EEG信号采集 及数字脑电图机的使用

实验七

EEG信号采集

及数字脑电图机的使用

实验目的

1.掌握数字脑电图仪的基本使用方法

2.能利用数字脑电图仪进行脑电信号采集

3.能对特征脑电信号进行分析和处理

实验器材

数字脑电图系统

数字脑电图系统手册烧杯镊子

消耗性材料

生理盐水棉球清洁试剂打印纸墨粉

实验步骤

1.对照实物掌握数字脑电图系统的结构,了解数字

脑电图系统的工作原理及技术特性

2.对照手册熟悉数字脑电图仪的操作方法及使用中

应注意的具体问题

3.进入数字脑电系统WNDY,熟悉软件使用

4.输入受验者的基本信息,进行系统的初始设置,

本次实验选择单导联模式,采用30Hz滤波,时间常数为0.3秒,增益为1,定标电压为50μV

实验步骤

5.按照10/20电极系统的规定,确定电极安装位置,进

行电极安装并进行电极检测。当电极对应的发光二极管亮时,代表该电极安装成功;全部发光二极管亮时,代表电极安装完成,可以进行数据采集

6.数据采集。利用数字脑电系统采集思维、闭眼、呼

吸、声刺激、光刺激等五种状态下的EEG信号各2分钟,保存采样数据,注意:采样状态切换时,应重新对系统进行定标

实验步骤

7.回放数据和计算。截取思维状态下10秒的采样数据

并进行计算,利用功率谱显示计算结果,保存功率谱分布直方图,并打印结果

8.重复7操作,得到另外4种状态的功率谱分布直方图

9.比较不同状态下计算结果的异同,分析产生的原因

实验要求

1.实验前认真阅读附录内容,熟悉系统的基本的操

作方法和注意事项对照手册熟悉数字脑电图仪的操作方法及使用中应注意的具体问题

2.授验者接上电极后已经处于浮地状态,不能与系

统接地的金属部分接触

3.实验中严格按照操作规程进行,注意安全,爱护

仪器

基于MATLAB 的声音信号采集系统(论文)

基于MATLAB 的声音信号采集系统 野龙平 (陕西师范大学电子信息科学与技术,陕西) 摘要: 声音是各种信号传递与交流最直接的体现,因此对声音信号的研究有十分重要的意义。本文主要针对Matlab指令系统对声音信号的采集,作者利用Matlab 提供的数据采集工具箱, 介绍了倆种采集方法,简单分析并比较其优缺点。基于matlab的数据采集系统, 具有实现简单、性价比和灵活度高的优点。 关键词: Matlab; 数据采集 0 引言 随着科技的发展,对于语音信号的采集已经有很多种方法,如基于单片机技术、VC,C++等编程、纯硬件电路,本文介绍的方法主要通过一款软件MATLAB。它是MathWorks 公司推出的一种面向工程和科学运算的交互式计算软件, 其中包含了一套非常实用的工具-- 数据采集工具箱。使用此工具箱更容易将实验测量、数据分析和可视化的应用集合在一起。数据采集工具箱提供了一整套的命令和函数, 通过调用这些命令和函数, 可以直接控制数据采集设备的数据采集。 作者简单介绍了一种用声卡进行语音信号采集和MATLAB 的数据采集工具箱进行分析处理的语音信号采集系统。经实验证明, 该系统可实现在线连续采集语音信号并进行分析和处理, 具有实现简单、性价比和灵活度高的特点。 1 语音数据采集系统设计 MATLAB 中提供了强大的数据采集工具箱( DAQ- Data Acquisition Toolbox) , 可满足控制声卡进行数据采集的要求。用户通过调用MATLAB 命令, 可对采集的数据进行分析和处理, 为用户带来了极大的方便。 语音数据采集过程如图1 所示。

图1 声卡采集声音信号有两种方式: 传输线输入方式(LineIn) 和麦克风输入( MicIn) 方式。LineIn 方式是通过传输线把其他声音设备, 如录音机等设备的音频输出信号连接到声卡, 通过声卡记录数据存入计算机。 本系统采用MicIn 方式, 即用麦克风接收语音通过声卡将音频信号存入计算机。利用MicIn 方式通过声卡采集数据有两种方法: 方法一是采用对声卡产生一个模拟输入对象进行采集, 方法二是直接利用MATLAB 数据采集箱中提供的的函数命令进行采集。 1. 1 方法1 本系统是以声卡为对象利用MATLAB 数据采集工具箱提供的环境完成数据采集过程, 麦克风成为数据采集系统中的传感器。数据采集过程与其他硬件设备无关, 只与声卡有关, 因此应对声卡产生一个模拟输入对象(AI) 。 数据采集过程的具体实现: 1) 初始化: 创建设备对象。 ai= analoginput(‘ winsound ’ ) 2) 配置: 根据数据采集硬件设备的特性, 增加通道和控制数据采集的行为。为AI 添加1 个通道, 设置采样频率和采样时间。 addchannel( ai, 1) freq= 8000; % 采样频率fs8000Hz set( AI, sampleRate, freq) %为模拟输入设备设置采样频率 duration= 2; %采样时间为2 秒 set (AI, SamplesPerTriffer, duration* freq) ; % 为模拟输入设备设置触发时间 3) 执行: 启动设备对象, 采集数据。 start( ai) ; %启动设备对象 data= getdata( ai) ; % 获得采样数据 4) 终止: 删除设备对象。 stop( ai) ; % 停止设备对象 语音信号输入 声卡 Matlab 数据采集箱 计算机

交通信号控制系统方案

交通信号 控制系统(ATC)设计方案 x x x x有限责任公司

目录 1.概述 (1) 1.1系统简介 (1) 1.2设计原则 (2) 1.3系统设计依据及执行标准 (4) 2.总体设计方案 (6) 2.1控制系统总体功能 (6) 2.2通信系统总体结构 (6) 2.3通信系统主要优势 (8) 3.详细设计方案 (9) 3.1监测点设备 (9) 3.1.1设备功能描述 (9) 3.1.2监测点设备组成、结构及特点 (9) 3.2防雷保护及安全设计 (14) 3.3详细设备说明 (15) 3.3.1高清晰摄像机 (15) 3.3.2标清视频检测 (15) 3.3.3补光设备 (15) 3.3.4嵌入式存储 (15) 3.3.5 GOE210千兆工业以太网交换机 (15) 3.3.6 POE工业以太网光纤收发器 (17) 3.4系统典型配置清单 (18)

1.概述 城市发展交通智能信号灯,减少道路拥堵,最终达到智能化区域交通信号控制系统。智能交通信号灯迎合实现绿色经济的时代潮流,为了解决这个问题,提出智能交通信号灯及网络技术,会根据路口车辆多少,自动调节时间,可减少等候时间在75%以上,从而大大节省了人们的出行时间,减少了路口的无效等候,使出行更快捷。 在智能交通系统中,以往的常规摄像机是对所有通过该地点的机动车辆的车牌进行拍摄、记录与处理。由于受到图像采集设备分辨率的制约,图片仅能反映出车型、车身颜色、车牌号码等简单信息。公安执法部门对部分治安案件、交通肇事案件的取证要求上,希望能掌握更详细更清楚的资料,如驾驶员的面貌特征、车内驾驶室的情况、清晰的车辆信息、货车的装载情况。采用高清晰摄像机做前端采集,可以实现所抓拍的图像中用肉眼清楚地分辨:车辆的颜色、特征、车牌的号码、车牌颜色、司乘人员的面部特征。 如此一来智能化同时也带来了网络数据流量的剧增,对网络通信的可靠传输提出了更高的要求。工业以太网交换机在区域交通信号控制系统网络中稳定性、高可靠性、高安全性成为关键中的关键。 1.1系统简介 区域交通信号控制系统(ATC) 智能化区域交通信号控制系统采用百万像素的数字化网络摄像机(1600×1200 CCD传感器),一台摄像机覆盖两条车道,准确抓拍正常行驶、压线行驶、并行通过的车辆,并自动识别车牌号码,抓拍的车辆图片可清晰地显示车辆特征及前排司乘人员的面部特征。摄像机工作于外触发方式,通过视频分析、环形线圈或者窄波雷达检测通过车辆,在抓拍车辆的同时可获取车辆的行驶速度。两条车道共用一台高清数字摄像机的方式在保障系统性能的前提下,大大降低了系统成本。

心电图机使用说明 1

(一)心电图机基本结构 心电图机基本结构包括: 1.记录纸盒装记录纸卷。 2.笔位置控制旋调节记录笔基线。 3.导联选择按钮或开关选择记录导联。 4.50Hz滤波按钮或开关滤去50Hz干扰 5.灵敏度按钮或开关选择记录灵敏度,灵敏度有1/2、1和2三档。 6.走纸速度按钮或开关走纸速度选择,走纸速度有25mm/min和50mm/min二档。 7.1mV定标按钮或开关用于灵敏度校正,按下1mV定标电压,记录幅度为10mm。 8.记录和停止按钮或开关控制记录,停止。 9.电源开关。 (二)心电图机使用方法 1.导联联接 为记录好心电图,必须保证电极与皮肤之间的良好接触。 (1)清洗皮肤:电极和皮肤上的脏物均会增加接触电阻并产生极化,导致记录不稳定,可用酒精擦洗,除去污物和油脂。 (2)导电膏的应用:将导电膏涂于皮肤并用手指磨擦使皮肤微红。此时装上肢体电极,若没有合适的导电膏,用一块稍大于电极的纱布浸泡5%的小苏打后置于肢体电极和皮肤之间。电极处不得涂导电膏,可直接涂上小苏打水。 (3)胸电极:按要求联接胸导联电极,注 意各电极之间不得相互碰触。 (4)导联的颜色编码如表2-5-1。 (5)根据表2-5-1安置导联。 (6)记录动物心电图时,可用不锈钢注射器针头刺入动物的皮下,刺入不可过深,以避免刺入肌肉组织,产生肌电干扰。导联位置与人相同。 表2-5-1心电图导联的颜色编码 导联的颜色 红 黄. 绿 黑 白/红 白/黄 白/绿 白/棕 白/黑 白/紫 导联 RA LA LF RF V1

V2 V3 V4 V5 V6 右臂 左臂 左腿 右腿 胸1 胸2 胸3 4 胸. 胸5 胸6 2.记录心电图 (1)将电源开关打开: (2)按导联选择开关键,选择I导联。 (3)按下“开始”/“停止”键,开始记录。 (4)按“1mV”键,在心电信号的平直部分记录下1mV的波形。 (5)按下“开始”/“停止”键,开始记录。 (6)按导联选择开关键,选择Ⅱ导联,重复(5)~(6)步骤直到记录录完V6导联。 (三)心电图机使用注意事项 在心电图的记录中,如处理不当,经常会产生基线大幅度漂移,肌电干扰,50Hz交流电干扰,电压过低,描笔偏转而不能调至记录纸面上,如发生上述情况应根据情况进行检查和处理。1.患者状态(1)皮肤肮脏,用酒精或肥皂洗净,涂导电膏。(2)患者紧张,设法使其放松。(3)患者躁动或讲话,令安静放松地躺好。 2.电极及其接触问题(1)电极不干净,用酒精和肥皂清洗,若太脏可用细砂布打磨。(2)电极夹子与导联接头接触不良,插紧插头。(3)导电膏涂抹不足,适量涂导电膏。 3.环境条件(1)由X射线,超短波或其他电子设备引起的干扰,要更换仪器安放位置或关掉干扰源仪器。(2)室温太高或太低,将温度调至患者感到舒适的范围。(3)病床太小,换成患者躺上感到舒适的床。(4)若使用金属床,将其接地。(5)仪器接地不良,将接地端子与大地接好。(6)导联线时通时断,更换新的。 XD-7100单道心电图机使用说 1.电源开关置于“ON”。 2.电源开关置于“AC(交流),',此时“LINE”“TBST”“PA PER SPEED(25mm/s)”“SENSITIVITY (l)”“STOP”,晶体灯发出亮光。 3.调节基线控制旅钮应能改变描笔的位置,使之停在纪录纸中央附近。 4.按动“CHECK”键,此时“STOp”灯灭,“CHECK”灯亮。 ”,使描笔随着定标键的按动而作相应的摆动。 lmV.按动定标键“5. 6.按“START”,此时“CHECK”灯灭,“START”灯亮,记录纸按25mm/sec速度走动。 7.继续按动定标键,在走动的纪录纸上可看到一清晰的定标方波,其振幅应是10mm。 8.按动“LEAD SELECTOR”键,使之由“TEST”

labview声音采集系统

虚拟仪器技术 姓名:史昌波 学号:2131391 指导教师:孙来军 院系(部所):电子工程学院专业:控制工程

目录 1、前言 (3) 2、声卡的硬件结构和特性 (3) 2.1声卡的作用和特点 (3) 2.2声卡的构造 (5) 3、LABVIEW中与声卡相关的函数节点 (5) 4、LABVIEW程序设计 (6) 4.1程序原理 (6) 4.2程序结构 (7) 4.3结果分析 (9) 5、结束语 (9) 6、参考文献 (10)

基于声卡的数据采集与分析 1、前言 虚拟仪器技术是利用高性能的模块化硬件,结合高效灵活的软件来完成各种测试、测量和自动化的应用。在虚拟仪器系统中,硬件解决信号的输入和输出,软件可以方便地修改仪器系统的功能,以适应不同使用者的需要。其中硬件的核心是数据采集卡。目前市售的数据采集卡价格与性能基本成正比,一般比较昂贵1。 随着DSP(数字信号处理)技术走向成熟,计算机声卡可以成为一个优秀的数据采集系统,它同时具有A/D和D/A转换功能,不仅价格低廉,而且兼容性好、性能稳定、灵活通用,驱动程序升级方便,在实验室中,如果测量对象的频率在音频范围,而且对指标没有太高的要求,就可以考虑使用声卡取代常规的DAQ设备。而且LABVIEW中提供了专门用于声卡操作的函数节点,所以用声卡搭建数据采集系统是非常方便的2。 2、声卡的硬件结构和特性 2.1声卡的作用和特点 声卡的主要功能就是经过DSP(数字信号处理)音效芯片的处理,进行模拟音频信号的与数字信号的转换,在实际中,除了音频信号以外,很多信号都在音频范围内,比如机械量信号,某些载波信号等,当我们对这些信号进行采集时,使用声卡作为采集卡是一种很好的解决方案。 声卡的功能主要是录制与播放,编辑与合成处理,MIDI接口三个部分3。 (1)录制与播放

信息采集系统解决方案

信息采集系统解决方案

信息采集系统解决方案 1系统概述 信息采集是信息服务的基础,为信息处理和发布工作提供数据来源支持。信息数据来源的丰富性、准确性、实时性、覆盖度等指标是信息服务的关键一环,对信息服务质量的影响至关重要。针对交通流信息数据,包括流量、速度、密度等,目前主要是基于微波、视频、地磁等固定车辆检测器以及浮动车等移动式车辆检测器进行采集,各种采集方式都存在响应的利弊。针对车驾管以及出入境数据,包括车辆信息、驾驶人信息、出入境办证进度信息等,主要是通过和公安相关的数据库进行对接,此类信息将在信息分析处理系统进行详细介绍。 针对目前交通信息来源的多样性以及今后服务质量水平发展对信息来源种类扩展要求,需要建设一套统一的,具备良好兼容性和前瞻性的交通信息统一接入接口。一方面,本期项目的各种交通信息来源可以使用该接口进行数据接入,另一方面,当新的或第三方的交通信息来源需要加入到本系统中来时,可以使用该接口进行数据接入,不需要再次投入资源进行额外开发。 统一接入接口建成后,根据各种数据来源系统的网络环境、系统技术特性和交通流信息数据特点,开发相应的交通信息数据对接程序,逐一完成微波采集系统、浮动车分析系统、人工采集等来源的交通信息数据采集接入。 2系统架构及功能介绍 2.1统一接入接口 统一接入接口的建设的关键任务包括接口技术规范制定、路网路段编码规则约定及交通信息数据结构约定等多个方面。

2.1.1接口技术规范 一方面由于本系统接入的交通信息数据来源多样,开发语言和系统运行的环境均存在差异,不具备统一的技术特性;另一方面,考虑到以后可能需要接入更多新的或第三方的信息系统作为数据来源,应当选择较成熟和通用的接口实现技术作为本项目的交通流信息采集统一接入接口实现技术。 根据目前信息系统建设的行业现状,选择Web Service和TCP/UDP Socket 作为数据传输接口的实现技术是较优的选择。Web Service和TCP/UDP Socket 具有实时性强、通用性强、应用广泛、技术支持资源丰富等优势,可以实现跨硬件平台、跨操作系统、跨开发语言的数据传输和信息交换。 项目实施时需要根据现有的信息采集系统的技术特点来具体分析,以选定采用Web Service或TCP/UDP Socket作为接口实现技术,必要时可以两种方式并举,提供高兼容度的接口形式。 为了保护接入接口及其数据传输的安全性,避免恶意攻击访问,避免恶意数据窃取,可以使用身份认证、加密传输等技术来加以保证。 统一数据采集接口的工作流程可以如下进行:

脑电图操作规范47503

脑电图操作规范 脑电活动为大脑生理功能的基础。脑电图检查的应用范围不仅限于神经系统疾病,已广泛用于各科重危病人的监测,麻醉监测以及心理、行为的研究。除常规脑电图检查外,还有脑电图长期监测,录像脑电图监测,睡眠监测及数字化计算机分析。 [适应证] 1、中枢神经系统疾病,特别是发作性疾病。 2、癫痫手术治疗的术前定位。 3、围生期异常的新生儿监测。 4、脑外伤及大脑手术后监测。 5、重危病人监测。 6、睡眠障碍 7、脑死亡的辅助检查 [禁忌证] 颅脑外伤及颅脑手术后头皮破裂伤或手术切口未愈合时。 [操作方法及程序] 1、脑电图检查前清洗头发,前一天停用镇静定眠药。检查前向病人解释:脑电图检查无痛苦;检查时应保持心情平静;尽量保持身体各部位的静止不动;如何作好“睁闭眼“试验,过度换气及闪光刺激。 2、电极:头皮电极以盘状电极效果最好。针电极因其在头皮下的部位不准确,阻抗高,引起病人痛苦,国际上已不再应用。在特殊情况下必须应用针电极时必须用一次性针电极以避免感染。柱状电极因其不易固定已很少使用。 3、电极位置:国际通用10-20系统19个记录电极及2个参考电极。应用皮尺测量基线长度后按比例安置电极才能称之为10-20系统(见图1),否则只能称为近似10-20系统。 图1、10-20系统示意图 先用皮尺测量两条基线,一为鼻额缝至枕外粗隆的前后联线,另一为双耳前窝的左右联线。两者在头顶的交点为Cz(中央中线)电极的位置,见图2。如图2,从鼻额缝向后10%为Fpz(额极中线)电极,从Fpz 向后20%为Fz(额中线),以后依次每20%为一个电极位置,从Fz向后依次为Cz(中央中线),Pz(顶中线)及Oz(枕中线),Oz与枕外粗隆间的距离应为10%。

心电图机标准及各类产品性能参数对比模板

心电图机检定规程 JJG 543- JJG 543- 规程等效采用OIML R90《心电图机》国际建议所提出的计量性能、检定方法和设备, 并根据中国实际情况, 对个别检定项目略作修改。 适用: 单通道、多通道模拟心电图机 不适用: 数字心电图机、向量心电图机、心电监护仪 美国FDA认证, 欧盟需要CE认证 5.1定标电压( 内部幅度校准器) : 最大允许相对偏差为±5% 心电图机内部均有1mV标准信号发生器, 作为衡量人体心电信号电压大小( 心电图波形幅度) 的标准, 即所谓”定标”。定标电压准确与否决定了心电图机能否准确描记心电波形幅度。 5.2电压测量: 最大允许相对误差按±10(1+U1/Uin)%计算 ( 式中U1为电压测量范围的最小值, 即0.1mV) 考察放大器工作的线性情况, 线性是指输出信号应与输入信号成正比变化, 较宽的线性工作范围可使心电信号波形失真小。理想情况下, 如灵敏度为10mm/mV时, 输入0.2mV、1mV、2mV不同的幅度信号时, 描记幅度应为2mm、10mm、20mm。

5.3 时间间隔: 最大允许相对误差按±10(1+T1/Tin)%计算 ( 式中T1为时间间隔测量范围的最小值, 等于0.06s) 5.4 时标: 最大允许相对偏差为±5% 近些年, 有些心电图机中将时标与定标电压信号做在一起, 用幅度1mV,时间1s的信号, 分别校准幅度和时间。中国习惯于称定标电压, 故当前继续这样称谓。在R90国际建议中称校准器, 校准器产生标准的幅度为1mV,周期为1s的信号, 供校准心电图用。因此, 可将规程中的时标理解为这个校准信号周期的时间间隔。 5.5 幅频特性: ( 1~60) Hz, 最大允许相对偏差+5%~-10% 5.6 耐极化电压: 加±300mV的直流极化电压, 幅度最大允许相对偏差±5% 尽管心电图机电极已经采用了特殊材料, 可是由于温度的变化以及电场和磁场的影响, 电极会产生极化电压, 一般不高于300mV。心电图机的正常功能应不受极化电压的影响, 该指标就是用于考察心电图机隔直流电压能力。

脑电图的基本知识

脑电图的基本知识、录像脑电图和24小时脑电图 脑电活动的性质和电磁波一样有四个基本因素即频率、波幅、波形和位相(极性)。除此之外脑电活动又有其本身的特殊性,脑电图不是记录某一点的电位,而是在头皮上记录大脑两半球各个部位的电活动,因此还存在各个部位之间的差异及特殊性的问题。脑电活动是随机非线性电信号,因此还有出现方式的不同。人脑功能与外界和本身内在环境的变化密切相关,对各种刺激的反应性也是应该注意的问题。这些都是判断脑电图是否正常以及何种程度异常的基础。 频率 频率(Freguency)是每秒种以基线为准波动的次数。其单位为C/S(次/秒),亦即Hz (Hertz)。每一次波动的起点和止点在基线上的跨度叫时限(Duration)其单位为毫秒(ms,1ms=1/1000秒)。频率与时限互为倒数。如某一脑电活动的时限为100ms即1/10秒,其频率为10Hz;亦即一个5Hz的波,其时限为200ms。在脑电图的描述中常用频率而少用时限。在Hans Berger首次描述脑电活动时使用频率的概念延续至今。用频率的不同划分脑电活动为若干段,仅在形容非常慢的脑电活动时才使用时限。 脑电活动的测量应从一个波的起点量到终点即“从谷到谷”。可以用公尺测量,测出波的宽度的毫米数,然后可用下列公式换算为频率: 频率=30/波宽(mm) 或用时限(ms)数除1000ms即为频率。但用公尺测量常不够精确,如不易区分8Hz及7Hz 的波,因8Hz相当于3.75mm,7Hz相当于4.26mm。但区分这两者是有实际意义的。 最好用专用尺测量。这种尺的刻试以纸速30mm为1秒作标准。按频率数每一长方格分为3等份,4等份以至于30等份,代表每秒3次,4次以至30次的频率。测量时将尺在脑电图纸上移动,直到某一波的起止点正好在某一频率刻度之间。此频率就是个波的频率数。 人类脑电活动的频率在0.5-30Hz间。分为若干频率组叫频带(Frequency band)。用希腊字母为代表。 δ频带(Delta band) 0.5-3Hz θ频带(Theta band) 4-7Hz α频带(Alpha band) 8-13Hz σ频带(Sigma band) 14-17Hz β频带 (Beta band) 18-30Hz γ频带(Gamma band) >30Hz 在临床上常将α、β及γ频带统称β频带。这些频率的波均可见于正常人。因此仅就频率本身而言并无正常与否的含义。考虑到不同频带在头颅各区的分布及所占的百分比(指数,Index),再加波幅的差别,才能区分正常与否。 波幅 波幅(Amplitude)是电位差的大小,也就是电压的高低。单位为微伏(μV),1μV=10-6V。所以脑电活动是非常微小的电位。其测量应从波顶引一垂直于基线的直线到波谷,其高度与定标的高度比较即可得出微伏数,即“从峰到谷”。一般常用的定标为5mm=50μV,即1mm=10μV此时用测出波高的毫米数乘以10即为此波的波幅数。如波高为6mm,波幅为60μV。如用1mm=7μV的定标,则波高6mm时波幅为42μV。就临床脑电图而言,波幅的具体数值不易准测定。临床上将波幅分为高、中、低三级: 低波幅 <25μV 中波幅 25-50μV或25-75μV

光纤声音采集系统

摘要:科技的发展带来许多电磁干扰或射频干扰的恶劣环境,要想解决电磁干扰问题的,必须从本质上改变麦克风的工作模式。文章提出了利用激光的传输频带宽、通信容量大和抗电磁干扰能力强等优点,研制一种基于光相位干涉的高灵敏度声音采集系统。光纤声音采集能够传送非常高的声音质量,适用于多种恶劣环境下的声音采集。 关键词:光纤声音采集、干涉型光纤传感器 引言: 麦克风在声场和电场中起着重要的沟通界面,它可将声音信号传至任何地方或者记忆装置。传统型的使用电磁场或静电场来产生动作,外部的强电磁场影响会阻绝这些装置的功能。本项目研制的光纤声音采集系统是一种新颖的声音信号传感器,在反射式强度型光纤传感器的原理基础上,利用激光来采集声音信号,由于它与传统的麦克风有着本质的区别,所以在使用方面具有很大的优越性。系统由非导磁材料制成,其主要工作本体是光,即使在强电磁场或高射频环境中也能正常工作。把光纤应用于麦克风,充分利用了光纤传感器体积小、结构简单、灵敏度高、抗电磁干扰且光纤本身低损耗、耐腐蚀、安全可靠等优良特性。 1、系统结构 本系统利用干涉型光纤传感器的原理,开发基于光相位干涉的高灵敏度声音采集系统,由光纤传感探头、光路系统、光信号调制解调器等部分组成。 干涉型光纤传感器通常将被测量转化为光信号的相位,因此,相位测量是该类型传感器信号处理的基本要求。若直接对相位进行测量,那么有两个问题将限制系统的性能:一是系统受到环境的干扰时被测相位会产生随机漂移,从而引入测量误差,此外,相位漂移还会导致信号衰减;二是直接测相意味着直流检测,信号处理易受电路直流漂移的影响。针对这两个问题引出了相位生成载波技术。相位生成载波调制是在被测信号带宽以外的某一频带之外引入大幅度的相位调制,被测信号则位于调制信号的边带上,这样就把外界干扰的影响转化为对调制信号的影响,且把被测信号频带与低频干扰频带分开,以利于后续的噪声分离。 项目研制的光纤声音采集系统,在对传统michelson干涉仪加以改进的基础上,通过构造由光纤耦合器和振动膜组成的动态michelson干涉光路,能够将外界声压对振膜的作用转化为对光路相位的调制,得到的干涉光信号直接光电转换后即可解调还原声音信号。在多种干涉型光纤传感器的解调方法中,相位生成载波解调技术(pgc)由于是一种无源解调技术,并具有高灵敏度、大动态范围和好的线性度而得到广泛的应用。 2、系统原理 2.1光纤传感探头原理: 激光器发出的激光经耦合器到达传输光纤,由光纤出射的光束照射到振动膜上,传输光纤出射端面m1与振动膜构成一个干涉腔,从两表面反射回的光进行干涉,干涉光再经耦合器由光电探测器接收,外界声音信号通过改变干涉腔的光纤出射端面m1和振动膜之间的距离对光相位进行调制。系统中半导体激光器发出的光源光频随输入的调制电流线性变化,振动膜采用硅微技术进行研制。 2.2解调原理: 光纤声音采集系统中的调制解调器是由光源,光电转换器,高增益微弱信号放大电路,背景噪声消除器等组成。 光源向光纤传感头发射一稳定的激光,传感头内的振动薄膜被周围声音振动信号带动,从而对发射到振动薄膜上的激光进行相位调制后再反射回去,被调制的激光在光路系统里发生干涉,形成携带微弱声音强度的激光信号,光电转换系统的探测器将此激光信号转换成电信号,再经高增益微弱信号放大,pgc解调,噪声滤除,后将解调后的电信号还原成声音信号输出。

临床常规脑电图检测规范

临床常规脑电图检测规范 主要适应症: 1、中枢神经系统发作性疾患,如癫痫、意识障碍、睡眠相关疾病等。 2、癫痫外科手术前致痫区定位。 3、围产期异常的新生儿监测。 4、脑外伤及大脑手术后监测。 5、危重病人监测(ICU)。 6、脑死亡的辅助判定。 1.设备 (1)脑电图仪标准:选择符合国际脑电图和临床神经生理联盟(IFSECN)及中华人民共和国脑电图国家标准并经国家计量局检测规程认可的脑电图仪。目前使用16导程或以上脑电图仪进行常规记录。有条件的实验室或出于特殊需要,可以应用更多导程记录。 (2)电源标准:交流电的接线应该滿足所在地系统标准要求,所有的交流电插座必须提供可靠的地线,以避免交流电干扰或触电的危险。要接专用电源线,电源电压为220V。应用交流电子稳压器时,需待电压稳定后方可打开脑电图仪的电源开关。 (3)辅助设备:应该包括一个能够产生节律性高强度闪光的刺激装置。 2.电极及其放置 理想电极应具有导电良好、易于安置和固定、无创性、耐磨损、无明显信号衰减信号(0.5-70Hz)的特性。 (1)头皮电极:包括盘状电极、针电极和柱状电极。盘状金属(银质)电极记录效果较好,推荐在临床工作中常规使用。特殊需要时可使用一次性针电极,若用可供重复使用的电极,应确保严格消毒以避免交叉感染。 (2)特殊电极:包括蝶骨电极和鼻咽电极。主要用于记录特殊脑区(如颞叶底部或内侧)的异常电活动,临床上常与头皮脑电图配合使用。疑及颞叶内侧放电而头皮脑电图无异常

发现时,可考虑加用蝶骨电极。推荐使用针灸毫针作为常规脑电图蝶骨电极使用,长时间监测时应使用柔软的线型植入式蝶骨电极。鼻咽电极目前已很少使用。由于安置特殊电极具有微创性,需要由经过专门训练的医生或技术人员来完成。 (3)电极固定:短时常规监测可使用电极帽及导电膏固定,长时间监测时推荐使用火棉胶固定头皮电极。 (4)电极的清洁、消毒:电极必须保持清洁。在记录完疑为或确诊为传染病病人后,应采取高压消毒或销毁等有效措施,避免交叉感染。 (5)电极安放:推荐使用国际通用的10-20系统电极安放法。电极数不应少于18~21个(16~19个记录电极,2个参考电极)。电极至少需覆盖前额区、中额区、中央区、顶区、枕区、前颞、中颞和后颞区,有条件时还应包括额、中央、顶区的中线部位。新生儿因为头围小,可适当减少电极数目,但应尽可能安放颅顶中央(Cz)电极,以便发现颅顶正相尖波。建议遵循如下基本原则: ①电极位置:应根据颅骨标志经测量按10-20系统电极安放法加以确定。 ②电极命名:包括两部分:(a)电极所在头部分区。按头部解剖部位“额、颞、中央、顶、枕、耳垂”等英文名称的第一个大写字母“F、T、C、P、O、A”等来表示。(b)国际上以阿拉伯数字的奇数代表左半球,以偶数代表右半球。接近中线的用较小的数字,较外侧的用较大数字。中线部位为英文小写字母“z”.举例:A1代表左耳垂参考电极,T6代表右后颞区,Pz代表顶区中线。 (6)电极阻抗:待电极安装好后应测定电极与头皮之间的阻抗,一般要求不超过5KΩ。当记录中出现可能为电极导致的伪差时,应重新检测电极阻抗。 3.导联组合 导联组合是指用不同的导联方式连接电极。常用方法有两种:参考电极导联法和双极导联法。各个实验室根椐需要可采用不同的导联组合法。合理组合方式应遵循如下基本原则:(1)至少有8导程,尽量使用10-20系统法中的全部21

交通信号控制系统解决实施方案

交通信号控制系统解决方案 1概述 交通信号控制系统,是智能交通系统(ITS)在交通管理工作中的基本应用,也是城市智能交通管控系统中最直接、最基础的应用系统。通过建设信号控制系统,实现信号路口联网远程控制、交通流量的采集、路口自适应控制、绿波协调控制以及区域的自适应控制,有效减少车辆的停车次数,节省旅行时间;后台实时调整信号配时,采取多时段控制方式,必要时,可通过智能交通管理中心人工干预,直接控制路口交通信号机执行指定相位,有效的疏导交通,减少行车延误,提高通行能力,缓解日益严峻的城区道路交通拥堵压力,提高城区交通综合管理能力,减少汽车尾气排放,美化环境,提升城区形象。 2系统结构设计 系统结构划分为3级:分别为中心控制级设备、区域控制级设备以及路口控制级设备。交通信号控制系统设备主要包括中心设备、前段设备和通信设备。

(1)中心控制级设备 中心控制级设备作用主要是: ?监控整个系统的运行。 ?协调区域控制级的运行。 ?具备区域控制级的所有功能。(2)区域控制级设备 区域控制级设备作用主要是: ?监控受控区域的运行。

?对路口交通信号进行协调控制。 ?对路口交通信号机的工作状态和故障情况进行监视。 ?通过人机回话对路口交通信号机进行人工干预。 ?监视和控制区域级外部设备的运行。 ?进行交通流量统计处理。 (3)路口控制级设备 路口控制级设备即信号机,其作用主要是: ?控制路口交通信号灯。 ?接收处理来自车辆检测器的交通流信息,并定时向区域计算机发送。 ?接收处理来自区域计算机的命令,并向区域计算机反馈工作状态和故障信息。 ?具有单点优化能力。 3系统功能设计 3.1基础功能 (1)区域自适应控制 系统以控制子区作为基本控制单元,综合考虑子区内的交通运行状态(如交通阻塞、交通拥挤、交通顺畅)、交叉口的关联性大小、交叉口的实际交通量,确定公共信号周期与相位差的决策模型,并运用智能优化算法实时优化子区协调控制配时参数,实现控制子区交叉口的协调控制功能。 系统的区域交叉口协调控制能够确保控制区域内的交通流时刻处于最佳运行状态,相邻交叉口之间协调方向的行驶车流可以获得尽可能不停顿的通行权,大大降低车辆在交叉口频繁加减速所产生的交通污染,减少区域交通总的车辆燃油

常见的几种脑电图机

几种常见的脑电图机 赵军胜20085023 一、NT9200-16D数字脑电图仪(普及型) (一)仪器简介: NT9200-16D(普及型)型数字脑电图仪采用UE-16B型放大器,增加了单道放大、时域地形图、频率测量、多用户管理系统等功能,是集脑电图、脑地形图与脑电监护于一体的多功能仪器。它利用生物电放大器采集脑电波信号,运用计算机分析系统加以处理,绘制三维活动脑地形图,定量定位地反映大脑机能变化及大脑发生病变的范围、部位及程度,为颅脑疾病的诊断和治疗提供客观准确的依据。本仪器既可做病理性病变诊断又可做功能性病变诊断,弥补了CT和MRI的不足。电脑存贮病历和无笔描记,大大节约使用成本,并为病人复查带来极大的方便。 (二)数字脑电在临床上的应用: 癫痫病、脑肿瘤、脑血管病、脑炎、脑膜炎、脑脓肿、气体农药中毒、脑震荡、脑外伤、脑死亡、中风和再中风预测及老年痴呆的诊断、精神病、神经衰弱及精神分裂等科学研究 (三)性能特点: 1、采用UE-16B型放大器 2、采用windos 2000操作系统,稳定性高。 3、USB接口全数字脑电放大器,支持热插拨,无需插卡,便于携带。 4、采样率可达1000点/秒。超强的抗干扰能力,确保脑电波形不失真。 5、正常参考值。 6、强大的多用户管理功能,确保每位操作大夫病历档案数据的独立性和安全性。 7、强大的数据库管理方式,可支持多种查询检索,方便对病人的各种信息进行检索和统计。 8、用于体检时,可连续采集多个病人并统一打印病例报告。 9、采集过程中,导联列表实时显示,并可随时改变走纸速度及灵敏度。 10、可在采集和回放过程中,随时添加事件标记及医生注释,并可自定义导联方式及诱发事件。 11、可按长度和方向选择EEG波形,边采集边回放; 12、具有多级电影回放功能。可以多种方式快速回放波形。 ①多种速度前后播放脑电图,最高可达100倍数; ②可任意放大脑电波形,测量脑电波幅度、频率; ③可按秒、页、事件及标记多种方式快速回放波形; ④快速进入事件位置,通过事件表直接跳转到对应的波形位置 13、采样长度可达72小时。 14、具有三维彩色脑电地形图、直方图、时域地形图及功率谱阵图。 15、可用不同颜色标识任意导联,避免混淆。并可以每导波形单独放大,方便医生分析。

基于LabView的双声道声卡数据采集系统

基于LabView的双声道声卡数据采集系统班级:热动1007 姓名:刘堂俊学号:U201011568 在虚拟仪器系统中,信号的输入环节一般采用数据采集卡实现。商用的数据采集卡具有完整的数据采集电路和计算机借口电路,但一般比较昂贵,计算机自带声卡是一个优秀的数据采集系统,它具有A/D和D/A转换功能,不仅价格低廉,而且兼容性好、性能稳定、通用性强,软件特别是驱动程序升级方便。如被测对象的频率在音频范围内,同时对采样频率要求不是太高,则可考虑利用声卡构建一个数据采集系统。 1.从数据采集的角度看声卡 1.1声卡的作用 从数据采集的角度来看,声卡是一种音频范围内的数据采集卡,是计算机与外部的模拟量环境联系的重要途径。声卡的主要功能包括录制与播放、编辑和处理、MIDI接口三个部分。 1.2声卡的硬件结构 图1是一个声卡的硬件结构示意图。一般声卡有4~5个对外接口。 图1 声卡的硬件结构示意图 声卡一般有Line In 和Mic In 两个信号输入,其中Line In为双通道输入,Mic In仅作为单通道输入。后者可以接入较弱信号,幅值大约为0.02~0.2V。声音传感器(采用通用的麦克风)信号可通过这个插孔连接到声卡。若由Mic In 输入,由于有前置放大器,容易引入噪声且会导致信号过负荷,故推荐使用Line In ,其噪声干扰小且动态特性良好,可接入幅值约不超过1.5V的信号。另外,输出接口有2个,分别是Wave Out和SPK Out。Wave Out(或LineOut)给出的信号没有经过放大,需要外接功率放大器,例如可以接到有源音箱;SPK Out给出的信号是通过功率放大的信号,可以直接接到喇叭上。这些接口可以用来作为双通道信号发生器的输出。 1.3声卡的工作原理 声音的本质是一种波,表现为振幅、频率、相位等物理量的连续性变化。声卡作为语音信号与计算机的通用接口,其主要功能就是将所获取的模拟音频信号转换为数字信号,经过DSP音效芯片的处理,将该数字信号转换为模拟信号输出。输入时,麦克风或线路输入(Line In)获取的音频信号通过A/D转换器转换成数字信号,送到计算机进行播放、录音等各种处理;输出时,计算机通过总线将数字化的声音信号以PCM(脉冲编码调制)方式送到D/A转换器,变成模拟的音频信号,进而通过功率放大器或线路输出(Line Out)送到音箱等设备转换为声波。

交通信号控制系统

1交通信号控制系统概述交通信号控制系统是智能交通管理系统的重要子系统,其主要功能是自动协 1.1调和控制整个控制区域内交通信号灯的配时方案,均衡路网内交通流运行,使停车次数、延误时间及环境污染减至最小,充分发挥道路系统的交通效益。 必要时,可通过控制中心人工干预,直接控制路口信号机执行指定相位,强制疏导交通。 NATS交通信号控制系统用于城市道路交通的控制与管理,可以提高车速、减少延误、减少交通事故、降低能耗和减轻环境污染。 从上个世纪八十年代中期以来,中国电子科技集团公司第二十八研究所就开始了NATS系统和路口交通信号控制机的研制开发。 该系统通过了国家鉴定验收,获得了国家重大科技攻关成果奖、公安部科技进步一等奖和国家科技进步三等奖。 NATS交通信号控制系统特点: 适合中国城市混合交通的特点,具有自行车控制功能;系统支持多种硬件平台(微机、工作站以及大、中、小型计算机),多种软件平台(WINDOWS 98/NT/2000/XP);支持多种外部设备(动态地图板、室内信息板、室外信息板、违章记录仪…);支持多种系统互联(电视监视系统、地理信息系统、车辆定位系统、违章捕捉系统、信息管理系统…);系统配置灵活、裁剪方便;支持远程控制和维护;支持多种通信方式(光缆、电话线、GPRS/CDMA无线通信、城域网…);系统人机界面友好,显示内容丰富,操作使用方便;与国外同类系统相比,具有很高的性能价格比。 1.2系统结构 1.2.1系统控制应用层结构NATS交通信号控制系统采用三级分布式递阶基本控制结构: 中心控制级,区域控制级,路口控制级(参见下图)。

中心控制级区域控制级1区域控制级2路口控制级路口控制级路口控制级区域控制级N 1.2.2系统基本结构区域监控台动态地图板室内信息板违章捕捉仪区域控制计算机数据通信控制机(光端机)光纤(光端机)(光端机)路口信号机…(光端机)(光端机)路口信号机室外情报板…室外情报板交通信号灯车辆检测器其中: 区域控制计算机监视、控制、协调整个系统的运行,可同时控制128个外部设备,如果外部设备超过128路,可采用多台区域控制计算机。 区域监控台用作交通工程师工作台,实时显示被控区域内的交通状态和信息,下达人机会话命令;数据通信控制机为区域控制计算机与户外设备提供通信通道;路口信号机负责采集、处理、传送交通信息,控制路口信号灯色;环形线圈检测器和微波检测器安装位置可分布在路口或者路段;动态地图板实时显示被控区域内的交通状态。 1.3系统功能 1.3.1系统三级控制功能1)中心控制级监控整个系统的运行;协调区域控制级的运行;具备区域控制级的所有功能。 2)区域控制级监控受控区域的运行;对路口交通信号进行协调控制; 对路口交通信号机的工作状态和故障情况进行监视;通过人机会话对路口交通信号机进行人工干预;监视和控制区域级外部设备的运行;进行交通流量统计处理。 3)路口控制级控制路口交通信号灯;接收处理来自车辆检测器的交通流信息,并定时向区域计算机发送;接收处理来自区域计算机的命令,并向区域计算机反馈工作状态和故障信息;具有单点优化能力。 4)终端控制为了方便灵活地控制系统,系统可挂接终端控制计算机(工作站),终端控制计算机提供与区域控制计算机完全同样的显示操作功能,终端控制计算机既可以是本地的(如放在管控中心),也可以是远程的(如在任何地方通过公安网进行控制)。 1.

音频信号采集与传输

《信号与系统》 ——综合性设计性实验报告标题:音频信号采集与传输 组长:学号 成员:学号 学号 学号 实验时间:2011年6月20日星期一第1、2节2011年6月27日星期一第1、2节实验地点:电子信息楼617 实验课室: 机械与电气工程学院 电子信息工程系 信息工程专业 教师:胡晓

目录 1、课题设计流程 (3) 2、课题设计理论基础 (3) 2.1信号的采集 (3) 2.2频谱分析 (3) 2.3 调制与解调 (3) 2.4 高斯白噪声 (4) 2.5 滤波 (4) 3、课题设计(程序) (4) 4、课题设计效果(效果图) (6) 5、课题设计总结 (7) 6、心得体会 (7)

1、课题设计流程 用matlab录制音频文件 ?→ ?)(f t频谱分析?→ ?调制? ? ? ?→ ?加入高斯白噪声解调?→ ?滤 波?→ ?扬声器 2、课题设计理论基础 2.1信号的采集 用matlab录制5秒mic声音,y = wavrecord(5*fs,fs,'int16'),其中采样率为44100,时长为5*fs,然后用wavplay(y,fs);语句播放出来,再写成以xinhao_test01命名的wav文件。Y也可以直接用windows自带的录音工具进行录音,并直接读取[y,fs,bits]=wavread('xinhao_test01.wav'),然后对声音进行回放sound(y,fs),感觉效果。 2.2频谱分析 快速傅里叶变换原理: 在matlab的信号处理工具箱中函数FFT用于快速傅里叶变换,此次实验调用FFT函数的一种格式y=fft(x,N),其中x是序列,y是序列的FFT,N为正整数,函数执行N点的FFT,由于实验中fs=44100,所以取N=2^16,由于经过fft求得的y一般是复序列,所以用其幅值进行分析,可以用函数abs(y)进行计算复向量y的幅值。由于用matlab自带的FFT快速傅里叶变换得到的幅频图的横坐标是从1到1/2fs,是从低频到高频,再由1/2fs到1,是从高频到低频,实验中用语句Y0(2^N/2+1:2^N)=Y(1:2^N/2),Y0(1:2^N/2)=Y(2^N/2+1:2^N)(其中N=16)。这样就可以将幅频图变成横坐标原点是低频,向坐标的正负端频率逐渐递增的形式,这是平常傅里叶变换得到的幅频图横坐标。

视频交通流采集系统解决方案

视频交通流信息采集系统解决方案 1概述 视频交通流信息采集系统主要包括视频图像采集设备、视频传输网络、交通流视频检测器等。视频检测器采用虚拟线圈技术,利用边缘信息作为车辆的检测特征,实时自动提取和更新背景边缘,受环境光线变化和阴影的影响较小;同时采用动态窗的方式来进行车辆计数,解决了采用以往固定窗方式进行车辆计数时由于车辆变道而导致的错误、重复计数问题。视频检测器能对视频图像采集设备或交通电视监视系统的视频信号自动进行检测,主要采集道路的微观交通信息如流量、速度、占有率、车辆间距、排队长度等,适用于近景监控模式。 2系统功能及特点介绍 2.1数据接口设计 视频交通流信息采集系统可以通过调用本项目提供的交通流数据统一接入接口,或由本项目提供数据格式标准化及上传程序,将采集到的交通流数据共享给本项目相关系统,以实现视频交通流数据的采集功能。 图1 数据接口设计 2.2系统功能 交通流信息视频检测系统的主要功能如下: (1)车辆检测 系统能够对输入的视频流图像进行车型、车牌等特征检测。

(2)交通流数据采集功能 系统可以采集交通流数据包括交通流量、平均车速、车道占有率、车型、平均车头间距、车辆排队长度、车辆密度、交通流状态等,交通流数据采集时间间隔在1~60分钟任意可调。 图 2 视频交通流检测模块 (3)视频图像跟踪功能 系统能对单路监控前端设备在不同预置位采集的视频图像进行不同区域不同事件的自动检测。一旦检测到特定的交通事件,事件检测器应具有该交通事件的视频图像目标自动跟踪、记录、分析功能。 当输入的视频图像不为设定的预置位的视频图像,系统应能自动不进行事件检测。一旦监控前端设备恢复至设定的预置位,系统应能自动进行事件检测。 (4)事件图像抓拍、录像功能 系统可以根据用户的设置,完成相应的录像和图片抓拍功能。 事件录像可以按摄像机、按事件类型、按时间归档存储在系统的预录像子系统中,由系统服务器进行统一的管理调用。 系统循环进行录像,当发生交通异常事件时,系统能够提供事发之前和之后的3分钟间的录像(可设置)。 系统可通过多种组合查询条件对视频交通流检测所采集的数据进行统计,包括时间-流量统计、时间-平均车速统计、时间-占有率统计、速度-流量统计等;统计结果可导出为

相关文档
最新文档