“初等数论初步”简介

“初等数论初步”简介
“初等数论初步”简介

“初等数论初步”简介

初等数论是研究整数的性质和不定方程(组)的整数解的一门学问,它与几何学是最古老的两个数学分支。初等数论中至今仍有许多没有解决的问题,如哥德巴赫(Goldbach)问题,孪生素数猜想,奇完全数的存在性问题等,它们对人类智慧产生了极大挑战。人们在解决一些初等数论问题的过程中所作的贡献,对数论乃至整个数学的发展起了重要的推动作用,产生了一些直接与数学有关的新的重要数学分支。初等数论在计算机科学和信息工程中有许多重大的实际应用。在本专题中,同学们将通过具体的问题,学习初等数论的一些基本知识,如有关整数和整除的知识,用辗转相除法求解一次同余方程(组)和简单的一次不定方程等,初等数论中蕴含的一些思想方法,以及我国古代数学在初等数论的研究方面取得的一些重要成就。

一、内容与课程学习目标

本专题的学习初等数论的一些基本知识,具体包括:整数的整除、同余与同余方程、一次不定方程和数论在密码中的应用四部分内容。通过本专题的学习,要引导学生:

1.通过实例,认识带余除法,理解同余和剩余类的概念及意义,探索剩余类的运算性质(加法和乘法),并且理解它的实际意义。体会剩余类运算与传统数的运算的异同(会出现零因子)。

2.理解整除、因数和素数的概念,了解确定素数的方法,如埃拉托斯特尼(Eratoshenes)筛法,知道素数有无穷多个。

3.了解十进制表示的整数的整除判别法,探索整数能被3,9,11,7等整除的判别法。会检查整数加法、乘法运算错误的一种方法,如弃九验算法。

4.通过实例,探索利用辗转相除法求两个整数的最大公约数的方法,理解互素的概念,并能用辗转相除法证明:若a能整除bc,且a,b互素,则a能整除c。探索公因数和公倍数的性质。了解算术基本定理。

5.通过实例,理解一次不定方程的模型,利用辗转相除法求解简单的一次不定方程。并尝试写出算法的程序框图,在条件允许的情况下上机实现。

6.通过实例(如物不知其数问题),理解一次同余方程组的模型。

7.理解大衍求一术和孙子定理的证明。

8.理解费马小定理(当m是素数时,a m-1≡1(mod m))和欧拉定理(aφ(m)≡1(mod m),其中φ(m)是1,2,…,m-1中与m互素的数的个数)及其证明。

9.了解数论在密码中的应用——公开密钥。

二、内容安排

本专题共安排了四讲,其中最后一讲“数论在密码中的应用”可根据教学时间的实际情况机动安排,可由教师讲授,也可作为学生课后的阅读材料。本专题教学时间约需18课时,具体分配如下(仅供参考):

第一讲整数的整

约5课时

一、整除的概念和性质约2课时

二、最大公因数与最小公倍数约2课时

三、算术基本定理约1课时

第二讲同余与同余方程约7课时

一、同余约1课时

二、剩余类及其运算约2课时

三、费马小定理和欧拉定理约1.5课时

四、一次同余方程约1课时

五、拉格朗日插值法和孙子定理约1课时

六、弃九验算法约0.5课时

第三讲一次不定方程约3课时

一、二元一次不定方程约1课时

二、二元一次不定方程的特解约1课时

三、多元一次不定方程约1课时

第四讲数论在密码中的应用约2课时

一、信息的加密与去密约1课时

二、大数分解和公开密约约1课时

学习总结报告约1课时

本专题的知识结构如下:

1.初等

数论中有许

多知识和问

题是比较通

俗易懂的。许

多学生在小

学就学习了整数的分解、素数和整除性的简单知识。少数学生在中学阶段为参加数学竞赛的需要,通过课外活动进一步学习了同余和不定方程的初步知识。但是,初等数论中不少问题,说起来容易,做起来很难。因此,有些教师和学生可能认为本专题的学习太难,不愿意去教和学。事实上,本专题学习的目的不是训练学生去做初等数论的难题,为数学竞赛服务,而是介绍初等数论中最基本的概念、方法和思想,使学生对初等数论及其应用有一个初步的认识,通过介绍初等数论的一些历史背景知识(如历史人物和历史名题),开阔学生的眼界,同时了解我国古代数学家在初等数学研究方面取得的一些重要成就,增强民族自豪感。

2.整数的整除理论是初等数论的基础,其中心内容是最大公因数与最小公倍数理论,最基本、最重要的结果是算术基本定理。带余除法是建立整数的整除理论的一个重要工具。辗转相除法(也称Euclid算法)是初等数论中最重要的方法之一,它由有限次带余除法构成,利用它不仅可以证明最大公因数的如下重要性质:

(a, b)= ax +

by,

还可以给出最大公因数(a, b)和x, y的有效算法。利用上式,我们可以证明整除的许多重要性质。在本专题后面求解一次同余方程和简单的一次不定方程时,我们经常要用到辗转相除法。算术基本定理是初等数论的基石,它表明素数是正整数最基本的构成单位。利用算术基本定理,我们可以研究整数的许多重要性质。多项式整除的方法和性质与整数整除的方

法和性质完全平行,我们将这部分内容在附录中列出,供学生了解。

3.同余理论是初等数论的核心内容,它是由德国数学家高斯(Gauss)首先提出并系统地进行研究的。同余理论中蕴含大量的数论所特有的思想、概念和方法,它的出现是数论成为一个独立的数学分支的标志。同余、剩余类的概念与性质,以及一次同余方程式同余理论的基本知识,费马(Fermat)小定理和欧拉(Euler)定理是同余理论的两个重要结果,在简化计算和密码学等方面有重要的应用。我国古代数学家在一次同余方程求解方面取得了许多重要成就,比较典型问题如“物不知其数问题”、“韩信点兵问题”,重要方法和结论有“大衍求一术”和“孙子定理”(也称中国剩余定理),这些历史背景知识是学生应当了解的,并且有助于增强学生的民族自豪感和自信心。建立孙子定理的先特解而后求通解的想法与建立拉格郎日(Lagrange)插值公式是一样的,所以在教材中列入了建立朗格朗日插值公式的内容,有助于学生加强有关内容联系的意识。事实上,在学生的后续学习中,经常会用到这种思想方法。作为同余性质的简单应用,我们以乘法为例介绍了检查整数运算错误的一种方法,即弃九验算法。在同余理论中,剩余类的概念和运算是非常抽象的,但它是近世代数中一个很重要的数学模型。剩余类的运算与传统数的运算有许多类似的地方,但也要注意它们之间的区别,我们在教材中通过一些具体的例子来说明这一点。欧拉函数φ(m)是初等数论中的重要函数之一,在欧拉定理的证明和本专题最后一部分“数论在密码中的应用”要用到欧拉函数的表达式,由于其推导较复杂,要用到剩余系的知识,而正文中其它地方并不涉及,我们将相关内容在附录中列出。

5.不定方程是初等数论最古老的一个分支,我国古代数学家对不定方程进行了大量的研究。在公元前1100多年,我国古代数学家商高就提出了“勾广三、股修四、径隅五”的著名论断,它实际上给出了一个三边的长均为整数的直角三角形。大约1500年以前,我国古代的另一位数学家张丘建在他编写的《张丘建算经》里提出并求解了“百钱买百鸡”问题。教材中只讨论了最简单的不定方程——一次不定方程(组),这类不定方程(组)可以用前面介绍的整数的整除理论(辗转向除法)和同余理论(大衍求一术)来求解。教材上首先介绍二元一次不定方程的求解,用的也是先特解而后通解的想法,然后将三元和四元一次不定方程的求解问题转化为多次求解二元一次不定方程的问题。为了得到较复杂的二元一次不定方程的特解,教材介绍了一种有效算法,即辗转相除法,并给出了相应的算法程序框图,供有条件的学校选用。需要注意的是,一次同余方程(组)也可以转化为一次不定方程(组)进行求解,如著名的“物不知其数问题”,为此教材安排了一道这方面的习题,有助于学生加强有关知识的联系。

6.初等数论的应用非常广泛,现实生活和生产实践中的许多问题的变量是整数甚至是正整数。有些问题归结为求不定方程的整数解或正整数解,有些问题归结为求一些方程或不等式的整数解,并且在所有的整数解中找出最佳解,等等。特别是20世纪后期计算机科学和通信技术的飞速发展,数论已经成为密码学的重要工具之一。作为数论在密码学中的一个应用,教材主要介绍了信息加密传送的一些简单模型和基本原理,以及欧拉定理在公开密钥体制中的应用。安排本节内容的目的是要让学生体验初等数论与日常生活和其他学科的联系,体会初等数论的价值和作用,增强应用意识,同时还可以加深学生对有关知识的理解。

三、编写中考虑的几个问题

1.内容简明扼要,避免过多的符号推演

本专题选取了初等数论中最基本、最重要的内容进行介绍,如整除的概念与性质,带余除法,最大公因数与最小公倍数,辗转相除法,算术基本定理,同余的概念与性质,费马小定理和欧拉定理,一次同余方程(组)的求解,一次不定方程(组)等,它们在初等数论中的地位与重要性,我们在前面已经阐述。一般来说,这些内容是学生学习初等数论时必须掌握或了解的。在具体内容的安排上,我们也做了细致的处理。如最大公因数与最小公倍数的性质与计算,我们只考虑两个整数的情形。对于三个整数的最大公因数与最小公倍数的计算问题,通过探究问题总结出结论。对于多于三个整数的情形,教材只是指出类似结果成立,不做叙述和推证。最大公因数的性质众多,教材只介绍其中几个最基本的性质。对于后面的一次不定方程,我们也作了类似的处理,以二元一次不定方程的求解为主,至于多元一次不定方程以三元和四元一次不定方程为例进行说明。算术基本定理的证明分解成了两部分,一部分(分解式的存在性)在素数及其判定部分给出,另一部分(分解式的惟一性)在叙述完算术基本定理后直接给出。在费马小定理和欧拉定理的证明中,没有涉及到剩余系的概念及其性质,降低学生认知的难度。内容的表达尽可能地采用文字语言的形式,尽可能地避免抽象的符号运算与推理。

2.穿插有关历史背景知识,开阔学生视野

本专题无论是在引言中还是在后面各讲中,我们结合教材的具体内容,在正文或旁注中介绍初等数论发展史上一些重要的历史事件、人物和他们的重要成就。例如,费马猜想的提出与解决、欧几里得与几何《原本》、欧几里德算法、高斯与同余、费马和欧拉的数学成就、秦九韶和大衍求一术、程大位与“物不知其数问题”的算法口诀、张丘建与“百钱买百鸡”问题、丢番图方程等,这些内容不仅可以开阔学生视野,还有助于学生了解我国古代数学家在初等数论研究方面取得的重要成就,增强学生的民族自豪感和自信心。同时,这些内容可增加教材的可读性和亲和力。

3.强调从特殊到一般地引入新知识

本专题在介绍新概念、新结论和新方法之前,通常先让学生观察、思考、探究具体的实例,让学生获得一些感性认识后,再逐步上升到理性认识,最后通过例题和练习进行巩固,而不是像许多大学初等数论教材那样定义、定理的罗列和不加分析的给出定理的证明。这样有助于降低学生的认知难度,提高学生自主学习的积极性。例如,通过考察正整数正因数的个数引入素数的概念;通过观察月历表中同一列整数被7除后的余数的特征,引出同余的概念。又如,通过考察一些特殊的模n(n为素数)的剩余类环中乘法运算的规律,归纳、猜想出费马小定理的结论,然后给出证明。这种由特殊到一般的认识引入方式,既符合知识产生的历程,也符合学生的认识规律,对于培养学生提出问题的意识和归纳概括的能力都是有益的。

4.通过问题引导学生主动思维

为了引导学生主动思考,本专题利用“观察”“思考”“探究”等栏目设置了大量的问题。有些问题在内容上起着承上启下的作用。例如,在获得“任何大于1的整数,总存在

一个素数因数”的结论后,提出“是否总可将每个大于1的整数分解为一些素数的乘积?”;在介绍了同余的概念后,提出同余和整除的关系;在获得二元一次不定方程ax+by=c有解的必要条件为“(a, b) | c”后,该条件是否充分的问题,等等。有些问题是可以直接类比或经过简单推理就可以得出的结论。例如,在证明了能被3整除的正整数的特征后,将能被9,11,7整除的正整数的特征留给学生探究。在得到三元一次不定方程有整数解的充分必要条件后,将四元一次不定方程有解的充分必要条件留给学生探究等。总之,本专题通过知识的发生发展过程来自然地提出问题,引导学生层层深入地进行思考,可以使学生得到思维方法上的训练。

5.多种数学研究方法合理使用。

结合教材的具体内容,我们灵活运用从特殊到一般、类比、联系、推广等多种数学研究的常用方法。如引入新概念、新方法、新结论时,教材经常运用从特殊到一般的思想方法;在考察同余的性质时,运用类比的思想方法(与等式进行类比、联系);在推导孙子定理时,我们既运用了从特殊到一般的思想方法,又运用了类比的思想方法(与拉格朗日插值公式建立过程类比、联系);剩余类的运算与数的运算进行类比。另外,教材中的许多结论可以推广到一般情形,如最大公因数与最小公倍数的性质,拉格郎日插值公式与孙子定理,二元一次不定方程的可解条件和解法等,但教材主要考虑最基本的情形,目的是让学生更好的体验问题解决的过程,以及问题解决过程中所蕴含的数学思想方法,所以这些推广情形有的直接指出,有的留作学生探究。

5.适当使用信息技术

根据《新课标》的要求,本专题可适当地运用信息技术。事实上,在初等数论中,许多问题都可以借助信息技术工具处理,如素数的判定,辗转相除法的应用等。教材中主要选取了如下两个方面:一是运用辗转相除法求两个整数的最大公因数,二是运用辗转相除法求二元一次不定方程的特解。这是因为,它们的操作过程非常明确、具体,具有鲜明的算法特点,而且又可以突出信息技术处理这类初等数论问题的优势。但是,考虑到我国各地在教学中使用信息技术的不平衡性,大多数学校实现起来有一定难度,所以教材上在信息技术的使用上作了弹性处理,如教材中已经用近似于计算机程序的语言写出了算法程序框图,对编写程序并上计算机实现列入学生的探究活动。

四、对教学的几个建议

1.准确地把握教学要求

初等数论中有些问题看起来很容易,但要真正地解决它们很难。所以教师在教学时一定要根据《新课标》准确地把握好教学要求,不要把本专题的学习视为对数学竞赛中数论相关知识的培训。《新课标》中许多地方是要求学生通过实例了解的,如剩余类及其运算的内容,有的是通过实例进行探索的,如辗转相除法求两个整数的最大公因数,有的是要求学生通过实例理解的,如一次不定方程和一次同余方程组的模型。在这些地方,新知识的介绍是

通过具体的例子来实现的。确定素数方法以及素数有无穷多个的证明有很多种,其中许多技巧性很强,但本专题的学习目标只是了解和知道基本事实即可,还有算术基本定理和数论在密码中的应用都是属于学生了解的内容。拉格朗日插值公式和孙子定理的教学,不必追求结论的一般形式(教材上仅考虑三个插值点和三个同余方程构成的方程组的情形),应把教学重点放在体会“先特解而后通解”的思想方法以及定理的内容和证明的理解上。类似的还有,最大公因数和最小公倍数的性质与一次不定方程的求解。

2.合理安排教学计划

许多学生在小学就学习了整数的整除的一些初步知识。对带余除法、辗转相除法计算最大公因数、素因数分解式等操作上的内容比较熟悉,但对带余除法中除数和商的唯一性、辗转相除法的原理、素因数分解式的存在性和唯一性等论理上的内容比较生疏,所以教学时应有所侧重。教师可以只讲一些主要的方法和性质,其他的一些性质有学生讨论或自主探索完成。另外,多项式整除的方法和性质与整数整除的方法和性质几乎完全平行,也可根据学生的实际情况安排学生进行探索。本专题最后一讲“数论在密码中的应用”属于学生了解的内容,没有知识点的要求。如果有些学校用18个课时讲授本专题较紧张,可将该部分内容作为学生课后的阅读材料。

3.加强新旧知识之间的联系

在介绍新概念、新方法和新结论及其证明的过程中,应注意将新知识和学生已有的知识进行联系,降低学生的认知难度。例如,将探究同余式的性质时与学生熟悉的等式的性质联系起来。剩余类的概念与运算比较抽象,是本专题教学的一个难点,教学时可将剩余类的运算和性质与数的运算和性质联系起来。另外,引入一次同余方程时可与学生熟悉的一次方程联系起来,等等。这样一来,新知识的出现过程或探究新知的过程就显得更加自然,学生接受起来也轻松、容易一些。当然,新旧知识的区别也是教学时需要特别强调的。

4.恰当地使用信息技术

关于本专题内容的学习,《新课标》对信息技术的使用要求比较低。但如果在学校条件允许且学生具备相关知识(算法、计算机程序语言)的前提下,在运用辗转向除法求两个整数的最大公因数和求二元一次不定方程的一个特解的教学中,应积极鼓励学生根据教材上提高的算法程序框图编写计算机程序,并上机实现,这样既可以培养学生解决实际问题的能力,又可以加深对有关知识的理解和认识。如果相关条件不具备,可放弃此项教学要求。

初等数论练习题及答案

初等数论练习题一 一、填空题 1、τ(2420)=27;?(2420)=_880_ 2、设a ,n 是大于1的整数,若a n -1是质数,则a=_2. 3、模9的绝对最小完全剩余系是_{-4,-3,-2,-1,0,1,2,3,4}. 4、同余方程9x+12≡0(mod 37)的解是x ≡11(mod 37)。 5、不定方程18x-23y=100的通解是x=900+23t ,y=700+18t t ∈Z 。. 6、分母是正整数m 的既约真分数的个数为_?(m )_。 7 8、??? ??10365 =-1。 9、若p 是素数,则同余方程x p - 1 ≡1(mod p )的解数为二、计算题 1、解同余方程:3x 2+11x -20≡0 (mod 105)。 解:因105 = 3?5?7, 同余方程3x 2+11x -20≡0 (mod 3)的解为x ≡1 (mod 3), 同余方程3x 2+11x -38 ≡0 (mod 5)的解为x ≡0,3 (mod 5), 同余方程3x 2+11x -20≡0 (mod 7)的解为x ≡2,6 (mod 7), 故原同余方程有4解。 作同余方程组:x ≡b 1 (mod 3),x ≡b 2 (mod 5),x ≡b 3 (mod 7), 其中b 1 = 1,b 2 = 0,3,b 3 = 2,6, 由孙子定理得原同余方程的解为x ≡13,55,58,100 (mod 105)。 2、判断同余方程x 2≡42(mod 107)是否有解? 11074217 271071107713231071107311072107 710731072107732107422110721721107213)(=∴-=-=-==-=-=-==??≡-?--?-)()()()(),()()()(),()())()(( )(解: 故同余方程x 2≡42(mod 107)有解。 3、求(127156+34)28除以111的最小非负余数。

4月浙江自考初等数论试题及答案解析试卷及答案解析真题

1 浙江省2018年4月高等教育自学考试 初等数论试题 课程代码:10021 一、单项选择题(本大题共5小题,每小题2分,共10分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.20被-30除的余数是( ) A .-20 B .-10 C .10 D .20 2.176至545的正整数中,13的倍数的个数是( ) A .27 B .28 C .29 D .30 3.200!中末尾相继的0的个数是( ) A .49 B .50 C .51 D .52 4.从以下满足规定要求的整数中,能选取出模20的简化剩余系的是( ) A .2的倍数 B .3的倍数 C .4的倍数 D .5的倍数 5.设n 是正整数,下列选项为既约分数的是( ) A . 3144 21++n n B . 121 -+n n C .2 512+-n n D .1 31++n n 二、填空题(本大题共10小题,每小题3分,共30分) 请在每小题的空格中填上正确答案。错填、不填均无分。 1.d(120)=___________。 2.314162被163除的余数是___________。 3.欧拉定理是___________。 4.同余方程3x ≡5(mod13)的解是___________。 5.不定方程10x-8y=12的通解是___________。

2 6.ο ___________)1847 365 ( = 7.[-π]=___________。 8.为使n-1与3n 的最大公因数达到最大的可能值,则整数n 应满足条件___________。 9.如果一个正整数具有21个正因数,问这个正整数最小是___________。 10.同余方程x 3+x 2-x-1≡0(mod 3)的解是___________。 三、计算题(本大题共4小题,每小题10分,共40分) 1.解同余方程组 ???? ?? ?≡≡≡≡) 9(mod 4)7(mod 32)4(mod 23) 25(mod 1x x x x 2.解不定方程15x+10y+6z=19。 3.试求出所有正整数n ,使得2n -1能被7整除。 4.判断同余方程 x 2≡-1457(mod 2389) 是否有解? 四、证明题(本大题共2小题,每小题10分,共20分) 1.证明形如4n+3的素数有无穷多个。 2.证明不定方程 x 2+y 2+z 2=x 2y 2 没有正整数解。

初等数论试卷模拟试题和答案

初等数论试卷一 一、 单项选择题:(1分/题×20题=20分) 1.设x 为实数,[]x 为x 的整数部分,则( ) A.[][]1x x x ≤<+; B.[][]1x x x <≤+; C.[][]1x x x ≤≤+; D.[][]1x x x <<+. 2.下列命题中不正确的是( ) A.整数12,,,n a a a 的公因数中最大的称为最大公因数; B.整数12,, ,n a a a 的公倍数中最小的称为最小公倍数 C.整数a 与它的绝对值有相同的倍数 D.整数a 与它的绝对值有相同的约数 3.设二元一次不定方程ax by c +=(其中,,a b c 是整数,且,a b 不全为零)有一整数解 ()00,,,x y d a b =,则此方程的一切解可表为( ) A.00,,0,1,2,;a b x x t y y t t d d =- =+ =±± B.00,,0,1,2, ;a b x x t y y t t d d =+= -=±± C.00,,0,1,2, ;b a x x t y y t t d d =+= -=±± D.00,,0,1,2, ;b a x x t y y t t d d =-= -=±± 4.下列各组数中不构成勾股数的是( ) A.5,12,13; B.7,24,25; C.3,4,5; D.8,16,17 5.下列推导中不正确的是( ) A.()()()11221212mod ,mod mod ;a b m a b m a a b b m ≡≡?+≡+ B.()()()11221212mod ,mod mod ;a b m a b m a a bb m ≡≡?≡ C.()()111212mod mod ;a b m a a b a m ≡?≡ D.()()112 2 11mod mod .a b m a b m ≡?≡ 6.模10的一个简化剩余系是( ) A.0,1,2, ,9; B.1,2,3,,10;

初等数论 第一章 整除理论

第一章整除理论 整除性理论是初等数论的基础。本章要介绍带余数除法,辗转相除法,最大公约数,最小公倍数,算术基本定理以及它们的一些应用。 第一节数的整除性 定义1设a,b是整数,b≠ 0,如果存在整数c,使得 a = bc 成立,则称a被b整除,a是b的倍数,b是a 的约数(因数或除数),并且使用记号b∣a;如果不存在整数c使得a = bc成立,则称a不被 b整除,记为b|/a。 显然每个非零整数a都有约数±1,±a,称这四个数为a的平凡约数,a的另外的约数称为非平凡约数。 被2整除的整数称为偶数,不被2整除的整数称为奇数。 定理1下面的结论成立: (ⅰ) a∣b?±a∣±b; (ⅱ) a∣b,b∣c?a∣c; (ⅲ) b∣a i,i = 1, 2, , k?b∣a1x1+ a2x2+ +a k x k,此处x i(i = 1, 2, , k)是

任意的整数; (ⅳ) b∣a ?bc∣ac,此处c是任意的非零整数; (ⅴ) b∣a,a≠ 0 ? |b| ≤ |a|;b∣a 且|a| < |b| ?a = 0。 证明留作习题。 定义2若整数a≠0,±1,并且只有约数±1和±a,则称a是素数(或质数);否则称a为合数。 以后在本书中若无特别说明,素数总是指正素数。 定理2任何大于1的整数a都至少有一个素约数。 证明若a是素数,则定理是显然的。 若a不是素数,那么它有两个以上的正的非平凡约数,设它们是d1, d2, , d k 。不妨设d1是其中最小的。若d1不是素数,则存在e1 > 1,e2 > 1,使得d1 = e1e2,因此,e1和e2也是a的正的非平凡约数。这与d1的最小性矛盾。所以d1是素数。证毕。 推论任何大于1的合数a必有一个不超过 证明使用定理2中的记号,有a = d1d2,其中d1 > 1是最小的素约数,所以d12≤a。证毕。 例1设r是正奇数,证明:对任意的正整数n,有 n+ 2|/1r+ 2r+ +n r。

“4-6 初等数论初步”简介

“4-6 初等数论初步”简介 北京师范大学胡永建 初等数论是研究整数的性质和不定方程(组)的整数解的一门学问,它与几何学是最古老的两个数学分支。初等数论中至今仍有许多没有解决的问题,如哥德巴赫(Goldbach)问题,孪生素数猜想,奇完全数的存在性问题等,它们对人类智慧产生了极大挑战。人们在解决一些初等数论问题的过程中所作的贡献,对数论乃至整个数学的发展起了重要的推动作用,产生了一些直接与数学有关的新的重要数学分支。初等数论在计算机科学和信息工程中有许多重大的实际应用。在本专题中,同学们将通过具体的问题,学习初等数论的一些基本知识,如有关整数和整除的知识,用辗转相除法求解一次同余方程(组)和简单的一次不定方程等,初等数论中蕴含的一些思想方法,以及我国古代数学在初等数论的研究方面取得的一些重要成就。 一、内容与课程学习目标 本专题的学习初等数论的一些基本知识,具体包括:整数的整除、同余与同余方程、一次不定方程和数论在密码中的应用四部分内容。通过本专题的学习,要引导学生:1.通过实例,认识带余除法,理解同余和剩余类的概念及意义,探索剩余类的运算性质(加法和乘法),并且理解它的实际意义。体会剩余类运算与传统数的运算的异同(会出现零因子)。 2.理解整除、因数和素数的概念,了解确定素数的方法,如埃拉托斯特尼(Eratoshenes)筛法,知道素数有无穷多个。 3.了解十进制表示的整数的整除判别法,探索整数能被3,9,11,7等整除的判别法。会检查整数加法、乘法运算错误的一种方法,如弃九验算法。 4.通过实例,探索利用辗转相除法求两个整数的最大公约数的方法,理解互素的概念,并能用辗转相除法证明:若a能整除bc,且a,b互素,则a能整除c。探索公因数和公倍数的性质。了解算术基本定理。 5.通过实例,理解一次不定方程的模型,利用辗转相除法求解简单的一次不定方程。并尝试写出算法的程序框图,在条件允许的情况下上机实现。 6.通过实例(如物不知其数问题),理解一次同余方程组的模型。 7.理解大衍求一术和孙子定理的证明。 8.理解费马小定理(当m是素数时,a m-1≡1(mod m))和欧拉定理(aφ(m)≡1(mod m),其中φ(m)是1,2,…,m-1中与m互素的数的个数)及其证明。 9.了解数论在密码中的应用——公开密钥。 二、内容安排 本专题共安排了四讲,其中最后一讲“数论在密码中的应用”可根据教学时间的实际情况机动安排,可由教师讲授,也可作为学生课后的阅读材料。本专题教学时间约需18课时,具体分配如下(仅供参考): 第一讲整数的整除约5课时 一、整除的概念和性质约2课时 二、最大公因数与最小公倍数约2课时

(完整word版)初等数论练习题一(含答案)

《初等数论》期末练习二 一、单项选择题 1、=),0(b ( ). A b B b - C b D 0 2、如果1),(=b a ,则),(b a ab +=( ). A a B b C 1 D b a + 3、小于30的素数的个数( ). A 10 B 9 C 8 D 7 4、如果)(mod m b a ≡,c 是任意整数,则 A )(mod m bc ac ≡ B b a = C (mod )ac bc m ≡/ D b a ≠ 5、不定方程210231525=+y x ( ). A 有解 B 无解 C 有正数解 D 有负数解 6、整数5874192能被( )整除. A 3 B 3与9 C 9 D 3或9 7、如果a b ,b a ,则( ). A b a = B b a -= C b a ≥ D b a ±= 8、公因数是最大公因数的( ). A 因数 B 倍数 C 相等 D 不确定 9、大于20且小于40的素数有( ). A 4个 B 5个 C 2个 D 3个 10、模7的最小非负完全剩余系是( ). A -3,-2,-1,0,1,2,3 B -6,-5,-4,-3,-2,-1 C 1,2,3,4,5,6 D 0,1,2,3,4,5,6 11、因为( ),所以不定方程71512=+y x 没有解. A [12,15]不整除7 B (12,15)不整除7 C 7不整除(12,15) D 7不整除[12,15] 12、同余式)593(mod 4382≡x ( ). A 有解 B 无解 C 无法确定 D 有无限个解 二、填空题 1、有理数 b a ,0,(,)1a b a b <<=,能写成循环小数的条件是( ). 2、同余式)45(mod 01512≡+x 有解,而且解的个数为( ). 3、不大于545而为13的倍数的正整数的个数为( ). 4、设n 是一正整数,Euler 函数)(n ?表示所有( )n ,而且与n ( )的正整数的个数. 5、设b a ,整数,则),(b a ( )=ab . 6、一个整数能被3整除的充分必要条件是它的( )数码的和能被3整除. 7、+=][x x ( ). 8、同余式)321(mod 75111≡x 有解,而且解的个数( ). 9、在176与545之间有( )是17的倍数.

初等数论练习册汇总

作业次数:学号姓名作业成绩 第0章序言及预备知识 第一节序言(1) 1、数论人物、资料查询:(每人物写600字左右的简介) (1)华罗庚 2、理论计算与证明: (1 是无理数。 (2)Show that there are infinitely many Ulam numbers 3、用Mathematica 数学软件实现 A Ulam number is a member of an which was devised by and published in in 1964. The standard Ulam sequence (the (1, 2-Ulam sequence starts with U 1=1 and U 2=2 being the first two Ulam numbers. Then for n > 2, U n is defined to be the smallest that is the sum of two distinct earlier terms in exactly one way 。 By the definition, 3=1+2 is an Ulam number; and 4=1+3 is an Ulam number (The sum 4=2+2 doesn't count because the previous terms must be distinct. The integer 5 is not an Ulam number because 5=1+4=2+3. The first few terms are 1, 2, 3, 4, 6, 8, 11, 13, 16, 18, 26, 28, 36, 38, 47, 48, 53, 57, 62, 69, 72, 77,

0初等数论试卷及答案

初等数论考试试卷 一、 单项选择题:(1分/题×20题=20分) 1.设x 为实数,[]x 为x 的整数部分,则( A ) A.[][]1x x x ≤<+; B.[][]1x x x <≤+; C.[][]1x x x ≤≤+; D.[][]1x x x <<+. 2.下列命题中不正确的是( B ) A.整数12,, ,n a a a 的公因数中最大的称为最大公因数; < B.整数12,,,n a a a 的公倍数中最小的称为最小公倍数 【有最小的吗】 C.整数a 与它的绝对值有相同的倍数 D.整数a 与它的绝对值有相同的约数 3.设二元一次不定方程ax by c +=(其中,,a b c 是整数,且,a b 不全为零)有一整数解 ()00,,,x y d a b =,则此方程的一切解可表为( C ) A.00,,0,1,2,;a b x x t y y t t d d =- =+=±± B.00,,0,1,2, ;a b x x t y y t t d d =+=-=±± C.00,,0,1,2, ;b a x x t y y t t d d =+=-=±± D.00,,0,1,2, ;b a x x t y y t t d d =-=-=±± ( 4.下列各组数中不构成勾股数的是( D ) A.5,12,13; B.7,24,25; C.3,4,5; D.8,16,17 5.下列推导中不正确的是( D ) A.()()()11221212mod ,mod mod ;a b m a b m a a b b m ≡≡?+≡+ B.()()()11221212mod ,mod mod ;a b m a b m a a bb m ≡≡?≡ C.()()111212mod mod ;a b m a a b a m ≡?≡

初等数论作业(3)答案

第三次作业答案: 一、选择题 1、整数5874192能被( B )整除. A 3 B 3与9 C 9 D 3或9 2、整数637693能被(C )整除. A 3 B 5 C 7 D 9 3、模5的最小非负完全剩余系是( D ). A -2,-1,0,1,2 B -5,-4,-3,-2,-1 C 1,2,3,4,5 D 0,1,2,3,4 4、如果)(mod m b a ≡,c 是任意整数,则(A ) A )(mod m bc ac ≡ B b a = C ac T )(m od m bc D b a ≠ 二、解同余式(组) (1))132(mod 2145≡x . 解 因为(45,132)=3|21,所以同余式有3个解. 将同余式化简为等价的同余方程 )44(mod 715≡x . 我们再解不定方程 74415=-y x , 得到一解(21,7). 于是定理4.1中的210=x . 因此同余式的3个解为 )132(mod 21≡x , )132(mod 65)132(mod 3 13221≡+ ≡x , )132(mod 109)132(mod 3132221≡?+≡x . (2))45(mod 01512≡+x 解 因为(12,45)=3|15,所以同余式有解,而且解的个数为3. 又同余式等价于)15(mod 054≡+x ,即y x 1554=+. 我们利用解不定方程的方法得到它的一个解是(10,3), 即定理4.1中的100=x . 因此同余式的3个解为 )45(mod 10≡x ,

)45(mod 25)45(mod 3 4510≡+≡x , )45(mod 40)45(mod 3 45210≡?+≡x . (3))321 (m od 75111≡x . 解 因为(111,321)=3|75,所以同余式有3个解. 将同余式化简为等价的同余方程 )107(mod 2537≡x . 我们再解不定方程 2510737=+y x , 得到一解(-8,3). 于是定理4.1中的80-=x . 因此同余式的3个解为 )321(mod 8-≡x , )321(mod 99)321(mod 3 3218≡+-≡x , )321(mod 206)321(mod 3 32128≡?+-≡x . (4)?? ???≡≡≡)9(mod 3)8(mod 2)7(mod 1x x x . 解 因为(7,8,9)=1,所以可以利用定理5.1.我们先解同余式 )7(mod 172≡x ,)8(mod 163≡x ,)9(mod 156≡x , 得到)9(mod 4),8(mod 1),7(mod 4321-=-==x x x .于是所求的解为 ). 494(mod 478)494(mod 510 )494(mod 3)4(562)1(631472=-=?-?+?-?+??≡x (5)???????≡≡≡≡) 9(mod 5)7(mod 3)5(mod 2)2(mod 1x x x x . (参考上题)

初等数论第2版习题答案

第一章 §1 1 证明:n a a a ,,21 都是m 的倍数。 ∴存在n 个整数n p p p ,,21使 n n n m p a m p a m p a ===,,,222111 又n q q q ,,,21 是任意n 个整数 m p q p q q p a q a q a q n n n n )(22112211+++=+++∴ 即n n a q a q a q +++ 2211是m 的整数 2 证: )12)(1()12)(1(-+++=++n n n n n n n )1()1()2)(1(+-+++=n n n n n n )1()1/(6),2)(1(/6+-++n n n n n n )1()1()2)(1(/6+-+++∴n n n n n n 从而可知 )12)(1(/6++n n n 3 证: b a , 不全为0 ∴在整数集合{}Z y x by ax S ∈+=,|中存在正整数,因而 有形如by ax +的最小整数00by ax + Z y x ∈?,,由带余除法有00000,)(by ax r r q by ax by ax +<≤++=+ 则 S b q y y a q x x r ∈-+-=)()(00,由00by ax +是S 中的最小整数知0=r by ax by ax ++∴/00 下证8P 第二题 by ax by ax ++/00 (y x ,为任意整数) b by ax a by ax /,/0000++∴ ).,/(00b a by ax +∴ 又有b b a a b a /),(,/),( 00/),(by ax b a +∴ 故),(00b a by ax =+ 4 证:作序列 ,2 3, ,2 , 0,2 ,,2 3,b b b b b b - -- 则a 必在此序列的某两项之间

初等数论

初等数论学习总结 第一章 整除 例题选讲 例1.请写出10个连续正整数都是合数. 解: 11!+2,11!+3,……,11!+11。 例2. 证明连续三个整数中,必有一个被3整除。 证:设三个连续正数为a ,a +1,a +2,而a 只有3k ,3k +1,3k +2三种情况,令a =3k ,显 然成立,a =3k +1时,a +2=3(k+1),a =3k +2时,a +1=3(k +1)。 例3. 证明lg2是无理数。 证:假设lg2是有理数,则存在二个正整数p ,q ,使得lg2= q p ,由对数定义可得10p =2q ,则有2p ·5p =2q ,则同一个数左边含因子5,右边不含因子5,与算术基本定理矛盾。∴lg2为无理数。 例4. 求(21n+4,14n+3) 解:原式=(21n+4,14n+3)=(7n+1,14n+3)=(7n+1,7n+2)=(7n+1,1)=1 例5. 求2004!末尾零的个数。 解:因为10=2×5,而2比5多, 所以只要考虑2004!中5的幂指数,即 5(2004!)=4995 20045 200412520042520045200454=?? ? ??+?? ? ??+?? ? ??+?? ? ??+?? ? ?? 例6.证明(n !)(n-1)!|(n !)! 证:对任意素数p ,设(n !)(n -1)!中素数p 的指数为α, (n !)!中p 的指数β,则 ∑???? ??-=∞=11k k p n n )!(α,∑??? ? ??-=∞=11k k p n n !)!(β,)()(x n nx ≥ α=∑??? ? ??-=∑???? ?? -≥∑???? ??-=∑???? ??∴∞=∞=∞=∞=1111111k k k k k k k k p n n p n n p n n p n ! )!(!)!()!(! 即α β≥,即左边整除右边。

初等数论试卷和答案

初等数论试卷和答案

初等数论考试试卷1 一、单项选择题(每题3分,共18分) 1、如果a b ,b a ,则( ). A b a = B b a -= C b a ≤ D b a ±= 2、如果n 3,n 5,则15( )n . A 整除 B 不整除 C 等于 D 不一定 3、在整数中正素数的个数( ). A 有1个 B 有限多 C 无限多 D 不一定 4、如果)(mod m b a ≡,c 是任意整数,则 A )(mod m bc ac ≡ B b a = C ac T )(mod m bc D b a ≠ 5、如果( ),则不定方程c by ax =+有解. A c b a ),( B ),(b a c C c a D a b a ),( 6、整数5874192能被( )整除. A 3 B 3与9 C 9 D 3或9 二、填空题(每题3分,共18分) 1、素数写成两个平方数和的方法是( ). 2、同余式)(mod 0m b ax ≡+有解的充分必要条件是( ). 3、如果b a ,是两个正整数,则不大于a 而为b 的倍数的正整数的个数为 ( ). 4、如果p 是素数,a 是任意一个整数,则a 被p 整除或者( ). 5、b a ,的公倍数是它们最小公倍数的( ).

试卷1答案 一、单项选择题(每题3分,共18分) 1、D. 2、A 3、C 4、A 5、A 6、B 二、填空题(每题3分,共18分) 1、素数写成两个平方数和的方法是(唯一的). 2、同余式)(mod 0m b ax ≡+有解的充分必要条件是(b m a ),(). 3、如果b a ,是两个正整数,则不大于a 而为b 的倍数的正整数的个数为( ][b a ). 4、如果p 是素数,a 是任意一个整数,则a 被p 整除或者( 与p 互素 ). 5、b a ,的公倍数是它们最小公倍数的( 倍数 ). 6、如果b a ,是两个正整数,则存在( 唯一 )整数r q ,,使r bq a +=,b r ≤0. 三、计算题(每题8分,共32分) 1、 求[136,221,391]=?(8分) 解 [136,221,391] =[[136,221],391] =[391,17221136?] =[1768,391] ------------(4分) = 17391 1768?

自考初等数论试题及答案

初等数论考试试卷1 一、单项选择题(每题3分,共18分) 1、如果a b ,b a ,则( ). A b a = B b a -= C b a ≤ D b a ±= 2、如果n 3,n 5,则15( )n . A 整除 B 不整除 C 等于 D 不一定 3、在整数中正素数的个数( ). A 有1个 B 有限多 C 无限多 D 不一定 4、如果)(mod m b a ≡,c 是任意整数,则 A )(mod m bc ac ≡ B b a = C ac T )(mod m bc D b a ≠ 5、如果( ),则不定方程c by ax =+有解. A c b a ),( B ),(b a c C c a D a b a ),( 6、整数5874192能被( )整除. A 3 B 3与9 C 9 D 3或9 二、填空题(每题3分,共18分) 1、素数写成两个平方数和的方法是( ). 2、同余式)(mod 0m b ax ≡+有解的充分必要条件是( ). 3、如果b a ,是两个正整数,则不大于a 而为b 的倍数的正整数的个数为( ). 4、如果p 是素数,a 是任意一个整数,则a 被p 整除或者( ). 5、b a ,的公倍数是它们最小公倍数的( ). 6、如果b a ,是两个正整数,则存在( )整数r q ,,使r bq a +=,b r π≤0. 三、计算题(每题8分,共32分) 1、求[136,221,391]=? 2、求解不定方程144219=+y x . 3、解同余式)45(mod 01512≡+x . 4、求? ?? ??563429,其中563是素数. (8分) 四、证明题(第1小题10分,第2小题11分,第3小题11分,共32分)

初等数论

问题一:数学教育专业分为专业基础课:高等代数,数学分析,空间解析几何以及专业课:实变函数论,点集拓扑,复变函数论,微分几何,概率与数理统计,数学建模,初等数论,数学教学论。数学主要的学科首要产生于商业上计算的需要、了解数与数之间的关系、测量土地及预测天文事件。这四种需要大致地与数量、结构、空间及变化(即算术、代数、几何及分析)等数学上广泛的领域相关连著。除了上述主要的关注之外,亦有用来探索由数学核心至其他领域上之间的连结的子领域:至逻辑、至集合论(基础)、至不同科学的经验上的数学(应用数学)、及较近代的至不确定性的严格学习。 一、李永乐:李永乐老师毕业于北京大学数学系,后来在清华大学数学系任教, 他还是前二李全书的代数执笔者,李永乐全书和660题的主编,可以说是考研数学界的权威代表。他的研究方向是线性代数。 二、汤家凤:汤老师是南京大学数学系博士,南京工业大学副教授。他的研究方 向为高等代数。 三、李林:李林老师毕业于北师大数学系,大连理工大学数学科学学院数学研究 所教师,职称为讲师,研究方向为常微分方程。 四、武忠祥:西安交通大学数学系教授,从事高等数学教学和考研辅导23年, 国家高等数学试题库骨干专家。 五、王式安:王式安本人毕业于复旦大学数学系,后来任教于北京理工大学。王 式安老师是前考研命题组的老师,主要是讲概率。 六、方复全:首都师范大学特聘教授,教育部长江学者特聘教授。主要研究方向 为微分几何、微分拓扑学。 七、曹一鸣:北京师范大学数学学科学院教授,博士生导师,贵州师范大学特聘 教授。主要从事数学课程与教学、数学史与数学教育研究。 八、戎小春:首都师范大学数学系硕士毕业,后留校任教。现为美国Rutgers大 学教授。他的研究方向主要为微分几何理论。 九、王贵君:天津师范大学数学学院教授。研究方向:模糊测度与积分,模糊神 经网络,模糊系统逼近。 十、汪晓勤:中国科学院科学技术史博士专业,获哲学博士学位。现任华东师范 大学数学系教授,学科教育(数学)专业博士生导师。研究方向为数学史与数学教育。 问题二:数论的发展史及现状 数论早期称为算术。到20世纪初,才开始使用数论的名称,而算术一词则表示“基本运算”,不过在20世纪的后半,有部份数学家仍会用“算术”一词来表示数论。1952年时数学家Harold Davenport仍用“高等算术”一词来表示数论,戈弗雷·哈罗德·哈代和爱德华·梅特兰·赖特在1938年写《数论介绍》简介时曾提到“我们曾考虑过将书名改为《算术介绍》,某方面而言是更合适的书名,但也容易让读者误会其中的内容”。古希腊数学家——欧几里得 公元前300年,古希腊数学家欧几里德证明了有无穷多个素数,公元前250年古希腊数学家埃拉托塞尼发明了一种寻找素数的埃拉托斯特尼筛法。寻找一个表示所有素数的素数通项公式,或者叫素数普遍公式,是古典数论最主要的问题之一。数论从早期到中期跨越了1000—2000年,在接近2000年时间,数论几乎是空白。中期主要指15-16世纪到19世纪,是由费马,梅森、欧拉、高斯、勒让德、黎曼、希尔伯特、Heegner等人发展的。

自考初等数论试题及答案

初等数论考试试卷 1 一、单项选择题(每题3分,共18分) 1、 如果 ba , ab ,则(). A a b Bab C a b Dab 2、 如果 3n , 5n ,则 15 ( ) n . A 整除 B 不整除 C 等于 D 不一定 3、 在整数中正素数的个数( ). A 有1个 B 有限多 C 无限多 D 不一定 4、 如果 a b (modm ) , c 是任意整数贝V 5、 如果(),则不定方程ax by c 有解. A (a, b)c B c(a,b) C ac D (a,b)a 6、 整数5874192能被()整除. A 3 B 3 与 9 C 9 D 3 或 9 二、填空题(每题3分,共18分) 1、 素数写成两个平方数和的方法是( )? 2、 同余式ax b 0(modm ) 有解的充分必要条件是(). 3、 如果 a,b 是两个正整数,则不大于a 而为b 的倍数的正整数的个数为(). 4、 如果p 是素数,a 是任意一个整数,则a 被P 整除或者(). 5、 a,b 的公倍数是它们最小公倍数的 (). 6、如果a ,b 是两个正整数,则存在()整数q ,r ,使a bq r ,0 r b . 三、计算题(每题8分,共32分) 1、 求[136,221,391]=? 2、 求解不定方程9x 21y 144 . 3、 解同余式 12x 15 0(mod45) . 429 4、 求563 ,其中563是素数.(8 分) 四、证明题(第 1小题10分,第2小题11分,第3小题11分,共32分) 2 3 n n n 1证明对于任意整数n ,数3 2 6是整数. 2、 证明相邻两个整数的立方之差不能被 5整除. A ac bc(modm) B a b C ac bc(mod m) D ab

[VIP专享]“初等数论初步”简介

“初等数论初步”简介  初等数论是研究整数的性质和不定方程(组)的整数解的一门学问,它与几何学是最 古老的两个数学分支。初等数论中至今仍有许多没有解决的问题,如哥德巴赫 (Goldbach)问题,孪生素数猜想,奇完全数的存在性问题等,它们对人类智慧产生了极 大挑战。人们在解决一些初等数论问题的过程中所作的贡献,对数论乃至整个数学的发展 起了重要的推动作用,产生了一些直接与数学有关的新的重要数学分支。初等数论在计算 机科学和信息工程中有许多重大的实际应用。在本专题中,同学们将通过具体的问题,学 习初等数论的一些基本知识,如有关整数和整除的知识,用辗转相除法求解一次同余方程(组)和简单的一次不定方程等,初等数论中蕴含的一些思想方法,以及我国古代数学在 初等数论的研究方面取得的一些重要成就。 一、内容与课程学习目标 本专题的学习初等数论的一些基本知识,具体包括:整数的整除、同余与同余方程、 一次不定方程和数论在密码中的应用四部分内容。通过本专题的学习,要引导学生: 1.通过实例,认识带余除法,理解同余和剩余类的概念及意义,探索剩余类的运算 性质(加法和乘法),并且理解它的实际意义。体会剩余类运算与传统数的运算的异同 (会出现零因子)。 2.理解整除、因数和素数的概念,了解确定素数的方法,如埃拉托斯特尼(Eratoshenes)筛法,知道素数有无穷多个。 3.了解十进制表示的整数的整除判别法,探索整数能被3,9,11,7等整除的判别 法。会检查整数加法、乘法运算错误的一种方法,如弃九验算法。 4.通过实例,探索利用辗转相除法求两个整数的最大公约数的方法,理解互素的概 念,并能用辗转相除法证明:若a能整除bc,且a,b互素,则a能整除c。探索公因数和 公倍数的性质。了解算术基本定理。 5.通过实例,理解一次不定方程的模型,利用辗转相除法求解简单的一次不定方程。 并尝试写出算法的程序框图,在条件允许的情况下上机实现。 6.通过实例(如物不知其数问题),理解一次同余方程组的模型。 7.理解大衍求一术和孙子定理的证明。 8.理解费马小定理(当m是素数时,a m-1≡1(mod m))和欧拉定理(aφ(m)≡1(mod m),其中φ(m)是1,2,…,m-1中与m互素的数的个数)及其证明。 9.了解数论在密码中的应用——公开密钥。 二、内容安排

02013自学考试初等数论模拟试题(含答案)

02013自学考试初等数论模拟试题(含答案) 一、 单项选择题:(1分/题×20题=20分) 1.设x 为实数,[]x 为x 的整数部分,则( ) A.[][]1x x x ≤<+; B.[][]1x x x <≤+; C.[][]1x x x ≤≤+; D.[][]1x x x <<+. 2.下列命题中不正确的是( ) A.整数12,,,n a a a 的公因数中最大的称为最大公因数; B.整数12,, ,n a a a 的公倍数中最小的称为最小公倍数 C.整数a 与它的绝对值有相同的倍数 D.整数a 与它的绝对值有相同的约数 3.设二元一次不定方程ax by c +=(其中,,a b c 是整数,且,a b 不全为零)有一整数解()00,,,x y d a b =,则此方程的一切解可表为( ) A.00,,0,1,2,;a b x x t y y t t d d =- =+=±± B.00,,0,1,2, ;a b x x t y y t t d d =+=-=±± C.00,,0,1,2, ;b a x x t y y t t d d =+=-=±± D.00,,0,1,2, ;b a x x t y y t t d d =-=-=±± 4.下列各组数中不构成勾股数的是( ) A.5,12,13; B.7,24,25; C.3,4,5; D.8,16,17 5.下列推导中不正确的是( ) A.()()()11221212mod ,mod mod ;a b m a b m a a b b m ≡≡?+≡+ B.()()()11221212mod ,mod mod ;a b m a b m a a bb m ≡≡?≡ C.()()111212mod mod ;a b m a a b a m ≡?≡ D.()()112211mod mod .a b m a b m ≡?≡ 6.模10的一个简化剩余系是( ) A.0,1,2, ,9; B.1,2,3,,10; C.5,4,3,2,1,0,1,2,3,4;----- D.1,3,7,9.

数学各个研究方向简介

数学各个研究方向 数论 人类从学会计数开始就一直和自然数打交道了,后来由于实践的需要,数的概念进一步扩充,自然数被叫做正整数,而把它们的相反数叫做负整数,介于正整数和负整数中间的中性数叫做0。它们和起来叫做整数。 对于整数可以施行加、减、乘、除四种运算,叫做四则运算。其中加法、减法和乘法这三种运算,在整数范围内可以毫无阻碍地进行。也就是说,任意两个或两个以上的整数相加、相减、相乘的时候,它们的和、差、积仍然是一个整数。但整数之间的除法在整数范围内并不一定能够无阻碍地进行。 人们在对整数进行运算的应用和研究中,逐步熟悉了整数的特性。比如,整数可分为两大类—奇数和偶数(通常被称为单数、双数)等。利用整数的一些基本性质,可以进一步探索许多有趣和复杂的数学规律,正是这些特性的魅力,吸引了古往今来许多的数学家不断地研究和探索。

数论这门学科最初是从研究整数开始的,所以叫做整数论。后来整数论又进一步发展,就叫做数论了。确切的说,数论就是一门研究整数性质的学科。 数论的发展简况 自古以来,数学家对于整数性质的研究一直十分重视,但是直到十九世纪,这些研究成果还只是孤立地记载在各个时期的算术著作中,也就是说还没有形成完整统一的学科。 自我国古代,许多著名的数学著作中都关于数论内容的论述,比如求最大公约数、勾股数组、某些不定方程整数解的问题等等。在国外,古希腊时代的数学家对于数论中一个最基本的问题——整除性问题就有系统的研究,关于质数、和数、约数、倍数等一系列概念也已经被提出来应用了。后来的各个时代的数学家也都对整数性质的研究做出过重大的贡献,使数论的基本理论逐步得到完善。 在整数性质的研究中,人们发现质数是构成正整数的基本“材料”,要深入研究整数的性质就必须研究质数的性质。因此关于质数性质的有关问题,一直受到数学家的关注。 到了十八世纪末,历代数学家积累的关于整数性质零散的知识已经十分丰富了,把它们整理加工成为一门系统的学科的条件已经完全成熟了。德国数学家高斯集中前人的大成,写了一本书叫做《算术探讨》,1800年寄给了法国科学院,但是法国科学院拒绝了高

初等数论1习题参考答案

附录1 习题参考答案 第一章习题一 1. (ⅰ) 由a b知b = aq,于是b = (a)(q),b = a(q)及b = (a)q,即a b,a b及a b。反之,由a b,a b及a b 也可得a b; (ⅱ) 由a b,b c知b = aq1,c = bq2,于是c = a(q1q2),即a c; (ⅲ) 由b a i知a i= bq i,于是a1x1a2x2a k x k = b(q1x1 q2x2q k x k),即b a1x1a2x2a k x k;(ⅳ) 由b a知a = bq,于是ac = bcq,即bc ac; (ⅴ) 由b a知a = bq,于是|a| = |b||q|,再由a 0得|q| 1,从而|a| |b|,后半结论由前半结论可得。 2. 由恒等式mq np= (mn pq) (m p)(n q)及条件m p mn pq可知m p mq np。 3. 在给定的连续39个自然数的前20个数中,存在两个自然数,它们的个位数字是0,其中必有一个的十位数字不是9,记这个数为a,它的数字和为s,则a, a 1, , a 9, a 19的数字和为s, s 1, , s 9, s 10,其中必有一个能被11整除。 4. 设不然,n1= n2n3,n2p,n3p,于是n = pn2n3p3,即p3n,矛盾。 5. 存在无穷多个正整数k,使得2k1是合数,对于这样的k,(k1)2

不能表示为a2p的形式,事实上,若(k 1)2= a2p,则(k 1 a)( k 1 a) = p,得k 1 a = 1,k 1 a = p,即p = 2k 1,此与p为素数矛盾。 第一章习题二 1. 验证当n =0,1,2,… ,11时,12|f(n)。 2.写a = 3q1r1,b = 3q2r2,r1, r2 = 0, 1或2,由3a2b2 = 3Q r12r22知r1 = r2 = 0,即3a且3b。 3.记n=10q+r, (r=0,1,…,9),则n k+4-n k被10除的余数和r k+4-r k=r k(r4-1)被10 除的余数相同。对r=0,1,…,9进行验证即可。 4. 对于任何整数n,m,等式n2 (n 1)2 = m2 2的左边被4除的余数为1,而右边被4除的余数为2或3,故它不可能成立。 5 因a4 3a2 9 = (a2 3a 3)( a2 3a 3),当a = 1,2时,a2 3a 3 = 1,a4 3a2 9 = a2 3a 3 = 7,13,a4 3a2 9是素数;当a 3时,a2 3a 3 > 1,a2 3a 3 > 1,a4 3a2 9是合数。 6. 设给定的n个整数为a1, a2, , a n,作 s1 = a1,s2 = a1a2,,s n = a1a2a n, 如果s i中有一个被n整除,则结论已真,否则存在s i,s j,i < j,使得s i与s j 被n除的余数相等,于是n s j s i = a i + 1a j。

相关文档
最新文档