坐标反算公式、示意图及相应5800程序案例

坐标反算公式、示意图及相应5800程序案例
坐标反算公式、示意图及相应5800程序案例

反算原理

在图中,A点为已知坐标而待求对应中桩桩号及边距的点。B 点为假定的A点对应中桩桩号点。显然,B点并不对应于A点。做出B点的切线,过A点做辅助线垂直于B点的切线,相交于C 点。设:

B点的切线方位角为α,B点的桩号为K B,B点的坐标分别为X B、Y B,A点的桩号为K A,A点的坐标分别为X A、Y A,“B-A”的方位角为β,“B-A”的距离为N,“B-C”的距离为L,“C-A”的距离为Z。

根据前面的坐标正算的公式可以得到α,X B、Y B值。

根据计算器内置的Pol(X A-X B,Y A-Y B)公式(直角坐标转换为极坐标)能得到β,N值。

(1)

(2)

当L=0时,B点是对应于A点的,K B=K A,Z即为A点的距中桩的距离。

当L≠0时,则采用K B=K B+L,对B点进行新的假定,进而再次对L进行解算,直至L=0,或则L值在容许误差范围之内。

坐标正反算通用程序(终极篇)

1. 坐标正算主程序(命名为KP-XY)

第1行:Lbl 0

“DK=”?K:“PJ=”? P:“α=”?W

第2行:Prog “GP”(GP为线路名称)

第3行:“X=”:X+Pcos(F+W)→X◢

第4行:“Y=”:Y+Psin(F+W)→Y◢

第5行:“FWJ=”:F?DMS◢

第6行: Goto 0

K——计算点的里程

PJ——计算点到中桩的距离(左负右正)α——取线路前进方向右夹角为正

X、Y--为计算坐标、F为方位角

GP--为线路平曲线名称

2. 坐标反算桩号和偏距主程序(命名为XY-KP)

第1行:“DK=”?K:“X:=”? U:“Y:=”?V

第2行:Lbl 0

Prog “GP”

第3行:Pol(U-X,V-Y):Icos(F-J)→Z[1]:K+Z[1]→K

第4行:Abs(Z[1])>0.0001=>Goto 0

第5行:“DK=”:K◢

第6行:“PJ=”:Isin(J-F)→P◢

X:= —取样点的X坐标

Y:= —取样点的Y坐标

DK= 输入时为计算起始点(在线路内即可),输出时为反算点的桩号

P—偏距(左负右正)

3. 计算坐标子程序(命名为XYF)

为了简洁,本程序由数据库直接调用,上述中的正反算主程序不直接调用此程序

第1行:K-G→S:(D-C)÷L→I

第2行:X+∫(cos(F+X(2C+XI)×90÷π),0,S)→X

第3行:Y+∫(sin(F+X(2C+XI)×90÷π),0,S)→Y

第4行:F+S(2C+SI)×90÷π→F

第5行:F<0=>F+360→F: F>360=>F-360→F

4. 数据库(命名为A)

第1行:0→G:3925525.975→X:502796.176→Y:3°47′

30.2″→F:1/996→C:1/180→D:41.078→L:

K≤G+L =>GoTo1(第一缓和曲线)

第2行:245.607→G: 3925566.736→X:502801.006→Y: 11°30′39.4″→F: 1/180→C:1/180→D:91.027→L:

K≤G+L =>Goto1(圆曲线)

第3行:318.522→G: 3925647.682→X:502804.484→X: 40°29′08.7″→F: 1/180→C: 1/295.54→D: 70.37→L:

K≤G+L =>Goto1(第二缓和曲线)

第4行:Lbl 1:Prog “XYF”

G——曲线段起点的里程

X——曲线段起点的x坐标

Y——曲线段起点的y坐标

F——曲线段起点的坐标方位角

C——曲线段起点的曲率(半径倒数,直线为0,左负右正)

D——曲线段终点的曲率(半径倒数,直线为0,左负右正)

L——曲线段长度(尽量使用长度,为计算断链方便)

说明:

(1)适用于任意线形:直线(0→C、0→D)、圆曲线(圆半径倒数→C、圆半径倒数→D)、缓和曲线(0或圆半径倒数→C、圆半径倒数或0→D)、卵形曲线(接起点圆的半径倒数→C、接终点圆的半径倒数→D),曲线左转多加一负号。

(2)本程序精度较高,不受曲线半径大小影响,即使极小半径的螺旋曲线等误差仅为万分之一(0.1mm),可以忽略。

(3)若是从大里程向小里程的反方向计算,则曲率取正方向时的负值,方位角减去(或加上)180度。

(4)有多个匝道的项目,可随时更改正反算主程序中的红色字体部分来调用其它线路的数据

(5)反算桩号偏差为1mm

(6)本程序可以计算任意线型(直线、圆曲线、缓和曲线、卵形曲线)的坐标

6→shift . 增加变量数量。

坐标正算反算公式讲解(借鉴材料)

一 方位角: 在高斯直角坐标系中,由坐标纵轴方向的北端起,顺时针量到直线间的夹角,称为该直线的坐标方位角,常简称方位角,用a 表示。 1、第一象限的方位角 Y X 第一象限第二象限 第三象限 第四象限 o A a 图1 2、第二象限的方位角 Y X 第一象限 第二象限第三象限 第四象限 o A a 图2

3、第三象限的方位角 Y X 第一象限 第二象限 第三象限 第四象限 o A a 图3 4、第四象限的方位角 Y X 第一象限 第二象限 第三象限 第四象限 o A a 图4 方位角计算公式:

x =a -1 tan A Y O Y -A X O X - 方位角的计算器计算程序:Pol(X A -X O ,Y A -Y O ) 直线OA 方位角度值赋予给计算器的字母J ,0≤J <360。 直线段OA 的距离值赋予给计算器的字母I,I >0 直线OA 与直线AO 的方位角关系: 1、 当直线OA 的方位角≤180°时,其反方位角等于a+180°。 2、 当直线 OA 的方位角>180°时,其反方位角等于a-180°。 二 方位角的推算 (一)几个基本公式 1、坐标方位角的推算

或: 注意:若计算出的方位角>360°,则减去360°;若为负值,则加上360°。 例题:方位角的推算 已知:α12=30°,各观测角β如图,求各边坐标方位角α23、α34、α 45 、α51。 13 图5

解:α23= α12-β2+180°=30°-130°+180°=80° α34= α23-β3+180°=80°-65°+180°=195° α45=α34-β4+180°=195°-128°+180°=247° α51=α45-β5+180°=247°-122°+180°=305° α12=α51-β1+180°=305°-95°+180°=30°(检查) 三坐标正算 一、直线段的坐标计算 o B D A C E a a p 图6 设起点O的坐标(X O,Y O),直线OP的方位角为F op,求A、C、E点的坐标 1、设直线段OA长度为L,则A点坐标为 X A=X O+L×Cos(F op)

FX5800P计算器坐标正反算程序Word文档

(以下程序是专业人士编写,本店铺不对程序负责,仅供您参考使用。) 卡西欧fx5800p计算器坐标正反算程序

一、程序功能 本程序由 6 个主程序、 5 个次子程序及 5 个参数子程序组成。主要用于公路测量中坐标正反算,设计任意点高程及横坡计算 , 桥涵放样,路基开挖口及填方坡脚线放样。程序坐标计算适应于任何线型 . 二、源程序 1. 主程序 1 :一般放样反算程序(① 正算坐标、放样点至置仪点方位角及距离;② 反算桩号及距中距离 ) 程序名 :1ZD-XY Lb1 0:Norm 2 F=1 : ( 正反算判别, F=1 正算, F=2 反算 , 也可以改 F 前加?,改 F 为变量 ) Z[1]=90 (与路线右边夹角) Prog " THB ": F=1=>Goto 1:F=2=>Goto 2 Lb1 1: F ix 3: "X = ": Locate 6,4, X◢ "Y=": Locate 6,4, Y◢ P rog "3JS”:Goto 0: Lb1 2:Fix 3: "KM=": Locate 6,4, Z◢ "D=": Locate 6,4, D◢ G oto 0 2.主程序2:高程序横坡程序 ( 设计任意点高程及横坡 ) 程序名: 2GC LbI 0:Norm 2 “KM”?Z:?D: Prog”H”:Fix 3:” H=”:Locate 6,4,H◢ “ I=”: Locate 6,4,I◢ Goto 0 3. 主程序 3 :极坐放样计算程序 ( 计算放样点至置仪点方位角及距离 ) 程序名: 3JS X : Y : 1268 .123→K( 置仪点 X 坐标 ) 2243 .545→L (置仪点 Y 坐标,都是手工输入 , 也可以建导线点数据库子程序 , 个人认为太麻烦) Y-L→E : X-K→F : Pol(F,E):IF J<0:Then J+360→J:Int(J)+0.01Int(60Frac(J))+0.006Frac(60Frac(J)) →J:( 不习惯小数点后四位为角度显示的,也可以用命令J◢DMS◢ 来直接显示) Fix 4:” FWJ=”: Locate 6,4,J◢( 不习惯小数点后四位为角度显示的,也可以用命令 J◢DMS◢ 来直接显示 ) Fix 3:” S=”:Locate 6,4,I◢ 4 .主程序 4 :涵洞放样程序(由涵中心桩号计算出各涵角坐标、在主程序 3 中输入置仪点坐标后计算放样点至置仪点方位角及距离 ) 程序名: 4JH-XY LbI 0:Norm 2 90→Z[1]( 涵洞中心桩与右边夹角,手工输入,也可以修改成前面加?后变为变量 )

CASIO fx-5800p测量程序

CASIO fx-4800P、fx-5800P型计算器用于线路施工 曲线中线点坐标的计算程序 中铁十局三建公司工程技术部 摘要:本文介绍了CASIO fx-4800P 、fx-5800P型计算器程序编制用于铁路、公路曲线线路内任意中线点的坐标计算程序及使用方法。本计算程序具有操作简便、计算快捷、应用广泛等特点、极大地减轻了测量工作者的内业工作量,对于测量工作者有较大的参考和指导作用。关键词:曲线线路施工测量计算程序 1.概述 过去,线路中线施工放样基本依靠经纬仪和钢尺了来进行角度及距离测量。对于曲线线路一般的测量方法是:经纬仪置于某一中线点上,采用偏角法拨角再用钢尺量距来定出中线点。随着电子技术进步和经济发展,测量仪器和测量方法的不断改进,目前,全站仪已广泛地应用于工程施工测量中,极大的提高了测量工作效率。但是,在进行铁路、公路工程的曲线线路施工测设时,需要在线路所在区域建立统一坐标系或独立坐标系,利用坐标变换的方法,将整个曲线的三个部分(第一缓和曲线、中间圆曲线、第二缓和曲线)统一到同一坐标系中。根据坐标系的建立,计算出整个曲线内任意点的坐标,再采用全站仪利用极坐标方法进行施工放样。前提是首先利用计算器计算出各中线点坐标,然后才能进行放样。而普通型计算器不仅计算速度慢,且要求计算者必须正确地记忆很多计算公式,计算繁琐而且容易出错,满足不了现场测设工作的要求。为了能够快速准确地为全站仪提供测设

数据,发挥全站仪快速测设的特点,提高测量工作效率,应采用可编程的计算器,编制计算程序。本文主要介绍应用CASIO fx-4800P型计算器的计算程序,供公司测量同行们参照使用。 2.计算程序 QXZBJS(文件名:曲线坐标计算fx-4800P) Defm2:R:L:A:N“ZH:X=”:E“ZH:Y=”:F:“FWJ=”:K“ZH:LC=”: P=L2/(24R)-L4/(2688R3):M=L/2-L3/(240R2):T“T”=(R+P)tng(A/2)+M ◢G=RAπ/180:“S”S=G+L◢ LbiA:{C,V}:C“CSDLC=”:V“HXPJ=”:D=C-K:D≤L=>I=D-D5/(40R2L2):U=D3/(6RL)-D7/(336R3L3):J=√(I2+U2):Goto1:≠>D≤G=>O=90(2D-L)/( Rπ):I=RsinO+M:U=R(1-cosO)+P:J=√(I2+U2):Goto2:≠>D=S-(C-K): = D-D5/(40R2L2):Z[2]=D3/6RL-D7/(336R3L3):I=T+(T-Z[1])cosA-Z[2]sinA:U=(T-Z[1])sinA+Z[2]cosA:J=√(I2+U2):Goto3:Lbi1:{Q}:Q“Z=1;Y=2”:Q=1=>Q=F-30D2/ (RLπ):H=F-90D2/ (RLπ):≠>Q=F+30D2/ (RLπ):H=F+90D2/( RLπ)⊿ Goto4:Lbi2:{Q}:Q“Z=1;Y=2”:Q=1=>Q=F-tng-1(U/I):H=F-O:≠>Q= F+tng-1(U/I):H=F+O⊿Goto4:Lbi3:{Q}:Q“Z=1;Y=2”:Q=1=>Q=F-tng-1(U/I):H=F-(A-90(S-(C-K))2/ (RLπ)): ≠>Q= F+tng-1(U/I):H=F+(A-90(S-(C-K))2/ (RLπ)):⊿ Goto4: Lbi4:B=90+H:H<0=>H“QXFWJ”=B+360◢≠>H≥360=>H“QXFWJ”=H-360 ◢≠>H“QXFWJ”=H◢⊿Goto5: Lbi5: X“CSD:X”=JcosQ+N+VcosB◢ Y“CSD:Y”=JsinQ+E+VsinB◢

高斯投影正反算公式 新

高斯投影坐标正反算 一、相关概念 大地坐标系由大地基准面和地图投影确定,由地图投影到特定椭圆柱面后在南北两极剪开展开而成,是对地球表面的逼近,各国或地区有各自的大地基准面,我国目前主要采用的基准面为:基准面,为GPS基准面,17届国际大地测量协会上推荐,椭圆柱长半轴a=6378137m,短半轴b=; 2.西安80坐标系,1975年国际大地测量协会上推荐,椭圆柱长半轴a=6378140m,短半轴b=; 3.北京54坐标系,参照前苏联克拉索夫斯基椭球体建立,椭圆柱长半轴a=6378245m, 短半轴b=; 通常所说的高斯投影有三种,即投影后: a)角度不变(正角投影),投影后经线和纬线仍然垂直; b)长度不变; c)面积不变; 大地坐标一般采用高斯正角投影,即在地球球心放一点光源,地图投影到过与中央经线相切的椭圆柱面上而成;可分带投影,按中央经线经度值分带,有每6度一带或每3度一带两种(起始带中央经线经度为均为3度,即:6度带1带位置0-6度,3度带1带位置度),即所谓的高斯-克吕格投影。

图表11高斯投影和分带 地球某点经度(L)为过该点和地球自转轴的半圆与子午线所在半圆夹角,东半球为东经,西半球为西经;地球某点纬度(B)为所在水平面法线与赤道圆面的线面角。 正算是已知大地坐标(L,B),求解高斯平面坐标(X,Y),为确保Y值为正,Y增加500公里;反算则是由高斯平面坐标(X,Y)求解大地坐标(L,B)。 二、计算模型: 地球椭球面由椭圆绕地球自转轴旋转180度而成。 图表 1 椭圆 椭圆长半轴a,椭圆短半轴b, 椭圆方程:

(1) 图表2椭球面 椭球面方程: y2 a2+ x2 b2 + z2 a2 =1 /*************************************** 与网上充斥的将函数关系先展开为泰勒级数,再依据投影规则确定各参数不同,本文直接依据空间立体三角函数关系得出结果。 *****/ (一)正算 由图表1,

卡西欧5800计算器坐标正反算程序

M = (1.0/Re-1.0/Rs)/Ls; x=∫{cos(Ta + L/Rs + 0.5*M *L*L),0,L}; y=∫{sin(Ta +L/Rs + 0.5*M *L*L),0,L}; a(i)= Ta +L/Rs + 0.5*M *L*L Rs:缓和曲线起点半径 Re:缓和曲线止点半径 Rs,Re (NE坐标系下,右偏为正,左偏为负) Ta:缓和曲线起点的真北方位角 Ls:不完整缓和曲线长度。 此公式为缓和曲线在坐标系下任意位置的通用积分公式,能完全适应缓和曲线左偏、右偏、Rs >Re 、Rs NE”:“2.NE=>SZ”:?Q:?S:Prog“QXJS-SUB0”↙ Lbl 0:Q=1 => Goto1:Q=2 => Goto2:↙ Lbl 1:?Z:?G:Prog“QXJS-SUB1”:“N=”:N◢“E=”:E◢“F=”:F◢Goto4↙ Lbl 2: “N=”:?B: “E=”:?C:B→N: C→E:Prog“QXJS-SUB2”: “S=”:S◢: “Z=”:Z◢: Goto4↙ QXJS-SUB0 数据库子程序 Goto1↙同时保存多个曲线时的指针 Lbl 1 IF S<***(线元终点里程):Then***→A(线元起点方位角):***→O(线元起点里程):***→U(线元起点X):***→V(线元起点Y):***→P(线元起点曲率半径):***→R(线元终点曲率半径): ***→L(线元起点至终点长度): Return:IfEnd↙ IF S<***:Then***→A:***→O:***→U:***→V:***→P:***→R: ***→L: Return:IfEnd↙………………………..为了便于解读,每增加一个线元增加一行语句,每增加一条曲线增加一个Lbl,每增加一个工程增加一个文件。 QXJS-SUB1 正算子程序 0.5(1÷R-1÷P)÷L→D:S-O→X↙ U+∫(cos(A+(X÷P+DX2)×180÷π,0,X)→N↙ V+∫(sin(A+(X÷P+DX2)×180÷π,0,X)→E↙ A+(X÷P+DX2)×180÷π→F↙ N+Zcos(F+G) →N:E+Zsin(F+G) →E QXJS-SUB2 反算子程序 Lbl 1:0→Z:1→Q:Prog“QXJS-SUB0”: Prog“QXJS-SUB1”↙

fx-5800p全线坐标正反算带高程计算程序(线元法)

曲线任意里程中边桩坐标正反算(CASIO fx-5800P计算器)程序 一、程序功能及原理 1.功能说明:本程序由一个主程序(TYQXJS)和五个子程——正算子程序(SUB-ZS)、反算子程序(SUB-FS)等构成,可以根据曲线段——直线、圆曲线、缓和曲线(完整或非完整型)的线元要素(起点坐标、起点里程、起点切线方位角、线元长度、起点曲率半径、止点曲率半径)及里程边距或坐标,对该曲线段范围内任意里程中边桩坐标进行正反算。本修改版程序既可实现正算全线贯通,亦可实现反算全线贯通。本程序在CASIO fx-5800P计算器运行。 2.计算原理:利用Gauss-Legendre 5点通用公式正算线路中边桩坐标、线外测点至曲线元起点和终点的垂距的符号是否相异(即Dca×Dcb<0=>该测点在其线元内)进行判断并利用该线元要素反算中桩里程、支距,最后计算出放样数据。 二、源程序 1.主程序(TYQXJS)(A) Deg:fix 3 119→DimZ “INPUT(0) Or DATA(Else)”?I Lbl 0:“1.SZ=>XY,2.XY=>SZ,3.TF=>CK,4.SD=>FY,5.TW=>FY”?N If N=1 Or N=5:Then Goto 1 Else If N=2 Or N=3 Or N=4:Then Goto 2 Else Goto 3 IfEnd:IfEnd Lbl 1:“K(m)=”?S If S<0:Then Goto 0:IfEnd “JL(m)=”?Z If Z≠0:Then “ANGLE→R(Deg)=”?M:IfEnd If I=0:Then Prog “DAT1”:Else Prog “DAT2”:IfEnd S-O→W:If W<0:Then Goto 0:Else If W>H:Then Goto 0:IfEnd:IfEnd Prog “SUB-ZS”:Prog “SUB-GC” If Z<0:Then“XL(m)=”:X◢“YL(m)=”:Y◢ If N=5:Then Prog “SUB-TW”:IfEnd Else If Z>0:Then “XR(m)=”:X◢“YR(m)=”:Y◢ If N=5:Then Prog “SUB-TW”:IfEnd Else “X(m)=”:X◢“Y(m)=”:Y◢“Hs(m)=”:L◢“FWJ=”: F?DMS◢ IfEnd:IfEnd

CASIO 5800计算器测量计算程序

CASIO 5800计算器测量计算程序 上上月做这个东西的时候没仔细检查,有好几处输错了的地方,今天把它修改过来。 简要介绍: 1. 新版程序把线元法和交点法已经集成在一个模块中了,用户只需修改JD 程序和ZA程序中的数据部分即可,其余不需作任何的改动。 2. 因为每条路高程计算不尽相同,且比较复杂,现在可利用PC机EXCEL计算好打印成表格带到工地上使用,所以本版程序未对线路高程序进行专门的编程计算,而是利用统计计算模式中来输入桩号(第一列X)及左、右高程(第二、三列Y,Freq),这种输入数据的方式最为直观,易发现错误,也易修改,输入完毕后运行S程序对数据按桩号进行排序,在程序中通过调用GG程序来进行内插计算,SG=-1得左标高,SG=1得右标高(若SG输入0,则可进行一般的线性内插计算)。 3. 在JD程序和XY程序中,先将一个计算单元的数据置入矩阵F中(1行8列或1行9列),这样程序可读性极好。 4.相比原CASIO4850程序操作习惯,作了一点小小的改动,测站坐标存在Z[10],N中,X坐标原存在M中容易被误操作修改,而设计标高存在M中,这样易于修改,因为CASIO5800没有IN,OUT功能,很不方便。 4. 程序利用Z[2]变量值来判断是采用交点法还是线元法模型计算,Z[2]=0为线元法,否则为交点法。 一、PQX程序:计算中边桩坐标及近似的桩号反算,在运行模式直接调用。 ①Z[10]→S:”XO”?S:S→Z[10]:”YO”?N:Prog “AU” ②Lbl 2:?L:Prog “Z”:Prog “E”:1n→O:90→S ③Lbl 4:”JJ”?S:”YC”?O:SO=0 =>Goto 2…原来lbl 后没有标号4的。 ④O=-1 =>Goto 6 ⑤“X,Y”:R+OCos(Z+S)→X▲U+OSin(Z+S)→Y▲Prog “D”:Goto 4 ⑥Lbl 6:Z[7]→X:Z[8]→Y:”XF”?X:”YF”?Y:XY=0 =>Goto 4 ⑦X→Z[7]:Y→Z[8]:Pol(X-R,Y-U+1p):Z+S-J→J:”YC,DL,L”:ICos(J)→O▲ISin( J)→I▲L+I▲Goto 6 二、P程序:在程序中提供一个自由运算的模式。 ①Lbl 1:”TMP”?I:If I≠0:Then “RST”:I▲Goto 1:IfEnd 二、LYC程序:进行桩号反算及边坡放样,在运行模式直接调用。 ①Prog “AU” ②Lbl 1:Z[7]→X: Z[8]→Y: Z[6]→S: ”XF”?X :X→Z[7]:”YF”?Y:Y→Z[8]: ”ZF”?S: S→Z[6] ③Lbl 2:Prog “Z”:Y=U =>Y+1p→Y ④Pol(X-R,Y-U):J-Z→J:Isin(J)→O:Icos(J)→I ⑤If Abs(I)≤0.1:Then Prog “E”:”L,YC”:L+I→L▲O▲Goto 3:IfEnd ⑥If Z[9]≠0:Then Pol(Z[9]-SO,I):πJZ[9]÷180→I:IfEnd ⑦”DL”:I▲L+I→L:Goto 2 ⑧Lbl 3: Z[6]→S:If S=0:Then Goto 1:IfEnd ⑧M→Z ⑨Lbl 4:”SG”?Z:Z→M:If Abs(Z)=1: Then Prog “GG”:Y→Z:If X=1:Then

坐标正反算计算公式

坐标正反算公式

一、GPS数据处理相关术语 1、三维无约束平差 三维无约束平差是以基线解算所得到的三维静态基线向量为观测值,待定参数主要为GPS 网中点的坐标;同时,利用基线解算时随基线向量一同输出的基线向量的方差阵,形成平差的随机模型,最终形成平差完整的数学模型。随后对所形成的数学模型进行求解,根据平差结果来确定观测值中是否存在粗差,数学模型是否有需要改进的部分,若存在问题,则采用相应的方法进行处理并重新进行求解;若未发现问题,则输出最终结果,并进行后续的数据处理。 2、三维约束平差 三维约束平差是以基线解算所得到的三维静态基线向量为观测值,在平差过程中引入会使GPS 网的尺度、方向和位置发生变化的外部起算数据,从而实现GPS 网成果由基线解算时GPS 卫星星历所采用的参照系(WGS84 )到特定参照系的转换,得到在特定参照系下的经过用户约束条件约束的点三维空间坐标。 二、南方GPS数据处理软件的平差方式

三维约束平差是指在基线解算后,WGS84坐标系下的三维平差,在三维平差中是不需要当地平面直角坐标系下的已知点坐标,当需要用到WGS84经纬度或空间直角坐标的用户可加载已知点的WGS84空间坐标(如果只有经纬度时,可采用COORD4.1软件进行转换,本站免费提供)进行三维约束平差,即可得到与已知点相匹配的WGS84坐标。 一般情况下,在“已知点坐标录入”窗口中,我们都没有输入WGS8坐标,而只输入当地坐标系下的已知坐标,此时GPS处理软件会自动识取一个坐标点的WGS84坐标进行约束平差。如下图:

如果在某些控制测量中,需要得到精确的WGS84经纬度或空间坐标时,让系统自动识取显然是不行的,此时我们只要为参与平差的已知点的WGS84空间坐标输入后再进行三维平差即可 在这里,我们加入了两个已知点的WGS84空间坐标,三维平差后,列表中会显示两个"固定"字样的点,说明,在进行三维平差中,我们把这两个点做为起算点,进行平差别的未知点。

公路测量卡西欧5800万能程序

一、前言本程序是《CASIO fx-5800P计算与道路坐标放样计算》中道路坐标放样计算程序的升级改进版本。原道路坐标放样计算程序只基于道路的单个基本型曲线,有效计算范围仅包括平曲线部分和前后的两条直线段,使用时需要输入平曲线设计参数,无坐标反算桩号功能。改进后的程序名称为:道路中边桩坐标放样正反算程序(全线贯通),增加了可实现全线贯通的数据库功能和坐标反算桩号功能,主要是: 1.使用道路平面数据库子程序,可将一段或若干段道路的交点法格式平面参数(可容易从直线、曲线及转角表中获得)以数据库子程序形式输入计算器,程序在计算时省却了输入原始数据的麻烦; 2.坐标正算方面,输入桩号即可进行道路的中、边桩坐标计算,若输入了测站坐标,还可同时计算全站仪极坐标放样数据(拨角和平距); 3.坐标反算方面,输入平面坐标,即可计算对应的桩号和距中距离(含左右信息); 4.对于存在断链的道路,可分段分别编写数据库子程序,然后在主程序中添加一个路段选择的功能即可实现(可参照立交匝道程序中匝道的选择)。程序的特点: 1.可进行中桩坐标的正、反算,程序代码简洁,便于阅读和改写; 2.主程序通过调用数据库子程序,省却了使用时输入平面参数的繁琐; 3.使用数据库子程序,换项目只需改写数据库子程序,程序通用性强。二、道路示例项目基本资料基本资料同《CASIO fx-5800P计算与道路坐标放样计算》第6章HY高速公路第2合同段(合同段起止桩号: K4+800~K9+600)。这里摘取直线、曲线及转角表资料如下.

.

. 三、程序代码 .

. .

. .

CASIO fx5800p全线高程计算程序

CASIO fx5800p全线高程计算程序 GAOCHEN 主程序 Lbl 1 “KM=,<0,Stop”:?K:K<0=>Stop:“PY=”?L:Prog”GK” C-D→E:Abs(RE/2)→T:R(Abs(E)/E)→R If K≤B-T:Then 0→H:Else:If K≥B+T Then 0→H:D→C:Else K-B+T→H:Ifend:Ifend A-(B-K)C-H2/(2R)→G:Cls “KM=”:Locate 4,1,K:Locate 10,1,“PY=”:Locate 13,1,L:Fix 3 “H=”:Locate 4,2,G Prog “PODU”:(E-B)/(D-A)(K-A)+B→I:(F-C)/(D-A)(K-A)+C→J “HL=”:G+IL→X:Locate 4,3,X:Locate 11,3,“I=”:Locate 13,3,I*100 “HR=”:G+JL→Y:Locate 4,4,Y:Locate 11,4,“I=”:Locate 13,4,J*100◢Cls:Norm 2:“BM+HS≤0,Goto 1”?Z:Z≤0=> Goto 1:Cls (输入视线高) “KM=”:Locate 4,1,K:Locate 10,1,“PY=”:Locate 13,1,L:Fix 3 “QSM=”: Locate 6,2,Z-G (显示中桩读数) “QSL=”: Locate 6,3,Z-X (显示左桩读数) “QSR=”: Locate 6,4,Z-Y◢(显示右桩读数) Norm 2:Cls:Goto1 (后面可加已知视线高计算读数部分,不想计算读数则视线高输入0或负数如不想显示麻烦,可将Locate语句去掉) 以下两个子程序不需运行,只是两个独立的数据库赋值程序,字母重复不影响计算结果 GK 数据库子程序 If K≤第二曲线起点桩号:Then 第一曲线交点高程→A:第一曲线交点桩号→B:第一曲线前坡→C:第一曲线后坡→D:第一曲线半径→R:Return:Ifend …………….(有几个变坡点编几个If语句) PODU 计算坡度子程序 If K≤第一变(非变)坡段终点:Then 第一曲线起点桩号→A:第一曲线起点左坡→B:第一曲线起点右坡→C:第一曲终点桩号→D:第一曲终点左坡→E:第一曲终点右坡→F:Return:Ifend ………………(每一个超高变化线元一个If语句) 结果显示: KM=0000.000 PY=0.000 H= 00.000 HL=00.000 I=-1.5 HR=00.000 I=-1.5 KM=0000.000 PY=0.000 QSM= 00.000 QSL= 00.000 QSR= 00.000

坐标正反算定义及公式

坐标正反算定义及公式 Corporation standardization office #QS8QHH-HHGX8Q8-GNHHJ8

第六章→第三节→导线测量内业计算 导线计算的目的是要计算出导线点的坐标,计算导线测量的精度是否满足要求。首先要查实起算点的坐标、起始边的方位角,校核外业观测资料,确保外业资料的计算正确、合格无误。 一、坐标正算与坐标反算 1、坐标正算 已知点的坐标、边的方位角、两点间的水平距离,计算待定点的坐标,称为坐标正算。如图6-6 所示,点的坐标可由下式计算: 式中、为两导线点坐标之差,称为坐标增量,即: 【例题6-1】已知点A坐标,=1000、=1000、方位角=35°17'36.5",两点水平距离=200.416,计算点的坐标?

35o17'36.5"=1163.580 35o17'36.5"=1115.793 2、坐标反算 已知两点的坐标,计算两点的水平距离与坐标方位角,称为坐标反算。可知,由下式计算水平距离与坐标方位角。 (6-3) (6-4) 式中反正切函数的值域是-90°~+90°,而坐标方位角为0°~360°,因此坐标方位角的值,可根据、的正负号所在象限,将反正切角值换算为坐标方位角。 【例题6-2】=3712232.528、=523620.436、=3712227.860、=523611.598,计算坐标方位角计算坐标方位角 、水平距离。

=62°09'29.4"+180°=242°09'29.4" 注意:一直线有两个方向,存在两个方位角,式中:、的计算是过A点坐标纵轴至直线的坐标方位角,若所求坐标方位角为,则应是A点坐标减点坐标。 坐标正算与反算,可以利用普通科学电子计算器的极坐标和直角坐标相互转换功能计算,普通科学电子计算器的类型比较多,操作方法不相同,下面介绍一种方法。 【例题6-3】坐标反算,已知=2365.16、=1181.77、 =1771.03、=1719.24,试计算坐标方位角、水平距离。 键入1771.03-2365.16按等号键[=]等于纵坐标增量,按储存键[], 键入1719.24-1181.77按等号键[=]等于横坐标增量,按[]键输入,按[]显示横坐标增量,按[]键输入,按第二功能键[2ndF],再按[]键,屏显为距离,再按[]键,屏显为方位角。 【例题6-4】坐标正算,已知坐标方位角=294°42'51", =200.40,试计算纵坐标增量横坐标增量。

坐标反算正算计算公式

坐标反算正算计算公式 一、坐标正算 根据A点的坐标X A、Y A和直线AB的水平距离D AB与坐标方位角O AB,推算B点的坐标X B、Y B,为坐标正算,其计算公式为: X B = X A + AX AB Y B = X A + AY AB(1-18 ) 二式中,AX AB与AY AB分别称为A?B的纵、横坐标增量,其计算公式为: AX AB = X B—X A = D AB COS O AB AY AB = Y B—Y A = D AB sin O AB(1-19 ) 注意,AX AB和AY AB均有正、负,其符号取决于直线AB的坐标方位角所在的象限。 二、坐标反算 根据A、B两点的坐标X A、Y A和X B、Y B,推算直线AB的水平距离D AB与坐标方位角 OCAB , 为坐标反算。其计算公式为: (1-20 ) 注意,由(1-20 )式计算OCAB时往往得到的是象限角的数值,必须先根据AX AB、AY AB的正、负号,确定直线AB所在的象限,再将象限角换算为坐标方位角。 三角函数内容规律 三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现 三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三 角函数的关键所在. 1、三角函数本质: 三角函数的本质来源于定义,如右图: 根据右图,有 sin 0 =y/ R; cos 0 =x/R; tan 0 =y/x; cot 0 =x/y。 深刻理解了这一点,下面所有的三角公式都可以从这里出发推导出来,比如以推导 si n( A+B) = si nAcosB+cosAs inB 为例: 推导: 首先画单位圆交X轴于C,D,在单位圆上有任意A,B点。角AOD为a,BO D为B,旋转AOB使0B与0D重合,形成新A'OD。 A(cos a ,sin a ),B(cos 3 ,sin 3 ),A'(cos( - BM,sin( 诩)) OA'=OA=OB=OD=1,D(1,0) [cos( a- 3 >1]A2+[sin( a- 3 )]A2=(cos a cos 3 )A2+(sin a-sin 3 )A2 和差化积及积化和差用还原法结合上面公式可推出(换(a+b)/2与(a-b)/2 ) [1] (1-21 )

5800简单全线坐标计算程序

5800全线任意坐标计算程序 1. 正算主程序(ZHCX) (不运行) 8→DimZ 1÷P→Z[4 ]:(P-R)÷(2HPR)→D: 180÷π→E “Z=”?Z:”YJJ=”?A:Abs(S-O)→W 0.26→Z[1 ]: 0.74→B: 0.02→K: 0.82→Z[3 ]: 1-Z[3 ]→F:1-K→Z[2 ] U+W(Z[1 ]cos(G+QEKW(Z[4 ]+KWD))+Bcos(G+Z[3 ]QEW(Z[4 ]+ Z[3 ]WD))+Bcos(G+QEFW (Z[4 ]+FWD))+ Z[1 ]cos(G+ Z[2 ]QEW(Z[4 ]+ Z[2 ]WD)))→X: V+W(Z[1 ] sin (G+QEKW(Z[4 ]+KWD))+B sin(G+ Z[3 ]QEW(Z[4 ]+ Z[3 ]WD))+B sin(G+QEFW (Z[4 ]+FWD))+ Z[1 ] sin(G+ Z[2 ]QEW(Z[4 ]+ Z[2 ]WD)))→Y: G+QEW(Z[4 ]+WD)→F:X+Zcos(F+A)→X:Y+Zsin(F+A)→Y:If F≧360:Then F-360→F:IfEnd ”X=”:X→X◢ ”Y=”:Y→Y◢ If F﹤0:Then F+360→F:IfEnd ”QX FWJ=”:F▼DMS◢ “C=1=>XX: C=2=>XZ”: ”C=”?C: ”QHJU=”?L: If C=1:Then Goto 1:Else Goto 2: IfEnd 可以计算斜交斜做或斜交正做的桥涵坐标 Lbi 1 X+L cos(F)→X:Y+Lsin(F)→Y: Goto 3 Lbi 2 X+L cos(F+A-90)→X:Y+Lsin(F+A-90)→Y: Goto 3 Lbi 3 “QH-X=”: X →X◢ “QH-Y=”: Y →Y◢ Prog “FY” 2 . 参数子程序(直接运行) M(主线) 一条线路一个名称 “S=”?S If S≦线元终点:Then 线元起点X值→U: 线元起点Y值→V:线元起点切线方位角→G:线元起点桩号→O:线元长度→H:线元起点半径→P:线元终点半径→R:(左偏-1,或右偏 1)→Q:Goto 1:IfEnd … … If S≦线元终点:Then 线元起点X值→U: 线元起点Y值→V:线元起点切线方位角→G:线元起点桩号→O:线元长度→H:线元起点半径→P:线元终点半径→R:(左偏-1,或右偏 1)→Q:Goto 1:IfEnd Lbi 1 Prog “ZBJS” 3. 放样程序(FY)(不运行) “X0=”?M:“Y0=”?N Pol((X-M, Y-N)

5800数据库型全线高程计算程序(2)

Casio5800 计算器数据库型全线高程计算程序(更新2) 一、主程序:2H-SZY Lbl 0: HS ?U: BM-H ?X: SXG= : U+X丄输入后视及水准点设计高程显示视线高程 Lbl 1: “QS”?P: “K X x+xx乂' ?K : Prog “ S.Z”/ C 十100—C: D - 100—D: R Abs(D-C) - 2—T / If D>C :Then 1 —W:Else1—W:lfEnd / If KT:Then Z+IL —H Cls :"H(S)=": Locate 7, 1, H 丄显示路面设计中桩高程 2 Goto2:Else Z+IL+W(T-L) - 2-R^H : Cls :"H(S)=": Locate 7 , 1, H 丄显示路面设计 中桩高 IfEnd / Lbl 2: J'GC(h)” ?0:” Z”?N:” HP”? J:H-O+N J十100—B : Cls :"H=": Locate 3 , 1, B:"H(C)=": Locate6 , 2,U+X-P : “/h (+ , -)=” : Locate 4, 3,B-U-X+P 丄输入前视后显示 实测高及设计与实测的高差( +填, -挖) Goto 1 二主程序: 3H-QZY Lbl 1: “K X x+xxX ?K : Prog “ S.Z”/ C 十100—C: D - 100—D: R Abs(D-C) - 2—T / If D>C :Then 1 —W:Else1—W:IfEnd / If KT:Th en Z+IL —H :Cls :"H(S)=": Locate 7,1, H J 显示路面设计中 桩高 2 Goto 9 :Else Z+IL+W(T-L) - 2-R^H : Cls :"H(S)=": Locate 7 , 1, H J 显示路面设计 中桩高 IfEnd / Lbl 0: J'GC(h)” ?0:” Z” ?N:"HP ” ? J: H(C) ?P:H-O+N J - 100—B : Cls :"H=": “ h (+, -)=” Locate 4, 1, B: Locate 8, 2, B-P J输入全站仪实测三角高程显示:设计与实测高差(+ 填, -挖) Goto 1 三、竖曲线数据库格式: If K<下一竖曲线起点里程:Then本竖曲线前坡度(%前分子有正负)—C:本竖曲线后坡度(%前分子有正负)—D: 本竖曲线半径—R: 本竖曲线变坡点桩号—A: 本竖曲线变坡点高程—Z: Goto 1: IfEnd /

卡西欧5800测量坐标计算程序

一.使用说明: 1.规定: (1)以道路中线的前进方向区分线路的左右偏转方向,线路左偏Q=-1,线路右偏Q=1,直线Q=0。 (2)当所求点位于线路中线时,Z=0;当位于左侧时,Z取负值;当位于右侧时,Z取正值。 (3)当线元为直线时,其起终点的曲率半径为无穷大,取10的45次方代替。 (4)当线元为圆曲线时,起终点曲率半径为圆曲线半径。 (5)当线元为缓和曲线时,起终点曲率半径与直线相接取10的45次方代替,与圆曲线相接取圆曲线半径。 2.输入与显示说明: (1)输入部分: N?:选择计算方式,输入1表示由里程边距计算坐标,输入2表示由 坐标计算里程边距。 X0?线元起点X坐标。 Y0?线元起点Y坐标。 S0?线元起点里程。 F0?线元起点切线方位角。 LS?线元长度。 R0?线元起点曲率半径。 RN?线元终点曲率半径。 Q?线元左右偏标志(左偏=-1,右偏=1,直线=0)

S?正算时所求点里程。 Z?正算时所求点距中线边距。位于线路左侧输入负值,在右侧输入正 值。 AR?斜交角度。(为线路右角,在0-180度之间) X?反算时所求点X坐标。 Y?反算时所求点Y坐标。 (2)显示部分: XS=计算结果,所求点X坐标。 YS=计算结果,所求点Y坐标。 FS=计算结果,所求点切线方位角。 S=计算结果,反算时所求点里程 Z=计算结果,反算时所求点边距。 二.程序清单1(用于任意曲线元的坐标计算) 1.主程序(TYQXJS) ″1.SZ=>XY″:″2.XY=>SZ″:?N:″X0″?U:″Y0″?V:″S0″?O: ″F0″?G:″LS″?H:″ R0″?P:″RN″?R:?Q:1÷P→C:(P-R) ÷(2HPR) →D:180÷π→E:If N=1: THEN Goto 1:Else Goto 2:IfEnd:Lbl 1:?S:”D(Z-,Y+)=”?Z:90→T:”O=”?T:Abs(S-O) →W:Prog ″SUB1″:″XS″:X◢″YS″:Y◢″FS″:F◢ Goto 1:Lbl 2:?X:?Y:I→X:J→Y:Prog ″SUB2″:″S″:O+W→S:◢″Z″:Z◢Goto 2 2.正算子程序(SUB1) 0.1739274226→A:0.3260725774→B:0.0694318442→K:0.3300094782→L:1-L→F:1-K→

5800坐标高程计算程序

CASIO5800计算器 公路测量计算程序 程序设计:魏加训 2009.2.28

Casio 5800计算器数据库型万能坐标正反算计算程序 一、主程序:1XY Lbl 0:“1.ZS 2.FS”?→V↙ If V=1: Then “CZ X” ?H: “CZ Y” ?T:Goto 1: Else If V=2: Then Goto 2 :IfEnd: IfEnd ↙ Lbl 1: “K××+×××”?D:?Z: “RJ”?G↙ Prog “P.Z”↙(注:计算另一线路时修改替换此处和FS子程序中的P.Z为对应线路的数据库名称即可) Prog “ZS” ↙ If Z<0: Then Cls:“X(L)=”: “Y(L)=”: Locate 6,1,X : Locate 6,2,Y◢ Pol(X-H,Y-T): Cls: “S(L)=”: Locate 6,1,I : "F(L)=":360Frac((J+360)÷360▼DMS◢ Goto 1:IfEnd↙ If Z=0: Then Cls:“X(Z)=”: “Y(Z)=”: Locate 6,1,X : Locate 6,2,Y : “QXFWJ (Z)=”: 360Frac((J+360)÷360▼DMS◢ Pol(X-H,Y-T): Cls: “S(Z)=”: Locate 6,1,I : "F(Z)=":360Frac((J+360)÷360▼DMS◢ Goto 1:IfEnd↙ If Z >0: Then Cls:“X(R)=”: “Y(R)=”: Locate 6,1,X : Locate 6,2,Y◢ Pol(X-H,Y-T): Cls: “S(R)=”: Locate 6,1,I : "F(R)=":360Frac((J+360)÷360▼DMS◢ Goto 1:IfEnd↙ Lbl 2: 0→Z:0→G:”X” ?M:”Y” ?I:Prog “FS”: Cls:“K=”:“Z=”:Locate 4,1,D : Locate 4,2,Z◢ Goto 2↙ 二、正算子程序:ZS 5→N: U(E-1-R-1)÷Abs(K-F)→P: Abs(D-F)÷N→Q: 90Q÷π→S: (注:此处5→N是控制计算精度可修改的,一般取值为4~6即可) C+(NPQ+2UR-1)NS→J:1→L↙ A+Q÷6×(Cos (C)+Cos (J) +4∑(Cos (C+((L+0.5)PQ+2UR-1)×(L+0.5)S),L,0,(N-1))+2∑(Cos (C+((LPQ+2UR-1)LS,L,1,(N-1)))+ZCos(J+G) →X : B+Q÷6×(Sin(C)+Sin( J) +4∑(Sin (C+((L+0.5)PQ+2UR-1)×(L+0.5)S),L,0,(N-1))+2∑(Sin (C+((LPQ+2UR-1)LS,L,1,(N-1)))+Z Sin(J+G)→Y ↙ 三、反算子程序:FS Lbl 0:Prog “P.Z”:Prog “ZS”↙ (注:计算另一线路时修改替换此处和1XY主程序中的P.Z为对应线路的数据库名称即可) (I-Y)sin(J)+(M-X) cos(J)→ P :D+P→ D ↙ If Abs(P)≥0.001:Then Goto 0 : Else Goto 1 : IfEnd↙ Lbl 1: (I-Y)cos(J)-(M-X) sin(J) →Z

计算坐标与坐标方位角基本公式

二 计算坐标与坐标方位角的基本公式 控制测量的主要目的是通过测量和计算求出控制点的坐标,控制点的坐标是根据边长及方位角计算出来的。下面介绍计算坐标与坐标方位角的基本公式,这些公式是矿山测量工中最基本最常用的公式。 一、坐标正算和坐标反算公式 1.坐标正算 根据已知点的坐标和已知点到待定点的坐标方位角、边长计算待定点的坐标,这种计算在测量中称为坐标正算。 如图5—5所示,已知A 点的坐标为A x 、A y ,A 到B 的边长和坐标方位角分别为AB S 和AB α,则待定点B 的坐标为 AB A B AB A B y y y x x x ?+=?+= } (5—1) 式中 AB x ? 、AB y ?——坐标增量。 由图5—5可知 AB AB AB AB AB AB S y S x ααsin cos =?=? } (5—2) 式中 AB S ——水平边长; AB α——坐标方位角。 将式(5-2)代入式(5-1),则有 AB AB A B AB AB A B S y y S x x ααsin cos +=+= }

(5—3) 当A 点的坐标A x 、A y 和边长AB S 及其坐标方位角AB α为已知时,就可以用上述公式计算出待定点B 的坐标。式(5—2)是计算坐标增量的基本公式,式(5—3)是计算坐标的基本公式,称为坐标正算公式。 从图5—5可以看出AB x ?是边长AB S 在x 轴上的投影长度, AB y ?是边长AB S 在 y 轴上的投影长度,边长是有向线段,是在 实地由A 量到B 得到的正值。而公式中的坐标方位角可以从0°到360°变化,根据三角函数定义,坐标方位角的正弦值和余弦值就有正负两种 情况,其正负符号取决于坐标方位角所在的象限,如图5—6所示。从式(5—2)知,由于三角函数值的正负决定了坐标增量的正负,其符号归纳成表5—3。

相关文档
最新文档