[i].v; i++; } /bag[i].w * cleft; return b; } void Knapsack() k]=bag[k].flag; lag*bag[k].v; //价值累加 } cout<

0-1背包问题的算法设计策略对比与讲解

算法设计与分析大作业 班级:电子154 姓名:吴志勇 学号: 1049731503279 任课老师:李瑞芳 日期: 2015.12.25

算法设计与分析课程论文 0-1背包问题的算法设计策略对比与分析 0 引言 对于计算机科学来说,算法的概念是至关重要的。在一个大型软件系统的开发中,设计出有效的算法将起到决定性的作用。通俗的讲,算法是解决问题的一种方法。也因此,《算法分析与设计》成为计算科学的核心问题之一,也是计算机科学与技术专业本科及研究生的一门重要的专业基础课。算法分析与设计是计算机软件开发人员必修课,软件的效率和稳定性取决于软件中所采用的算法;对于一般程序员和计算机专业学生,学习算法设计与分析课程,可以开阔编程思路,编写出优质程序。通过老师的解析,培养我们怎样分析算法的“好”于“坏”,怎样设计算法,并以广泛用于计算机科学中的算法为例,对种类不同难度的算法设计进行系统的介绍与比较。本课程将培养学生严格的设计与分析算法的思维方式,改变随意拼凑算法的习惯。本课程要求具备离散数学、程序设计语言、数据结构等先行课课程的知识。 1 算法复杂性分析的方法介绍 算法复杂性的高低体现在运行该算法所需要的计算机资源的多少上,所需的资源越多,该算法的复杂性越高;反之,所需资源越少,该算法的复杂性越低。对计算机资源,最重要的是时间与空间(即存储器)资源。因此,算法的复杂性有时间复杂性T(n)与空间复杂性S(n)之分。 算法复杂性是算法运行所需要的计算机资源的量,这个量应集中反映算法的效率,并从运行该算法的实际计算机中抽象出来,换句话说,这个量应该只依赖要解决的问题规模‘算法的输入和算法本身的函数。用C表示复杂性,N,I和A表示问题的规模、算法的输入和算法本身规模,则有如下表达式: C=F(N,I,A) T=F(N,I,A) S=F(N,I,A) 其中F(N,I,A)是一个三元函数。通常A隐含在复杂性函数名当中,因此表达式中一般不写A。 即:C=F(N,I) T=F(N,I) S=F(N,I) 算法复杂性中时间与空间复杂性算法相似,所以以下算法复杂性主要以时间复杂性为例: 算法的时间复杂性一般分为三种情况:最坏情况、最好情况和平均情况。下面描述算法复杂性时都是用的简化的复杂性算法分析,引入了渐近意义的记号O,Ω,θ,和o。 O表示渐近上界Ω表示渐近下界: θ表示同阶即:f(n)= O(g(n))且 f(n)= Ω(g(n)) 2 常见的算法分析设计策略介绍 2.1 递归与分治策略 分治法的设计思想是,将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。 直接或间接地调用自身的算法称为递归算法。用函数自身给出定义的函数称为递归函数。 由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。这自然导致递归过程的产生。 分治与递归像一对孪生兄弟,经常同时应用在算法设计之中,并由此产生许多高效算法。 递归算法举例: 共11页第1页

c应用贪心算法求解背包问题

实验五应用贪心算法求解背包问题 学院:计算机科学与技术专业:计算机科学与技术 学号:班级:姓名: 、 实验内容: 背包问题指的是:有一个承重为W的背包和n个物品,它们各自的重量和价值分别是n ,假设W w i和v i(1 i n)w i 1i,求这些物品中最有价值的一个子集。如果每次选择某一个物品的时候,只能全部拿走,则这一问题称为离散(0-1)背包问题;如果每次可以拿走某一物品的任意一部分,则这一问题称为连续背包问题。 二、算法思想: 首先计算每种物品单位重量的价值Vi/Wi,然后,依贪心选择策略,将尽可能多的单位重量价值最高的物品装入背包。若将这种物品全部装入背包后,背包内的物品总重量未超过C,则选择单位重量价值次高的物品并尽可能多地装入背包。依此策略一直地进行下去,直到背包装满为止。 三、实验过程: #in elude using n amespace std; struct goodi nfo

{ float p; // 物品效益 float w; // 物品重量 float X; // 物品该放的数量 int flag; // 物品编号 };// 物品信息结构体 void Insertionsort(goodinfo goods[],int n)// 插入排序,按pi/wi 价值收益进行排序,一般教材上按冒泡排序 { int j,i; for(j=2;j<=n;j++) { goods[0]=goods[j]; i=j-1; while (goods[0].p>goods[i].p) { } goods[i+1]=goods[0]; } }// 按物品效益,重量比值做升序排列goods[i+1]=goods[i]; i--; void bag(goodinfo goods[],float M,int n) { float cu; int i,j;

回溯法解决01背包问题

回溯法是一个既带有系统性又带有跳跃性的搜索算法。它在包含问题的所有解的解空间树中按照深度优先的策略,从根节点出发搜索解空间树。算法搜索至解空间树的任一节点时,总是先判断该节点是否肯定不包含问题的解。如果肯定不包含,则跳过对以该节点为根的子树的系统搜索,逐层向其原先节点回溯。否则,进入该子树,继续按深度优先的策略进行搜索。 运用回溯法解题通常包含以下三个步骤: ?针对所给问题,定义问题的解空间; ?确定易于搜索的解空间结构; ?以深度优先的方式搜索解空间,并且在搜索过程中用剪枝函数避免无效搜索; 在0/1背包问题中,容量为M的背包装载。从n个物品中选取装入背包的物品,物品i的重量为Wi,价值为Pi。最佳装载指装入的物品价值最高,即∑PiXi(i=1..n)取最大值。约束条件为∑WiXi ≤M且Xi∈[0,1](1≤i≤n)。 在这个表达式中,需求出Xi的值。Xi=1表示物品i装入背包,Xi=0表示物品i不装入背包。 ?即判断可行解的约束条件是:∑WiXi≤M(i=0..n),Wi>0,Xi∈[0,1](1≤i≤n) ?目标最大值:max∑PiXi(i=0..n-1),Pi>0,Xi=0或1(0≤iS则前置条件错误,即背包体积输入错误,否则顺序将物品放入背包。假设放入前i件物品,背包没有装满,继续选取第i+1件物品,若该物品“太大”不能装入,则弃之继而选取下一件直到背包装满为止;如果剩余物品中找不到合适物品以填满背包,则说明“刚刚”装入的第i件

贪心算法实现背包问题算法设计与分析实验报告

算法设计与分析实验报告 实验名称贪心算法实现背包问题评分 实验日期年月日指导教师 姓名专业班级学号 一.实验要求 1. 优化问题 有n个输入,而它的解就由这n个输入满足某些事先给定的约束条件的某个子集组成,而把满足约束条件的子集称为该问题的可行解。可行解一般来说是不唯一的。那些使目标函数取极值(极大或极小)的可行解,称为最优解。 2.贪心法求优化问题 算法思想:在贪心算法中采用逐步构造最优解的方法。在每个阶段,都作出一个看上去最优的决策(在一定的标准下)。决策一旦作出,就不可再更改。作出贪心决策的依据称为贪心准则(greedy criterion)。 3.一般方法 1)根据题意,选取一种量度标准。 2)按这种量度标准对这n个输入排序 3)依次选择输入量加入部分解中。如果当前这个输入量的加入,不满足约束条件,则不把此输入加到这部分解中。 procedure GREEDY(A,n) /*贪心法一般控制流程*/ //A(1:n)包含n个输入// solutions←φ //将解向量solution初始化为空/ for i←1 to n do x←SELECT(A) if FEASIBLE(solution,x) then solutions←UNION(solution,x) endif repeat return(solution) end GREEDY 4. 实现典型的贪心算法的编程与上机实验,验证算法的时间复杂性函数。 二.实验内容 1. 编程实现背包问题贪心算法。通过具体算法理解如何通过局部最优实现全局最优,

并验证算法的时间复杂性。 2.输入5个的图的邻接矩阵,程序加入统计prim算法访问图的节点数和边数的语句。 3.将统计数与复杂性函数所计算比较次数比较,用表格列出比较结果,给出文字分析。 三.程序算法 1.背包问题的贪心算法 procedure KNAPSACK(P,W,M,X,n) //P(1:n)和W(1;n)分别含有按 P(i)/W(i)≥P(i+1)/W(i+1)排序的n件物品的效益值 和重量。M是背包的容量大小,而x(1:n)是解向量 real P(1:n),W(1:n),X(1:n),M,cu; integer i,n; X←0 //将解向量初始化为零 cu←M //cu是背包剩余容量 for i←1 to n do if W(i)>cu then exit endif X(i) ←1 cu←cu-W(i) repeat if i≤n then X(i) ←cu/ W(i) endif end GREEDY-KNAPSACK procedure prim(G,) status←“unseen” // T为空 status[1]←“tree node” // 将1放入T for each edge(1,w) do status[w]←“fringe” // 找到T的邻接点 dad[w] ←1; //w通过1与T建立联系 dist[w] ←weight(1,w) //w到T的距离 repeat while status[t]≠“tree node” do pick a fringe u with min dist[w] // 选取到T最近的节点 status[u]←“tree node” for each edge(u,w) do 修改w和T的关系 repeat repeat 2.Prim算法

相关文档
最新文档