高等数学二重积分总结.

高等数学二重积分总结.
高等数学二重积分总结.

第九章二重积分

【本章逻辑框架】

【本章学习目标】

⒈理解二重积分的概念与性质,了解二重积分的几何意义以及二重积分与定积分之间的联系,会用性质比较二重积分的大小,估计二重积分的取值范围。

⒉领会将二重积分化为二次积分时如何确定积分次序和积分限,如何改换二次积分的积分次序,并且如何根据被积函数和积分区域的特征选择坐标系。熟练掌握直角坐标系和极坐标系下重积分的计算方法。

⒊掌握曲顶柱体体积的求法,会求由曲面围成的空间区域的体积。

9.1 二重积分的概念与性质

【学习方法导引】

1.二重积分定义

为了更好地理解二重积分的定义,必须首先引入二重积分的两个“原型”,一个是几何的“原型”-曲顶柱体的体积如何计算,另一个是物理的“原型”—平面薄片的

质量如何求。从这两个“原型”出发,对所抽象出来的二重积分的定义就易于理解了。

在二重积分的定义中,必须要特别注意其中的两个“任意”,一是将区域D 成n 个小区域12, , , n σσσ??? 的分法要任意,二是在每个

小区域i σ?上的点(, i i i ξησ∈?的取法也要任意。有了这两个“任意”,

如果所对应的积分和当各小区域的直径中的最大值0λ→时总有同一个极限,才能称二元函数(, f x y 在区域D 上的二重积分存在。

2.明确二重积分的几何意义。

(1 若在D 上(, f x y ≥0,则(, d D

f x y σ??表示以区域D 为底,以

(, f x y 为曲顶的曲顶柱体的体积。特别地,当(, f x y =1时,(, d D

f x y σ

??表示平面区域D 的面积。

(2 若在D 上(, f x y ≤0,则上述曲顶柱体在Oxy 面的下方,二重积分(, d D

f x y σ??的值是负的,其绝对值为该曲顶柱体的体积

(3若(, f x y 在D 的某些子区域上为正的,在D 的另一些子区域上为负的,则(, d D

f x y σ??表示在这些子区域上曲顶柱体体积的代数和

(即在Oxy 平面之上的曲顶柱体体积减去Oxy 平面之下的曲顶柱体的体积.

3.二重积分的性质,即线性、区域可加性、有序性、估值不等式、二重积分中值定理都与一元定积分类似。有序性常用于比较两个二重积分的大小,估值不等式常用于估计一个二重积分的取值范围,在用估值不等式对一个二重积分估值的时候,一般情形须按求函数(, f x y 在闭区域D 上的最大值、最小值的方法求出其最大值与最小值,再应用估值不等式得到取值范围。

【主要概念梳理】

1. 二重积分的定义设二元函数f(x,y在闭区域D 上有定义且有界.

分割用任意两组曲线分割D 成n 个小区域12, , , n σσσ??? ,同时用i σ?表示它们的面积,1,2, , . i n = 其中任意两小块i σ?和( j i j σ?≠除边界外无公共点。i σ?既表示第i 小块, 又表示第i 小块的面积.

近似、求和对任意点(, i i i ξησ∈? ,作和式1(, . n

i i i i f ξησ=?∑

取极限若i λ为i σ?的直径,记12max{, , , }n λλλλ= , 若极限

01lim (, n

i i i i f λξησ→=?∑ 存在,且它不依赖于区域D 的分法,也不依赖于点(, i i ξη的取法,称此极限为f (x,y 在D 上的二重积分. 记为

01(, d lim (, . n

i i

i D f x y f λσξη→==∑??称f (x,y 为被积函数,D 为积分区域,x 、y 为积分变元,d σ为面积微元(或面积元素.

2. 二重积分 (, d D

f x y σ??的几何意义

(1 若在D 上f (x,y ≥0,则(,d

D fx y σ??表示以区域D 为底,

以f (x,y 为曲顶的曲顶柱体的体积.

(2 若在D 上f (x,y ≤0,则上述曲顶柱体在Oxy 面的下方,二重积分(, d D

f x y σ??的值是负的,其绝对值为该曲顶柱体的体积

(3若f (x,y 在D 的某些子区域上为正的,在D 的另一些子区域

上为负的,则(, d D

f x y σ??表示在这些子区域上曲顶柱体体积的代数和

(即在Oxy 平面之上的曲顶柱体体积减去Oxy 平面之下的曲顶柱体的体积.

3.二重积分的存在定理

3.1若f (x,y 在有界闭区域D 上连续,则f (x,y 在D 上的二重积分必存在(即f (x,y 在D 上必可积.

3.2若有界函数f (x,y 在有界闭区域D 上除去有限个点或有限个光滑曲线外都连续,则f (x,y 在D 可积.

4.二重积分的性质

二重积分有与定积分类似的性质. 假设下面各性质中所涉及的函数f (x , y ,

g(x,y在区域 D 上都是可积的.

性质1 有限个可积函数的代数和必定可积,且函数代数和的积分等于各函数积分的代数和,即

[(, (, ]d(, d (, d . D D D

f x y

g x y f x y g x y σσσ±=±??????

性质2 被积函数中的常数因子可以提到积分号前面,即

(, d (, d (. D D

kf x y k f x y k σσ=????为常数

性质3 若D 可以分为两个区域D 1, D 2,它们除边界外无公共点,则

12

(, d (, d (, d . D D D f x y f x y f x y σσσ=+??????

性质4 若在积分区域D 上有f (x , y =1,且用S (D 表示区域D 的面积,则

d (. D

S D σ=??

性质5 若在D 上处处有f (x , y ≤g (x , y ,则有

(, d (, d . D D

f x y

g x y σσ≤????

推论 (, d (, d . D D

f x y f x y σσ≤????

性质6(估值定理若在D 上处处有m ≤f (x , y ≤M ,且S (D 为区域D 的面积,则

( (, d (. D

mS D f x y MS D σ≤≤??

性质7(二重积分中值定理设f (x , y 在有界闭区域D 上连续,则在D 上存在一点(, ξη,使

(, d (, (. D

f x y f S D σξη=??

【基本问题导引】

根据二重积分的几何意义或性质求解下列各题:

1.2d D

a xdy =??,其中222{(, |}D x y x y a =+≤

2.设D 是由x 轴,y 轴与直线1x y +=所围成的区域,则21( , D I x y d

σ=+??32( D

I x y d σ=+??的大小关系

是 .

【巩固拓展提高】

1.若f (x , y 在有界闭区域D 上连续,且在D 的任一子区域D *上有*

(, d 0D f x y σ=??,试证明在D 内恒有f (x , y =0

2.估计22(y d D

I x xy x xdy =+--??的值,其中{(, |02,01}.D x y x y =≤≤≤≤

3.设f (x , y 是有界闭区域D :222x y a +≤上的连续函数,则201

lim (, a D f x y dxdy a π→??的值为多少?

【数学思想方法】

二重积分是一元函数定积分的推广与发展,它们都是某种形式的和的极限,即分割求和、取极限,故可用微元法的思想来理解二重积分的概念与性质。

9.2 在直角坐标系中二重积分的计算

【学习方法导引】

本章的重点是二重积分的计算问题,而直角坐标系中二重积分的计算问题关键是如何确定积分区域及确定X 型区域还是Y 型区域,这也是本章的难点。

直角坐标系中二重积分计算的基本技巧:

(1在定积分计算中,如果D 的形状不能简单地用类似

12( ( x y x a x b

??≤≤??

≤≤?或12( (

y x y c y d φφ≤≤??≤≤?的形式来表示,则我们可以将D 分成若干块,并由积分性质

1

2

(, d (, d (, d .

D

D D f x y f x y f x y σσσ=+??????

对右端各式进行计算。

(2交换积分次序不仅要考虑到区域D 的形状,还要考虑被积函数的特点。如果按照某一积分次序的积分比较困难,若交换积分次序后,由于累次积分的积分函数(一元积分形式发生变化,可能会使新的积分次序下的积分容易计算,从而完成积分的求解。但是无论是先对x 积分,再对y 积分,还是先对y 积分,再对x 积分最终计算的结果应该是相同的。一般的处理方法是由积分限确定积分区域D ,并按照新的积分次序将二重积分化成二次积分。具体步骤如下:①确定D 的

边界曲线,画出D 的草图;

②求出D 边界曲线的交点坐标;

③将D 的边界曲线表示为x 或y 的单值函数;④考虑是否要将D 分成几块;

⑤用x , y 的不等式表示D .

注:在积分次序选择时,应考虑以下几个方面的内容:(ⅰ保证各层积分的原函数能够求出;(ⅱ若D 为X 型(Y 型, 先对x (y 积分;(ⅲ若D 既为X 型又为Y 型,且满足(ⅰ时,要使对D 的分块最少。

(3 利用对称性等公式简化计算设f (x , y 在区域D 上连续,则①当区域D 关于x 轴对称

若(, (, f x y f x y -=-,则(, d D

f x y σ??=0;

若(, (, f x y f x y -=,则(, d D

f x y σ??=21

(, d D f x y σ??,其中D 1为D 在

x 轴上方部分。

②当区域D 关于y 轴对称

若(, (, f x y f x y -=-,则(, d D

f x y σ??=0;

若(, (, f x y f x y -=,则(, d D

f x y σ??=22

(, d D f x y σ??,其中D 2为D 在

y 轴右侧部分。

③当区域D 关于x 轴和y 轴都对称

若(, (, f x y f x y -=-或(, (, f x y f x y -=-,则(, d D f x y σ??=0;

若(, (, (, f x y f x y f x y -=-=,则(, d D

f x y σ??=41

(, d D f x y σ??,其中D 1为

D 在第一象限部分。

④轮换对称式

设D 关于直线y x =对称,则(, d D

f x y σ??=(, d D

f y x σ??.

【基本问题导引】

一.判断题

1.dxdy=D

xy ??41

22221dxdy, :4; :4, 0, 0D xy D x y D x y x y +≤+≤≥≥?? ( 2. 若f 为连续函数,则

2

1

2210

1

2(, (, (, x x

y

dx f x y dy dx f x y dy dy f x y dx

--+=?

?

??

? (

【主要概念梳理】

直角坐标系中二重积分计算

当被积函数f (x , y ≥0且在D 上连续时,

若D 为 X - 型区域 12( (

:x y x D a x b ??≤≤??≤≤?

21(

(

(, d d d (, d b

x D

a

x f x y x y x f x y y ??=??

??

若D 为Y –型区域12( (

:y x y D c y d ψψ≤≤??≤≤?

,

则21(

(

(, d d d (, d d

y D c y f x y x y y f x y x ψψ

=????

说明:若积分区域既是X –型区域又是Y –2211(

(

(

(

(, d d d (, d d (, d b

x d

y D

a

x c

y f x y x y x f x y y y f x y x

?ψ?ψ==??

??

??

【巩固拓展提高】

1.(1992计算1121112

2

4

. y y x

x

y I dy dx dy dx =+

2. 设1( x x

y

f x e dy =?,计算1

0( f x dx ?.

9.3 在极坐标系中二重积分的计算

【学习方法导引】

极坐标系中二重积分计算的基本技巧:

(1 一般地,如果积分区域是圆域、扇形域或圆环形域,且被积函数为22(, f x y +

(, y f x ( x

f y

等形式时,计算二重积分时,往往采用极坐标系来计算。【基本问题导引】

1. 若二重积分的积分区域D 是2214, x y ≤+≤则D

dxdy ??=。

2.设222:, 0,(0. D x y a x a +≤≥>将二重积分(, d D I f x y σ=??化为极坐标形式的二次积分,则=I 3.设2222:,0. D a x y b a b ≤+≤<<将二重积分(, d D I f x y σ=??化为极坐标形式的二次积分,则=I .

【主要概念梳理】

利用极坐标系计算二重积分

在极坐标系下, 用同心圆r =常数及射线θ =常数, 分划区域D 为

(1,2, , k k n σ?= 。则(, d (cos , sin d d D

D

f x y f r r r r σθθθ=????

特别地若12( (

:, r D ?θ?θαθβ≤≤??

≤≤?

则有21

(

( (cos , sin d d d (cos , sin d D f r r r r f r r r

β

?θα?θθθθθθθ=????若0(

:r D ?θαθβ

≤≤??

≤≤?

则有(

(cos , sin d d d (cos , sin D f r r r r f r r β

?θαθθθθθθ=????若0( :02r D ?θθπ

≤≤??≤≤?

则有2(

00

(cos , sin d d d (cos , sin d D f r r r r f r r r r π?θθθθθθθ=????

【巩固拓展提高】

1.计算二重积分:22|1|d , D

x y σ--??其中22:4. D x y +≤

2.设22:1, 0, 0. D x y x y +≤≥≥计算二重积分:22ln(1d . D

x y σ++??

9.4 二重积分的应用

【学习方法导引】

二重积分的应用主要在几何方面和物理方面。几何应用之一是求曲线所围成的面积,应用之二是求曲面所围成的立体的体积;物理应用主要是平面薄片的质量。

【主要概念梳理】

(1 空间立体的体积V

设空间立体Ω由曲面1:(, z f x y ∑=与2:(, z g x y ∑=所围成,Ω在xoy 面投影为平面区域D ,并且(, (, f x y g x y ≥. 则

[(, (, ]dD

V f x y g x y σ=-??或V dv Ω

=???.

(2曲面面积S

设光滑曲面∑为:(, z z x y ∑=,

则xy

D S =,其中xy D 为∑

在xoy 面上的投影区域。

同理可得:设光滑曲面∑为:(, x x y z ∑=

,则yz

D S =??,

其中yz D 为∑在yoz 面上的投影区域。

设光滑曲面∑为:(, y y x z ∑=,

则xz

D S =??,其中xz D 为∑

在xoz 面上的投影区域。

(3 平面薄片的质量设平面薄片的面密度为ρ ( x, y ,物体所占区域为 D,则它的质量为m = ∫∫ ρ ( x, y dσ ,其中dm = ρ ( x, y dσ , 称为质量元素。 D

二重积分学习总结

高等数学论文 《二重积分学习总结》 姓名:徐琛豪 班级:安全工程02班 学号:1201050221 完成时间:2013年6月2日

二重积分 【本章学习目标】 ⒈理解二重积分的概念与性质,了解二重积分的几何意义以及二重积分与定积分之间的联系,会用性质比较二重积分的大小,估计二重积分的取值范围。 ⒉领会将二重积分化为二次积分时如何确定积分次序和积分限,如何改换二次积分的积分次序,并且如何根据被积函数和积分区域的特征选择坐标系。熟练掌握直角坐标系和极坐标系下重积分的计算方法。 ⒊掌握曲顶柱体体积的求法,会求由曲面围成的空间区域的体积。 1 二重积分的概念与性质 1.二重积分定义 为了更好地理解二重积分的定义,必须首先引入二重积分的两个“原型”,一个是几何的“原型”-曲顶柱体的体积如何计算,另一个是物理的“原型”—平面薄片的质量如何求。从这两个“原型”出发,对所抽象出来的二重积分的定义就易于理解了。 在二重积分的定义中,必须要特别注意其中的两个“任意”,一是将区域D 成n 个小区域12,,,n σσσ??? 的分法要任意,二是在每个小区域i σ?上的点(,)i i i ξησ∈?的取法也要任意。有了这两个“任意”,如果所对应的积分和当各小区域的直径中的最大值0λ→时总有同一个极限,才能称二元函数(,)f x y 在区域D 上的二重积分存在。 2.明确二重积分的几何意义。 (1) 若在D 上(,)f x y ≥0,则(,)d D f x y σ??表示以区域D 为底,以 (,)f x y 为曲顶的曲顶柱体的体积。特别地,当(,)f x y =1时,(,)d D f x y σ ??表示平面区域D 的面积。

高等数学知识点总结 (1)

高等数学(下)知识点 主要公式总结 第八章 空间解析几何与向量代数 1、 二次曲面 1) 椭圆锥面:2 2 222z b y a x =+ 2) 椭球面:122 222 2=++c z b y a x 旋转椭球面:1222222=++c z a y a x 3) 单叶双曲面:122 222 2=-+c z b y a x 双叶双曲面:1222222=--c z b y a x 4) 椭圆抛物面:z b y a x =+2222 双曲抛物面(马鞍面):z b y a x =-22 22 5) 椭圆柱面:1222 2=+b y a x 双曲柱面:122 22=-b y a x 6) 抛物柱面: ay x =2 (二) 平面及其方程 1、 点法式方程: 0)()()(000=-+-+-z z C y y B x x A 法向量:),,(C B A n =ρ ,过点),,(000z y x 2、 一般式方程: 0=+++D Cz By Ax 截距式方程: 1=++c z b y a x 3、 两平面的夹角:),,(1111C B A n =ρ,),,(2222C B A n =ρ, ?∏⊥∏21 0212121=++C C B B A A ;?∏∏21// 2 1 2121C C B B A A == 4、 点 ),,(0000z y x P 到平面0=+++D Cz By Ax 的距离: (三) 空间直线及其方程 1、 一般式方程:?????=+++=+++0 022221111D z C y B x A D z C y B x A 2、 对称式(点向式)方程: p z z n y y m x x 0 00-=-=-

高等数学微积分总结

积 分 整个高数课本,我们一共学习了不定积分,定积分,重积分(二重,三重),曲线积分(两类),曲面积分(两类).在此,我们对 积分总结,比较,以期同学们对积分有一个整体的认识. 一、不定积分 不定积分是微分的逆运算,其计算方法、各种技巧是我们后面各种积分计算的基础,希望同学们熟记积分公式,及各种 方法(两类换元,分部积分,有理函数积分等) 二、定积分 1.定义式: ()b a f x dx ? 2.定义域:一维区间,例如[,]a b 3.性质:见课本P 229-P 232 特殊:若 1f =,则()b a f x dx b a =-?,即区间长度. 4.积分技巧:奇偶对称性. 注意:定积分中积分变量可以任意替换即()()b b a a f x dx f y dy =? ?,而不定积分不具有这种性质. 5.积分方法:与不定积分的方法相同. 6.几何应用: 定积分的几何意义: ()b a f x dx ? 表示以()f x 为顶与x 轴所夹区域面积的代数和(注意如()0f x <,则面积为负); 其他应用:如 ()f x 表示截面积,则积分为体积;平面弧长 (b a f x ? 等. 三、二重积分 1.定义式: (,)xy D f x y d σ ?? 2.定义域:二维平面区域 3.性质:见下册课本P 77 特殊: 若 1f =,则(,)xy D f x y dxdy S =?? ,即S 为xy D 的面积. 4.坐标系: ①直角坐标系: X 型区域,Y 型区域 ②极坐标系:适用范围为圆域或扇形区域,注意坐标转换后不要漏掉r ,积分时一般先确定θ的范围,再确定r 的范围. 5.积分技巧:奇偶对称性(见后),质心; 6.几何应用: 二重积分的几何意义:若(,)0f x y ≥,则(,)xy D f x y dxdy ?? 表示以(,)f x y 为顶以xy D 为底的曲顶柱体体积; 其他应用:求曲面(,)z z x y =的面积xy D ?? 四、三重积分 1.定义式 (,,)f x y z dv Ω??? 2.定义域:三维空间区域; 3.性质:与二重积分类似; 特殊: 若 1f =,则(,,)f x y z dv V Ω =???,其中V 表示Ω的体积. 4.坐标系: ①直角坐标系:投影法,截面法(一般被积函数有一个自变量,而当该变量固定时所得截面 积易求时采用) ②柱坐标系:积分区域为柱形区域,锥形区域,抛物面所围区域时可采用; ③球坐标系:积分区域为球域或与球面相关的区域时,确定自变量范围时,先θ,后?,最后 r . 5.积分技巧:奇偶对称性,变量对称性(见后),质心等. 6.应用: (,,)f x y z 表示密度,则(,,)f x y z dv Ω ???为物体质量.(不考虑几何意义) 五、第一类曲线积分

大学微积分l知识点总结 二

【第五部分】不定积分 1.书本知识(包含一些补充知识) (1)原函数:F ’(x )=f (x ),x ∈I ,则称F (x )是f (x )的一个“原函数”。 (2)若F (x )是f (x )在区间上的一个原函数,则f (x )在区间上的全体函数为F (x )+c (其中c 为常数) (3)基本积分表 c x dx x +?+?=?+???11 1(α≠1,α为常数) (4)零函数的所有原函数都是c (5)C 代表所有的常数函数 (6)运算法则 []??????±?=?±??=??dx x g dx x f dx x g x f dx x f a dx x f a )()()()()()(②① (7)[][]c x F dx x x f +=??)()(')(???复合函数的积分: c b x F dx b x f c b ax F a b ax d b ax f a dx b ax f ++=?+++?=+?+?=?+???)()()(1)()(1)(一般地, (9)连续函数一定有原函数,但是有原函数的函数不一定连续,没有原函数的函数一定不连续。 (10)不定积分的计算方法 ①凑微分法(第一换元法),利用复合函数的求导法则 ②变量代换法(第二换元法),利用一阶微分形式不变性 ③分部积分法: 【解释:一阶微分形式不变性】 数乘运算 加减运线性运 (8

释义:函数 对应:y=f(u) 说明: (11)c x dx a x a x ++??++?22ln 1 22 (12)分段函数的积分 例题说明:{} dx x ??2,1max (13)在做不定积分问题时,若遇到求三角函数奇次方的积分,最好的方法是将其中的一 (16)隐函数求不定积分 例题说明: (17)三角有理函数积分的万能变换公式 (18)某些无理函数的不定积分 ②欧拉变换 (19)其他形式的不定积分 2.补充知识(课外补充) ☆【例谈不定积分的计算方法】☆ 1、不定积分的定义及一般积分方法 2、特殊类型不定积分求解方法汇总 1、不定积分的定义及一般积分方法 (1)定义:若函数f(x)在区间I 上连续,则f(x)在区间I 上存在原函数。其中Φ(x)=F(x)+c 0,(c 0为某个常数),则Φ(x)=F(x)+c 0属于函数族F(x)+c (2)一般积分方法 值得注意的问题:

高数下要点含微分方程自己的完整版

高数下要点含微分方程 自己的 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

第六章 微分方程 一、一阶微分方程 1、一阶线性方程 )()(x Q y x P dx dy =+ 2、伯努利方程 )1,0()()(d d ≠=+n y x Q y x P x y n ).()(d d 1111x Q y x P x y n n n =+?---令.1n y z -= 二、可降阶的高阶方程 1.)() (x f y n = n 次积分 2.)',("y x f y = 不显含 y 令)('x p y =,化为一阶方程 ),('p x f p =。 3.)',("y y f y = 不显含自变量 令)('y p y =,dy dp p dx y d =22,化为一阶方程。 三、线性微分方程 )()()()(1)1(1)(x f y x a y x a y x a y n n n n =+'+++-- , 0)(≡x f 时称为齐次的,0)(≡/x f 称为非齐次的。

1.二阶线性齐次线性方程 0)()(=+'+''y x Q y x P y (1) 如果函数 )(1x y 与)(2x y 是方程(1)的两个解, 则)()(2211x y C x y C y += 也是(1)的解,其中21,C C 是任意常数。 如果 )(1x y 与)(2x y 是方程(1)的两个线性无关的特解, 则 )()(2211x y C x y C y += (21,C C 是任意常数)是(1)的通解. 两个函数 )(1x y 与)(2x y 线性无关的充要条件为 C x y x y ≡/) () (21(常数) 2.二阶线性非齐次线性方程 设 )(*x y 是二阶线性非齐次线性方程 )()()(x f y x Q y x P y =+'+'' 的一个特解,)(x Y 是它对应的齐次方程(1)的通解,则 )()(*x y x Y y += 是该方程的 通解. 设 )(* 1x y 与)(*2 x y 分别是二阶线性非齐次方程 )()()(1x f y x Q y x P y =+'+'' 与 )()()(2x f y x Q y x P y =+'+'' 的两个特解。则 +)(*1x y )(*2x y 是 的特解。(叠加原理)

高等数学二重积分总结

第九章二重积分 【本章逻辑框架】 【本章学习目标】 ⒈理解二重积分的概念与性质,了解二重积分的几何意义以及二重积分与定积分之间的联系,会用性质比较二重积分的大小,估计二重积分的取值范围。 ⒉领会将二重积分化为二次积分时如何确定积分次序和积分限,如何改换二次积分的积分次序,并且如何根据被积函数和积分区域的特征选择坐标系。熟练掌握直角坐标系和极坐标系下重积分的计算方法。 ⒊掌握曲顶柱体体积的求法,会求由曲面围成的空间区域的体积。 9.1 二重积分的概念与性质 【学习方法导引】 1.二重积分定义 为了更好地理解二重积分的定义,必须首先引入二重积分的两个“原型”,一个是几何的“原型”-曲顶柱体的体积如何计算,另一个是物理的“原型”—平面薄片的质量如何求。从这两个“原型”出发,对所抽象出来的二重积分的定义就易于理解了。

在二重积分的定义中,必须要特别注意其中的两个“任意”,一是将区域D 成n 个小区域12,,,n σσσ??? 的分法要任意,二是在每个小区域i σ?上的点(,)i i i ξησ∈?的取法也要任意。有了这两个“任意”,如果所对应的积分和当各小区域的直径中的最大值0λ→时总有同一个极限,才能称二元函数(,)f x y 在区域D 上的二重积分存在。 2.明确二重积分的几何意义。 (1) 若在D 上(,)f x y ≥0,则(,)d D f x y σ??表示以区域D 为底,以 (,)f x y 为曲顶的曲顶柱体的体积。特别地,当(,)f x y =1时,(,)d D f x y σ ??表示平面区域D 的面积。 (2) 若在D 上(,)f x y ≤0,则上述曲顶柱体在Oxy 面的下方,二重积分(,)d D f x y σ??的值是负的,其绝对值为该曲顶柱体的体积 (3)若(,)f x y 在D 的某些子区域上为正的,在D 的另一些子区域上为负的,则(,)d D f x y σ??表示在这些子区域上曲顶柱体体积的代数和 (即在Oxy 平面之上的曲顶柱体体积减去Oxy 平面之下的曲顶柱体的体积). 3.二重积分的性质,即线性、区域可加性、有序性、估值不等式、二重积分中值定理都与一元定积分类似。有序性常用于比较两个二重积分的大小,估值不等式常用于估计一个二重积分的取值范围,在用估值不等式对一个二重积分估值的时候,一般情形须按求函数 (,)f x y 在闭区域D 上的最大值、最小值的方法求出其最大值与最小 值,再应用估值不等式得到取值范围。

2018考研高数重点复习定积分与不定积分定理总结

2018考研高数重点复习定积分与不定积 分定理总结 在暑期完成第一轮基础考点的复习之后,9月份开始需要对考研数学所考的定理定义进行必要的汇总。本文为同学们整理了高数部分的定积分与不定积分定理定义汇总。 ?不定积分 1、原函数存在定理 ●定理如果函数f(x)在区间I上连续,那么在区间I上存在可导函数F(x),使对任一x ∈I都有F’(x)=f(x);简单的说连续函数一定有原函数。 ●分部积分法 如果被积函数是幂函数和正余弦或幂函数和指数函数的乘积,就可以考虑用分部积分法,并设幂函数和指数函数为u,这样用一次分部积分法就可以使幂函数的幂降低一次。如果被积函数是幂函数和对数函数或幂函数和反三角函数的乘积,就可设对数和反三角函数为u。 2、对于初等函数来说,在其定义区间上,它的原函数一定存在,但原函数不一定都是初等函数。 ?定积分 1、定积分解决的典型问题 (1)曲边梯形的面积(2)变速直线运动的路程 2、函数可积的充分条件 ●定理设f(x)在区间[a,b]上连续,则f(x)在区间[a,b]上可积,即连续=>可积。 ●定理设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间[a,b]上可积。 3、定积分的若干重要性质 ●性质如果在区间[a,b]上f(x)≥0则∫abf(x)dx≥0。 ●推论如果在区间[a,b]上f(x)≤g(x)则∫abf(x)dx≤∫abg(x)dx。

●推论|∫abf(x)dx|≤∫ab|f(x)|dx。 ●性质设M及m分别是函数f(x)在区间[a,b]上的最大值和最小值,则m(b-a)≤∫abf(x)dx ≤M(b-a),该性质说明由被积函数在积分区间上的最大值及最小值可以估计积分值的大致范围。 ●性质(定积分中值定理)如果函数f(x)在区间[a,b]上连续,则在积分区间[a,b]上至少存在一个点ξ,使下式成立:∫abf(x)dx=f(ξ)(b-a)。 4、关于广义积分 设函数f(x)在区间[a,b]上除点c(a ?定积分的应用 1、求平面图形的面积(曲线围成的面积) ●直角坐标系下(含参数与不含参数) ●极坐标系下(r,θ,x=rcosθ,y=rsinθ)(扇形面积公式S=R2θ/2) ●旋转体体积(由连续曲线、直线及坐标轴所围成的面积绕坐标轴旋转而成)(且体积V=∫abπ[f(x)]2dx,其中f(x)指曲线的方程) ●平行截面面积为已知的立体体积(V=∫abA(x)dx,其中A(x)为截面面积) ●功、水压力、引力 ●函数的平均值(平均值y=1/(b-a)*∫abf(x)dx)

高数下第6讲:二重积分

高数下第6讲:二重积分 围成;是由圆周其中积分区域与围成;轴与直线轴,是由其中积分区域与的大小: 根据性质比较下列积分2)1()2(,)()()2(1,)()()1(.1223232=-+-++=+++????????y x D d y x d y x y x y x D d y x d y x D D D D σσσσ ; 4,)10()3(; 4,)43()2(; 20,10,)1()1(.2222222≤+++=≤+++=≤≤≤≤++=??????y x D d y x I y x D d y x I y x D d y x I D D D 是圆域其中积分区域是圆域其中积分区域是矩形域其中积分区域的值: 根据性质估计下列积分σσσ 使,求证必存在一点且上连续在有界闭区域与设),,(0),(,),(),(.3ηξ≥y x g D y x g y x f ????=D D dxdy y x g f dxdy y x g y x f ),(),(),(),(ηξ

??????????????????-----+-++103130204024411100sin 0012 2102 2 01 0110 ),(),()7(),()6(),()5(),()4(),(),()3(),()2(;),()1(.422y y y y x x x x x x y y dx y x f dy dx y x f dy dx y x f dy dy y x f dx dy y x f dx dy y x f dx dy y x f dx dy y x f dx dx y x f dy π;交换积分次序: 所围成的区域。 及是由其中为圆域其中分根据对称性计算二重积12,,)()2(; ,)1(: .522222===+=≤+-????y x y x y D d y x I R y x D d y R x D D σσ

高等数学习题详解-第8章二重积分

习题8-1 1. 设有一平面薄片,在xOy 平面上形成闭区域D ,它在点(x ,y )处的面密度为μ(x ,y ),且μ(x ,y )在D 连续,试用二重积分表示该薄片的质量. 解:(,)D m x y d μσ=??. 2. 试比较下列二重积分的大小: (1) 2()D x y d σ+??与3()D x y d σ+??,其中D 由x 轴、y 轴及直线x +y =1 围成; (2) ln()D x y d σ+??与2 ln()D x y d σ+??????,其中D 是以A (1,0),B (1,1), C (2,0)为顶点的三角形闭区域. 解:(1)在D 内,()()2301x y x y x y ≤+≤+≥+,故,23()()D D x y d x y d σσ+≥+????. (2) 在D 内,212ln()1,ln()ln ()x y x y x y x y ≤+≤≤+≤+≥+,故0从而, 2 ln()[ln()]D D x y d x y d σσ+≥+???? 习题8-2 1. 画出积分区域,并计算下列二重积分: (1) ()D x y d σ+??,其中D 为矩形闭区域:1,1x y ≤≤; (2) (32)D x y d σ+??,其中D 是由两坐标轴及直线x +y =2所围成的闭

区域; (3) 22()D x y x d σ+-??,其中D 是由直线y =2,y =x ,y =2x 所围成的闭区 域; (4) 2 D x y d σ??,其中D 是半圆形闭区域:x 2+y 2≤4,x ≥0; (5) ln D x y d σ??,其中D 为:0≤x ≤4,1≤y ≤e ; (6) 22D x d σy ??其中D 是由曲线11,,2 xy x y x ===所围成的闭区域. 解:(1) 111 111()()20.D x y d dx x y dy xdx σ---+=+==????? (2) 222 200 (32)(32)[3(2)(2)]x D x y d dx x y dy x x x dx σ-+=+=-+-????? 2232022 20[224]4.33 0x x dx x x x =-++=-++=? (3) 32 2 2 2 2 2 2 002193()()()248y y D y x y x d dy x y x dx y dy σ+-=+-=-????? 43219113 .9686 0y y -= (4) 因为被积函数是关于y 的奇函数,且D 关于x 轴对称, 所以20.D x yd σ=?? (5) 44 201041ln ln (ln ln )2(1)2110 e D e e e x yd dx x ydy x y y y dx x e σ-==-==-?????.

不定积分总结

不定积分

一、原函数 定义1 如果对任一I x ∈,都有 )()(x f x F =' 或 dx x f x dF )()(= 则称)(x F 为)(x f 在区间I 上的原函数。 例如:x x cos )(sin =',即x sin 是x cos 的原函数。 2 211)1ln([x x x +='++,即)1ln(2x x ++是 2 11x +的原函数。 原函数存在定理:如果函数)(x f 在区间I 上连续,则)(x f 在区间I 上一定有原函数,即存在区间I 上的可导函数)(x F ,使得对任一I x ∈,有)()(x f x F ='。 注1:如果)(x f 有一个原函数,则)(x f 就有无穷多个原函数。 设)(x F 是)(x f 的原函数,则)(])([x f C x F ='+,即C x F +)(也为)(x f 的原函数,其中C 为任意常数。 注2:如果)(x F 与)(x G 都为)(x f 在区间I 上的原函数,则)(x F 与)(x G 之差为常数,即C x G x F =-)()((C 为常数) 注3:如果)(x F 为)(x f 在区间I 上的一个原函数,则C x F +)((C 为任意常数)可表达)(x f 的任意一个原函数。 二、不定积分 定义2 在区间I 上,)(x f 的带有任意常数项的原函数,成为)(x f 在区间I 上的不定积分,记为?dx x f )(。 如果)(x F 为)(x f 的一个原函数,则 C x F dx x f +=?)()(,(C 为任意常数)

x y o )(x F y = C x F y +=)( 三、不定积分的几何意义 不定积分的几何意义如图5—1所示: 图 5—1 设)(x F 是)(x f 的一个原函数,则)(x F y =在平面上表示一条曲线,称它为 )(x f 的一条积分曲线.于是)(x f 的不定积分表示一族积分曲线,它们是由) (x f 的某一条积分曲线沿着y 轴方向作任意平行移动而产生的所有积分曲线组成的.显然,族中的每一条积分曲线在具有同一横坐标x 的点处有互相平行的切线,其斜率都等于)(x f . 在求原函数的具体问题中,往往先求出原函数的一般表达式C x F y +=)(,再从中确定一个满足条件 00)(y x y = (称为初始条件)的原函数)(x y y =.从几何上讲,就是从积分曲线族中找出一条通过点),(00y x 的积分曲线. 四、不定积分的性质(线性性质) [()()]()()f x g x dx f x dx g x dx ±=±??? ()() kf x dx k f x dx =??k ( 为非零常数)

高等数学不定积分习题

第四章 不 定 积 分 § 4 – 1 不定积分的概念与性质 一.填空题 1.若在区间上)()(x f x F =',则F(x)叫做)(x f 在该区间上的一个 , )(x f 的 所有原函数叫做)(x f 在该区间上的__________。 2.F(x)是)(x f 的一个原函数,则y=F(x)的图形为?(x)的一条_________. 3.因为 dx x x d 2 11)(arcsin -= ,所以arcsinx 是______的一个原函数。 4.若曲线y=?(x)上点(x,y)的切线斜率与3 x 成正比例,并且通过点A(1,6)和B(2,-9),则该 曲线方程为__________?。 二.是非判断题 1. 若f ()x 的某个原函数为常数,则f ()x ≡0. [ ] 2. 一切初等函数在其定义区间上都有原函数. [ ] 3. ()()()??'='dx x f dx x f . [ ] 4. 若f ()x 在某一区间内不连续,则在这个区间内f ()x 必无原函数. [ ] 5. =y ()ax ln 与x y ln =是同一函数的原函数. [ ] 三.单项选择题 1.c 为任意常数,且)('x F =f(x),下式成立的有 。 (A )?=dx x F )('f(x)+c; (B )?dx x f )(=F(x)+c; (C )? =dx x F )()('x F +c; (D) ?dx x f )('=F(x)+c. 2. F(x)和G(x)是函数f(x)的任意两个原函数,f(x)≠0,则下式成立的有 。 (A )F(x)=cG(x); (B )F(x)= G(x)+c; (C )F(x)+G(x)=c; (D) )()(x G x F ?=c. 3.下列各式中 是| |sin )(x x f =的原函数。 (A) ||cos x y -= ; (B) y=-|cosx|; (c)y={ ;0,2cos , 0,cos <-≥-x x x x (D) y={ . 0,cos ,0,cos 21<+≥+-x c x x c x 1c 、2c 任意常数。 4.)()(x f x F =',f(x) 为可导函数,且f(0)=1,又2 )()(x x xf x F +=,则f(x)=______.

微积分知识点小结

第一章 函数 一、本章提要 基本概念 函数,定义域,单调性,奇偶性,有界性,周期性,分段函数,反函数,复合函数,基本初等函数,初等函数 第二章 极限与连续 一、本章提要 1.基本概念 函数的极限,左极限,右极限,数列的极限,无穷小量,无穷大量,等价无穷小,在一点连续,连续函数,间断点,第一类间断点(可去间断点,跳跃间断点),第二类间断点. 2.基本公式 (1) 1sin lim 0=→口 口口, (2) e )11(lim 0=+→口口口 (口代表同一变量). 3.基本方法 ⑴ 利用函数的连续性求极限; ⑵ 利用四则运算法则求极限; ⑶ 利用两个重要极限求极限; ⑷ 利用无穷小替换定理求极限; ⑸ 利用分子、分母消去共同的非零公因子求0 0形式的极限; ⑹ 利用分子,分母同除以自变量的最高次幂求∞ ∞形式的极限; ⑺ 利用连续函数的函数符号与极限符号可交换次序的特性求极限;

⑻利用“无穷小与有界函数之积仍为无穷小量”求极限. 4.定理 左右极限与极限的关系,单调有界原理,夹逼准则,极限的惟一性,极限的保号性,极限的四则运算法则,极限与无穷小的关系,无穷小的运算性质,无穷小的替换定理,无穷小与无穷大的关系,初等函数的连续性,闭区间上连续函数的性质. 第三章导数与微分 一、本章提要 1.基本概念 瞬时速度,切线,导数,变化率,加速度,高阶导数,线性主部,微分. 2.基本公式 基本导数表,求导法则,微分公式,微分法则,微分近似公式. 3.基本方法 ⑴利用导数定义求导数; ⑵利用导数公式与求导法则求导数; ⑶利用复合函数求导法则求导数; ⑷隐含数微分法; ⑸参数方程微分法; ⑹对数求导法; ⑺利用微分运算法则求微分或导数. 第四章微分学的应用 一、本章提要 1. 基本概念 未定型,极值点,驻点,尖点,可能极值点,极值,最值,曲率,上凹,下凹,拐点,渐近线,水平渐近线,铅直渐近线.

关于高等数学不定积分例题思路和答案超全

关于高等数学不定积分例题思路和答案超全 Last revision on 21 December 2020

第4章 不定积分 习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分! ★(1) 思路: 被积函数52 x - =,由积分表中的公式(2)可解。 解:53 2 2 23x dx x C - -==-+?

★(2) dx - ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 33322 23 ()2 4dx x x dx x dx x dx x x C - - =-=-=-+???? ★(3)22 x x dx +? () 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:2 2 3 2122ln 23 x x x x dx dx x dx x C +=+=++? ??() ★(4) 3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:315 3 2 2 222 3)325 x dx x dx x dx x x C -=-=-+?? ★★(5)4223311x x dx x +++? 思路:观察到422 22 3311311x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。 解:422 32233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 21x dx x +? 思路:注意到 22222 111 1111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。 解:2221arctan .11x dx dx dx x x C x x =-=-+++??? 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个 整式加上或减去一个真分式的形式,再分项积分。 ★(7)x dx x x x ?34134 (-+-) 2 思路:分项积分。 解:3411342x dx xdx dx x dx x dx x x x x --=-+-? ????34134(-+-)2

大学高等数学下考试题库(及答案)

一.选择题(3分?10) 1.点1M ()1,3,2到点()4,7,22M 的距离=21M M ( ). A.3 B.4 C.5 D.6 2.向量j i b k j i a ρρρ ρρ??+=++-=2,2,则有( ). A.a ρ∥b ρ B.a ρ⊥b ρ C.3,π=b a ρρ D.4 ,π=b a ρρ 3.函数1 122 2 22-++ --= y x y x y 的定义域是( ). A.(){ }21,22≤+≤y x y x B.( ){} 21,22<+p D.1≥p 8.幂级数∑∞ =1 n n n x 的收敛域为( ). A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1- 9.幂级数n n x ∑∞ =?? ? ??02在收敛域内的和函数是( ). A. x -11 B.x -22 C.x -12 D.x -21

10.微分方程0ln =-'y y y x 的通解为( ). A.x ce y = B.x e y = C.x cxe y = D.cx e y = 二.填空题(4分?5) 1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平面方程为______________________. 2.函数()xy z sin =的全微分是______________________________. 3.设133 2 3 +--=xy xy y x z ,则 =???y x z 2_____________________________. 4. x +21 的麦克劳林级数是___________________________. 5.微分方程044=+'+''y y y 的通解为_________________________________. 三.计算题(5分?6) 1.设v e z u sin =,而y x v xy u +==,,求 .,y z x z ???? 2.已知隐函数()y x z z ,=由方程052422 2 2 =-+-+-z x z y x 确定,求 .,y z x z ???? 3.计算 σd y x D ?? +2 2sin ,其中22224:ππ≤+≤y x D . 4.如图,求两个半径相等的直交圆柱面所围成的立体的体积(R 为半径). 5.求微分方程x e y y 23=-'在00 ==x y 条件下的特解. 四.应用题(10分?2)

[全]高等数学之不定积分的计算方法总结[下载全]

高等数学之不定积分的计算方法总结不定积分中有关有理函数、三角函数有理式、简单无理函数的求法,是考研中重点考察的内容,也是考研中的难点。不定积分是计算定积分和求解一阶线性微分方程的基础,所以拿握不定积分的计算方法很重要。不定积分考查的函数特点是三角函数、简单无理函数、有理函数综合考查,考查方法是换元积分法、分部积分法的综合应用。不定积分的求法的理解和应用要多做习题,尤其是综合性的习题,才能真正掌握知识点,并应用于考研。 不定积分的计算方法主要有以下三种: (1)第一换元积分法,即不定积分的凑微分求积分法; (2)第二换元积分法 (3)分部积分法常见的几种典型类型的换元法:

樂,Q? o 金J犷- / .乍治阳必厶二如皿盒.「宀丄" 名% =a仏 找.』x二a沁沁r 年”十I '九久二严詈严妬5inx八ic5兄厶 整 I—炉 叶严 山二启虫? 常见的几种典型类型的换元法 题型一:利用第一换元积分法求不定积分

分析: 1-3 ? - IK )-忑.旦r x 二)祝成);网><可久切 二2氐化如(長)寸 a 花不直押、朱 J 、 解: 2少弋協“尤十C__

-辿迪牆H JS m 弟 R Eff 洱 ->1和弟r 直 - —7朮呻' g 丄 U P A J 齐—系卩£.§计 一 H a8~t ' J 乂 u D y " ?朮?

p o r t v 卩 J (r 4 5*〉J" 卩?对渎 t-k )+c p T + T d ? g T + c m -辿」

当积分j/O心(X)不好计算容易计算时[使用分部私jf(A-)Jg(.v)二f(x)g(x)- J g(x)df(x).常见能使用分部积分法的类型: ⑴卩"“dx J x n srn xdx J尢"cos皿等,方法是把。',sin-t, cosx 稽是降低X的次数 是化夫In 尢9 arcsine arctanx. 例11: J (1 + 6-r )arctanAz/.r :解:arctan f xdx等,方法是把疋; Jx" arcsm11xdx

高等数学微积分公式精髓

总论 初等代数从最简单的一元一次方程开始,一方面进而讨论二元及三元的一次方程组,另一方面研究二次以上及可以转化为二次的方程组。沿着这两个方向继续发展,代数在讨论任意多个未知数的一次方程组,也叫线型方程组的同时还研究次数更高的一元方程组。发展到这个阶段,就叫做高等代数。 高等代数是代数学发展到高级阶段的总称,它包括许多分支。现在大学里开设的高等代数,一般包括两部分:线性代数初步、多项式代数。 高等代数在初等代数的基础上研究对象进一步的扩充,引进了许多新的概念以及与通常很不相同的量,比如最基本的有集合、向量和向量空间等。这些量具有和数相类似的运算的特点,不过研究的方法和运算的方法都更加繁复。 集合是具有某种属性的事物的全体;向量是除了具有数值还同时具有方向的量;向量空间也叫线性空间,是由许多向量组成的并且符合某些特定运算的规则的集合。向量空间中的运算对象已经不只是数,而是向量了,其运算性质也由很大的不同了。 高等代数发展简史 代数学的历史告诉我们,在研究高次方程的求解问题上,许多数学家走过了一段颇不平坦的路途,付出了艰辛的劳动。 人们很早就已经知道了一元一次和一元二次方程的求解方法。关于三次方程,我国在公元七世纪,也已经得到了一般的近似解法,这在唐朝数学家王孝通所编的《缉古算经》就有叙述。到了十三世纪,宋代数学家秦九韶再他所著的《数书九章》这部书的“正负开方术”里,充分研究了数字高次方程的求正根法,也就是说,秦九韶那时候以得到了高次方程的一般解法。 在西方,直到十六世纪初的文艺复兴时期,才由有意大利的数学家发现一元三次方程解的公式——卡当公式。 在数学史上,相传这个公式是意大利数学家塔塔里亚首先得到的,后来被米兰地区的数学家卡尔达诺(1501~1576)骗到了这个三次方程的解的公式,并发表在自己的著作里。所以现在人们还是叫这个公式为卡尔达诺公式(或称卡当公式),其实,它应该叫塔塔里亚公式。 三次方程被解出来后,一般的四次方程很快就被意大利的费拉里(1522~1560)解出。这就很自然的促使数学家们继续努力寻求五次及五次以上的高次方程的解法。遗憾的是这个问题虽然耗费了许多数学家的时间和精力,但一直持续了长达三个多世纪,都没有解决。

高等数学第五章定积分总结

第五章 定积分 内容:定积分的概念和性质、微积分基本公式、换元积分法、分部积分法、广义积分。 要求:理解定积分的概念和性质。掌握牛顿-莱布尼兹公式、定积分的换元法和分部积分法,理解变上限的定积分作为其上限的函数及其求导定理,理解广义积分的概念和计算方法。 重点:定积分的概念和性质;微积分基本公式;换元积分法、分部积分法。 难点:定积分的概念;变上限积分函数及其导数;换元积分法、分部积分法。 §1.定积分的概念 一、实例分析 1.曲边梯形的面积 设函数)(x f y =∈C[a , b ], 且)(x f y =>0. 由曲线0,,),(====y b x a x x f y 围成的图形称为曲边梯形. 如何定义曲边梯形的面积 (1) 矩形面积=底高. (2) 预备一张细长条的纸, 其面积底高. (3) 预备一张呈曲边梯形状的纸, 将其撕成许多细长条. (4) 启示: 将曲边梯形分割为许多细长条, 分割得越细, 误差越小. 第i 个细长条面积)],,[()(11---=?∈??≈?i i i i i i i i i x x x x x x f S ξξ 曲边梯形面积: ∑=?≈ n i i i x f S 1 )(ξ 定积分概念示意图.ppt 定义: ),,2,1,max {()(lim 1 n i x x f S i n i i i Λ=?=?=∑=→λξλ y =f (x ) x =a x =b y =f (x ) a=x 0 x 1 x i-1 x i x n =b

抛开上述过程的几何意义,将其数学过程定义为定积分. 二、定积分的定义 1. 定义 设)(x f y =在[a , b ]有定义, 且有界. (1) 分割: 用分点b x x x a n =<<<=Λ10把[a , b ]分割成n 个小区间: } ,,2,1,max{,,,2,1],,[11n i x x x x n i x x i i i i i i ΛΛ=?=-=?=--λ记 (2) 取点: 在每个小区间],[1i i x x -上任取一点i , 做乘积: i i x f ?)(ξ. (3) 求和: ∑=?n i i i x f 1 )(ξ (4) 取极限: ∑=→?n i i i x f 1 )(lim ξλ 若极限存在, 则其为)(x f 在[a , b ]上的定积分, 记作: ? b a dx x f )(. 即: ∑? =→?=n i i i b a x f dx x f 1 )(lim )(ξλ [a , b ]: 积分区间;a :积分下限;b :积分上限; ∑=?n i i i x f 1 )(ξ积分和式. 问题: 定积分是极限值, 在求极限的过程中, 谁是常量, 谁是变量 注: (1) ∑ =?n i i i x f 1 )(ξ与区间的分割法x i 和取点法 i 有关; 而 ? b a dx x f )(与x i 和 i 无 关. (2) ? b a dx x f )(与a 、b 、f 有关,与x 无关,即: [][]???? ===b a b a b a b a d f du u f dt t f dx x f )()()()( 2.定积分存在定理 定理 若)(x f 在[a , b ]上有界且只有有限个间断点,则)(x f 在[a , b ]上可积. 推论 若)(x f 在[a , b ]上连续,则)(x f 在[a , b ]上可积. 例1. 求 ?1 xdx

高等数学(下)知识点总结

主要公式总结 第八章空间解析几何与向量代数 1、 二次曲面 1) 椭圆锥面:2 2222z b y a x =+ 2) 椭球面:122 222 2=++c z b y a x 旋转椭球面:1222222=++c z a y a x 3) 单叶双曲面:122 222 2=-+c z b y a x 双叶双曲面:1222222=--c z b y a x 4) 椭圆抛物面:z b y a x =+2222双曲抛物面(马鞍面):z b y a x =-22 22 5) 椭圆柱面:1222 2=+b y a x 双曲柱面:122 22=-b y a x 6) 抛物柱面: ay x =2 (二) 平面及其方程 1、 点法式方程: 0)()()(000=-+-+-z z C y y B x x A 法向量:),,(C B A n =ρ ,过点),,(000z y x 2、 一般式方程: 0=+++D Cz By Ax 截距式方程: 1=++c z b y a x 3、 两平面的夹角:),,(1111 C B A n =ρ ,),,(2222C B A n =ρ , 22 22 22 21 21 21 2 12121cos C B A C B A C C B B A A ++?++++= θ ?∏⊥∏210212121=++C C B B A A ;? ∏∏21//2 1 2121C C B B A A == 4、 点 ),,(0000z y x P 到平面0=+++D Cz By Ax 的距离: 2 2 2 000C B A D Cz By Ax d +++++= (三) 空间直线及其方程

相关文档
最新文档