一种32位MCU开发板的设计与实现

一种32位MCU开发板的设计与实现

一种32位MCU开发板的设计与实现

?STM32F100VBT6采用ARM Cortex-M3 32位RISC内核,工作频率24MHz,集成了高速嵌入式存储器(闪存高达128kB、SRAM高达8kB)以及各种增强外设和连接到两条APB总线的I/O。所有器件提供两个I2C、两个SPI、一个HDMI CEC和多达3个USART标致通信接口以及一个12位ADC、两个12位DAC和六个通用16位定时器和PWM定时器。

?

?

RISC微处理器不仅精简了指令系统,采用超标量和超流水线结构;它们的指令数目只有几十条,却大大增强了并行处理能力。SGI公司推出的MIPS处理器则采用超流水线结构,这些RISC处理器在构建并行精简指令系统多处理机中起着核心的作用。

?

图1 STM32F100xx系列方框图

?

?

STM32F100xx简介

?

?

32位MCU,带有16 kB ~128kBFlash、12个定时器、ADC、DAC 和8个通信接口STM32F100xx系列整合了工作频率为24MHz的高性能ARM Cortex?-M3 32位RISC内核、高速嵌入式存储器(闪存高达128kB,

中国32位嵌入式CPU芯片

2015-2020年中国32位嵌入式CPU芯片行业市场调研及未来发展分析报告 Special Statenent特别声明 本报告由华经视点独家撰写并出版发行,报告版权归华经视点所有。本报告是华经视点专家、分析师调研、统计、分析整理而得,具有独立自主知识产权,报告仅为有偿提供给购买报告的客户使用。未经授权,任何网站或媒体不得转载或引用本报告内容,华经视点有权依法追究其法律责任。如需订阅研究报告,请直接联系本网站客服人员(8610-56188812 56188813),以便获得全程优质完善服务。 华经视点是中国拥有研究人员数量最多,规模最大,综合实力最强的研究咨询机构(欢迎客户上门考察),公司长期跟踪各大行业最新动态、资讯,并且每日发表独家观点。 目前华经视点业务范围主要覆盖市场研究报告、投资咨询报告、行业研究报告、市场预测报告、市场调查报告、征信报告、项目可行性研究报告、商业计划书、IPO上市咨询等领域,同时也为个阶层人士提供论文、报告等指导服务,是一家多层次、多维度的综合性信息研究咨询服务机构。 Report Description报告描述 本研究报告由华经视点公司领衔撰写。报告以行业为研究对象,基于行业的现状,行业运行数据,行业供需,行业竞争格局,重点企业经营分析,行业产业链进行分析,对市场的发展状况、供需状况、竞争格局、赢利水平、发展趋势等进行了分析,预测行业的发展前景和投资价值。在周密的市场调研基础上,通过最深入的数据挖掘,从多个角度去评估企业市场地位,准确挖掘企业的成长性,为企业提供新的投资机会和可借鉴的操作模式,对欲在行业从事资本运作的经济实体等单位准确了解目前行业发展动态,把握企业定位和发展方向有重要参考价值。报告还对下游行业的发展进行了探讨,是企业、投资部门、研究机构准确了解目前中国市场发展动态,把握行业发展方向,为企业经营决策提供重要参考的依据。 Report Directory报告目录 第一章研究范围界定及市场特征分析 第一节CPU芯片分类及应用 一、CPU芯片分类 二、CPU芯片应用

32位MIPS处理器设计实验报告

数字逻辑与处理器基础实验 32位MIPS处理器设计实验报告 王晗 (2013011076) July26,2015 Date Performed:July15,2015 Partners:耿天毅(2012011119) 陈志杰withdrawn 1实验目的 熟悉现代处理器的基本工作原理;掌握单周期和流水线处理器的设计方法。 2设计方案 2.1总体结构 由于这次实验涉及的功能较多,我们将完整的CPU分成多个模块。指令存储器、寄存器堆、控制器、ALU控制器、ALU、数据存储器、UART等功能单元均在单独的Module中实现。其中指令存储器、寄存器堆、控制器、ALU控制器、ALU等单元在Single Cycle Core中实例化,作为单周期处理器的核心;数据存储器、UART和定时器、LED、七段数码管、开关在Peripheral中实现,作为处理器的外设。处理器核心和外设在顶层模块中实例化,互相通信。 单周期CPU模块的结构关系如Figure1所示:

Figure1:单周期处理器结构 对于流水线CPU,我们还在Pipeline Core中加入了流水线寄存器、冒险检测单元、数据转发单元: Figure2:流水线处理器结构

2.2ALU1 ALU模块的结构如图所示,输入两个操作数A、B和控制信号ALUFun、Signed,在ARITH子模块中做加减法运算,CMP子模块根据ARITH模块的输出进行比较判断,LOGIC和SHIFT模块分别进行逻辑运算和移位运算,ALUFun的最高两位用于控制多路选择器的输出。 Figure3:ALU结构 ARITH模块ARITH模块中包括减法和加法两个模块,加法模块直接通过+号运算,减法模块先对第二个操作数取补码,再调用加法模块做加法运算。Overflow和Negative信号的产生是ALU中的难点: Figure4:ADD中的Overflow和Negative 1原作者:陈志杰;修改:王晗

32位MIPS处理器说明

32位MIPS处理器说明

一、实验目的 熟悉现代处理器的基本工作原理;掌握单周期和流水线处理器的设计方法。 二、实验原理及实验内容 该32位MIPS处理器主要需要设计ALU、单周期、流水线。下面分别讲述这三个部分的设计原理及实验内容。 1.ALU ALU即算数逻辑单元,要求设计一个32位的ALU,实现基本的算术、逻辑、关系、位与移位运算。输入32bit的A和B作为操作数,5bit的控制输入ALUFun和一位控制输入Sign,输出32bit的结果Z。其功能表如下图所示:

根据功能表和要求,我们在顶层模块中设计了32bit输入ALUSrc1和ALUSrc2,以及5bit控制ALUFunc,1bit控制Sign,32bit输出ALUOut。设计了四个主要模块:ALU_ADD_SUB,ALU_CMP,ALU_Logic,ALU_Shift,并根据ALUFunc的值来确定使用的模块。设计框图思路如下: (1)ALU_ADD_SUB 这部分是ALU设计中最重要的一部分。采用了8位超前进位级联,用与门来实现32位全加器。减法由加法实现,在运算的开始由ALUFunc判断进行的是加法还是减法,如果是加法则直接将两个操作数输入全加器,最低进位为0,如果是减法则取ALUSrc2的反码之后再做加法运算,最低进位是1。 需要注意的是运算结束之后需要判断结果是否为0(这个在branch指令中尤为重要),是否为负数,还有是否溢出。是否为溢出还需要检查控制符号,如果控制符号为有效(即有符号计算)则两正数相加得负或两负数相加得正则溢出,溢出则结果符号位反了,再进而判断是否为负。若为无符号运算,加法结

32位RISC处理器软核的设计与验证

32位RISC 处理器软核的设计与验证( Potato-I) 使用说明文档 1 CPU 流水线级数及各级功能 IF :取指令级,是从ROM 中读取指令,并在下一个时钟沿到来时把指令送到ID 级的指令缓冲器中。 ID :指令译码级,对IF 级来的指令进行译码,并产生相应的控制信号。整个CPU 的控制信号都是在这级上产生。 EX :执行级,对操作数进行算术或逻辑操作,此外LOAD ,STORE 指令所用的RAM 访问地址也是在EX 级上实现。 MEM :存储器访问级,只有在执行LOAD 、STORE 指令时对存储器进行读写,但对其他指令只起到缓冲一个周期的作用。 WB :回写级,把指令执行的结果回写到寄存器文件中,写入寄存器文件的数据来自于MEM 级上的缓冲值或来自于MEM 级上的存储器。 2指令集及编码格式 2.1指令集: NOP,ADD,ADC,SUB,SUBC,AND,OR,NOT,ADDI,ANDI,ORI,NOTI,LSL,LSR,ASR,ROR,ROL,STR,LDR,BTC,JUMP,JUMPR,JUMPL,RET 。 2.2指令编码格式 例:ADD R1,R2,R3; 在上面的加法指令中 OP=2、DS=1、S1=2 、S2=3,对应的机器码为: 32’b000010_00001_00010_00011_XXXXXXXXXXX; 2) ADDI,ANDI,ORI,NOTI 例:ADDI R4,R8,5; 其中 OP=1、DS=4、S1=8、IMM=5,对应的机器码为: 32’b000001_00100_01000_0000000000000101; 3) LSL,LSR,ASR,ROR,ROL

32位cpu设计报告

CPU 设 计 报 告 姓名: 学号: 学院:信息科学与工程学院指导老师:

2013-01-12 一、设计目的 (1)学习设计CPU的基本步骤和方法,提高应用集成电路的基本技能,培养和提高独立设计计算机的工作能力。 (2)熟悉32位CPU各模块的工作原理,熟悉流水线数据通路和控制单元的工作原理从而熟悉CPU的工作机理。 (3)熟练地使用Quartus软件,做一些中等难度的课题,增加自己的一些实践经验,熟练VHDL编程。 (4)强化自身的系统设计能力,了解系统设计中的一般步骤。了解VHDL仿真和综合工具的潜力。 二、实验方法 实验要完成的工作主要包括:指令系统的设计,FPGA-CPU的整体结构设计及其细化,逻辑设计的具体实现(VHDL语言编写),软件模拟,以及硬件调试。这几部分的工作之间是先行后续的关系,也就是只有前一个步骤完成了下一个步骤才可以开始进行,不存在并行完成的情况。实验主要流程如下图所示: 指令系统设计逻辑设计 具体实现 软件模拟 硬件调试 设计FPGA-CPU的指令集。我们采用了流水线数据通路与控制单元的精简指令集计算机 分析并确定CPU主要功能模块,分析每条指令的执行过程,数据的流向和控制信号的产生,画出逻辑结构图 按模块分别实现,然后进行综合,建波形文件进行仿真 整体模拟仿真,检查时序关系配 合是否正确 下载到实验板中进行调试

三、数据格式 数据字长是32位,采用32位二进制有符号补码表示。 四、寻址方式 RSCI的四种寻址模式分别是寄存器寻址,存器间接寻址,立即寻址,相对寻址。这些寻址模式都是由操作码而不是单独的模式字段指定的。因此,对于某种给定操作来说,它的寻址模式是固定的,不能变动。三操作数数据处理指令采用寄存器寻址模式。寄存器间接寻址仅仅用于load和store这两个唯一能够访问数据存储器的指令。采用两寄存器格式的指令使用一个立即数取代寄存器地址SB。相对寻址专门用于分支和跳转指令,其产生的地址只用于指令存储器。 五、数据通路结构 下图中的流水线数据通路是我们即将设计的数据通路的基础,我们只需要做一些改进。这些改进涉及寄存器文件、功能单元和总线结构。

32位嵌入式微处理器一览

作者:杨硕 由于嵌入式系统的专用型与定制性,与全球PC市场不同,没有一种微处理器或者微处理器公司可以主导嵌入式系统。本文分析了当前市场上主流的一些32位嵌入式微处理器的特点和应用场合,并对其未来发展做一些展望。这里只是按照体系结构分类,不涉及具体的处理器芯片。 一. ARM ARM处理器是由英国的ARM公司设计的32位RISC处理器。 毫无疑问,ARM芯片是嵌入式微处理器中的佼佼者,是很多数字电子产品的核心。如今95%的手机里面的核心处理器使用的都是ARM芯片,而ARM在整个手持市场上占有90%以上的份额,这是一个惊人的比例。 ARM公司的商业模式: ARM公司的成功除了其卓越的芯片设计技术以外,还源于其创新的商业模式:提供技术许可的知识产权,而不是制造和销售实际的半导体芯片。ARM将其芯片设计技术(内核、体系扩展、微处理器和系统芯片方案)授权给Intel,Samsung,TI,高通(Qualcomm),意法半导体等半导体制造商,这些厂商拿到ARM内核以后,再设计外围的各种控制器,和ARM核整合成一块SOC芯片,也就是我们看到的市面上的各种芯片,作为用户,我们也许不知道我们使用的是ARM芯片,但是我们可能天天都在感受着ARM芯片带给我们的智能体验。 图1-1 ARM的业务模型

ARM公司正是因为没有自己生产芯片,从而省去了IC制造的巨额成本,因此可 以专注于处理器内核设计本身,ARM处理器内核不但性能卓越而且升级速度很快,以适应市场的变化。 由于所有的ARM芯片都采用一个通用的处理器架构,所以相同的软件可以在所有产品中运行,这正是ARM最大的优势,采用ARM芯片无疑可以有效缩短应用程序开发的与测试的时间,也降低了研发费用。 ARM生态产业链: ARM公司通过出售芯片技术授权,建立起新型的微处理器设计、生产和销售商业模式。围绕着芯片设计产业,ARM公司整合了上下游的资源,逐渐形成了一条完整的生态产业链。ARM的合作伙伴包括半导体制造商,开发工具商,应用软件设计商以及培训商等。ARM公司统一了芯片设计的标准,芯片制造商生产的芯片符合统一的接口,为以后的开发提供了很大的方便;工具商专门开发基于ARM芯片的仿真器和开发工具;应用软件设计商开发基于ARM芯片的应用程序,培训商则提供与ARM相关的培训服务。 这样的一套完整的产业链使得ARM芯片的开放性和通用性都很好,很多公司开发嵌入式产品都倾向于选择ARM的芯片,因为软硬件开发都有比较成熟的方案,相关的人才也比较多,可以缩短开发的周期,使得产品能够尽快上市。而作为个人如果想学习嵌入式开发,ARM芯片也是首选的学习对象,相关的学习资料和开发工具都有很多。 目前全球已有超过700家的软硬件系统公司加入了ARM Connected Community,其中中国本土公司的成长很快,目前已经有超过70家加入了ARM生态伙伴系统。 下图为以ARM公司为核心的生态产业链,这个产业链还在不断壮大: 图1-2 以ARM为核心的生态系统

32位操作系统

操作系统是硬件和应用软件中间的一个平台。 32位操作系统针对32位的CPU设计。 64位操作系统针对64位的CPU设计。 CPU从原来的8位,16位,到现在的32位和64位。 cpu处理计算的时候“数据”和“指令”是不同对待的。 8位CPU 8位的CPU,一次只能处理一个8位的“数据”或者一个8位的"指令"。比如'00001101'. 又比如:“+1”这个运算,你要先指示CPU做“+”,完成后再输 入“1”数据给CPU。 8位的CPU优点是设计简单,处理速度比较快。 缺点就是:软件设计复杂,繁琐。不利于计算机的发展。 16位CPU 后来推出了16位的CPU,我们就可以一次处理两个字节(16位)的数据了,比如“加1”这个命令。“加”是一个指令,占用8个位,余下的8位我们可以存放数据“1”了。 32位CPU 32位的CPU就更加方便了,我们就可以一次处理一个a=a+b这样的命令了。 优点:简化了软件设计的复杂度 缺点:硬件设计更加复杂,计算速度下降。 一般来讲32位的CPU对于我们来讲是最理性的CPU,对于软件开发来讲足够了。 但是2的32次方 = 4294967296bit = 4G左右

很显然32位CPU只有4G左右的内存寻址空间,对于一些服务器来讲4G的内存的远远不够的了。我们需要更加大的内存寻址空间的话就需要对CPU进升级。64位CPU就这样诞生了。64位CPU的内存寻址空间是多少你算算看!呵呵。 2的64次方(理论上)。 64位CPU 但是现在的AMD和Inter的64位CPU并不是真正意义上的64CPU,只是进行了部分64位的改进,比如64位的内存寻址等。 要是真的全部都是64位的了,那么现在市场上的软件将全部被淘汰不能使用了~呵呵,想像一下会是什么样子。 64位的操作系统针对64位CPU设计的,增加了一些64位的指令,但还是和32兼容的。对于我们普通用户来讲64位系统意义不大。

相关主题
相关文档
最新文档