1第一节典型输入作用和时域性能指标

第三章自动控制系统的时域分析

本章主要内容

?典型输入作用和时域性能指标?一阶系统的瞬态响应

?二阶系统的瞬态响应

?高阶系统分析

?稳定性和代数稳定判据

?稳态误差分析

第一节典型输入作用和时域性

能指标

时域分析

什么是时域分析?

指控制系统在一定的输入下,根据输出量的时域表达式,分析系统的稳定性、瞬态和稳态性能。

由于时域分析是直接在时间域中对系统进行分析的方法,所以时域分析具有直观和准确的优点。

系统输出量的时域表示可由微分方程得到,也可由传递函数得到。

在初值为零时,一般都利用传递函数进行研究,用传递函数间接的评价系统的性能指标。具体是根据闭环系统传递函数的极点和零点来分析系统的性能。此时也称为复频域分析。

典型初始状态

这表明,在外作用加入系统之前系统是相对静止的,被控制量及其各阶导数相对于平衡工作点的增量为零。

一、典型初始状态

规定控制系统的初始状态均为零状态,即在时

-=0t 0

...)0()0()0(==''='=---c c c

二、典型输入作用

在分析和设计控制系统时,需要确定一个对各种控制系统的性能进行比较的基础,这个基础就是预先规定一些具有特殊形式的测试信号作为系统的输入信号,然后比较各种系统对这些输入信号的响应。

选取测试信号时必须考虑的原则:

?选取的输入信号的典型形式应反映系统工作时的大部分实际情况。

?选取外加输入信号的形式应尽可能简单,易于在实验室获得,以便于数学分析和实验研究。

?应选取那些能使系统工作在最不利情况下的输入信号作为典型的测试信号。

⒈脉冲函数:

理想单位脉冲函数:

[定义]:,且,其积分面积为1。

??

?=∞≠=0

0)(t t t δ?

-=1)(dt t δ出现在时刻,积分面积为A 的理想脉冲函数定义如下:

τ=t ???=∞≠=-τ

τ

τδt t t A ,,0)(且?∞∞-=-A

dt t A )(τδ0

)

(t δτ

)

(τδ-t 其拉氏变换后的像函数为:1

)]([=t L δ在控制工程中采用下列五种信号作为典型输入信号

⒉阶跃函数:

t

A

)

(t x ??

?≥<=0

0)(t A t t x A 为阶跃幅度,A =1称为单位阶跃函数,记为1(t)。

实际单位脉冲函数:

?∞

∞-?=???=1

1

)(dt t δ???

???

<

?><=?t t t t 01

00)(和δ?

1)

(t ?δ?

t

当时,

0→?)()(t t δδ=?其拉氏变换后的像函数为:s

A

t x L =

)]([

⒊斜坡函数(速度阶跃函数):

??

?≥<=000)(t Bt t t x B =1时称为单位斜坡函数。

t

)

(t x Bt

t x =)(⒋抛物线函数(加速度阶跃函数):

?????≥<=0

2

1

00)(2

t Ct t t x C =1时称为单位抛物线函数。

t

)(t x 2

21)(Ct

t x =其拉氏变换后的像函数为:2

)]([s

B

t x L =其拉氏变换后的像函数为:3

)]([s

C

t x L =

[提示]:上述几种典型输入信号的关系如下:

]

2

1[][)](1[)(2

33

22At dt d At dt d t A dt d t A ==?=δ⒌正弦函数:,式中,A 为振幅,为频率。

t A t x ωsin )(=ω其拉氏变换后的像函数为:2

2]sin [ω

ω

ω+=s A t A L 分析系统特性究竟采用何种典型输入信号,取决于实际系统在正常工作情况下最常见的输入信号形式。

当系统的输入具有突变性质时,如指令的突然转换、电源的突然接通、负荷的突变等均可选择阶跃函数为输入信号;当系统的输入是随时间线性增长变化时,可选择斜坡函数为典型输入信号;当考虑海浪对舰艇的扰动、电源及机械噪声等均可近似为正弦输入。

讨论系统的时域性能指标时,通常选择单位阶跃信号作为

典型输入作用

三、典型响应:⒈单位脉冲函数响应:1

)()(?=s G s C ⒉单位阶跃函数响应:s

s G s C 1

)

()(=⒊单位斜坡函数响应:2

1

)()(s s G s C =⒋单位抛物线函数响应:

3

1

)()(s

s G s C =[提示]:上述几种典型响应有如下关系:单位脉冲函数响应

单位阶跃函数响应

单位斜坡函数响应

单位抛物线函数响应

积分

积分

积分

微分

微分

微分

[]

)()(1

s G L t c -=??

?

???=-s s G L t c )()(1

??????=-21)()(s s G L t c ??

????=-31)()(s s G L t c

四、瞬态响应和稳态响应

在典型输入信号的作用下,任何一个控制系统的时间响应都由瞬态响应和稳态响应两部分组成。

1.瞬态响应:又称为瞬态过程或过渡过程。是指系统在典型输入信号的作用下,系统的输出量从初始状态到最终状态的响应过程。

?由于实际的控制系统存在惯性、阻尼及其它一些因素,系统的输出量不可能完全复现输入量的变化,瞬态过程曲线形态可表现为衰减振荡、等幅振荡和发散等形式。

?瞬态过程包含了输出响应的各种运动特性,这些特性称为系统的瞬态性能。

?一个可以实际运行的控制系统,瞬态过程必须是衰减的。即系统必须是稳定的。

2.稳态响应:又称为稳态过程。是指系统在典型输入信号

的作用下,当时间趋近于无穷大时,系统的输出响应状态。

?稳态过程反映了系统输出量最终复现输入量的程度,包

含了输出响应的稳态性能。

?从理论上说,只有当时间趋于无穷大时,才进入稳态过程,但这在工程应用中是无法实现的。因此在工程上只讨论典型输入信号加入后一段时间里的瞬态过程,在这段时间里,反映了系统主要的瞬态性能指标。而在这段时间之后,认为

进入了稳态过程。

如某系统的单位阶跃响应曲线如图所示:y

瞬态过程稳态过程

五、瞬态过程的性能指标

(一)衰减振荡:

具有衰减振荡的瞬态过程如图所示:

⒈延迟时间:

d t 输出响应第一次达到稳态值的50%所需的时间。0

t

y )

(∞y d t 2

)(∞y ⒉上升时间

r t 输出响应第一次达到稳态值y(∞)所需的时间。或指由稳态值的10%上升到稳态值的90%所需的时间。

通常以阶跃响应来衡量系统控制性能的优劣和定义瞬态过程的时域性能指标。稳定的随动系统(不计扰动)的单位阶跃响应函数有衰减振荡和单调变化两种。

r

t

⒋最大超调量(简称超调量)

:%δ%100)

()(%max ?∞∞-=y y y δ式中:—输出响应的最大值;max y )(lim )(t y y t ∞

→=∞—稳态值;输出响应超过稳态值达到第

一个峰值y max 所需要的时间。⒊峰值时间:

p t 0

t

y

)

(∞y p t m ax

y 瞬态过程中输出响应的最大值超过稳态值的百分数。⒌调节时间或过渡过程时间

s t 当和之间的误差达到规定的范围之内[一般取的±5%或±2%,称允许误差范围,用?表示]且以后不再超出此范围的最小时间。即当,有:

)(t y )(∞y )

(∞y s t t ≥)

52(%

)(|)()(|或=???∞≤∞-y y t y )

(02.0)(05.0∞∞y y 或s t


自动控制原理实验 典型系统的时域响应和稳定性分析

电子科技大学中山学院学生实验报告系别:机电工程学院专业:课程名称:自动控制原理实验

一、目的要求 1.研究二阶系统的特征参量 (ξ、ωn) 对过渡过程的影响。 2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。 3.熟悉 Routh 判据,用 Routh 判据对三阶系统进行稳定性分析。 二、实验设备 PC机一台,TD—ACC教学实验系统一套 三、实验原理及内容 1.典型的二阶系统稳定性分析 (1) 结构框图:如图所示。 图 (2) 对应的模拟电路图:如图所示。 图 电子科技大学中山学院学生实验报告 系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别: 实验名称:实验时间: 学生成绩:教师签名:批改时间:

(3) 理论分析 系统开环传递函数为: ;开环增益: (4) 实验内容 先算出临界阻尼、欠阻尼、过阻尼时电阻 R 的理论值,再将理论值应用于模拟电路中, 观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。在此实验中(图, 系统闭环传递函数为: 其中自然振荡角频率: 2.典型的三阶系统稳定性分析 (1) 结构框图:如图所示。 电子科技大学中山学院学生实验报告 系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别: 实验名称:实验时间: 学生成绩:教师签名:批改时间:

电子科技大学中山学院学生实验报告 系别:机电工程学院专业:课程名称:自动控制原理实验

电子科技大学中山学院学生实验报告 系别:机电工程学院专业:课程名称:自动控制原理实验

电子科技大学中山学院学生实验报告 系别:机电工程学院专业:课程名称:自动控制原理实验

典型环节的时域响应的实验报告

实验报告 时域抽样与频域抽样 一、实验目的 加深理解连续时间信号离散过程中的数学概念和物理概念,掌握时域抽样定理的基本内容。掌握有抽样序列抽样原序列信号的基本原理与实现方法,理解其工程概念。加深理解频域离散化过程中的数学概念和物理概念,掌握频域抽样定理的基本内容。二、实验原理 离散系统在处理信号时,信号必须是离散序列。因此,再利用计算机等离散系统分析处理连续信号时必须对信号进行离散化处理。是与抽样定理给出了连续信号抽样过程中不失真的约束条件:对于基带信号,信号的抽样频率大于等于2倍的信号最高频率。信号的重建是信号抽样的逆过程。 非周期信号的离散信号的频谱是连续谱。 1、信号的时域抽样与重建, 2、信号的频域抽样 三、实验内容 1、为了观察连续信号时域抽样时抽样频率对抽样过程的影响,在【0,1】区间上以50hz的抽样频率对以下三个信号进行抽样,试画出抽样后的序列波形,并分析产生不同波形的原因,提出改进措施。

(1)x1(t)=cos(2pi*10t) (2)x2(t)=cos(2pi*50t) (3)x3(t)=cos(2pi*100t) (1)t0=0:0.001:0.1; x0=cos(2*pi*10*t0); plot(t0,x0,'r') hold on Fs=50 t=0:1/Fs:0.1; x=cos(2*pi*10*t); stem(t,x); hold off title 00.010.020.030.040.050.060.070.080.090.1 (2) t0=0:0.001:0.1; x0=cos(2*pi*50*t0); plot(t0,x0,'r') hold on Fs=50; t=0:1/Fs:0.1;

中南大学典型系统的时域响应和稳定性分析实验报告

实验报告 实验名称典型系统的时域响应和稳定性分析系信息院专业班 姓名学号授课老师预定时间实验时间实验台号 一、目的要求 1.研究二阶系统的特征参量(ξ、ωn) 对过渡过程的影响。 2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。 3.熟悉Routh 判据,用Routh 判据对三阶系统进行稳定性分析。 二、原理简述 1.典型的二阶系统稳定性分析 (1) 结构框图:如图所示。 (2) 理论分析 系统开环传递函数为:

开环增益 2.典型的三阶系统稳定性分析 (1) 结构框图:如图所示。 (2) 理论分析 系统开环传递函数为: 系统的特征方程为: 三、仪器设备 PC 机一台,TD-ACC+(或TD-ACS)教学实验系统一套。 四、线路示图 1.典型的二阶系统稳定性分析 2.典型的三阶系统稳定性分析

五、内容步骤 1.典型的二阶系统稳定性分析 实验内容: 先算出临界阻尼、欠阻尼、过阻尼时电阻R 的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。 系统闭环传递函数为: 其中自然振荡角频率: 阻尼比: 2.典型的三阶系统稳定性分析 实验内容 实验前由Routh 判断得Routh 行列式为:

为了保证系统稳定,第一列各值应为正数,所以有 实验步骤: 1.将信号源单元的“ST”端插针与“S”端插针用“短路块”短接。由于每个运放单元均设置了锁零场效应管,所以运放具有锁零功能。将开关设在“方波”档,分别调节调幅和调频电位器,使得“OUT”端输出的方波幅值为1V,周期为10s 左右。 2. 典型二阶系统瞬态性能指标的测试 (1) 按模拟电路图1.2-2 接线,将1 中的方波信号接至输入端,取R = 10K。 (2) 用示波器观察系统响应曲线C(t),测量并记录超调MP、峰值时间tp 和调节时间tS。 (3) 分别按R = 50K;160K;200K;改变系统开环增益,观察响应曲线C(t),测量并记录性能指标MP、tp 和tS,及系统的稳定性。并将测量值和计算值进行比较(实验前必须按公式计算出)。将实验结果填入表1.2-1 中。表1.2-2 中已填入了一组参考测量值,供参照。3.典型三阶系统的性能 (1) 按图1.2-4 接线,将1 中的方波信号接至输入端,取R = 30K。 (2) 观察系统的响应曲线,并记录波形。 (3) 减小开环增益(R = 41.7K;100K),观察响应曲线,并将实验结果填入表1.2-3 中。表1.2-4 中已填入了一组参考测量值,供参照。 六、数据处理 典型的二阶系统稳定性分析波形

典型环节的时域响应实验报告

典型环节的时域响应实验报告 一、实验要求 了解和掌握各典型环节的传递函数及模拟电路图,观察和分析各典型环节的响应曲线。 二、实验原理及内容: 1.比例环节(P) (1) 方框图: (2) 传递函数: (3) 阶跃响应: 其中 (4) 模拟电路图 图1 注意:图中运算放大器的正相输入端已经对地接了的电阻,实验中不需要再接。以后的实验中用到的运放也如此。 2.积分环节(I) (1) 方框图:

(2) 传递函数 (3) 阶跃响应: 其中 (4)模拟电路图: 图2 3.比例积分环节(PI) (1) 方框图: (2)传递函数: (3) 阶跃响应: 其中

(4)模拟电路图: 图3 4.惯性环节(T) (1) 方框图: (2) 传递函数: (3) 阶跃响应 其中 (4) 模拟电路图:

图4 5.比例微分环节(PD) (1) 方框图: (2) 传递函数: (3) 阶跃响应: 其中 为单位脉冲函数,这是一个面积为t的脉冲函数,脉冲宽度为零,幅值为无穷大,在实际中是得不到的。 (4) 模拟电路图: 图5 6.比例积分微分环节(PID) (1) 方框图:

(2) 传递函数: (3) 阶跃响应: 其中 为单位脉冲函数, (4) 模拟电路图: 图 6 三、实验步骤 1. 按比例环节的模拟电路图将线接好,检查无误后开启设备电源。 2. 将信号源单元的“ST”端插针与“S”端插针用“短路块”短接。由于每个运放单元均设置了锁零场效应管,所以运放具有锁零功能。调节调幅和调频电位器,使得“OUT”端输出的方波幅值为1V,周期为10s左右。

3. 将2中的方波信号加至环节的输入端Ui,用示波器的“CH1”和“CH2”表笔分别监测模拟电路的输入Ui端和输出U0端,观测输出端的实际响应曲线U0(t),记录实验波形及结果。 4. 改变几组参数,重新观测结果。 5. 用同样的方法分别搭接积分环节、比例积分环节、比例微分环节、惯性环节和比例积分微分环节的模拟电路图。观测这些环节对阶跃信号的实际响应曲线,分别记录实验波形及结果。 四、实验曲线及结论 1.比例环节 (P) (1)当R0=200K,R1=100K时, 图形如下: (2)当R0=200K、R1=200K时,图形如下:

典型二阶系统的时域响应与性能分析

实验二 典型二阶系统的时域响应与性能分析 一、实验目的 1、研究二阶系统的特征参量(ζ, ωn )对过渡过程的影响。 2、研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。 二、实验设备 PC 机一台,TD-ACS 教学实验系统一套。 三、实验原理 典型二阶系统开环传递函数为:) 1()1()(101101 += += s T s T K s T s T K s G ;其中,开环放大系数01K K = 。系统方块图与模拟电路如图2-1与图2-2所示。 图2-1典型二阶系统方块图 图2-2模拟电路图 先算出临界阻尼、欠阻尼、过阻尼时电电阻R 的理论值,再将理论值应用于模拟电路

中,观察二阶系统的动态性能及稳定性。 设R T K K s T T s T 200,2.0,10 1 10== ===, 系统闭环传递函数为: 2 222 221)()(n n n s s T K s T s T K K s Ts K s R s C ωζωω++=+ +=++= 其中,自然振荡频率:R T K n 10 10 == ω 阻尼比:4 102521R T K T n = = = ωζ 典型二阶系统的瞬态性能指标: 超调量:2 1%ζζπ δ--=e 峰值时间:2 1ζ ωπ-= n p t 峰值时间的输出值:2 11)(ζζπ -=+=e t C p 调节时间: 1)欠阻尼10<<ζ,???????=?=?≈5324 ,,t n n s ζωζω 2)临界阻尼1=ζ,???????=?=?≈575.4284 .5,,t n n s ωω 3)过阻尼1>ζ,? ??=?=?≈532 411,p ,p t s ,1p -与2p -为二阶系统两个互异的 负实根12 2,1-±-=-ζ ωζωn n p ,21p p ->>-,过阻尼系统可由距离虚轴较近的极点 1p -的一阶系统来近似表示。

典型环节及其阶跃响应

自动控制原理实验 典型环节及其阶跃相应 .1 实验目的 1. 学习构成典型环节的模拟电路,了解电路参数对环节特性的影响。 2. 学习典型环节阶跃响应的测量方法,并学会由阶跃响应曲线计算典型环节的传递函数。 3. 学习用Multisim、MATLAB仿真软件对实验容中的电路进行仿真。 .2 实验原理 典型环节的概念对系统建模、分析和研究很有用,但应强调典型环节的数学模型是对各种物理系统元、部件的机理和特性高度理想化以后的结果,重要的是,在一定条件下,典型模型的确定能在一定程度上忠实地描述那些元、部件物理过程的本质特征。 1.模拟典型环节是将运算放大器视为满足以下条件的理想放大器: (1) 输入阻抗为∞。流入运算放大器的电流为零,同时输出阻抗为零; (2) 电压增益为∞: (3) 通频带为∞: (4) 输入与输出之间呈线性特性: 2.实际模拟典型环节: (1) 实际运算放大器输出幅值受其电源限制是非线性的,实际运算放大器是有惯性的。 (2) 对比例环节、惯性环节、积分环节、比例积分环节和振荡环节,只要控制了输入量的大小或是输入量施加的时间的长短(对于积分或比例积分环节),不使其输出工作在工作期间达到饱和值,则非线性因素对上述环节特性的影响可以避免.但对模拟比例微分环节和微

分环节的影响则无法避免,其模拟输出只能达到有限的最高饱和值。 (3) 实际运放有惯性,它对所有模拟惯性环节的暂态响应都有影响,但情况又有较大的不同。 3.各典型环节的模拟电路及传递函数 (1) 比例环节的模拟电路如图.1所示,及传递函数为: 1 2)(R R S G -= .1 比例环节的模拟电路 2. 惯性环节的模拟电路如图.2所示,及传递函数为: 其中1 2R R K = T=R 2C 1 11R /1/)(21212212+-=+-=+-=-=TS K CS R R R CS R CS R Z Z S G

实验二--典型系统的时域响应分析实验仿真报告答案

实验二--典型系统的时域响应分析实验仿真报告答案

实验二典型系统的时域响应分析 1. 实验目的 1) 通过用MATLAB 及SIMULINK 对控制系统的时域分析有感性认识。 2) 明确对于一阶系统,单位阶跃信号、单位斜坡信号以及单位脉冲信号的响应曲线图。 3) 对于二阶系统阶跃信号的响应曲线图以及不同阻尼比、不同自然角频率取值范围的二阶系统曲线比较图。 4) 利用MATLAB 软件来绘制高阶控制系统的零极点分布图,判断此系统是否有主导极点,能否用低阶系统来近似,并将高阶系统与低阶系统的阶跃响应特性进行比较 5)编制简单的M文件程序。 2. 实验仪器 PC计算机一台,MATLAB软件1套 3. 实验内容 1)一阶系统的响应 (1) 一阶系统的单位阶跃响应 在SIMULINK 环境下搭建图1的模型,进行仿

真,得出仿真曲线图。 理论分析:C(s)=1/[s(0.8s+1)]由拉氏反变换得h(t)=1-e^(-t/0.8) (t>=0) 由此得知,图形是一条单调上升的指数曲线,与理论分析相符。 (2) 一阶系统的单位斜坡响应 在SIMULINK环境下搭建图2的模型,将示波器横轴终值修改为12进行仿真,得出仿真曲线图。

理论分析:C(s)=1/[s^2(4s+1)]可求的一阶系统的单位斜坡响应为c(t)=(t-4)+4e^(-t/4) e(t)=r(t)-c(t)=4-4e^(-t/4) 当t=0时,e(t)=0,当趋于无穷时,误差趋于常值4. 3)一阶系统的单位脉冲响应 在medit 环境下,编译一个.m 文件,利用impulse()函数可以得出仿真曲线图。此处注意分析在SIMULINK 环境中可否得到该曲线图。

典型环节的时域响应实验报告

成绩:教师签名:批改时间: 一、实验目的 1.熟悉并掌握TD-ACC+(或TD-ACS)设备的使用方法及各典型环节模拟电路的构成方法。 2.熟悉各种典型环节的理想阶跃响应曲线和实际阶跃响应曲线。对比差异分析原因。 3.了解参数变化对典型环节动态特性的影响。 二、实验设备 PC机一台,TD-ACC(或TD-ACS)实验系统一套 三、实验原理及内容 以运算放大器为核心,由其不同的输入R-C网络和反馈R-C网络构成控制系统的各种典型环节,用数字存储示波器测量各环节的阶跃响应曲线。下面为各环节模拟电路图。 1.比例环节(P)传递函数:Uo(s)/Ui(s)=K 2.积分环节(I)传递函数:Uo(s)/Ui(s)=1/TS 3.比例积分环节(PI) 传递函数:Uo(s)/Ui(s)=K+1/TS

成绩:教师签名:批改时间: 4.惯性环节(T)传递函数: Uo(s)/Ui(s)=K/(TS+1) 5.比例微分环节(PD)传递函数:Uo(s)/Ui(s)=K[(1+TS)/(1+τS)] 6.比例积分微分环节(PID)传递函数:Uo(s)/Ui(s)=Kp+1/TiS+TdS 四、实验步骤 1.按所列举的比例环节的模拟电路图将线连接好,检查无误后开启设备电源。 2.将信号源单元的“ST”端插针与“S”端插针用短路块短接,。将开关设在方波档,分别调节调幅和调频电位器,使得“out”端输出的方波幅值为1V,周期为10S左右。 3.将2中的方波信号加至环节的输入端Ui,用示波器的“CH1”和“CH2”表笔分别检测模拟电路的输入Ui端和输出端Uo端,观测输出端的实际响应曲线Uo(t),记录实验波形及结果。 4.改变几组参数,重新观测结果。 5.用同样的方法分别搭接积分环节、比例积分环节、比例微分环节、惯性环节、比例积分微分环节的模拟电路图。观测这些环节对阶跃信号的实际响应曲线,分别记录实验波形及结果。

典型系统的时域响应和稳定性分析

自动控制原理课程实验报告 实验题目: 典型系统的时域响应和稳定性分析 1 实验目的 1.研究二阶系统的特征参量 (ξ、ωn) 对过渡过程的影响。 2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。 3.熟悉 Routh 判据,用 Routh 判据对三阶系统进行稳定性分析 2 实验设备 PC 机一台,TD-ACC+实验系统一套。 3 基本原理、内容、结果及分析: 3.1 基本原理 1.典型的二阶系统稳定性分析 (1) 结构框图:如图1.2-1 所示。 (2) 理论分析 系统开环传递函数为: 开环增益 2.典型的三阶系统稳定性分析 (1) 结构框图:如图1.2-3 所示。

系统开环传递函数为: 系统的特征方程为: 3.2内容 1.典型的二阶系统稳定性分析 2.典型的三阶系统稳定性分析 3.3步骤 1.典型的二阶系统稳定性分析 实验内容: 先算出临界阻尼、欠阻尼、过阻尼时电阻 R 的理论值,再将理论值应用于模拟电路中, 观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。在此实验中(图 1.2-2),

其中自然振荡角频率: 阻尼比: 2.典型的三阶系统稳定性分析 实验内容 实验前由Routh 判断得Routh 行列式为: 为了保证系统稳定,第一列各值应为正数,所以有 实验步骤 1. 将信号源单元的“ST ”端插针与“S ”端插针用“短路块”短接。由于每个运放单元均设置了锁 零场效应管,所以运放具有锁零功能。将开关设在“方波”档,分别调节调幅和调频电位器,使得 “OUT ”端输出的方波幅值为1V ,周期为10s 左右。 2. 典型二阶系统瞬态性能指标的测试 (1) 按模拟电路图1.2-2 接线,将1 中的方波信号接至输入端,取R = 10K 。 (2) 用示波器观察系统响应曲线C(t),测量并记录超调MP 、峰值时间tp 和调节时间tS 。 (3) 分别按R = 50K ;160K ;200K ;改变系统开环增益,观察响应曲线C(t),测量并记录性能指标MP 、 tp 和tS ,及系统的稳定性。并将测量值和计算值进行比较 (实验前必须按公式计算出)。将实验结果 填入表1.2-1 中。表1.2-2 中已填入了一组参考测量值,供参照。 3.典型三阶系统的性能

1-3性能指标

计算机网络与通信技术 知识点:性能指标 北京交通大学刘彪

1、速率 ?比特(bit)是计算机中数据量的单位,也是信息论中使用的信息量的单位。 ?比特(bit)来源于binary digit,意思是一个“二进制数字”,因此一个比特就是二进制数字中的一个1 或0。 ?速率是计算机网络中最重要的一个性能指标,指的是数据的传送速率,也称为数据率(data rate)或比特率(bit rate)。单位是bit/s,或kbit/s、Mbit/s、Gbit/s 等

2、带宽 两种不同意义: ?“带宽”(bandwidth) 本来是指信号具有的频带宽度,其单位是赫(或千赫、兆赫、吉赫等) ?在计算机网络中,“带宽”用来表示网络中某通道传送数据的能力。表示在单位时间内网络中的某信道所能通过的“最高数据率”。单位是bit/s ,即“比特每秒”

3、吞吐量 ?吞吐量(throughput) 表示在单位时间内通过某个网络(或信道、接口)的数据量。 ?吞吐量更经常地用于对现实世界中的网络的一种测量,以便知道实际上到底有多少数据量能够通过网络。 ?吞吐量受网络的带宽或网络的额定速率的限制。

4、时延 ?时延(delay 或latency) ,也称为延迟或迟延,是指数据(一个报文或分组,甚至比特)从网络(或链路)的一端传送到另一端所需的时间。 ?网络中的时延由以下几个不同的部分组成:–(1) 发送时延 –(2) 传播时延 –(3) 处理时延 –(4) 排队时延

时延 ?(1) 发送时延 –也称为传输时延。 –发送数据时,数据帧从结点进入到传输媒体所需要的时间。 –也就是从发送数据帧的第一个比特算起,到该帧的最后一个比特发送完毕所需的时间。 发送时延= 数据帧长度(bit)发送速率(bit/s)

控制系统时域及频域性能指标的联系

控制系统时域与频域性能指标的联系 经典控制理论中,系统分析与校正方法一般有时域法、复域法、频域法。时域响应法是一种直接法,它以传递函数为系统的数学模型,以拉氏变换为数学工具,直接可以求出变量的解析解。这种方法虽然直观,分析时域性能十分有用,但是方法的应用需要两个前提,一是必须已知控制系统的闭环传递函数,另外系统的阶次不能很高。 如果系统的开环传递函数未知,或者系统的阶次较高,就需采用频域分析法。频域分析法不仅是一种通过开环传递函数研究系统闭环传递函数性能的分析方法,而且当系统的数学模型未知时,还可以通过实验的方法建立。此外,大量丰富的图形方法使得频域分析法分析高阶系统时,分析的复杂性并不随阶次的增加而显著增加。 在进行控制系统分析时,可以根据实际情况,针对不同数学模型选用最简洁、最合适的方法,从而使用相应的分析方法,达到预期的实验目的。 系统的时域性能指标与频域性能指标有着很大的关系,研究其内在联系在工程中有着很大的意义。 一、系统的时域性能指标 延迟时间t d 阶跃响应第一次达到终值h(∞)的50%所需的时间 上升时间 t r 阶跃响应从终值的10%上升到终值的90%所需的时间;对有振荡的系统, 也可定义为从0到第一次达到终值所需的时间 峰值时间t p 阶跃响应越过终值h(∞)达到第一个峰值所需的时间 调节时间 t s 阶跃响应到达并保持在终值h(∞)的±5%误差带内所需的最短时间 超调量%σ 峰值h( t p )超出终值h(∞)的百分比,即 %σ= () ()() ∞∞-h h h t p ?100% 二、系统频率特性的性能指标 采用频域方法进行线性控制系统设计时,时域内采用的诸如超调量,调整时间等描述系统性能的指标不能直接使用,需要在频域内定义频域性能指标。

自动控制原理实验 典型系统的时域响应和稳定性分析

系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别: 实验名称:典型系统的时域响应和稳定性分析实验时间: 学生成绩:教师签名:批改时间: 一、目的要求 1.研究二阶系统的特征参量 (ξ、ωn) 对过渡过程的影响。 2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。 3.熟悉 Routh 判据,用 Routh 判据对三阶系统进行稳定性分析。 二、实验设备 PC机一台,TD—ACC教学实验系统一套 三、实验原理及内容 1.典型的二阶系统稳定性分析 (1) 结构框图:如图 1.2-1 所示。 图1.2-2 (2) 对应的模拟电路图:如图 1.2-2 所示。 图1.2-2

系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别: 实验名称:实验时间: 学生成绩:教师签名:批改时间: (3) 理论分析 系统开环传递函数为: ;开环增益: (4) 实验内容 先算出临界阻尼、欠阻尼、过阻尼时电阻 R 的理论值,再将理论值应用于模拟电路中, 观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。在此实验中(图 1.2-2), 系统闭环传递函数为: 其中自然振荡角频率: 2.典型的三阶系统稳定性分析 (1) 结构框图:如图 1.2-3 所示。

系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别: 实验名称:实验时间: 学生成绩:教师签名:批改时间: 图 1.2-3 (2)模拟电路图:如图1.2-4 所示。 图 1.2-4 (3)理论分析: 系统的特征方程为: (4)实验内容: 实验前由Routh 判断得Routh 行列式为:

实验二 典型系统的时域响应分析实验仿真报告答案

实验二典型系统的时域响应分析 1. 实验目的 1) 通过用MATLAB 及SIMULINK 对控制系统的时域分析有感性认识。 2) 明确对于一阶系统,单位阶跃信号、单位斜坡信号以及单位脉冲信号的响应曲线图。 3) 对于二阶系统阶跃信号的响应曲线图以及不同阻尼比、不同自然角频率取值范围的二阶系统曲线比较图。 4) 利用MATLAB 软件来绘制高阶控制系统的零极点分布图,判断此系统是否有主导极点,能否用低阶系统来近似,并将高阶系统与低阶系统的阶跃响应特性进行比较5)编制简单的M文件程序。 2. 实验仪器 PC计算机一台,MATLAB软件1套 3. 实验内容 1)一阶系统的响应 (1) 一阶系统的单位阶跃响应 在SIMULINK 环境下搭建图1的模型,进行仿真,得出仿真曲线图。 理论分析:C(s)=1/[s(0.8s+1)]由拉氏反变换得h(t)=1-e^(-t/0.8) (t>=0) 由此得知,图形是一条单调上升的指数曲线,与理论分析相符。

(2) 一阶系统的单位斜坡响应 在SIMULINK环境下搭建图2的模型,将示波器横轴终值修改为12进行仿真,得出仿真曲线图。 理论分析:C(s)=1/[s^2(4s+1)]可求的一阶系统的单位斜坡响应为c(t)=(t-4)+4e^(-t/4) e(t)=r(t)-c(t)=4-4e^(-t/4) 当t=0时,e(t)=0,当趋于无穷时,误差趋于常值4. 3)一阶系统的单位脉冲响应 在medit 环境下,编译一个.m 文件,利用impulse()函数可以得出仿真曲线图。此处注意分析在SIMULINK 环境中可否得到该曲线图。

实验一 典型环节的瞬态响应和动态分析

实验一 典型环节的瞬态响应和动态分析 1、一阶环节的阶跃响应及时间参数的影响 一、实验目的: 通过实验加深理解如何将一个复杂的机电系统传递函数看做由一些典型环节组合而成,并且使用运算放大器来实现各典型环节,用模拟电路来替代机电系统,理解时间响应、阶跃响应函数的概念以及时间响应的组成,掌握时域分析基本方法 。 二、实验内容 ① 自行设计一阶环节。 ② 改变系统参数T 、K (至少二次),观察系统时间响应曲线的变化。 ③ 观察T 、K 对系统的影响。 三、实验原理: 使用教学模拟机上的运算放大器,分别搭接一阶环节,改变时间常数T ,记录下两次不同时间常数T 的阶跃响应曲线,进行比较(可参考下图:典型一阶系统的单位阶跃响应曲线)。 典型一阶环节的传递函数: G (S )=K (1+1/TS ) 其中:RC T = 12/R R K = 典型一阶环节模拟电路: 典型一阶环节的单位阶跃响应曲线:

四、实验方法与步骤 1)启动计算机,在桌面双击“Cybernation_A.exe ”图标运行软件,阅览使用指南。 2)检查USB 线是否连接好,电路的输入U1接A/D 、D/A 卡的DA1输出,电路的输出U2接A/D 、D/A 卡的AD1输入。检查无误后接通电源。 3)在实验项目下拉框中选中本次实验,点击 按钮,参数设置要与实验系统参 数一致,设置好参数按确定按钮,此时如无警告对话框出现表示通信正常,如出现警告表示通信不正常,找出原因使通信正常后才可继续进行实验。 4)保持Ω=K R 1001,F C μ1.0=不变,分别令ΩΩ=K K R 200,1002,改变系统参数T 、K ,观察并记录系统时间响应曲线的变化。 五、实验数据整理与分析: 1)实验数据与响应函数 Ω=K R 1002,Ω=K R 1001,F C μ1.0=, 理论值:12/R R K ==1, C R T 2==10ms 实验值:12/R R K ==0.91 C R T 2==9.87

控制系统时域与频域性能指标的联系

控制系统时域与频域性能指标的联系 经典控制理论中,系统分析与校正方法一般有时域法、复域法、频域法。时域响应法是 一种直接法,它以传递函数为系统的数学模型,以拉氏变换为数学工具,直接可以求出变量 的解析解。这种方法虽然直观,分析时域性能十分有用,但是方法的应用需要两个前提,一是必须已知控制系统的闭环传递函数,另外系统的阶次不能很高。 如果系统的开环传递函数未知,或者系统的阶次较高,就需采用频域分析法。频域分析 法不仅是一种通过开环传递函数研究系统闭环传递函数性能的分析方法,而且当系统的数学 模型未知时,还可以通过实验的方法建立。此外,大量丰富的图形方法使得频域分析法分析 高阶系统时,分析的复杂性并不随阶次的增加而显著增加。 在进行控制系统分析时,可以根据实际情况,针对不同数学模型选用最简洁、最合适的方法,从而使用相应的分析方法,达到预期的实验目的。 系统的时域性能指标与频域性能指标有着很大的关系,研究其内在联系在工程中有着很大的意义。 一、系统的时域性能指标 延迟时间t d 阶跃响应第一次达到终值h()的50%所需的时间 上升时间t r阶跃响应从终值的10%上升到终值的90%所需的时间;对有振荡的系 统,也可定义为从0到第一次达到终值所需的时间 峰值时间t p 阶跃响应越过终值h()达到第一个峰值所需的时间 调节时间t s 阶跃响应到达并保持在终值h()的5%误差带内所需的最短时间 t p)超出终值h()的百分比,即 超调量% 峰值h( h t p h %= 100% h 二、系统频率特性的性能指标 采用频域方法进行线性控制系统设计时,时域内采用的诸如超调量,调整时间等描述系 统性能的指标不能直接使用,需要在频域内定义频域性能指标。

实验二典型系统的时域响应分析实验仿真报告答案修订版

实验二典型系统的时域响应分析实验仿真报告 答案修订版 IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】

实验二典型系统的时域响应分析 1. 实验目的 1) 通过用MATLAB 及SIMULINK 对控制系统的时域分析有感性认识。 2) 明确对于一阶系统,单位阶跃信号、单位斜坡信号以及单位脉冲信号的响应曲线图。 3) 对于二阶系统阶跃信号的响应曲线图以及不同阻尼比、不同自然角频率取值范围的二阶系统曲线比较图。 4) 利用MATLAB 软件来绘制高阶控制系统的零极点分布图,判断此系统是否有主导极点,能否用低阶系统来近似,并将高阶系统与低阶系统的阶跃响应特性进行比较5)编制简单的M文件程序。 2. 实验仪器 PC计算机一台,MATLAB软件1套 3. 实验内容 1)一阶系统的响应 (1) 一阶系统的单位阶跃响应 在SIMULINK 环境下搭建图1的模型,进行仿真,得出仿真曲线图。 理论分析:C(s)=1/[s(0.8s+1)]由拉氏反变换得h(t)=1-e^(-t/0.8) (t>=0)

由此得知,图形是一条单调上升的指数曲线,与理论分析相符。 (2) 一阶系统的单位斜坡响应 在SIMULINK 环境下搭建图2的模型,将示波器横轴终值修改为12进行仿真,得出仿真曲线图。 理论分析:C (s )=1/[s^2(4s+1)]可求的一阶系统的单位斜坡响应为c(t)=(t-4)+4e^(-t/4) e(t)=r(t)-c(t)=4-4e^(-t/4) 当t=0时,e(t)=0,当趋于无穷时,误差趋于常值4. 3) 一阶系统的单位脉冲响应 在medit 环境下,编译一个.m 文件,利用impulse ()函数可以得出仿真曲线图。此处注意分析在SIMULINK 环境中可否得到该曲线图。 理论分析:C (s )=5/(0.8s+2)=(5/2)/(0.4s+1)可求的g(t)=6.25e^(-t/0.4),是一个单调递减的函数。 两种环境下得到的曲线图不一致。 2)二阶系统的单位阶跃响应 二阶系统的闭环传递函数标准形式为 其阶跃响应可以分以下情况解出 ①当0=ζ时,系统阶跃响应为 )cos(1)(t t c n ω-=

自动控制原理实验典型环节的时域响应

实验名称:典型环节的时域响应 一、目的要求 1、熟悉并掌握TD-ACC+(或TD-ACS)设备的使用方法及各典型环节模拟电路 的构成方法。 2、熟悉各种典型环节的理想阶跃响应曲线和实际阶跃响应曲线。对比差异 分析原因。 3了解参数变化对典型环节动态特性的影响。 二、原理简述 1、比例环节传递函数:Uo(s)/Ui(s)=K. 2、积分环节传递函数:Uo(s)/Ui(s)=1/TS 3、比例微分环节传递函数:Uo(s)/Ui(s)=K+1/TS 4、惯性环节传递函数: Uo(s)/Ui(s)=K/(TS+1) 5、比例微分环节传递函数:Uo(s)/Ui(s)=K[(1+TS)/(1+τS)] 6、比例积分微分环节传递函数:Uo(s)/Ui(s)=Kp+1/TiS+TdS 三、仪器设备 PC机一台,TD-ACC(或TD-ACS)实验系统一套 四、线路视图 1、比例环节

2、积分环节 3、比例积分环节 4、惯性环节 5、比例微分环节

6、比例积分微分环节 五、内容步骤 1、按所列举的比例环节的模拟电路图将线连接好,检查无误后开启设备电源。 2、将信号源单元的“ST”端插针与“S”端插针用短路块短接,。将开关设在方波档,分别调节调幅和调频电位器,使得“out”端输出的方波幅值为1V,周期为10S左右。 3、将2中的方波信号加至环节的输入端Ui,用示波器的“CH1”和“CH2”表笔分别检测模拟电路的输入Ui端和输出端Uo端,观测输出端的实际响应曲线Uo(t),记录实验波形及结果。 4、改变几组参数,重新观测结果。 5、用同样的方法分别搭接积分环节、比例积分环节、比例微分环节、惯性环节、比例积分微分环节的模拟电路图。观测这些环节对阶跃信号的实际响应曲线,分别记录实验波形及结果。

实验二典型系统的时域响应分析实验仿真报告答案分析解析

实验二 典型系统的时域响应分析 1. 实验目的 1) 通过用MATLAB 及SIMULINK 对控制系统的时域分析有感性认识。 2) 明确对于一阶系统,单位阶跃信号、单位斜坡信号以及单位脉冲信号的响应曲线图。 3) 对于二阶系统阶跃信号的响应曲线图以及不同阻尼比、不同自然角频率取值范围的二阶系统曲线比较图。 4) 利用MATLAB 软件来绘制高阶控制系统的零极点分布图,判断此系统是否有主导极点,能否用低阶系统来近似,并将高阶系统与低阶系统的阶跃响应特性进行比较 5)编制简单的M 文件程序。 2. 实验仪器 PC 计算机一台,MATLAB 软件1套 3. 实验内容 1)一阶系统的响应 (1) 一阶系统的单位阶跃响应 在SIMULINK 环境下搭建图1的模型,进行仿真,得出仿真曲线图。 理论分析:C (s )=1/[s(0.8s+1)]由拉氏反变换得h(t)=1-e^(-t/0.8) (t>=0) 由此得知,图形是一条单调上升的指数曲线,与理论分析相符。 (2) 一阶系统的单位斜坡响应 在SIMULINK 环境下搭建图2的模型,将示波器横轴终值修改为12进行仿真,得出仿真曲线图。 理论分析:C (s )=1/[s^2(4s+1)]可求的一阶系统的单位斜坡响应为c(t)=(t-4)+4e^(-t/4) e(t)=r(t)-c(t)=4-4e^(-t/4) 当t=0时,e(t)=0,当趋于无穷时,误差趋于常值4. 3) 一阶系统的单位脉冲响应 在medit 环境下,编译一个.m 文件,利用impulse ()函数可以得出仿真曲线图。此处注意分析在SIMULINK 环境中可否得到该曲线图。 理论分析:C (s )=5/(0.8s+2)=(5/2)/(0.4s+1)可求的g(t)=6.25e^(-t/0.4),是一个单调递减的函数。 两种环境下得到的曲线图不一致。 2)二阶系统的单位阶跃响应 二阶系统的闭环传递函数标准形式为 其阶跃响应可以分以下情况解出 ①当0=ζ时,系统阶跃响应为 )cos(1)(t t c n ω-= ②当10<<ζ时,系统阶跃响应为 )sin(111)(2 θωζ ζω+--=- t e t c d t n 其中ζζθ/121-=-tg ,21ζωω-=n d ③当1=ζ时,系统阶跃响应为 t n n e t t c ωω-+-=)1(1)(

【实验报告】一、二阶系统的电子模拟及时域响应测试

实验名称:一二阶系统的电子模拟及时域响 应测试 课程名称:自动控制原理实验

目录 (一)实验目的 (3) (二)实验内容 (3) (三)实验设备 (3) (四)实验原理 (3) (五)一阶系统实验结果 (3) (六)一阶系统实验数据记录及分析 (7) (七)二阶系统实验结果记录 (8) (八)二阶系统实验数据记录及分析 (11) (九)实验总结及感想......................................................................... 错误!未定义书签。 图片目录 图片1 一阶模拟运算电路 (3) 图片2 二阶模拟运算电路 (3) 图片3 T=0.25仿真图形 (4) 图片4 T=0.25测试图形 (4) 图片5 T=0.5仿真图形 (5) 图片6 T=0.5测试图形 (5) 图片7 T=1仿真图形 (6) 图片8 T=1测试图形 (6) 图片9 ζ=0.25s仿真图形 (8) 图片10 ζ=0.25s测试图形 (8) 图片11 ζ=0.5s仿真图形 (9) 图片12 ζ=0.5s测试图形 (9) 图片13 ζ=0.8s仿真图形 (10) 图片14 ζ=0.8s测试图形 (10) 图片15 ζ=1s仿真图形 (11) 图片16 ζ=1s测试图形 (11) 表格目录 表格1 一阶系统实验结果 (7) 表格2 二阶系统实验结果 (11) 一二阶系统的电子模拟及时域响应测试

(一)实验目的 1.了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系。 2.学习在电子模拟机上建立典型环节系统模型的方法。 3.学习阶跃响应的测试方法。 (二)实验内容 1.建立一阶系统的电子模型,观测并记录在不同时间常数T时的跃响应曲线,并测定其过渡过程时间TS。 2.建立二阶系统的电子模型,观测并记录在不同阻尼比ζ时的跃响应曲线,并测定其 超调量σ%及过渡过程时间TS。 (三)实验设备 HHMN电子模拟机,实验用电脑,数字万用表 (四)实验原理 一阶系统:在实验中取不同的时间常数T,由模拟运算电路,可得到不同时间常数下阶跃响应曲线及不同的过渡时间。一阶系统结果预期:时间常数T越小,调节时间t越小,响应曲线很快就接近稳态值,一阶系统无超调量。模拟运算电路原理图如下: 图片1一阶模拟运算电路 二阶系统:δ取不同的值,将会形成不同的阶跃响应曲线及不同的超调量δ%、过渡时间及其它参数指标。二阶系统结果预期:δ为阻尼比,当0<δ<1时,系统时间响应具有振荡特性,为欠阻尼状态;当δ=1时,为临界阻尼,无振荡;当δ>1时,为过阻尼状态,无振荡。模拟运算电路图如下: 图片2二阶模拟运算电路 (五)一阶系统实验结果

自动控制原理实验 典型系统的时域响应和稳定性分析

电子科技大学中山学院学生实验报告课程名称:自动控制原理实验专业:机电工程学院系别:班级: 姓名:学号:组别: 实验名称:典型系统的时域响应和稳定性分析实验时间:学生成绩:教师签名:批改时间:一、目的要求 1.研究二阶系统的特征参量 (ξ、ωn) 对过渡过程的影响。 2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。 3.熟悉 Routh 判据,用 Routh 判据对三阶系统进行稳定性分析。 二、实验设备 PC机一台,TD—ACC教学实验系统一套 三、实验原理及内容 1.典型的二阶系统稳定性分析 所示。 1.2-1 (1) 结构框图:如图 1.2-(2)对应的模拟电路图:如 1.2-2所示 1.2-2图 电子科技大学中山学院学生实验报告课程名称:自动控制原理实验专业:机电工程学院系别: 班级:姓名:学号:组别: 实验名称:实验时间: 学生成绩:教师签名:批改时间:(3) 理论分析 系统开环传递函数为:

;开环增益: (4) 实验内容先算出临界阻尼、欠阻尼、过阻尼时电阻 R 的理论值,再将理论值应用于模拟电路中, 观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。在此实验中(图 1.2-2), 系统闭环传递函数为: 其中自然振荡角频率: 2.典型的三阶系统稳定性分析 所示。 1.2-3 结构框图:如图(1) 电子科技大学中山学院学生实验报告课程名称:自动控制原理实验专业:机电工程学院系别: 班级:姓名:学号:组别: 实验名称:实验时间: 学生成绩:教师签名:批改时间:

图1.2-3 (2)模拟电路图:如图1.2-4 所示。 1.2-4 (3理论分析 系统的特征方程为: (4)实验内容: 行列式为:Routh 判断得Routh 实验前由 电子科技大学中山学院学生实验报告 课程名称:自动控制原理实验系别:专业:机电工程学院班级: 姓名:学号:组别: 实验名称:实验时间: 学生成绩:教师签名:批改时间:

自动控制原理实验典型系统的时域响应和稳定性分析

电子科技大学学院学生实验报告 系别:机电工程学院专业:课程名称:自动控制原理实验

一、目的要求 1.研究二阶系统的特征参量(ξ、ωn) 对过渡过程的影响。 2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。 3.熟悉Routh 判据,用Routh 判据对三阶系统进行稳定性分析。 二、实验设备 PC机一台,TD—ACC教学实验系统一套 三、实验原理及容 1.典型的二阶系统稳定性分析 (1) 结构框图:如图1.2-1 所示。 图1.2-2 (2) 对应的模拟电路图:如图1.2-2 所示。 图 1.2-2 电子科技大学学院学生实验报告 系别:机电工程学院专业:课程名称:自动控制原理实验 班级::学号:组别: 实验名称:实验时间:

学生成绩:教师签名:批改时间: (3) 理论分析 系统开环传递函数为: ;开环增益: (4) 实验容 先算出临界阻尼、欠阻尼、过阻尼时电阻R 的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。在此实验中(图1.2-2), 系统闭环传递函数为: 其中自然振荡角频率: 2.典型的三阶系统稳定性分析 (1) 结构框图:如图1.2-3 所示。 电子科技大学学院学生实验报告 系别:机电工程学院专业:课程名称:自动控制原理实验 班级::学号:组别:

实验名称:实验时间:学生成绩:教师签名:批改时间: 图1.2-3 (2)模拟电路图:如图1.2-4 所示。 图1.2-4 (3)理论分析: 系统的特征方程为: (4)实验容: 实验前由Routh 判断得Routh 行列式为: 电子科技大学学院学生实验报告 系别:机电工程学院专业:课程名称:自动控制原理实验

典型环节的时域响应

实验一 典型环节的时域响应 一、实验目的 1、掌握典型环节模拟电路的构成方法,传递函数及输出时域函数的表达式。 2、熟悉各种典型环节的阶跃响应曲线。 3、了解各项参数变化对典型环节动态响应的影响。 二、实验仪器设备 Pc 机一台,TD-ACC+教学实验系统一套 三、实验原理及内容 1、比例环节 1)结构框图 图1-1 比例环节的结构框图 2)传递函数 () () C s K R s = 3)阶跃响应 10()(0) =/C t K t K R R =≥其中 4) 模拟电路 图1-2 比例环节的模拟电路图 2、积分环节 1)结构框图 图1-3 积分环节的结构框图 K R (s ) C (s ) R(s) C(s) R0=200 R1=100K 10K 10K 1/Ts R (s ) C (s )

2)传递函数 ()1 ()s C s R s T = 3)阶跃响应 01()(0) =C t t t T R C T = ≥其中 4) 模拟电路 图1-4 积分的模拟电路图 3、比例积分环节 1)结构框图 图1-5 比例积分环节的结构框图 2)传递函数 3)阶跃响应 001 ()+ (0) =/,1C t K t t K R R T R C T =≥=其中 4) 模拟电路 R(s) C(s) R0=200 C=1u 10K 10K 1/Ts R (s ) K C (s ) ()1 ()s C s K R s T =+

图1-6 比例积分环节的模拟电路图 4、惯性环节 1)结构框图 图1-7 惯性环节的结构框图 2)传递函数 ()()s+1 C s K R s T = 3)阶跃响应 -t/T 01()(1e ) (0) /=1C t K t K =R R T R C =-≥其中, 4) 模拟电路 图1-8 惯性环节的模拟电路图 四、实验步骤 1、按图1-2比例环节的模拟电路将线连好。检查无误后开启设备电源。 2、将信号源单元的“ST ”端插针与“S ”端插针用短路块。将信号形式开关设在方波档,分别调节调幅和调频电位器,使得“OUT ”端输出的方波幅值小于5V ,周期为10s 左右。 K/(Ts+1) R (s ) C (s ) R(s) C(s) R0=200 R1=200k 10K 10K R(s) C(s) R0=200 C=1u 10K 10K R1=200

相关文档
最新文档