§11.3连续映射的性质

§11.3连续映射的性质
§11.3连续映射的性质

§11.3 连续映射的性质

一、紧集上的连续映射 上一节关于连续映射的定义是:

“定义11.2.4' 设D 是n R 上的开集,0x D ∈为一定点,f 是从D 到

m R 上的映射(向量值函数)。如果

()()0

0lim x x f x f x →=,

则称映射f 在点0x 连续。用“εδ-”语言来说就是:

若对()000,x o x εδδ>>∈任给的,存在,使得当时,成立

()()0f x f x ε-<(即()()()0,f x o f x ε∈)

则称f 在点0x 连续。

如果映射f 在D 上每一点都连续,就称f 在D 上连续。这时称映射f 为D 上的连续映射。”

现在将上述定义中的“D 是开集”推广到n R 上任意点集。

定义11.3.1 设点集n K R ?,0x K ∈为一定点,f 是从K 到m R 上的映射(向量值函数)。若()000,x o x K εδδ>>∈ 任给,存在,使得当时,成立

()()0f x f x ε-<(即()()()0,f x o f x ε∈)

则称f 在点0x 连续。

如果映射f 在点集K 上每一点都连续,就称f 在K 上连续。这时称映射f 为K 上的连续映射。

也就说,当0x 是K 的内点时,这就是原来的定义11.2.4';当0x 是K

的边界点时,只要求函数在0x 的δ领域中属于K 的那些点(即()0,x o x K

δ∈ )满足不等式()()0f x f x ε-<。

对于一元函数,我们已经讨论了闭区间上的连续函数的性质(有界性、最值性、介值性和一致连续性)。闭区间上是一维空间中的有界闭集,顺理成章地,在讨论n 维空间n R 上的连续函数的性质时,也应该要求函数的定义域是n R 中的有界闭集,即紧集。这样,一元函数在闭区间上的性质就可以拓展到多元函数,这也是引进紧集概念的一个原因。

下面先给出紧集上的连续映射的一个重要性质。

定理11.3.1 连续映射将紧集映射成紧集。

证:设K 是n R 中的紧集,:m f K R →为连续映射。要证明K 的像集(值域)

()(){}

,M f K y R y f x x K =∈=∈

是紧集,根据定理11.1.10 (S 是紧集?S 的任一无限子集都有属于S 的聚点),只要证明()f K 中的任意一个无限点集必有聚点属于()f K 即可。因为每一个无限点集都有可列的无限子集(即点列),所以只要证明像集()f K 中的任意一个点列必有聚点属于()f K 即可。

设{}k y 为像集()f K 中的任意一个点列。对于每个k y ,任取一个满足()k k f x y =的()1,2,k x K k ∈= ,则{}k x 为紧集K 中的点列,所以它必有聚点属于K ,即存在{}k x 的子列{}

l k x 满足

lim l k l x a K →∞

=∈。

再由f 在a 点的连续性得

()

()lim lim l l k k l l y f x f a →∞

→∞

==,

即()f a 是{}k y 的一个聚点,因为a K ∈,所以()()f a f K ∈。因此()f K 是紧集。#

按照这个定理,如果()f x 是n R 中紧集K 的连续函数(:f K R →), 那么K 的像集()f K (数集)是R 中的紧集,因此是有界闭集,进而()f K 存在最大数和最小数。于是就可得到以下紧集上多元函数的两个重要性质:

定理11.3.2(有界性)若K 是n R 中的紧集,f 是K 上的连续函数,则f 在K 上有界。

定理11.3.3(最值性)若K 是n R 中的紧集,f 是K 上的连续函数,则f 在K 上能取得最大值和最小值,即存12,K ξξ∈,使得对一切x K ∈成立

()()()12f f x f ξξ≤≤。

二、映射的一致连续性

定义11.3.2 设K 是n R 中的点集,:m f K R →为映射。如果对任给的>0ε,存在>0δ,使得对任意,x x K '''∈,x x δ

'''-<,都有

()()f x f x ε'''-<,

则称映射f 在点集K 上一致连续。

显然,若映射f 在点集K 上一致连续,则f 必在K 上连续,但反之不然。不过下面的定理11.3.4告诉我们,在紧集上的连续映射一定是一致连续的映射。

定理11.3.4 设K 是n R 中的紧集,:m f K R →为连续映射,则f 在

K 上一致连续。

证:对任意给定的>0ε,由于f 在K 上连续,因此对任意K α∈,存在>0αδ,使得对任意x K ∈,只要(),x αραδ<(即(),x o K ααδ∈ ),就有

()()2

f x f ε

α-<。

显然所有这样的领域(),o ααδ之集(){}

,o K ααδα∈是K 的一个开覆盖。由于K 是紧集,因此在(){}

,o K ααδα∈中必存有限个开集

()()

()

1212,,,,,,p p o o o ααααδαδαδ

覆盖了K (即对任意x K ∈,必存在1t p ≤≤,使()

,t t x o ααδ∈)。

记{}

11

min 2j a j p

δδ≤≤=,则对任意,x x K '''∈,x x δ'''-<,不妨设 x '∈

(

)2

,

t

t o αδα(1t p ≤≤)

,这时 2

2

t t

t

t t t x x x x x x x αααδδαααδ''''''''''-=-+-≤-+-<+

=,

从而

()()()()()()2

2

t t f x f x f x f f f x ε

ε

ααε''''''-≤-+-<+

=。

因此f 在K 上一致连续。#

三、连通集与连通集上的连续映射

设()000

012,,,n x x x x = ,()000012,,,n n y y y y R =∈ ,称点集

()()[]{}0

10,1l t x t y t =

-+∈

为n R 中连结点0x 与点0y 的直线段。

一般地,设γ是闭区间[]0,1到n R 的连续映射

[]:0,1n R γ→

()12,,,n t x x x x =

即定义在[]0,1的连续函数组

()()()[]1122,

,

0,1,,

n n x x t x x t t x x t ?=?

=?∈?

??=? , 若满足

()()()()1

2

0,0,,0n

x x x x

= ,()()()()1201,1,,1n x x x y = ,

则称值域

[]()()()()[]{}

120,1,,,0,1n x t x t x t t γ=∈

为n R 上连接点0x 与点0y 的连续曲线。

设S 是n R 中的点集,若上述的连续曲线全部落在S 中,即

[]0,1S γ?,则称连续曲线γ为点集S 中的道路,()0γ与()1γ分别称为

道路的起点与终点。

若S 中的任意两点,x y 之间,都存在以x 为起点,y 为终点的道路,则称点集S 为连通的,或称S 为连通集。

显然,实数集R 上的连通集S 必是区间,而且S 为紧集的充分必要条件是:S 为闭区间。

连通的开集称为开区域,简称区域。区域的闭包称为闭区域。

定理11.3.5 连续映射将连通集映射成连通集。

证:设D 是n R 中的连通集,:m f D R →为连续映射,现证明f 的像集(即值域)

()(){}

,m f D y R y f x x D =∈=∈

是连通集,即要证明对于()f D 中的任意两点y '与y ''之间,都存在以y '为起点,y ''为终点的道路。

设()y f x ''=,()y f x ''''=,,x x D '''∈,由于D 是连通的,所以存在连续映射

[]:0,1D γ→,

使得()()01x x γγ'''==,。于是对于连续(复合)映射f γ 来说,有

[]()()0,1f f D γ?,

且()()()0f f x y γ''==,()()()1f f x y γ''''==。这说明[]()0,1f γ就是

()f D 中以y '为起点,y ''为终点的道路。再由(),y y f D '''∈的任意性即知()f D 是连通集。#

注意到,对于连续映射:m f D R →,当1m =时,它就是n 元连续函数()12,,,n y f x x x = ,()12,,,n n x x x D R ∈? 。而我们知道,R 上的连通集必是区间,而R 上的连通紧集就是闭区间。于是有下面的推论。

推论11.3.1 连续函数将连通的紧集映射成闭区间。 由这个推论便得到类似于闭区间上连续函数的介值性定理:

定理11.3.6(介值定理)设n

?是连通的紧集,f是D上的连

D R

续函数。则f可以取到它在D上的最小值m与最大值M之间的一切值。换言之,f的值域是闭区间[]

,m M。

作业(P133):1,2.

第2讲函数与映射的概念复习.docx

第2讲函数与映射的概念 ★知识梳理 1.函数的概念 (1)函数的定义:设A、B是两个非空的数集,如果按照某种对应法则于,对于集合A中的每一个数x ,在集合B中都冇唯一确定的数和它对应,那么这样的对应叫做从4到B的一个函数,通常记为y = /(x),x G A (2)函数的定义域、值域 在函数y = /(x),x G A中,x叫做口变量,x的取值范碉A叫做y = /0)的定义域;与x的值和对应的y值叫做函数值,函数值的集介{f(x)卜e A}称为函数y = f(x)的值域。 (2)函数的三要素:定义域、值域和对应法则 2.映射的概念:设A、B是两个集合,如果按照某种对应法则/,对于集合A中的任意元素,在集合B小都有唯-确泄的元素与Z对应,那么这样的单值对应叫做从A到B的映射,通常记为f : A — B ★重、难点突破 重点:掌握映射的概念、函数的概念,会求函数的定义域、值域 难点:求函数的值域和求抽象两数的定义域 重难点:1?关于抽象函数的定义域 求抽象函数的定义域,如果没冇弄清所给函数Z间的关系,求解容易出错误问题1:已知函数y = /(x)的定义域为[a, b],求y = /(x + 2)的定义域. 问题2:己知y = /(x + 2)的定义域是[d, b],求函数y = f (x)的定义域. 1.求值域的几种常用方法 (1 )配方法:对于(可化为)'、二次函数型〃的函数常用配方法,如求函数y = -sin2兀一2cosx + 4, 变为y = - sin? x-2cosx + 4 = (cosx-1)2 + 2解决. (2)基本函数法:一些由基木函数复合而成的函数可以利用基本函数的值域来求,如函数y = log j (-x2 + 2x + 3)就是利用函数y = log丨u和u = -x2 + 2兀+ 3的值域来求. 2 2 2JC + 1 (3)判别式法:通过对二次方程的实根的判别求值域。如求函数/ 的值域 兀'―2兀+ 2 山),=严+1得y/—2(y + i)x + 2y — l = 0,若y = 0 ,则得 % = 所以y = 0 x - 2x + 2 2 是函数值域中的一个值;若y ^0 ,则由△ = [—2(y + l)『—4y(2y —1)? 0得

函数的连续性极其性质

了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质. 无穷大量和无穷小量 无穷大量 我们先来看一个例子: 已知函数,当x→0时,可知,我们把这种情况称为趋向无穷大。为此我 们可定义如下:设有函数y=,在x=x0的去心邻域内有定义,对于任意给定的正数N(一个任意大的数),总可找到正数δ,当 时,成立,则称函数当时为无穷大量。 记为:(表示为无穷大量,实际它是没有极限的) 同样我们可以给出当x→∞时,无限趋大的定义:设有函数y=,当x充分大时有定义,对于任意给定的正数N(一个任意大的数),总可以找到正数M,当时,成立,则称函 数当x→∞时是无穷大量,记为:。 无穷小量 以零为极限的变量称为无穷小量。 定义:设有函数,对于任意给定的正数ε(不论它多么小),总存在正数δ(或正数M),使得对于适合不等式(或)的一切x,所对应的函数值满足不等式,则称函数当(或x→∞)时为无穷小量. 记作:(或) 注意:无穷大量与无穷小量都是一个变化不定的量,不是常量,只有0可作为无穷小量的唯一常量。无穷大量与无穷小量的区别是:前者无界,后者有界,前者发散,后者收敛于0.无穷大量与无穷小量是互为倒数关系的.。 关于无穷小量的两个定理 定理一:如果函数在(或x→∞)时有极限A,则差是当(或x→∞)时的无穷小量,反之亦成立。 定理二:无穷小量的有利运算定理 a):有限个无穷小量的代数和仍是无穷小量; b):有限个无穷小量的积仍是无穷小量;c):常数与无穷小量的积也是无穷小量. 无穷小量的比较 通过前面的学习我们已经知道,两个无穷小量的和、差及乘积仍旧是无穷小.那么两个无穷小量的商会是怎样的呢?好!接下来我们就来解决这个问题,这就是我们要学的两个无穷小量的比较。

6.1.1 单叶解析函数的映射性质

第六章 保形映射 第一节 单叶解析函数的映射性质 1、一般概念: 解析函数所确定的映射是保形映射。它是复变函数论中最重要的概念之一,与物理中的概念有密切的联系,而且对物理学中许多领域有重要的应用。 如应用保形映射成功地解决了流体力学与空气动力学、弹性力学、磁场、电场与热场理论以及其他方面的许多实际问题。不但如此,20世纪中亚音速及超音速飞机的研制促成了从保形映射理论到拟保形映射理论的发展。 我们主要研究单叶解析函数的映射性质。设函数w=f (z )在区域内解析,并且在任意不同点,函数所取的值不同。那么我们就称它为区域的单叶解析函数,简称即为单叶函数。 注解1、单叶函数是确定一个单射的解析函数。 例1、函数α+=z w 及z w α=是z 平面上的单叶解析函数它们把z 平面映射成w 平面,其中α是复常数,并且对于第二个映射0≠α。 例2、z e w =在每个带形 ,2Im π+<

有p 阶零点,并且对充分小的正数ρ,存在着一个正数μ,使得当 μ<-<||00w w 时,w z f -)(在ρ<-<||00z z 内有p 个一阶零点。 证明*:0)(w z f -在0z 有p 阶零点是显然的。由于f (z )不恒等于零,可以作出以0z 为心的开圆盘ρ<-|:|0z z D ,其边界为C ,使得f (z )在 C D D ?=上解析,并且使得0)(w z f -及f’(z )除去0z z =外在D 上无其他 零点。那么 ,0|)(|min 0>=-∈μw z f C z 取w ,使μ<-<||00w w 。现在应用儒歇定理,比较f (z )-w 及0)(w z f -在内D 的零点的个数。由于 ),())(()(00w w w z f w z f -+-=- 而当C z ∈时 ,0|||)(|00>->≥-w w w z f μ 可见f (z )-w 及0)(w z f -在D 内的零点个数同为p (每个n 阶零点作n 个零点)。 最后只须证明f (z )-w 在D 内的每个零点1z 都是一阶的。这是因为 0w w ≠,所以0z z ≠,而0]' )([0 ≠-≠z z w z f 。 定理1.1、设函数f (z )在区域D 内单叶解析,那么在D 内任一点, .0)('≠z f 证明:反证之。假定,0)(',00=∈z f D z ,那么由引理1.1,可得出与单叶相矛盾得结论。 注解1、如果一个函数在区域D 内单叶解析,那么它的导数在D 内任意一点不等于零;

函数与映射的概念及其表示方法

函数与映射的概念 ★知识梳理 1.函数的概念 (1)函数的定义: 设B A 、是两个非空的数集,如果按照某种对应法则f ,对于集合A 中的每一个数x ,在集合B 中都有唯一确定的数和它对应,那么这样的对应叫做从A 到B 的一个函数,通常记为A x x f y ∈=),( (2)函数的定义域、值域 在函数A x x f y ∈=),(中,x 叫做自变量,x 的取值范围A 叫做)(x f y =的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{} A x x f ∈)(称为函数)(x f y =的值域。 (2)函数的三要素:定义域、值域和对应法则 2.映射的概念 设B A 、是两个集合,如果按照某种对应法则f ,对于集合A 中的任意元素,在集合B 中都有唯一确定的元素与之对应,那么这样的单值对应叫做从A 到B 的映射,通常记为 B A f →: ★重、难点突破 重点:掌握映射的概念、函数的概念,会求函数的定义域、值域 难点:求函数的值域和求抽象函数的定义域 重难点:1.关于抽象函数的定义域 求抽象函数的定义域,如果没有弄清所给函数之间的关系,求解容易出错误 问题1:已知函数)(x f y =的定义域为][b a ,,求)2(+=x f y 的定义域 [误解]因为函数)(x f y =的定义域为][b a ,,所以b x a ≤≤,从而222+≤+≤+b x a 故)2(+=x f y 的定义域是]2,2[++b a [正解]因为)(x f y =的定义域为][b a ,,所以在函数)2(+=x f y 中,b x a ≤+≤2, 从而22-≤≤-b x a ,故)2(+=x f y 的定义域是]2,2[--b a 即本题的实质是求b x a ≤+≤2中x 的范围 问题2:已知)2(+=x f y 的定义域是][b a ,,求函数)(x f y =的定义域 [误解]因为函数)2(+=x f y 的定义域是][b a ,,所以得到b x a ≤+≤2,从而

连续函数性质

§ 连续函数的性质 ? 连续函数的局部性质 若函数f 在点0x 连续,则f 在点0x 有极限,且极限值等于函数值0()f x 。从而,根据函数极限的性质能推断出函数f 在0()U x 的性态。 定理1(局部有界性) 若函数f 在点0x 连续,,则f 在某0()U x 内有界。 定理2(局部保号性) 若函数f 在点0x 连续,且0()0f x >(或0<),则对任何正数0()r f x < (或0()r f x <-),存在某0()U x ,使得对一切 0()x U x ∈有()f x r >(或()f x r <-)。 注: 在具体应用局部保号性时,常取01 ()2 r f x =, 则当0()0f x >时,存在某0()U x ,使在其内有01 ()()2 f x f x > 。 定理3(四则运算) 若函数f 和g 在点0x 连续,则,, f f g f g g ±?(这里0()0g x ≠)也都在点0x 连续。 关于复合函数的连续性,有如下定理: 定理4 若函数f 在点0x 连续,g 在点0u 连续,00()u f x =,则复合 函数g f 在点0x 连续。 证明:由于g 在点0u 连续,10,0εδ?>?>,使得当01||u u δ-<时有 0|()()|g u g u ε-<。 (1)

又由00()u f x =及()u f x =f 在点0x 连续,故对上述1δ,存在0δ>, 使得当0||x x δ-<时有001|||()()|u u f x f x δ-=-<,联系(1)式得:对任 给的0ε>,存在0δ>,使得当0||x x δ-<时有 0|(())(())|g f x g f x ε -<。 这就证明了g f 在点0x 连续。 注:根据连续必的定义,上述定理的结论可表为 0lim (())(lim ())(())x x x x g f x g f x g f x →→== 定理 5 ()x f x x 0 lim →存在的充要条件是()() 0lim 00 0+=+→x f x f x x 与 ()()0lim 00 0-=-→x f x f x x 存在并且相等. 证明:必要性显然,仅须证充分性.设()A x f x x =+→0 0lim ()x f x x 00 lim -→=,从 而对任给的0>ε,存在01>δ和02 >δ,当 100δ<-=δδδ 时,当δ<-<00x x 时,则 δ <-<00x x 和 00<-<-x x δ 二者必居其一,从而满足①或②,所以 ()ε<-A x f . 定理 6 函数()x f 在0x 点连续的充要条件是()x f 左连续且右连续. 证明:()x f 在0x 点连续即为()()00 lim x f x f x x =→.注意左连续即为()()000x f x f =-,右连续即为()()000x f x f =+,用定理5即可证. 此外,在讨论函数的极限时往往必须把连续变量离散化,下面我们来讨论这方面的问题.

压缩映射原理的性质和应用

压缩映射原理的性质和应用 摘要 本文较有系统的研究了压缩映射原理及其一些应用,由于压缩映射原理是属于不动点理论中的一类原理,所以有许多不同的形式,本文主要利用在常规度量空间中讨论压缩映射原理的方法,在概率度量空间中讨论压缩映射原理。主要内容如下: 第一章,是绪论部分,首先讲了我之所以写这篇文章的原因,然后是本文所研究问题的历史背景和发展情况。 第二章,介绍压缩映射原理的最基本的形式,即Banach压缩映射原理,通过对其定理内容和证明方法的分析,深刻认识了Picard迭代方法在证明中起到的重要作用,总结出了一套通用的方法证明这类定理,还找了一个例子,用总结出的方法进行了证明。 第三章,用第一章总结出的方法研究了压缩映射原理更复杂的形式,随着研究问题的复杂,也使第一章总结出的方法变得更加完善。 第四章,把前几章得到的结论和方法应用到了微分方程和微分方程组的解的存在唯一性上。虽然只有两个例子,但是获得方法和思想可以用到许多其他的例子上。 第五章,引入概率度量空间的概念,和其中一系列与压缩映射原理有关的概念,结合概率度量空间的一些特殊性质,用前几章的讨论方法,在概率度量空间上讨论压缩映射原理,依次讨论了含随机数的压缩映射原理,在概率度量空间上添加一些条件后的基本压缩映射原理,非线性的压缩映射原理及应用等。 关键词:压缩映射;不动点;概率度量空间;非线性微分方程

ABSTRACT In this paper, a systematic study of the compression mapping principle and some applications, because of the contraction mapping theory is one of the principle in belong to the theory of fixed point, so there are many different forms, this paper mainly discussed used in conventional metric space compression mapping principle, the method of contractive mapping principle in probabilistic metric space. The main contents are as follows: The first chapter is the introduction part, first of all tell the reason why I write this article, and then this paper studies the historical background and development of the problem. The second chapter, this paper introduces the basic form of compression mapping principle, namely the contraction mapping theory, through the analysis of its proof content and methods, understanding the iteration method plays an important role in proof, summarizes a set of generic methods to prove this theorem, still looking for an example, summarizes the way has carried on the proof. The third chapter, in the first chapter summarizes the method of compression mapping principle is studied in the form of more complex, as the research problem of complex, also made the first chapter summarizes the methods become more perfect. The fourth chapter, in the previous chapter conclusion and method is applied to the existence and uniqueness of solution of differential equation and differential equations. Although only two examples, methods and thoughts can be used on many other examples. The fifth chapter, the introduction of the concept of probabilistic metric Spaces, and a series of concepts related to the contraction mapping theory, combined with some special properties of the probabilistic metric Spaces, the use of the previous chapters discuss method, compression mappings in probabilistic metric space principle, in order to discuss the compression mapping principle, containing the random number after adding some conditions in probabilistic metric space basic compression mapping principle, the principle and application of the compression of nonlinear mapping, etc. Key words: compression mapping; The fixed point. Probabilistic metric space; The nonlinear differential equation

函数与映射概念的理解

玩转函数第一招 第1招:函数与映射概念的理解【知识点理解】 ①映射.映射f : A→B 的概念。 对于两个集合A,B 如果按照某种对应法则f,对于集合A中的任.何.一.个.元素在集合 B 中都有唯一的元素和它对应,这样的对应(包括A、B 及f)叫做从集合 A 到集合B的映射. 记作:f:A→B. 对于映射这个概念,应明确以下几点: ①映射中的两个集合A 和B 可以是数集,点集或由图形组成的集合以及其它元素的集合. ②映射是有方向的,A 到 B 的映射与 B 到 A 的映射往往是不相同的. ③映射要求对集合 A 中的每一个元素在集合 B 中都有象,而这个象是唯一确定的.这种集合 A 中元素的任意性和在集合 B 中对应的元素的唯一性构成了映射的核心. ④映射允许集合B 中的某些元素在集合A 中没有原象,也就是由象组成的集合 C B. ⑤映射允许集合A 中不同的元素在集合B 中有相同的象,即映射只能是“多对一”或“一对一”,不能是“一对多”. 一一映射:设 A ,B 是两个集合,f :A → B 是从集合 A 到集合 B 的映射,如果在这个映射的作用下,对于集合A 中的不同的元素,在集合B中有不同的象,而且 B 中每一元素都有原象,那么这个映射叫做从.A.到.B.上.的一一映射. 一一映射既是一对一又是 B 无余的映射. 在理解映射概念时要注意:⑴A 中元素必须都有象且唯一; ⑵B中元素不一定都有原象,但原象不一定唯一。总结:取 元任意性,成象唯一性。 【精准训练】

(1)设f :M→N是集合M到N的映射,下列说法正确的是 A、M中每一个元素在N中必有象 B、N中每一个元素在M中必有原象 C、N中每一个元素在M中的原象是唯一的 D、N是M中所在元素的象的集合(答:A); (2)、若从集合A 到集合B 的映射 f满足 B 中的任何一个元素在 A中都有原象,则称映射 f 为从集合 A 到集合 B 的满射,现集合 A 中有 3 个元素,集合 B 中有 2 个元素,则从集合 A 到集合 B 的满射 f 的个数是: A 、 5 B 、6 C、 8 D、 9 (答:B )(3)点(a,b)在映射f的作用下的象是(a-b,a+b),则在f作用下点(3,1)的原象为点 _______ (答:(2,-1)); (4)a、b为实数,集合M{b ,1}, N ={a,0}, f : x→ x表示把集合M中的元素x映射到集合N中a 仍为x,则a +b= A、1 B、0 C、-1 D、±1 (5)若A = {1,2,3,4},B ={a,b,c},a,b,c R,则A到B的映射有个,B到A的 映射有个,A到B的函数有个(答:81,64,81); (6)设集合M={-1,0,1},N={1,2,3,4,5},映射f :M→ N满足条件“对任意的x M,x+ f(x)是奇数”,这样的映射f有_____ 个(答:12); (7)设f :x→ x2是集合A到集合B的映射,若B={1,2},则A B一定是_______ (答: 或{1}). 8)、已知集合A = {1, 2,3} ,B={-1,0,1},则满足条件f(3)=f(1)+f(2)的映射f : A→ B的个数是()(A)2 (B)4 (C)5 (D)7 (9)、从集合A={1,2,3}到B={3,4}的映射f : A→ B中满足条件f(3)= 3个数是()(A )2 (B )3 (C )4 (D)6 (10)、已知集合A={1,2,3},在A→ A的映射中满足条件f(3)=3,f(2)=1个数是() (11)、.A={1,2,3,4,5,},B={6,7,8,}从集合A到B的映射中满足f(1)≤f (2)≤f(3)≤f(4)≤f(5)的映射有() A、27 B、9 C、21 D、12 解:(1)当一个不等号也没有时,(即与B中的一个元素对应),则f有C13个

连续函数的性质(可编辑修改word版)

§2.2 连续函数的性质连续函数的局部性质 若函数f 在点x 0 连续,则f 在点x 有极限,且极限值等于函数 值f (x ) 。从而,根据函数极限的性质能推断出函数f 在U (x0 ) 的性态。 定理1(局部有界性)若函数f 在点x 0 连续,则f 在某U (x ) 内有 界。 定理2(局部保号性)若函数f 在点x 0连续,且f (x ) > 0 (或< 0 ), 则对任何正数r < f (x ) (或r <-f (x0) ),存在某U(x0),使得对一切x ∈U (x0 ) 有f (x) >r (或f (x) <-r )。 注:在具体应用局部保号性时,常取r =1 f (x ) ,则当f (x ) > 0 2 0 0 时,存在某U (x ) ,使在其内有f (x) >1 f (x ) 。 0 2 0 定理3(四则运算)若函数f 和g 在点x0连续,则f±g, f?g, f g (这里g(x ) ≠ 0 )也都在点x0 连续。 关于复合函数的连续性,有如下定理: 定理4 若函数f 在点x 0 连续,g 在点u 连续,u =f (x ) ,则复合 函数g f 在点x0连续。 证明:由于g 在点u 0连续,?> 0, ? 1 > 0 ,使得当| u -u0|<1时有 | g(u) -g(u0) |<。(1) 又由u 0 = f (x ) 及u = f (x) f 在点x0连续,故对上述1,存在> 0 , 使得当| x -x |<时有|u-u0|=|f(x)-f(x0)|<1,联系(1)式得:对任给的> 0 ,存在> 0 ,使得当| x -x0 |<时有| g( f (x)) -g( f (x0 )) |<。这就证明了g f 在点x0连续。

高一数学《函数—映射与函数》测试题(含答案)[1]

函数—映射与函数 一. 选择题: 1. 已知下列四个对应,其中是从A 到B 的映射的是( ) A B A B A B A B a m a m a a m b n b m n c n b p c b p (1) (2) (3) (4) A. (3)(4) B. (1)(2) C. (2)(3) D. (1)(4) 2. 已知A x x B y y =≤≤=≤≤{|}{|}0402,,从A 到B 的对应法则为:(1)f x y x :→= 1 2 ,(2)f x y x :→=-2,(3)f x y x :→=,(4)f x y x :||→=-2, 其中能构成一一映射的是( ) A. (1)(2)(3)(4) B. (1)(2)(3) C. (1)(3) D. (1)(4) 3. 设A 到B 的映射为f x y x 121:→=+,B 到C 的映射f y z y 22 1:→=-,则A 到C 的映射f 是( ) A. f x z x x :()→=+41 B. f x z x :→=-212 C. f x z x :→=22 D. f x z x x :→=++4412 4. 下列函数f(x)和g(x)中,表示同一函数的是( ) A. f x x g x x x ()()== -2 1, B. f x x x g x x ()()= --=+21 1 1, C. f x x g x x ()||()== ,2 D. f x x x g x x ()||||()||=++=+121, 5. 某种玩具,每个价格为10.25元,买x 件玩具所需的钱数为f x x ().=1025元,此时x 的取值范围为( ) A. R B. Z C. Q D. N 6. 函数y x x x =+ || 的图象是( )

浅论闭区间上连续函数的性质.doc

浅论闭区间上连续函数的性质 中山大学数学与应用数学04级数统基地班黎俊彬 摘要:本文就闭区间上连续函数的性质进行了一定程度上的探讨,从直观感觉和理论论证两面方面论述了有界性,最值定理,介值定理和一致连续性定理,并且将之与开区间上连续函数及不连续函数作一定的对比. 关键字:闭区间连续函数实数的连续性和闭区间的紧致性 实数的连续性和闭区间的紧致性,使闭区间上的连续函数有丰富的性质,而且可由实数的各等价命题推出?本文主要从对连续函数的直观理解深入到纯分析的论证?在论证过程屮,严格地不出现微分学和积分学的内容,只是从连续函数本身的性质及实数系的性质入手. 从直观上理解,连续函数的图像是一条连续不断的曲线,这对于一?般初等函数來说都是成立的?而闭区间b"]上的连续函数/(X)的图像两端必须紧紧地连接着定义在端点处的点(67,/?)),(/>,/⑹X-8 v ./(Q),/⑹V +8)上形成一条封闭的曲线,即与直线x = a,x = b.y =0形成一个或多个封闭的区域.直观理解虽然不完全正确,但却能帮助我们了解和发现闭区间连续函数的性质,某些时候还能帮助我们找到证明.但直观的认识不一定是正确的,的确存在一些连续函数,其图像并不能作岀来?直观认识,在科学里面只是充当一个开路先锋的角色,到最后,一定要用严格的推理来证明. 先看何谓闭区间上的连续函数?连续的定义首先是点连续的定义. 称/(X)在兀=兀0连续,如果lim /(%) = /(x0), 2X() B|j/(x)4x o附近有定义W > 0,? > 0,当X G u(x°0)时有|/(x)-/(x°)| < 称/⑴在兀=兀0左连续,如果w > o,? > 0,当兀w (兀0 - 兀0 ]时有(兀)-f(兀0 )| < £? 称 f(x)在兀=%右连续,如果>0,3^ >0,当x w [x0,x0 +5)时有|/(兀)-/(%)| < 若函数该点的极限值不等于函数值,经验告诉我们函数在该点必定断开,连续的定义与我们的直观认识相符合?而若函数在[G,b]连续,是指函数在区间的每点都连续,在左端点右连续,右端点左连续.下面讨论闭区间连续函数的相关性质, 并从直观和理论上与非闭区间的情况作比较,体会闭区间的独特的性质.

共形映射的概念和性质

第一节共形映射的概念 一、两曲线的夹角 二、解析函数导数的几何意义 三、共形映射的概念 四、小结与思考

一、两曲线的夹角 ) (,)(βα≤≤=t t z z 正向: t 增大时, 点z 移动的方向.如果规定: t p p 正向对应于割线0p p 0 , 那么增大的方向. )()( 00同向与t t z t t z Δ?Δ+平面内的有向连续曲线C 可表示为: z y x C ..0 p p )(0t z ) (0t t z Δ+

)() ()(lim 0000t z t t z t t z t ′=Δ?Δ+→Δ当p , 0时p p p 0处切线 上 0p C ,,0)( 00βα<<≠′t t z 如果的向量那么表示)(0t z ′). ( 0t z z C =相切于点与方向与C 一致.C ..0 p p ) (0t z ) (0 t t z Δ+)(0t z ′y x C 沿

00)()(z C z t z 上点为起点为的方向若规定′处切线的正向, 则有 x 轴正向之间的夹角. 处的切线的正向与 上点就是00)( Arg .1z C t z ′C . z y x ) (0t z ′) (Arg 0t z ′

2 C 1 C 正向之间与相交于一点的两条曲线21 .2C C 之间的夹角.)(Arg )(Arg 0102 t z t z ′?′. z ),(:11t z z C =; )(:22t z z C =). ()(02010t z t z z ==向 在交点处的两条切线正与就是的夹角21 ,C C

连续函数及连续函数的性质

连续函数及连续函数的性质 张柏忱 数学与统计学院 09级汉本 (三) 班 09041100434 摘要:数学分析的发展史告示我们,无论在理论上或在应用中都应从连续函数开始。这是因为,一方面在生产实际中所遇到的函数多是连续函数;另一方面,我们常常直接或间接地借助于连续函数讨论一些不连续的函数。于是连续函数就成为数学分析研究的主要对象。 关键词:连续 该变量 间断点 有界性 最值性 介值性、 一. 连续函数概念 已知函数f(x)在a 存在极限b ,即a b x f a x ,)(lim =→可能属于函数f(x)的定义域;f(a)也 一定等于b 。但是,当f(a)=b 时,有着特殊意义。 定义 设函数f(x)在U(a)有定义。若函数f(x)在a 存在极限,且极限就是f(a),即 )()(lim a f x f a x =→ (1) 则称函数f(x)在a 连续,a 是函数f(x)的连续点。 函数f(x)在a 连续,不仅a 属于函数f(x)的定义域,且有(1)式极限。因此函数f(x)在a 连续比函数f(x)在a 存在极限有更高的要求。 用极限的“δε- 定义”,函数f(x)在a 连续(即(1)式极限).|f(a)-f(x)|,|:|,0,0εδδε<<-?>?>??有a x x 将(1)式极限改写为、 0)]()([lim =-→a f x f a x (2) 设x a x x x a x ?-=??+=.或称为自变数a x 在的改变量。设 ),()()()(a f x a f a f x f y -?+=-=? y ?称为函数y 在a 的改变量.如图3.1..0→??→x a x 于是,由(2)式 函数.0lim )(0 =??→?y a x f x 连续在 有时只需要讨论函数a x f 在)(左侧或右侧的连续性,有下面左右连续概念: 定义 设函数a x f 在以)(为左(右)端点的区间有定义。若 ))0()()(lim )(0()()(lim -==+==- + →→a f a f x f a f a f x f a x a x

连续函数的性质1

§2连续函数的性质 Ⅰ. 教学目的与要求 1.理解连续函数的局部有界性、局部保号性、保不等式性. 2.掌握连续函数的四则运算法则、连续函数的复合函数及反函数的连续性,会利用其讨 论函数的连续性. 3.掌握闭区间上连续函数的性质,会利用其讨论相关命题. 4.理解函数一致连续性的概念. Ⅱ. 教学重点与难点: 重点: 闭区间上连续函数的性质. 难点:. 闭区间上连续函数的性质,函数一致连续性的概念. Ⅲ. 讲授内容 一 连续函数的局部性质 若函数f 在点0x 连续,则f 在点0x 有极限,且极限值等于函数值()0x f .从而,根据 函数极限的性质能推断出函数f 在()0x U 的性态. 定理4.2(局部有界性) 若函数f 在点0x 连续,则f 在某()0x U 内有界. 定理4.3(局部保号性) 若函数f 在点0x 连续,且()0x f 0> (或0<),则对任何正 数()0x f r < (或()0x f r -<),存在某()0x U ,使得对一切∈x ()0x U 有 ()r x f >,()r x f -<或(). 注 在具体应用局部保号性时,常取()021x f r = 则(当()0x f 0>时)存在某()0x U 使在其内有()>x f ()02 1x f . 定理4.4(四则运算) 若函数f 和g 在点0x 连续,则g f g f g f ,,?±(这里 ()00≠x g )也都在点0x 连续. 以上三个定理的证明,都可从函数极限的有关定理直接推得. 对常量函数c y =和函数x y =反复应用定理4.4,能推出多项式函数 ()n n n n a x a x a x a x P +++=--1110 和有理函数()()() x Q x P x R =(Q P ,为多项式)在其定义域的每一点都是连续的. 同样,由x sin 和x cos 在R 上的连续性,可推出x tan 与x cot 在其定义域的每一点 都连续. 关于复合函数的连续性,有如下定理: 定理4.5 若函数f 在点0x 连续,g 在点0u 连续,()00x f u =,则复合函数f g 在点

解析映射的性质

定义6 (1) 函数自变量x 所在区域G 称定义域,点x 称原像;y 所在区域D 称值域,点y 称像;f 也可叫做映射或变换. (2)如果一个点0x 只有一个0y 与之对应则称f 为单值的;如果一个点0x 有多余一个0y 与之对应则称f 为多值的. (3)如果任意两个1x ,2x ()21x x ≠对应的y 也不同,则称f 是单叶的;如果存在两个或两个以上的点1x ,2x , ()j i x x j i ≠≠,对应同一个0y ,则称f 是多叶的.单值函数()x f y =又是单叶的,则称()x f y =为一一对应的. 定义7(1)把解析函数所构成的映射(变换)称为解析映射(变换); (2)原曲线在点0z 的切线正方向到变换后的像曲线在像点)(00z f =ω的切线正方向的角称为变换)(z f =ω在点0z 的一个旋转角; (3)像曲线Γ上的两个像点)(z f =ω和)(00z f =ω之间的距离0ωωω-=?与原像曲线C 上相应的两个原像点z 和0z 之间的距离0z z z -=?之比的极限 z C z z ??∈→?ω0lim 称为变换)(z f =ω在点0z 的一个收缩率. 定理8(保域性)设平面泛复函)(z f =ω在区域D 内解析且不恒为常数,则D 的像集)(D f G =也是一个区域. 证明:第一步:先证)(D f G =是开集(即G 中每一个点都是内点). 设G ∈0ω,则存在D z ∈0,使得)(00z f =ω.要证0y 是G 的内点,只需证明,当*ω与0ω充分接近时,*ω仍属于G ,即存在0ω的一个领域()G U ?δω,0.要证这个结果,只需证明,当*ω与0ω充分接近时,方程)(*z f =ω在区域D 内有解即可. 当0*ωω=时,结论显然成立;当0*ωω≠时,由推论3知,存在()G U ?δω,0, 使得当()G U ?∈δωω,00*时,必有0z 的空心邻域D z U ?)(00,)(*z f =ω在)(00z U 内有解,即G ∈*ω.所以)(D f G =是开集.

函数与映射的概念主要知识梳理

函数与映射的概念知识梳理第 1 页 共 1 页 函数与映射的概念主要知识梳理 ●函数的基本概念: 1、函数的定义:设B A ,是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的数)(x f 和它对应,则称B A f →:为从A 到B 的一个函数。 ①关键词:非空的数集、任意性、唯一性 ②作用:判断一个对应是否是函数 2、函数的三要素: 定义域A 、值域(?B)、对应法则f (定义域和对应法则最为关键) 作用:判断两函数是否是同一函数的依据(只要判断定义域和对应法则是否相同即可) ●函数的表示方法: 解析式法,列表法,图像法 ●分段函数与复合函数 分段函数:? ??∈∈=)()()()()(21D x x h D x x g x f ,复合函数:))((x g f y = ●映射的概念 1、定义:设设B A ,是非空集合,如果按某个确定的对应关系f ,使对于集合A 中的任意一个元素x , 在集合B 中都有唯一确定的数)(x f 和它对应,则称B A f →:为从A 到B 的一个映射。 ①关键词:非空集合、任意性、唯一性 ②作用:判断一个对应是否是映射 2、映射的三要素: 原象集A 、象集(?B)、对应法则f 作用:判断两映射是否是同一映射的依据(只要判断原象集和对应法则是否相同即可) 3、函数是特殊的映射; ●反函数 1、概念; 设函数()y f x =的定义域为A ,值域为C ,由()y f x =求出()x y ?=.如果对于C 中 每个y 值,在A 中都有唯一的值和它对应,那么()x y ?=为以y 为自变量的函数,叫做()y f x =的反函数,记作1()y f x -=,(x C ∈) 2、存在反函数的条件:函数()y f x =在定义域内单调(一 一映射) 3、求反函数的一般步骤: (1)求原函数的值域; (2)反解,由()y f x =解出)(y x ?=; (3)写出反函数的解析式1()y f x -=(互换,x y ),并注明反函数的定义域(即原函数的值域). 4、互为反函数的两个函数具有如下性质: (1)反函数的定义域、值域上分别是原函数的值域、定义域; (2)互为反函数的两个函数在各自的定义域内具有相同的单调性;它们的图象关于x y = 对称; (3)?=b a f )(a b f =-)(1 ●常见的思想方法 1、主要思想: ①数形结合:-------树形图 ②分类讨论:①按象的个数分类;②按原象个数分类; ③按对应关系(一对一、多对一,不能一对多)分类. 2、易错易混点 ①映射B A f →:与函数的定义).(x f y =-----A 中元素的任意性和B 中元素的唯一性? ②一个映射与某一对应的值. ③定义域与原象集以及与集合A 的关系. 值域与象集以及集合B 的关系. 3、主要题型: ①判断映射与函数; ②知原象、象、对应法则三者中的任意二个求余下一个; ③求映射与函数的个数.(注意分类讨论、注意和排列组合知识的综合应用)

多元连续函数的性质

毕业论文 题目:多元连续函数的性质 学院:数学与信息科学学院 专业:数学与应用数学 毕业年限:2012.6 学生姓名:马骥 学号:200871010428 指导教师:张春霞

多元连续函数的性质 马骥 (西北师范大学 数学与信息科学学院,甘肃 兰州 730070) 内容摘要:本文通过将一元连续函数在闭区间上的性质和二元连续函数在有界闭区域上的性质推广到 多元连续函数的性质. 我们一般可把区域分为有界区域和无界区域.本文分别探讨了多元连续函数在有界区域和无界区域上的性质,并得出一系列的结论.对于有界区域D ,对任意0P D ∈, 任意{}n P D ?,0n P P →时,lim ()n n f P →∞ 存在,则函数f 在D 上有界,取得最大、最小值,一致连续.对于无界区域D , 如果存在0r >,对任意P D ∈,P r >时,有()f P M ≤,则f 在D 上有界;若lim ()P f P →∞ =+∞, 则取得最小值;若lim ()P f P →∞ =-∞,则取得最大值.本文分别运用了区域的道路连通性和有界闭区域 完全覆盖原理两种方法证明了零点存在性定理,然后用零点存在性定理证明多元连续函数的介值性. 关键词:有界区域;无界区域;有界性;最值性;介值性;一致连续性 Properties of the Multivariate Continuous Function Abstract :This paper popularize the properties of the continuous function of one variable or two variables on closed interval with bound to the multivariate continuous function. Generally, the domain can be divided into two kinds: the bounded domain and the unbounded domain. This paper discusses the properties of the multivariate continuous function on the bounded domain or the unbounded domain and draws a series of conclusions. On bounded domain D , for any 0P D ∈, any {}n P D ?, if lim ()n n f P →∞ exists while 0n P P →,then function f is bounded and uniformly continuous , and exist maximum and minimum value . On unbounded domain D , there is 0r > and for any P D ∈, P r > ,if ()f P M ≤,then the function f is bounded; if lim ()P f P →∞ =+∞, then the function f can get the minimum value; if lim ()P f P →∞ =-∞, the function f will get the maximum value. This paper applies road connectivity and complete coverage theorem on closed domain with bound respectively to proof of zero point theorem, then applies zero point theorem to proof of intermediate value theorem of the multivariate continuous function. Keywords :Bounded domain ;unbounded domain ;boundedness ;maximum and minimum value ; intermediate-value property ;uniformly continuous

相关文档
最新文档