高压同步电机变频调速技术及应用

高压同步电机变频调速技术及应用
高压同步电机变频调速技术及应用

270V高压大功率永磁同步电机驱动器设计

270V高压大功率永磁同步电机驱动器设计 摘要:近年来270V高压直流供电体制在各种装备上开始大量应用,本文给出了 一种由TMS320F2812、高精度转子位置速度检测装置及高压MOS管组成的高压 大功率永磁同步电机驱动控制方案,详细描述了系统的硬件组成和软件设计结构。试验结果表明,该系统较好的解决了高压供电带来的干扰问题,具有调速性能良好、效率高、抗干扰能力强等特点,满足型号的使用要求。 关键词:270V高压;永磁同步电机驱动器;抗干扰 0 引言 随着我国对高压直流电源系统的深入研究,新一代装备已开始采用270V高压直流供电系统,这种新型电源体制不但具有传输功率大、传输效率高、供电可靠 性高和电源配电重量轻的特点,而且还将大大减小低压直流供电系统的电器设备 的大电流电弧干扰,提高了武器装备的综合能力[1]。 本文给出了一种由TMS320F2812、高精度转子位置速度检测装置及高压MOS 管组成的大功率PMSM驱动控制方案,详细叙述了系统的硬件组成和软件设计结构。并在此基础上,设计了一套大功率PMSM驱动控制系统,该系统具有调速性 能良好,效率高等特点,满足型号的使用要求。 1 系统总体设计 1.1 永磁同步电机(PMSM)数学模型 永磁同步电机由于具备小体积、高效率及功率密度、调速性能良好等优点得 到了越来越广泛的应用。PMSM的数学模型包括电动机的运动方程,物理方程和 转矩方程,这些方程是永磁同步电机数学模型的基础。控制对象的数学模型能够 准确的反应被控系统的静态和动态特性。为方便分析,先做以下假设[2~4]: 1)磁路不饱和,即电机电感大小不受电流变化影响,不计涡流和磁滞损耗; 2)忽略齿槽、换相过程和电枢反应等的影响; 3)三相绕组完全对称,永久磁钢的磁场沿气隙周围正弦分布; 4)电枢绕组在定子内表面均匀连续分布; 5)驱动开关管和续流二极管为理想元件。 优化设计后的永磁同步电机经过Park变换后,其dq坐标系下的数学模型可 表示为方程式: 式1.1 式1.2 式1.3 式中:、—定子电压dq轴分量;、—定子电流dq轴分量; —定子电阻;—转子极对数; —转子角速度;—定子电感; —电磁转矩;—永磁体产生的磁链,为常数; 从电磁转矩方程可以看出只要能准确地检出转子空间位置(d轴),通过控 制逆变器使三相定子的合成电流在q轴上,那么永磁同步电机的电磁转矩只与定 子电流的幅值成正比,即控制定子电流的幅值,就能很好地控制电磁转矩。 1.2 驱动控制策略 永磁同步电机的控制策略有很多种,如直接转矩控制、转子磁场定向控制等[5~6],本系统采用转子磁场定向控制,其基本原理是通过坐标变换,在转子磁场 定向的同步坐标系上对电机的磁场电流和转矩电流进行解耦控制,使其具有和传

(交流电机变频调速系统设计)

机电传动与控制课程综合训练三 一、综合训练项目任务书 综合训练项目:交流电机变频调速系统 目的和要求:加强对交流变频调速系统及变频器的理解;应用交流变频调速系统及变频器解决交流电机变频调速问题。提高分析和解决实际工程问题的能力。促成“富于探索精神,具有较强的自学能力、开拓创新意识和敏锐的观察事物以及分析处理事物的能力”的目标实现。 成果形式:交流电机变频调速系统设计说明书。 相关参数:参看《机电传动控制》(第五版),冯清秀等编著,华中科技大学出版社,P291~316。 一、综合训练项目设计内容 1.变频调速系统 1.1 三相交流异步电动机的结构和工作原理 三相交流异步电动机是把电能转换成机械能的设备。一般电动机主要由两部分组成:固定部分称为定子,旋转部分称为转子。三相交流异步电动机的工作原理是建立在电磁感应定律、全电流定律、电路定律和电磁力定律等基础上的。当磁极沿顺时针方向旋转,磁极的磁力线切割转子导条,导条中就感应出电动势。电动势的方向由右手定则来确定。因为运动是相对的,假如磁极不动,转子导条沿逆时针方向旋转,则导条中同样也能感应出电动势来。在电动势的作用下,闭合的导条中就产生电流。该电流与旋转磁极的磁场相互作用,而使转子导条受到电磁力,电磁力的方向可用左手定则确定。由电磁力进而产生电磁转矩,转子就转动起来。 1.2 变频调速原理 变频器可以分为四个部分,如图1.1所示。 通用变频器由主电路和控制回路组成。给异步电动机提供调压调频电源的电力变换部分,称为主电路。主电路包括整流器、中间直流环节(又称平波回路)、逆变器。

图1.1 变频器简化结构图 ⑴整流器。它的作用是把工频电源变换成直流电源。 ⑵平波回路(中间直流环节)。由于逆变器的负载为异步电动机,属于感性负载。无论电动机处于电动状态还是发电状态,起始功率因数总不会等于1。因此,在中间直流环节和电动机之间总会有无功功率的交换,这种无功能量要靠中间直流环节的储能元件—电容器或电感器来缓冲,所以中间直流环节实际上是中间储能环节。 ⑶逆变器。与整流器的作用相反,逆变器是将直流功率变换为所要求频率的交流功率。逆变器的结构形式是利用6个半导体开关器件组成的三相桥式逆变器电路。通过有规律的控制逆变器中主开关的导通和断开,可以得到任意频率的三相交流输出波形。 ⑷控制回路。控制回路常由运算电路,检测电路,控制信号的输入、输出电路,驱动电路和制动电路等构成。其主要任务是完成对逆变器的开关控制,对整流器的电压控制,以及完成各种保护功能。控制方式有模拟控制或数字控制。 2.系统的控制模型 本系统的结构如图1.2所示。

三相异步电动机变频调速

一、三相异步电动机变频调速原理 由于电机转速n 与旋转磁场转速1n 接近,磁场转速1n 改变后,电机转速n 也 就随之变化,由公式1 160f n p =可知,改变电源频率1f ,可以调节磁场旋转,从 而改变电机转速,这种方法称为变频调速。 根据三相异步电动机的转速公式为 ()()1 16011f n s n s p = -=- 式中1f 为异步电动机的定子电压供电频率;p 为异步电动机的极对数;s 为异步电动机的转差率。 所以调节三相异步电动机的转速有三种方案。异步电动机的变压变频调速系统一般简称变频调速系统,由于调速时转差功率不变,在各种异步电动机调速系统中效率最高,同时性能最好,是交流调速系统的主要研究和发展方向。 改变异步电动机定子绕组供电电源的频率1f ,可以改变同步转速n ,从而改变转速。如果频率1f 连续可调,则可平滑的调节转速,此为变频调速原理。 三相异步电动机运行时,忽略定子阻抗压降时,定子每相电压为 1111m 4.44m U E f N k φ≈= 式中1E 为气隙磁通在定子每相中的感应电动势;1f 为定子电源频率;1N 为定子每相绕组匝数;m k 为基波绕组系数,m φ为每极气隙磁通量。 如果改变频率1f ,且保持定子电源电压1U 不变,则气隙每极磁通m φ将增大,会引起电动机铁芯磁路饱和,从而导致过大的励磁电流,严重时会因绕组过热而损坏电机,这是不允许的。因此,降低电源频率1f 时,必须同时降低电源电压,已达到控制磁通m φ的目的。 .1、基频以下变频调速 为了防止磁路的饱和,当降低定子电源频率1f 时,保持 1 1 U f 为常数,使气每极磁通m φ为常数,应使电压和频率按比例的配合调节。这时,电动机的电磁转 矩为()()222 2111 111 212222*********p r r m pU f m U s s T f r r f r x x r x x s s ππ?? ???? ? ?? ??? ????? ''??== ?''????'+++'+++ ??? [1][8]

大型高压同步电动机

大型高压同步电动机,由于其具有一系列优点,特别是能向电网发送无功功率,改善电网质量,在各行各业得到广泛应用。我公司球磨机用同步电动机曾在一段时期内频繁损坏,直接影响到我公司的生产和设备的安全运行。因此正确分析判断同步电机的故障原因,并提出相应对策,就成了我们的当务之急。 一、事故征象 我公司现有16台1300KW/6KV同步电动机。在2000年以前平均每年要出现2~3次电机烧损的事故。其事故主要征象为:定子绕组端部绑线崩断,电机定子绕组过热,起动绕组笼条开焊、断裂,电机起动及运行中出现异常声响,经常启动失败等现象。 尤其是在1999年1月12日我公司7#同步电动机运行过程中突然放炮,造成7#同步电动机定子线圈局部严重烧坏,高压电缆接头烧损,电流互感器崩坏,由于7#同步机脱扣装置拒动,保护不能正常动作,持续大电流引起密地变电所密27选Ⅱ线保护动作跳闸,影响到选Ⅱ所带其它用电设备停机。 二、事故原因的基本判断分析 1、电机质量分析: 电机的正常使用寿命一般应在20年左右。统计我公司所损坏的同步电动机,运行寿命大多在10年以下,尤其是这台7#同步电动机大修后,投运仅4个月便出现了这次放炮烧损事故。 在事故分析中,部分电气技术人员将事故的主要原因归结到电机的大修上。这种大面积的电机损害事故,将事故原因归结到电机质量上,我对此提出异议。建议将视线转移到对励磁系统的分析上;事实证明,电机修理厂在电机返修中对其重点部位进行了种种加强措施,甚至于提高了绝缘等级,但效果并不显著。损坏事故仍不断出现。 2、励磁系统原因分析: 针对同步电动机起动运行过程中发生异常声响、电机定子绕组过热、起动绕组笼条开焊、断裂等诸多现象,在排除电机质量原因引起事故的条件下,有必要对现行的励磁系统进行合理的分析,从而找出电机频繁损坏的真正原因:励磁系统设计不合理。 三、励磁系统存在的主要问题与电机故障原因的内在联系 1、励磁装置起动回路设计不合理,使同步电机经常处在脉振情形下起动。 原主电路为桥式半控励磁装置,其原理图如图1所示。 电机在起动过程中,在转子线圈内将感应一交变电势,其正半波通过ZQ形成回路,产生+if;而其负半波则通过KQ及RF形成回路,产生-if。由于负载电路不对称,形成+if与-if 电流不对称,if曲线如图2所示。电机定子电流因此也产生强烈脉振,其曲线如图3。电机因而遭受到脉振转矩的强烈振动。造成整个厂房大厅内都可以听到电机起动过程发出的强烈振动声。这种声音一直持续到电机起动结束才消失。

变频调速电机的选型

变频调速电机的选型

————————————————————————————————作者:————————————————————————————————日期:

变频调速电机的选型 变频调速电机一般均选择4级电机,基频工作点设计在50Hz,频率0-50Hz(转速0-1480r/min)范围内电机作恒转矩运行,频率50-100Hz(转速1480-2800r/min)范围内电机作恒功率运行,整个调速范围为(0-2800r/min),基本满足一般驱动设备的要求,其工作特性与直流调速电机相同,调速平滑稳定。如果在恒转矩调速范围内 要提高输出转矩,也可以选择6级或8级电机,但电机的体积相对要大一点。 由于变频调速电机的电磁设计运用了灵活的CAD 设计软件,电机的基频设计点可以随时进 行调整,我们可以在计算机上精确的模拟电机在各基频点上的工作特性,由此也就扩大了 电机的恒转矩调速范围,根据电机的实际使用工况,我们可以在同一个机座号内把电机的 功率做的更大,也可以在使用同一台变频器的基础上将电机的输出转矩提的更高,以满足 在各种工况条件下将电机的设计制造在最佳状态。变频调速电机可以另外选配附加的转速 编码器,可实现高精度转速、位置控制、快速动态特性响应的优点。也可配以电机专用的 直流(或交流)制动器以实现电机快速、有效、安全、可靠的制动性能。由于变频调速电 机的基频可调性设计,我们也可以制造出各种高速电机,在高速运行时保持恒转矩的特性 ,在一定程度上替代了原来的中频电机,而且价格低廉。变频调速电机为三相交流同步或 异步电动机,根据变频器的输出电源有三相380V或三相220V,所以电机电源也有三相380V 或三相220V的不同区别,一般4KW以下的变频器才有三相220V可,由于变频电机是以电机 的基频点(或拐点)来划分不同的恒功率调速区和恒转矩调速区的,所以变频器基频点和 变频电机基频点的设置都非常重要。 同步变频与异步变频调速电机的区别 异步变频调速电机是由普通异步电机派生而来,由于要适应变频器输出电源的特性,电机在转子槽型,绝缘工艺 ,电磁设计校核等作了很大的改动,特别是电机的通风散热,它在一般情况下附加了一个独立式强迫冷却风机, 以适应电机在低速运行时的高效散热和降低电机在高速运行时的风摩耗。变频器的输出一般显示电源的输出频率 ,转速输出显示为电机的极数和电源输出频率的计算值,与异步电机的实际转速有很大区别,使用一般异步变频 电动机时,由于异步电机的转差率是由电机的制造工艺决定,故其离散性很大,并且负载的变化直接影响电机的 转速,要精确控制电机的转速只能采用光电编码器进行闭环控制,当单机控制时转速的精度由编码器的脉冲数决 定,当多机控制时,多台电机的转速就无法严格同步。这是异步电机先天所决定的。 同步变频调速电机的转子内镶有永磁体,当电机瞬间起动完毕后,电机转入正常运行,定子旋转磁场带动镶有永 磁体的转子进行同步运行,此时电机的转速根据电机的极数和电机输入电源频率形成严格的对应关系,转速不受 负载和其他因数影响。同样同步变频调速电机也附加了一个独立式强迫冷却风机,以适应电机在低速运行时的高 效散热和降低电机在高速运行时的风摩耗。由于电机的转速和电源频率的严格对应关系,使得电机的转速精度主 要就取决于变频器输出电源频率的精度,控制系统简单,对一台变频器控制多台电机实现多台电机的转速一致, 也不需要昂贵的光学编码器进行闭环控制。 TYP 变频调速永磁同步电机具有的三大优点: 1、高效节能与异步变频调速电机相比,高效节能。同规格相比,该系列电机效率比异步变频电机效率高 3~10个百分点。以1.5kW为利,两者效率差近7个百分点; 2、可精确调速与异步变频系统相比,无需编码器即可进行准确的速度控制; 3、高功率因数既可减少无功能量的消耗,又能降低变压器的容量

交流异步电动机变频调速原理

在异步电动机调速系统中,调速性能最好、应用最广的系统是变压变频调速系统。在这种系统中,要调节电动机的转速,须同时调节定子供电电源的电压和频率,可以使机械特性平滑地上下移动,并获得很高的运行效率。但是,这种系统需要一台专用的变压变频电源,增加了系统的成本。近来,由于交流调速日益普及,对变压变频器的需求量不断增长,加上市场竞争的因素,其售价逐渐走低,使得变压变频调速系统的应用与日俱增。下面首先叙述异步电动机的变压变频调速原理。 交流异步电动机变频调速原理: 变频器是利用电力半导体器件的通断作用把电压、频率固定不变的交流电变成电压、频率都可调的交流电源。 现在使用的变频器主要采用交—直—交方式(VVVF变频或矢量控制变频),先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。 变频器主要由整流(交流变直流)、滤波、再次整流(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成的。 交-直部分 整流电路:由VD1-VD6六个整流二极管组成不可控全波整流桥。对于380V的额定电源,一般二极管反向耐压值应选1200V,二极管的正向电流为电机额定电流的1.414-2倍。(二)变频器元件作用 电容C1: 是吸收电容,整流电路输出是脉动的直流电压,必须加以滤波, 变压器是一种常见的电气设备,可用来把某种数值的交变电压变换为同频率的另一数值的交变电压,也可以改变交流电的数值及变换阻抗或改变相位。 压敏电阻: 有三个作用,一过电压保护,二耐雷击要求,三安规测试需要. 热敏电阻:过热保护 霍尔: 安装在UVW的其中二相,用于检测输出电流值。选用时额定电流约为电机额定电流的2倍左右。 充电电阻: 作用是防止开机上电瞬间电容对地短路,烧坏储能电容开机前电容二端的电压为0V;所以在上电(开机)的瞬间电容对地为短路状态。如果不加充电电阻在整流桥与电解电容之间,则相当于380V电源直接对地短路,瞬间整流桥通过无穷大的电流导致整流桥炸掉。一般而言变频器的功率越大,充电电阻越小。充电电阻的选择范围一般为:10-300Ω。 储能电容: 又叫电解电容,在充电电路中主要作用为储能和滤波。PN端的电压电压工作范围一般在430VDC~700VDC 之间,而一般的高压电容都在400VDC左右,为了满足耐压需要就必须是二个400VDC的电容串起来作800VDC。容量选择≥60uf/A 均压电阻:防止由于储能电容电压的不均烧坏储能电容;因为二个电解电容不可能做成完全一致,这样每个电容上所承受的电压就可能不同,承受电压高的发热严重(电容里面有等效串联电阻)或超过耐压值而损坏。

高压永磁同步电动机应用与研究

高压永磁同步电动机应用与研究 目前工业领域中采用的高压中、大功率异步电动机普遍存在效率偏低、功率因数差等浪费电能现象。为实现中、大功率电动机高效节能目标,高效永磁同步电动机的研发和应用已成为国内外发展的必然趋势。高效永磁同步电动机理论分析、实验室试验和国家权威机构检测成功后,对现场应用尚无完整的试验研究数据,缺少通过试验和监测手段对高效永磁同步电动机进行经济效益分析。本文通过在张家口发电厂首次应用,并通过严格试验得出相关研究数据和分析结果。 标签:高效永磁同步电动机现场方案试验研究结果分析 引言 在工业、建筑以及公用设施领域中电动机是重要的原动力设备,也是电能消耗的最大用户,和节电潜力的最大用户。2012年我国各类电动机总装机容量约为5亿千瓦,其中异步电动机的装机容量占全国电动机装机容量的90%,约占全国用电量的60%,占工业用量的75%,系统用电效率比国外先进水平低5%-15%,相当于每年浪费电能约1500亿千瓦时。 目前工业领域中采用的高压中、大功率异步电动机普遍存在效率偏低、功率因数差等浪费电能现象。而高效永磁同步电动机能否达到高效节能目标,现场应用前景如何,已经引起国内各大企业关注。2013年工业和信息化部印发(2013年工业节能与绿色发展专项行动实施方案)提出,选择电机在能效提升和绿色发展方面要取得突破。本文将通过在张家口发电厂首次应用和现场试验进行分析。为企业应用永磁同步电动机提供参考。 一、高压永磁同步电动机概述 1.高压永磁同步电动机的发展历程 电机属于电磁装置,其工作原理是通过磁场实现电能与机械能间的不断转换。在电机的工作过程中,气息磁场是必不可少的。获得磁场的方法有两种,其中一种是通过电流得到。该种电机叫做电励磁电机,这种电机需要具备专门用来产生电流磁场的绕组,同时,为了保证电流的正常流动还需要为电机提供不间断的能量供应。另一种方法是通过永磁体来获得磁场,这可以大大简化电机的结构,同时,因为永磁体一旦磁化(充磁)之后就永久具有磁性,不再需要外界供给能量,这也大大的减少了能量的损耗。 高压永磁同步电动机就是通过永磁体获得磁场的电动机,永磁体材料的发展促进了此种电动机的发展。稀土钴和钕铁硼永磁分别在20世纪60年代和80年代出现,这两种永磁材料的出现极大的促进的电动机的发展,因为这两种材料具有特别适用于电机装置的特性,包括高剩磁密度、高矫顽力、线性退磁曲线以及高磁能积。

交流变频调速电机原理

交流变频调速基本原理 一.异步电动机概述 1.异步电动机旋转原理 异步电动机的电磁转矩是由定子主磁通和转子电流相互作用产生的。 ⑴磁场以n0转速顺时针旋转,转子绕组切割磁力线,产生转子 电流 ⑵通电的转子绕组相对磁场运动,产生电磁力 ⑶电磁力使转子绕组以转速n旋转,方向与磁场旋转方向相同 2.旋转磁场的产生 旋转磁场实际上是三个交变磁场合成的结果。这三个交变磁场应满足: ⑴在空间位置上互差2π/3 rad电度角。这一点,由定子三相绕 组的布置来保证

⑵在时间上互差2π/3 rad相位角(或1/3周期)。这一点,由通 入的三相交变电流来保证 3.电动机转速 产生转子电流的必要条件是转子绕组切割定子磁场的磁力线。因此,转子的转速n必须低于定子磁场的转速n0,两者之差称为转差: Δn=n0-n 转差与定子磁场转速(常称为同步转速)之比,称为转差率:s=Δn / n0 同步转速n0由下式决定: n0=60 f / p 式中,f为输入电流的频率,p为旋转磁场的极对数。 由此可得转子的转速 n=60 f(1-s)/ p 二.异步电动机调速 由转速n=60 f(1-s)/ p可知异步电动机调速有以下几方法: 1.改变磁极对数p (变极调速) 定子磁场的极对数取决于定子绕组的结构。所以,要改变p,必须将定子绕组制为可以换接成两种磁极对数的特殊形式。 通常一套绕组只能换接成两种磁极对数。 变极调速的主要优点是设备简单、操作方便、机械特性较硬、

效率高、既适用于恒转矩调速,又适用于恒功率调速;其缺点是有极调速,且极数有限,因而只适用于不需平滑调速的场合。2.改变转差率s (变转差率调速) 以改变转差率为目的调速方法有:定子调压调速、转子变电阻调速、电磁转差离合器调速、串极调速等。 ⑴定子调压调速 当负载转矩一定时,随着电机定子电压的降低,主磁通减少,转子感应电动势减少,转子电流减少,转子受到的电磁力减少,转差率s增大,转速减小,从而达到速度调节的目;同理,定子电压升高,转速增加。 调压调速的优点是调速平滑,采用闭环系统时,机械特性较硬,调速范围较宽,缺点是低速时,转差功率损耗较大,功率因素低,电流大,效率低。调压调速既非恒转矩调速,也非恒功率调速,比较适合于风机泵类特性的负载。 分体机上的室内风机就是利用定子电压调速的方法进行调速的,其调速电路如下图。 根据风机速度的反馈信号,控制晶闸管SCR导通的相角,从而控制风机定子的输入电压,以控制风机的风速。 前面讲在空间位置上互差2π/3 rad电度角的三相绕组通以在时间上互差2π/3 rad相位角(或1/3周期)三相交变电流可产生旋转磁场,同样,在空间位置上互差π/2 rad电度角的两相绕组通以在时间上互差π/2 rad相位角(或1/2周期)两相交变电

(完整版)同步电动机励磁柜原理

励磁柜 介绍一些同步电动机励磁柜的基本知识,希望大家能了解并多交流一下同步电动机励磁柜的基本知识。 一.KJLF11 具有以下特点: 1.转子励磁采用三相全控整流固接励磁线路; 2.与同步电动机定子回路没有直接的电气联系;3.实现了按同步电动机转子滑差,顺极性自动投励。按到达亚同步转速(95%)时投入励磁,使同步电动机拖入同步运行; 4.具有电压负反馈自动保持恒定励磁; 5.起动与停车时自动灭磁,并在同步电动机异步运行时具有灭磁保护; 6.可以手动调节励磁电流,电压进行功率因数调整,整流电压可以从额定值的10%至125%连续调节;7.交流输入电源与同步电动机定子回路来自同一段母线;8.同步电动机正常停车5 秒钟之内,本设备整流电路和触发电路的同步电源不容许断电;9.灭磁电阻RFD1 和RFD2 的阻值为所配的转子励磁绕组直流电阻的 5 倍,其长期容许电流为同步电动机额定励磁电流的15%;10.当同步机矢步运行时,可以发出矢步信号,用于报警或跳闸;11.输入电源为380V. 二.保护电路:(1).过压保护:1.同步电动机异步运行时,转子感应过电压由灭磁环节将放电电阻RFD1-2 接入,消除开路过电压。 2.主电路可控硅元件的换向过电压由并接于元件两端的阻容电路吸收。(RC4-9) 3.整流变压器一次侧分,合闸引起的操作过电压由RC1-3 组成的阻容吸收装置来抑制。4.为使同相两桥臂上可控硅元件合理的分担自直流侧的过电压,设置了R10-15 均压电阻来保护。(2)过电流保护: 1.与可控硅串联的快速熔断器是作为直流侧短路保护用,快熔熔断时,保护环节可发出声响报警信号,跳开同步电动机定子侧电源开关,切断励磁。 2.短路电流发生在整流变压器二次侧时,其一次侧空气开关脱扣器顺动,切断电源。 3.直流侧过负荷时,空气开关脱扣器或热继电器动作。但整定值应保证强励磁30 秒内不动作。 三. 励磁线路各环节的工作电压均由同步电源变压器供给,其工作原理如下:同步电动机起动过程中,灭磁环节工作,使转子感应交变电流两半波都通过放电电阻,保证电机的正常起动。起动过程中,整流电路可控硅处于阻断状态,当电

同步电机的变频调速系统

摘要:采用电力电子装置实现电压-宾律协调控制,改变了同步电动机历来只能恒速运行而不能调速的面貌,使它和异步电机一样成为了可调速电机家族中的一员。起动费时、重载时震荡或失步等问题已经不再是同步电机广泛应用的障碍,同步电动机调速系统的应用正在飞速发展着。本文首先概括同步电机变压变频调速的特点及其基本类型,然后介绍了几种应用较广的系统,阐明了同步电机的多变量数学模型,最后讨论了自控变频同步电动机调速系统。 关键词:同步电机,变频调速,

目录 1 同步电动机变压变频调速的特点及其基本类型 (3) 1.1概述 (3) 1.2同步调速系统的特点 (4) 2 他控变频同步电动机调速系统 (5) 2.1转速开环恒压频比控制的同步电动机群调速系统 (5) 2.2由交-直-交电流型负载换流变压变频器供电的同步电动机调速系统 (6) 2.3由交-交变压变频器供电的大型低速同步电动机调速系统 (7) 2.4按气隙磁场定向的同步电动机矢量控制系统 (8) 3 自控变频同步电动机调速系统 (11) 3.1梯形波永磁同步电动机(无刷直流电动机)的自控变频调速系统 (12) 3.2正弦波永磁同步电动机的自控变频调速系统 (14) 参考文献 (15)

1 同步电动机变压变频调速的特点及其基本类型 历史上最早出现的是直流电动机19世纪末,出现了交流电和交流电动机为了改善功率因数,同步电动机应运而生。同步电动机也是一种交流电机。既可以做发电机用,也可做电动机用,过去一般用于功率较大,转速不要求调节的生产机械,例如大型水泵,空压机等。 最初的同步电动机只用于拖动恒速负载或用于改善功率因数的场合。在恒定频率下运行的大型同步电动机又存在着容易发生失步和振荡的危险,以及起动困难等问题。因此,在没有变频电源的情况下,很难对同步电动机的转速进行控制。 1.1概述 同步电动机历来是以转速与电源频率保持严格同步著称的。只要电源频率保持恒定,同步电动机的转速就绝对不变。 采用电力电子装置实现电压-频率协调控制,改变了同步电动机历来只能恒速运行不能调速的面貌。起动费事、重载时振荡或失步等问题也已不再是同步电动机广泛应用的障碍。 同步电机的特点与问题:优点: (1)转速与电压频率严格同步;(2)功率因数高到1.0,甚至超前。 存在的问题: (1)起动困难;(2)重载时有振荡,甚至存在失步危险。 问题的根源:供电电源频率固定不变 解决办法: 采用电压-频率协调控制,例如:对于起动问题而言,可以通过变频电源频率的平滑调节,使电机转速逐渐上升,实现软起动。对于振荡和失步问题而言,

普通电机变频调速电机的区别

普通电机恒频恒压设计的,如果要了解使用变频器控制普通电机,对电机造成的影响,我们首先来了解变频电机的特点: 1、电磁设计 对普通异步电动机来说,再设计时主要考虑的性能参数是过载能力、启动性能、效率和功率因数。而变频电动机,由于临界转差率反比于电源频率,可以在临界转差率接近1时直接启动,因此,过载能力和启动性能不在需要过多考虑,而要解决的关键问题是如何改善电动机对非正弦波电源的适应能力。方式一般如下: 1)尽可能的减小定子和转子电阻。 减小定子电阻即可降低基波铜耗,以弥补高次谐波引起的铜耗增2)为抑制电流中的高次谐波,需适当增加电动机的电感。但转子槽漏抗较大其集肤效应也大,高次谐波铜耗也增大。因此,电动机漏抗的大小要兼顾到整个调速范围内阻抗匹配的合理性。 3)变频电动机的主磁路一般设计成不饱和状态,一是考虑高次谐波会加深磁路饱和,二是考虑在低频时,为了提高输出转矩而适当提高变频器的输出电压。 2、结构设计 再结构设计时,主要也是考虑非正弦电源特性对变频电机的绝缘结构、振动、噪声冷却方式等方面的影响,一般注意以下问题:1)绝缘等级,一般为F级或更高,加强对地绝缘和线匝绝缘强度,特别要考虑绝缘耐冲击电压的能力。 2)对电机的振动、噪声问题,要充分考虑电动机构件及整体的

刚性,尽力提高其固有频率,以避开与各次力波产生共振现象。 3)冷却方式:一般采用强迫通风冷却,即主电机散热风扇采用独立的电机驱动。 4)防止轴电流措施,对容量超过160KW电动机应采用轴承绝缘措施。主要是易产生磁路不对称,也会产生轴电流,当其他高频分量所产生的电流结合一起作用时,轴电流将大为增加,从而导致轴承损坏,所以一般要采取绝缘措施。 5)对恒功率变频电动机,当转速超过3000/min时,应采用耐高温的特殊润滑脂,以补偿轴承的温度升高。 变频变压控制对普通电机的影响: 1、电动机的效率和温升的问题 不论那种形式的变频器,在运行中均产生不同程度的谐波电压和电流,使电动机在非正弦电压、电流下运行。拒资料介绍,以目前普遍使用的正弦波PWM型变频器为例,其低次谐波基本为零,剩下的比载波频率大一倍左右的高次谐波分量为:2u+1(u为调制比)。 高次谐波会引起电动机定子铜耗、转子铜(铝)耗、铁耗及附加损耗的增加,最为显著的是转子铜(铝)耗。因为异步电动机是以接近于基波频率所对应的同步转速旋转的,因此,高次谐波电压以较大的转差切割转子导条后,便会产生很大的转子损耗。除此之外,还需考虑因集肤效应所产生的附加铜耗。这些损耗都会使电动机额外发热,效率降低,输出功率减小,如将普通三相异步电动机运行于变频器输出的非正弦电源条件下,其温升一般要增加10%--20%。

高压的10KV交流电动机试验项目

交流电动机试验项目: (1)绕组的绝缘电阻和吸收比测量; (2)绕组的直流电阻测量; (3)定子绕组直流耐压试验和泄漏电流测量; (4)定子绕组的交流耐压试验; (5)绕组式电动机转子绕组的交流耐压试验; (6)同步电动机转子绕组的交流耐压试验; (7)可变电阻器或起动电阻器的直流电阻测量; (8)可变电阻器与同步电动机灭磁电阻的交流耐压试验;

1.高压电动机 1.1 定子绕组的绝缘电阻和吸收比 1.1.1 此项目在小修时和大修时进行。 1.1.2 拆开定子三相出线与电缆引线连接螺栓及定子中性点短接排(中性点未引出的除外)。小修时定子绕组可与其所连接的电缆一起测量。 1.1.3 采用2500V兆欧表,分别测量每相对其它相及外壳的绝缘电阻(中性点未引出的只测量绕组对外壳的绝缘电阻),绝缘电阻不应低于10MΩ。500kW及以上的应测量吸收比,吸收比不小于1.3。 1.1.4 测量完毕,应充分放电。

1.2 定子绕组的直流电阻测量 1.2.1 此项目在大修时或必要时进行。 1.2.2 保持定子三相出线与电缆引线成拆开状,转子未抽出的,应保持转子静止不动。 1.2.3 在定子铁芯上放置温度计,测量试验时温度。 1.2.4 采用双臂电桥或直阻电阻测试仪,测量每相直流电阻,中性点未引出的测量线间直流电阻。 1.2.5 双臂电桥四根引线应等长,并牢靠地连在被测相出线上。 1.2.6 双臂电桥揿下B键充电后,应等待一定的时间,待充电完毕后,方可进行细致的测量。 1.2.7 各相测量完毕后,进行计算比较,各相绕组直阻值的相互差别不应超过最小值的2%,中性点未引出者,可测线间电阻,其相互差别不应超过1%。 1.2.8 记录下电动机定子绕组的温度,并对直阻值进行温度换算,与历次试验结果相比较应无明显的变化。 1.3 定子绕组泄漏电流和直流耐压试验 1.3.1 此项目对于500kW以上的高压电动机在大修时或更换绕组后进行。试验前应清理干净定子端子及铁芯。 1.3.2 有中性点引出者,应拆开中性点接线,无中性点引出者,三相绕组出线应短接加压。 1.3.3 电动机外壳应可靠接地。 1.3.4 其它检修人员停止作业,撤离现场,被试电动机周围应设置安全围栏,并派专业人员监护。 1.3.5 可采用直流高压发生器进行直流加压。 1.3.6 将加压屏蔽线悬空,空试试验设备的泄漏电流,加压至直流25kV,读空试泄漏值。 1.3.7 降压至零,并放电,将加压屏蔽线接于被试电动机定子绕组出线上。 1.3.8 合上直流发生器电源,开始缓慢升压,并随时注意泄漏电流的变化,将直流电压加至25kV时,开始计时,1分钟时读取泄漏电流值,然后降压至零。 1.3.9 断开试验电源,并用放电棒充分放电。 1.3.10 所读取的泄漏电流值减去空试泄漏值,即为定子绕组泄漏值,其值相间差别一般不大于最小值的100%(泄漏电流小于20 uA以下不作要求)。中性点未引出者与以前测量值相比应无明显变化。 1.4 定子绕组的交流耐压试验 1.4.1 此项目在大修时或更换绕组后进行,试验前定子绕组端部,槽口及铁芯皆应清理干净。 1.4.2 试验前测量定子绕组每相对地的绝缘电阻应合格。 1.4.3 按图1-6进行接线。 SB—试验变压 器 T—自耦调 压器 V1—高 压测压表 图1-6 电动 机交流耐压试 验原理接线图 1.4.4 试验现

普通三相异步电动机与变频电动机的区别

普通三相异步电动机与变频电动机的区别 普通的三相异步电动机可以用变频器驱动吗? 普通的三相异步电动机与变频调速的三相异电动机有何区别? 普通异步电机与变频电机的区别——普通异步电动机都是按恒频恒压设计的,不可能完全适应变频调速的要求。 以下为变频器对电机的影响: 1、电动机的效率和温升的问题 不论那种形式的变频器,在运行中均产生不同程度的谐波电压和电流,使电动机在非正弦电压、电流下运行。据资料介绍,以目前普遍使用的正弦波PWM型变频器为例,其低次谐波基本为零,剩下的比载波频率大一倍左右的高次谐波分量为:2u+1(u为调制比)。 高次谐波会引起电动机定子铜耗、转子铜(铝)耗、铁耗及附加损耗的增加,最为显著的是转子铜(铝)耗。因为异步电动机是以接近于基波频率所对应的同步转速旋转的,因此,高次谐波电压以较大的转差切割转子导条后,便会产生很大的转子损耗。除此之外,还需考虑因集肤效应所产生的附加铜耗。这些损耗都会使电动机额外发热,效率降低,输出功率减小,如将普通三相异步电动机运行于变频器输出的非正弦电源条件下,其温升一般要增加10%~20%。 2、电动机绝缘强度问题 目前中小型变频器,不少是采用PWM的控制方式。他的载波频率约为几千到十几千赫,这就使得电动机定子绕组要承受很高的电压上升率,相当于对电动机施加陡度很大的冲击电压,使电动机的匝间绝缘承受较为严酷的考验。另外,由PWM变频器产生的矩形斩波冲击电压叠加在电动机运行电压上,会对电动机对地绝缘构成威胁,对地绝缘在高压的反复冲击下会加速老化。 3、谐波电磁噪声与震动 普通异步电动机采用变频器供电时,会使由电磁、机械、通风等因素所引起的震动和噪声变的更加复杂。变频电源中含有的各次时间谐波与电动机电磁部分的固有空间谐波相互干涉,形成各种电磁激振力。当电磁力波的频率和电动机机体的固有振动频率一致或接近时,将产生共振现象,从而加大噪声。由于电动机工作频率范围宽,转速变化范围大,各种电磁力波的频率很难避开电动机的各构件的固有震动频率。 4、电动机对频繁启动、制动的适应能力 由于采用变频器供电后,电动机可以在很低的频率和电压下以无冲击电流的方式启动,并可利用变频器所供的各种制动方式进行快速制动,为实现频繁启动和制动创造了条件,因而电动机的机械系统和电磁系统处于循环交变力的作用下,给机械结构和绝缘结构带来疲劳和加速老化问题。 5、低转速时的冷却问题 首先,异步电动机的阻抗不尽理想,当电源频率较底时,电源中高次谐波所引起的损耗较大。其次,普通异步电动机在转速降低时,冷却风量与转速的三次方成比例减小,致使电动机的低速冷却状况变坏,温升急剧增加,难以实现恒转矩输出。 6、电磁设计

变频调速电机的选型

变频调速电机的选型 变频调速电机一般均选择4级电机,基频工作点设计在50Hz,频率0-50Hz(转速0-1480r/min)范围内电机作恒 转矩运行,频率50-100Hz(转速1480-2800r/min)范围内电机作恒功率运行,整个调速范围为(0-2800r/min) ,基本满足一般驱动设备的要求,其工作特性与直流调速电机相同,调速平滑稳定。如果在恒转矩调速范围内 要提高输出转矩,也可以选择6级或8级电机,但电机的体积相对要大一点。 由于变频调速电机的电磁设计运用了灵活的CAD 设计软件,电机的基频设计点可以随时进 行调整,我们可以在计算机上精确的模拟电机在各基频点上的工作特性,由此也就扩大了 电机的恒转矩调速范围,根据电机的实际使用工况,我们可以在同一个机座号内把电机的 功率做的更大,也可以在使用同一台变频器的基础上将电机的输出转矩提的更高,以满足 在各种工况条件下将电机的设计制造在最佳状态。变频调速电机可以另外选配附加的转速 编码器,可实现高精度转速、位置控制、快速动态特性响应的优点。也可配以电机专用的 直流(或交流)制动器以实现电机快速、有效、安全、可靠的制动性能。由于变频调速电 机的基频可调性设计,我们也可以制造出各种高速电机,在高速运行时保持恒转矩的特性 ,在一定程度上替代了原来的中频电机,而且价格低廉。变频调速电机为三相交流同步或 异步电动机,根据变频器的输出电源有三相380V或三相220V,所以电机电源也有三相380V 或三相220V的不同区别,一般4KW以下的变频器才有三相220V可,由于变频电机是以电机 的基频点(或拐点)来划分不同的恒功率调速区和恒转矩调速区的,所以变频器基频点和 变频电机基频点的设置都非常重要。 同步变频与异步变频调速电机的区别 异步变频调速电机是由普通异步电机派生而来,由于要适应变频器输出电源的特性,电机在转子槽型,绝缘工艺 ,电磁设计校核等作了很大的改动,特别是电机的通风散热,它在一般情况下附加了一个独立式强迫冷却风机, 以适应电机在低速运行时的高效散热和降低电机在高速运行时的风摩耗。变频器的输出一般显示电源的输出频率 ,转速输出显示为电机的极数和电源输出频率的计算值,与异步电机的实际转速有很大区别,使用一般异步变频 电动机时,由于异步电机的转差率是由电机的制造工艺决定,故其离散性很大,并且负载的变化直接影响电机的 转速,要精确控制电机的转速只能采用光电编码器进行闭环控制,当单机控制时转速的精度由编码器的脉冲数决 定,当多机控制时,多台电机的转速就无法严格同步。这是异步电机先天所决定的。 同步变频调速电机的转子内镶有永磁体,当电机瞬间起动完毕后,电机转入正常运行,定子旋转磁场带动镶有永 磁体的转子进行同步运行,此时电机的转速根据电机的极数和电机输入电源频率形成严格的对应关系,转速不受 负载和其他因数影响。同样同步变频调速电机也附加了一个独立式强迫冷却风机,以适应电机在低速运行时的高 效散热和降低电机在高速运行时的风摩耗。由于电机的转速和电源频率的严格对应关系,使得电机的转速精度主 要就取决于变频器输出电源频率的精度,控制系统简单,对一台变频器控制多台电机实现多台电机的转速一致, 也不需要昂贵的光学编码器进行闭环控制。 TYP 变频调速永磁同步电机具有的三大优点: 1、高效节能与异步变频调速电机相比,高效节能。同规格相比,该系列电机效率比异步变频电机效率高 3~10个百分点。以为利,两者效率差近7个百分点; 2、可精确调速与异步变频系统相比,无需编码器即可进行准确的速度控制; 3、高功率因数既可减少无功能量的消耗,又能降低变压器的容量

同步电机变频调速

同步电机变频调速 历史上最早出现的是直流电动机19世纪末,出现了交流电和交流电动机为了改善功率因数,同步电动机应运而生。同步电动机也是一种交流电机。既可以做发电机用,也可做电动机用,过去一般用于功率较大,转速不要求调节的生产机械,例如大型水泵,空压机等。 最初的同步电动机只用于拖动恒速负载或用于改善功率因数的场合。在恒定频率下运行的大型同步电动机又存在着容易发生失步和振荡的危险,以及起动困难等问题。 因此,在没有变频电源的情况下,很难对同步电动机的转速进行控制。 同步电动机历来是以转速与电源频率保持严格同步著称的。只要电源频率保持恒定,同步电动机的转速就绝对不变。 采用电力电子装置实现电压-频率协调控制,改变了同步电动机历来只能恒速运行不能调速的面貌。起动费事、重载时振荡或失步等问题也已不再是同步电动机广泛应用的障碍。 同步电机的特点与问题: 优点: (1)转速与电压频率严格同步; (2)功率因数高到1.0,甚至超前。 存在的问题: (1)起动困难; (2)重载时有振荡,甚至存在失步危险。 问题的根源: 供电电源频率固定不变 解决办法: 采用电压-频率协调控制 例如: 对于起动问题: 通过变频电源频率的平滑调节,使电机转速逐渐上升,实现软起动。 对于振荡和失步问题: 可采用频率闭环控制,同步转速可以跟着频率改变,于是就不会振荡和失步了。 同步电机和其它类型的旋转电机一样,由固定的定子和可旋转的转子两大部分组成。 下图给出了最常用的同步发电机的结构模型,其定子铁心的内圆均匀分布着定子槽,槽

内嵌放着按一定规律排列的三相对称交流绕组。这种同步电机的定子又称为电枢,定子铁心和绕组又称为电枢铁心和电枢绕组。 图中用AX 、BY 、CZ 三个 在空间错开120电角度分布的线 圈代表三相对称交流绕组。 同步电机的运行方式: 同步电机的主要运行方式有三种,即作为发电机、电动机和补偿机运行。 同步电动机的功率因数可以调节,在不要求调速的场合,应用大型同步电动机可以提高运行效率。近年来,小型同步电动机在变频调速系统中开始得到较多地应用。 同步电机的突出优点:控制励磁来调节它的功率因数,可以使功率因数高到1.0,甚至超前。 同步电机还可以接于电网作为同步补偿机。这时电机不带任何机械负载,靠调节转子中的励磁电流向电网发出所需的感性或者容性无功功率,以达到改善电网功率因数或者调节电网电压的目的。 同步调速系统的特点: (1)交流电机旋转磁场的同步转速ω1与定子电源频率 f 1 有确定的关系 同步电动机的稳态转速等于同步转速,转差 ωs = 0。 (2)异步电动机的磁场仅靠定子供电产生,而同步电动机除定子磁动势外,转子侧还有独立的直流励磁,或者用永久磁钢励磁。 目前采用的直流励磁方式分为两大类:一类是用直流发电机作为励磁电源的直流励磁机励磁系统;另一类是用硅整流装置将交流转化成直流后供给励磁的整流器励磁系统。 (3)同步电动机的气隙有隐极与凸极之分。凸极式转子上有明显凸出的成对磁极和励磁线圈。如对水轮发电机来说,由于水轮机的转速较低,要发出工频电能,发电机的极数就比较多,做成凸极式结构工艺上较为简单。另外,中小型同步电机多半也做成凸极式。 隐极式同步电机转子上没有凸出的磁极,气隙均匀。凸极式则不均匀,两轴的电感系 1 1p 2f n πω=

变频电机与普通电机的区别(1)资料

变频电机与普通电机的区别 变频电机是可以根据工作需要,通过改变电机的的频率来达到所要的转速要求,当然还增加了强冷风扇,用来保证电机在低转速下的冷却。 变频电机的特点 1、电磁设计 对普通异步电动机来说,在设计时主要考虑的性能参数是过载能力、启动性能、效率和功率因数。而变频电动机,由于临界转差率反比于电源频率,可以在临界转差率接近1时直接启动,因此,过载能力和启动性能不在需要过多考虑,而要解决的关键问题是如何改善电动机对非正弦波电源的适应能力。方式一般如下: 1)尽可能的减小定子和转子电阻 减小定子电阻即可降低基波铜耗,以弥补高次谐波引起的铜耗增。 2)为抑制电流中的高次谐波,需适当增加电动机的电感。但转子槽漏抗较大其集肤效应也大,高次谐波铜耗也增大。因此,电动机漏抗的大小要兼顾到整个调速范围内阻抗匹配的合理性。 3)变频电动机的主磁路一般设计成不饱和状态,一是考虑高次谐波会加深磁路饱和,二是考虑在低频时,为了提高输出转矩而适当提高变频器的输出电压。 2、结构设计 在结构设计时,主要也是考虑非正弦电源特性对变频电机的绝缘结构、振动、噪声冷却方式等方面的影响,一般注意以下问题: 1)绝缘等级,一般为F级或更高,加强对地绝缘和线匝绝缘强度,特别要考虑绝缘耐冲击电压的能力。 2)电机的振动、噪声问题,要充分考虑电动机构件及整体的刚性,尽力提高其固有频率,以避开与各次谐波产生共振现象。 3)冷却方式:一般采用强迫通风冷却,即主电机散热风扇采用独立的电机驱动。 4)防止轴电流措施,对容量超过160KW电动机应采用轴承绝缘措施。主要是易产生磁路不对称,也会产生轴电流,当其他高频分量所产生的电流结合一起作用时,轴电流将大为增加,从而导致轴承损坏,所以一般要采取绝缘措施。 5)对恒功率变频电动机,当转速超过3000/min时,应采用耐高温的特殊润滑脂,以补偿轴承的温度升高。 3、另外还有 1、从工频的角度看,变频电机是劣质电机,普通电机才是好电机; 2、由于变频器输出的SPWM脉宽调制波模拟正弦交流电,含有大量谐波,一般需要经过电抗器滤波后才能进入普通电机,否则普通电机会发热; 为了适应变频器输出的SPWM脉宽调制波模拟正弦交流电含有大量谐波,专门制作的变频电机,其作用实际上可理解为电抗器加普通电机; 这种变频电机不具备更好的转矩特性,只是克服了普通电机不适应PWM调宽波模拟正弦交流电的需要; 3、那就是说,同功率的变频电机比普通电机铁心截面要大,线圈匝数要多,线径要大,绝缘要高,专门的冷却风扇电机;???? 4、为了适应弱磁调速的需要,考虑了轴承的承受能力及高速转子动平衡;

相关文档
最新文档