集中的密钥管理和自动密钥分发系统

集中的密钥管理和自动密钥分发系统
集中的密钥管理和自动密钥分发系统

摘要随着社会对安全存储和传输数据需求的迅猛增长,密码技术应用也在快速的发展。越来越多的敏感数据需要在开放网络上传输,密码技术提供了一种安全的满足各种应用需求的途径。通过数据加密技术、防篡改的数字签名、数字身份认证等来保护需要存储和传输的敏感数据。本文描述了一个为大量网络上的密码应用节点提供密码密钥服务的集中的密钥管理和自动密钥分发系统。

1 概述

目前密码应用节点多样性以及各种企业级应用的规模庞大,呈现了以下四个普遍的需求:(1)为所有应用无缝整合提供标准的密码API和开发包。

(2)密钥的自动分发及密钥可恢复。

(3)密钥的集中管理、策略的实施和安全审计。

(4)能够应对各种密码应用节点的硬件和操作系统的变化。

本文所介绍的密钥管理系统采用集中的管理机制,集中产生系统所需的密钥、配置数据、系统安全策略等。该系统具有以下特点:

(1)密钥集中管理的功能:密钥集中产生、存储、归档、备份和恢复,根据需求灵活产生密钥、签发密钥,同时还支持密钥的自动流转。

(2)简单快速的改造便能适应各种采用不同软硬件的密码应用节点的需求:系统采用统一的密码体系,实行统一的密钥产生、配用、分发、存储、销毁、更换、恢复、安全管理和控制等方面的策略、机制和规范;提供统一的密钥分发接口,使用标准的密码算法和密钥长度;并为各种密码算法的密码操作提供标准安全的API以满足各种应用需求。

(3)可扩展的体系结构:系统将密钥管理与密钥分发分开,密钥集中由密钥管理服务器管理,根据网络上密码应用节点的地理位置的分布或所属管理部门的不同建立多个密钥分发服务点,每个分发点管理其职能范围内密码应用节点的密钥分发。密钥分发服务点的数量可以扩展,以满足各种规模的应用需求。

(4)基于硬件保护的安全体系:系统使用加密卡为系统各部件提供消息防篡改、消息加密保护、及系统管理员身份认证等密码服务。

(5)基于已存在的安全基础设施:系统基于目前IT行业已存在的一些标准的安全基础设施,包括:PKI证书认证系统、数据库、身份认证与管理服务器、目录服务器等。

与传统的密钥管理相比,该系统具有以下优点:

(1)集中管理和自动分发降低了操作维护的成本。

(2)通过安全策略的实施,降低了系统的安全风险。

(3)该系统的可扩展性,适应了各种网络规模的应用需求。

2 系统体系结构

系统由密钥管理服务器、密钥管理控制台、密钥分发服务点、数据库四部分组成。密钥管理服务器是系统的重要组成部分,它主要负责密钥的产生和存储、以及安全管理和控制策略的制定、通过本地的管理接口实现密码应用节点的注册。密钥管理控制台为系统提供了一个管理的平台,系统可分布部署多个密钥管理控制台,控制台还可以根据职能进行划分,不同的控制台实现不同的功能。

密钥分发服务点负责将密钥安全可靠的发送给所管辖的密码应用节点,系统可以根据密码应用节点地理位置部署和所属不同管理部门的要求,建立多个密钥分发服务点,每个服务点在无需人工干预的模式下工作,为其直接管辖下的密码应用节点分发密钥。数据库用来存放打包加密好的密钥、策略和密钥应用节点等信息。

系统体系结构图如图1所示。

图1 系统体系结构

2.1 密钥管理服务器

密钥管理服务器集中产生、管理与安全相关的数据信息,包括密钥和系统所需的各类策略信息。这种统一集中的管理机制通过定制不同的策略可以满足各种不同的企业应用需求。

密钥管理服务器提供了灵活有效的机制指明哪个应用使用哪个密钥,通过密钥分割可以迅速高效的改变系统各密码应用节点间的互通结构。例如:密钥管理系统通过给两个不同的应用系统内的密码应用节点分发不同的密钥,可以使得这两个系统内的密码应用节点间虽然在线路上是连通的,但他们仅能访问所属的应用系统。再如:当发现某一个密钥应用节点受到攻击时,密钥管理系统可以撤销其使用的密钥,从而保证应用系统的安全。

密钥管理服务器上密钥都是按照制定好的密钥管理策略产生并投入使用的,策略主要定义了该类密钥的更换周期及更换启用新密钥的操作模式、阈值等信息。系统管理员通过制定企业内所有所需密钥的密钥管理策略即可统一轻松的管理组织内密码密钥的使用。

密钥管理服务器制定了系统运行的各类的策略、具有完善的安全审计机制,并严格限制了其他对象使用服务器上的加密卡进行密码运算。由于密钥管理服务器管理着全网的密钥和策略,所以应具有很高的安全性要求,往往需要将其部署在屏蔽机房内,对可以访问该服务器的人员进行严格限制和权限控制。

2.2 密钥管理控制台

由于密钥管理服务器的安全要求高,需要部署在比较安全的场所,不适合作为用户操作的接口,所以需要部署一个或多个密钥管理控制台,系统安全管理员可在控制台上集中查询和管理企业内密码应用节点间的互通策略和进行密钥管理操作。

在控制台上使用了终端加密设备,用来实现管理员身份的认证等功能。控制台采用分级权限控制的方式,分为一级管理员和二级管理员。一级管理员只拥有初始化系统、管理一级和二级管理员、IC卡预处理等权限。二级管理员则进行具体的系统密钥管理工作,单个管理员没有任何权限,必须有多张管理员卡才可以登录控制台,并且每个管理员有自己的登录口令。管理员在控制台上进行的所有对系统的改动都记录了详细的审计日志,一但出现问题可以快速追踪到责任人。控制台与密钥管理服务器之间使用了安全的通信协议保护传输的消息。

2.3 密钥分发服务点

目前,许多企业级的应用规模大、应用终端分布广,传统的手工更换密钥的方式已不能够满足需求,必须采用一种安全可靠、自动运转的密钥分发机制。该系统的密钥分发服务点满足了以上要求,对于关键应用的密码应用节点可以通过配置从多个密钥分发服务点上获取所需密钥,以保证应用系统的不间断服务。

系统允许根据应用的需求快速方便的扩充密钥分发服务点,一但服务点被安装并授权后,便可以在无人看管下自动运行。密钥分发服务点位于与应用网络进行交互的最前沿,其安全性直接关系到整个密钥管理系统的安全,所以密钥分发服务点的安全性考虑应该提到更高的高度。该系统的密钥分发服务点所有的密码操作均是在加密卡上进行,密钥出加密卡均以密文形式存在。密钥分发服务点与密码应用终端之间的信息交换使用了强认证、数字签名、信息加密等技术进行保护。保证即使密钥分发服务点受到攻击,也不会对整个系统的安全造成威胁。

3 小型化的密钥管理系统

为了满足小型企业应用的需求,该系统可以将密钥管理服务器、密钥分发服务点、密钥管理控制台整合在一台机器上,这样一个小型化的密钥管理系统可以完成原系统的所有功能。但它不支持系统的扩展,并且所管理密码应用终端的数量也有限制,不能无限制的增加。

4 系统支持的密码应用节点

系统支持的密码应用节点包括一些标准的商业产品,如:Web服务器、电子邮件服务器、VPN 应用等。另外,系统还支持为完成特定的密码应用功能而进行的定制开发。通常情况下,应用都是通过一组标准的API来访问系统的密码功能服务,系统提供的API类型有:PKCS#11和CSP for Microsoft CryptoAPI。

5 结束语

该密钥管理系统现已在多个企业级应用中投入使用,通过公用网、专用网成功地实现了对网内的密码应用节点的密钥管理,快速方便改变网络的互通策略,大大减少人力、物力。该系统设计合理,操作简便,具有一定的实用价值。

量子密钥分发误码协调算法分析

—22— 量子密钥分发误码协调算法分析 赵 峰,王发强,郑力明,路轶群,刘颂豪 (华南师范大学信息光电子科技学院光子信息技术广东省高校重点实验室,广州 510006) 摘 要:误码消除是量子密钥分发过程的关键技术之一。分析了奇偶-汉明单向函数纠错算法的原理,给出了对原始量子密钥进行误码协调的步骤及表达式,对这种算法的纠错能力进行了理论和实验分析。结果显示,当原始密钥误码率为11%时,利用该纠错技术能够完全消除误码,且最终密钥生成效率与密钥的原始误码率直接相关。 关键词:误码协调;奇偶比较;汉明码;量子密钥分发 Error Reconciliation Algorithm for Quantum Key Distribution ZHAO Feng, WANG Faqiang, ZHENG Liming, LU Yiqun, LIU Songhao (Lab of Photonic Information Technology, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006) 【Abstract 】Error reconciliation is a necessary step for quantum key distribution process. The efficiency and the correction ability of error reconciliation procedures are analyzed and estimated, and it gives some expressions about it. The experiment results indicate that it can easily eliminate all errors when the error rate is at 11%. 【Key words 】Error reconciliation; Parity comparison; Hamming codes; Quantum key distribution 计 算 机 工 程Computer Engineering 第33卷 第12期 Vol.33 No.12 2007年6月 June 2007 ·博士论文· 文章编号:1000—3428(2007)12—0022—03 文献标识码:A 中图分类号:TP391 量子密钥分发使得合法通信双方Alice 和Bob 在异地可 以随时建立起秘密的随机序列,通常称为密钥,其安全性由海森堡的不确定性原理和量子不可克隆定理保证。然而,由于实际量子信道存在不可避免的噪声,以及非法窃听者干扰,使得合法双方生成的密钥中存在一定的误码。因此,当密钥分发完成后,若其误码率在一定范围内,则通信双方通常利 用保密纠错技术来消除误码[1~4]。 量子密钥分发过程一般需要4个步骤:量子传输,数据筛选,保密数据纠错和信息保密增强。经典通信中的误码消除技术常常会伴随通信信息的泄漏。实际量子保密通信误码消除过程需要极少的泄漏密钥的信息,并且泄漏的信息可以通过保密增强技术来消除[5,6]。 数据纠错技术是通信系统中不可缺少的部分,在量子保密通信中通常利用奇偶比较方法来构造各种纠错协议[7,8],通常双方按照协议将生成的密钥分成段,并计算其奇偶性,然后在经典信道中进行奇偶比较。为了消除窃听者获得的信息,在每次比较结束双方丢掉一位。利用奇偶比较完全消除误码,需要多次在经典信道上进行通信。由于通信的次数会随着密钥长度增加而增加,通常n 位的序列需要2log n 次通信[7],并且,为了安全起见每次通信前需要身份认证[9] ,这样完全消除密钥误码过程需要的时间随着密钥增加而增加。 二元汉明码的纠错能力为1=t ,利用汉明码的校验矩阵h 来构造校验码,Alice 和Bob 双方通过比较校验码来验证共享密钥的完整性,在文献[10]中用于量子密钥分发误码协 调[10]。本文对奇偶-汉明纠错算法在量子密钥分发过程中的应用进行分析。 1 奇偶-汉明纠错算法 奇偶-汉明纠错算法利用了奇偶比较来检误,比较汉明校验码进行纠错。由于二元汉明码的纠错能力为1,当某段的误码多于一个时利用汉明算法可能会引入误码。因此,汉明算法仅仅当密钥误码率很低,每段含一个误码以上可能很小时是很有效的。Alice, Bob 首先利用奇偶比较方法对误码进行一次比较,若奇偶性一致,则表示该段中没有误码或含有偶数个误码;若奇偶不一致,则表示含有奇数个误码,当误码率较低而且服从二相分布,则存在一个误码的概率远远大于奇数多个。然后利用汉明纠错方法对奇偶性不一致的进行纠错。通常为了减少泄漏的信息,在奇偶比较结束时丢掉最后一位。而利用汉明纠错算法则需丢掉m 位,其位置为{}{}2(0,...,1)i i m ∈?。 二元汉明校验矩阵()(3)m h m ≥,表述为 ) 2](mod 2[1 )(,?=i m j i j h (1) 例如当3≡m 时,其矩阵表示为 ? ?????????=000111101100111010101)3(h (2) 利用校验矩阵构造校验码{}1,...,i S S i m ==,,则i S 为 {}m j m j i j i m h X S 1,0)2(mod 121)(,∈??? ?????=∑?= (3) 其中,1 1,...,2m j X j ?=()为合法通信双方(Alice,Bob )含有误码的一段密钥序列。双方进行纠错过程中在经典信道上发送 {}i S S =,而不发送j X 本身。 利用奇偶-汉明纠错算法过程如下:Alice 和Bob 选择相 基金项目:国家“973”计划基金资助项目(G2001039302) 作者简介:赵 峰(1979-),男,博士生,主研方向:量子信息技术;王发强、郑力明,副教授;路轶群,研究员;刘颂豪,院士 收稿日期:2006-08-10 E-mail :qkd@https://www.360docs.net/doc/d82371050.html,

经典密钥管理系统解决方案

密钥管理系统解决方案 随着近来Mifare S50卡被攻破以及Mifare算法细节的公布,国内许多基于Mifare S50非接触卡的应用系统面临着严重的安全隐患,急需升级至安全性更高CPU卡。 CPU卡密钥的安全控制和管理,是应用系统安全的关键。为降低系统集成商开发CPU卡安全应用系统的门槛、加快各类CPU卡应用系统产品化市场化的进程、更大范围地普及CPU卡的应用,复旦微电子专门推出了可供开发设计参考借鉴的密钥管理系统解决方案(《密钥管理演示系统》)。 《密钥管理演示系统》设计遵循《中国金融集成电路(IC)卡规范(2.0)》和《银行IC卡联合试点密钥管理系统总体方案》,该方案遵循以下几条设计原则: 1、所有密钥的装载与导出都采用密文方式; 2、密钥管理系统采用3DES加密算法,采用主密钥生成模块、母卡生成模块和PSAM/ISAM卡生 成模块三级管理体制; 3、在充分保证密钥安全的基础上,支持IC卡密钥的生成、注入、导出、备份、更新、服务等 功能,实现密钥的安全管理; 4、密钥受到严格的权限控制,不同机构或人员对不同密钥的读、写、更新、使用等操作具有 不同权限; 5、为保证密钥使用的安全,并考虑实际使用的需要,系统可产生多套主密钥,如果其中一套 密钥被泄露或攻破,应用系统可立即停止该套密钥并启用其它备用密钥,这样可尽可能的避免现有投资和设备的浪费,减小系统使用风险; 6、用户可根据实际使用的需要,选择密钥管理子模块不同的组合与配置; 7、密钥服务、存储和备份采用密钥卡或加密机的形式。 如下图所示,系统解决方案包括发行程序、数据库服务器、读写器、FMCOS的CPU卡片。系统生成各种母卡及母卡认证卡、PSAM卡、ISAM卡,其中PSAM卡用于消费终端配合用户卡消费、ISAM 卡用于充值终端配合用户卡充值、用户卡母卡用于发行用户卡。 FMCOS的CPU卡: ?支持一卡多应用,各应用之间相互独立(多应用、防火墙功能)。 ?支持多种文件类型包括二进制文件,定长记录文件,变长记录文件,循环文件。

信息安全概论大作业-密钥管理技术

密钥管理技术 一、摘要 密钥管理是处理密钥自产生到最终销毁的整个过程的的所有问题,包括系统的初始化,密钥的产生、存储、备份/装入、分配、保护、更新、控制、丢失、吊销和销毁等。其中分配和存储是最大的难题。密钥管理不仅影响系统的安全性,而且涉及到系统的可靠性、有效性和经济性。当然密钥管理也涉及到物理上、人事上、规程上和制度上的一些问题。 密钥管理包括: 1、产生与所要求安全级别相称的合适密钥; 2、根据访问控制的要求,对于每个密钥决定哪个实体应该接受密钥的拷贝; 3、用可靠办法使这些密钥对开放系统中的实体是可用的,即安全地将这些密钥分配给用户; 4、某些密钥管理功能将在网络应用实现环境之外执行,包括用可靠手段对密钥进行物理的分配。 二、正文 (一)密钥种类 1、在一个密码系统中,按照加密的内容不同,密钥可以分为一般数据加密密钥(会话密钥)和密钥加密密钥。密钥加密密钥还可分为次主密钥和主密钥。 (1)、会话密钥, 两个通信终端用户在一次会话或交换数据时所用的密钥。一般由系统通过密钥交换协议动态产生。它使用的时间很短,从而限制了密码分析者攻击时所能得到的同一密钥加密的密文量。丢失时对系统保密性影响不大。 (2)、密钥加密密钥(Key Encrypting Key,KEK), 用于传送会话密钥时采用的密钥。 (3)、主密钥(Mater Key)主密钥是对密钥加密密钥进行加密的密钥,存于主机的处理器中。 2、密钥种类区别 (1)、会话密钥 会话密钥(Session Key),指两个通信终端用户一次通话或交换数据时使用的密钥。它位于密码系统中整个密钥层次的最低层,仅对临时的通话或交换数据使用。 会话密钥若用来对传输的数据进行保护则称为数据加密密钥,若用作保护文件则称为文件密钥,若供通信双方专用就称为专用密钥。 会话密钥大多是临时的、动态的,只有在需要时才通过协议取得,用完后就丢掉了,从而可降低密钥的分配存储量。 基于运算速度的考虑,会话密钥普遍是用对称密码算法来进行的 (2)、密钥加密密钥 密钥加密密钥(Key Encryption Key)用于对会话密钥或下层密钥进行保护,也称次主密钥(Submaster Key)、二级密钥(Secondary Key)。 在通信网络中,每一个节点都分配有一个这类密钥,每个节点到其他各节点的密钥加密密钥是不同的。但是,任两个节点间的密钥加密密钥却是相同的,共享的,这是整个系统预先分配和内置的。在这种系统中,密钥加密密钥就是系统预先给任两个节点间设置的共享密钥,该应用建立在对称密码体制的基础之上。 在建有公钥密码体制的系统中,所有用户都拥有公、私钥对。如果用户间要进行数据传输,协商一个会话密钥是必要的,会话密钥的传递可以用接收方的公钥加密来进行,接收方用自己的私钥解密,从而安全获得会话密钥,再利用它进行数据加密并发送给接收方。在这种系统中,密钥加密密钥就是建有公钥密码基础的用户的公钥。

密钥分配

实习一密钥分配 一、实习目的 1.理解密钥管理的重要性; 2.掌握对称密码和公钥密码密钥管理的不同特性; 3.掌握密钥分发基本方法,能设计密钥分发方案 二、实习要求 1.实习前认真预习第2章的有关内容; 2.复习对称密码和公钥密码相关内容; 3.熟悉Java平台的JCE包有关类。 三、实习内容 假定两个用户A、B,用户A、B的通讯密钥为K,他们的公私钥对分别是K PUa、K PRa 和K PUb、K PRb,他们要进行安全通讯,密钥分发与通信过程如1所示。 图1 基于混合加密的安全通信模型 Fig.1 Model of secure communication based on mixed cryptography (1)根据图1所示,实现利用公钥密码算法分发对称密钥的过程。 实现的阶梯任务如下: ①以本地两个目录模拟两个用户,采用变量方式直接实现密钥的分发; ②实现算法的图形化方式,用户可以选择算法、参数、工作模式等; ③以文件方式管理密钥及明文、密文; ④采用SSL,建立安全通信过程; ⑤将方案移植到某个web应用中。 (2)按照(1)的阶梯任务,实现基于DH密钥协定的密钥分发。 三、数据测试及预期结果

1、利用DES算法生成对称密钥Key,运行程序后生成Key.dat文件 2、利用RSA算法生成公钥密钥对,将公钥存入A文件夹下,将私钥存入B文件夹下,运行程序后在A文件夹下生成Skey_RSA_pub.dat文件,在B文件夹下生成Skey_RSA_priv.dat 文件:

3、利用RSA加密算法对对称密钥加密,将加密后文件保存为Enc_RSA.dat文件,运行程序后: 4、利用RSA解密算法对密文进行解密,将解密后的文件Key.dat写入B文件夹下,运行程 序后B文件夹下生成Key.dat文件: 四、算法分析及流程图

全光纤四态分离调制连续变量量子密钥分发解读

全光纤四态分离调制连续变量量子密钥分发 【摘要】:现代社会已经步入信息化时代,信息安全的重要性日渐凸显。能够保障信息安全的密码学越来越受到人们的重视,其应用已渗透到人们日常生活的各个领域。基于量子力学基本原理的量子密钥分发可以使合法通信双方获得一组的无条件安全的随机密钥,该密钥可用于信息的加密与解密,进而实现双方的保密通信,任何第三方的窃听都可以被通信双方察觉到。量子密钥分发的无条件安全性,使得相关的理论和实验进入了一个飞速发展的时期,在未来的国防、金融、网络和通信等领域具有广阔的应用前景。连续变量量子密钥分发利用光场的正交分量作为信息的载体,所需光源易于制备,探测效率高,同时和当前的光通信网络具有良好的兼容性,近年来受到极大关注,在理论和实验方面均得到了迅猛的发展。按照调制方式可将相干态连续变量量子密钥分发分为高斯调制和非高斯调制方案,四态分离调制方案属于非高斯调制方案,具有调制方法简单、数据协调效率高等优点,理论上可以实现距离长达百公里以上的安全密钥分发。本论文从理论和实验两方面对基于该方案搭建的全光纤连续变量量子密钥分发系统展开了研究。论文首先回顾了连续变量量子密钥分发的国内外发展动态,接下来对该领域内的基础理论知识进行了介绍,并对基于平衡零拍探测的四态分离调制连续变量量子密钥分发的无条件安全性进行了分析。然后对适用于该领域的全光纤脉冲平衡零拍探测装置的各种特性及相应测量结果进行了分析,最后介绍了基于全光纤器件的实验系统,

目前已在该系统上实现了距离为30km,安全密钥速率为1kbits/s的量子密钥分发。本论文的主要工作内容包含以下三个方面。1.理论分析了基于平衡零拍探测的四态分离调制相干态连续变量量子密钥分发方案的两种模型,它们是制备与测量模型和EPR纠缠模型。在制备与测量模型中介绍了所选方案的编码规则,经过编码后双方可获得一组相关联的二进制数。在该模型下,形象地给出了信号光场以及额外噪声在相空间中的演化过程。在EPR纠缠模型下对所选方案的无条件安全性进行了分析。首先介绍了系统中的各种噪声,将Alice端的源额外噪声等效为Fred所拥有的量子态,接着给出了Alice和Bob之间互信息量的计算方法,Bob采用了平衡零拍的探测方法。然后详细地分析了Eve可获得的信息量的上限Holevo边界的计算过程。最后给出了安全密钥速率及额外噪声的计算方法。额外噪声是决定密钥分发的距离及安全密钥速率大小的关键因素。两种模型是等价的。在安全性的证明过程中,假设Eve拥有各种可能存在的先进装备,但是她的攻击手段并不能违背量子力学原理而且无法获得Bob端的装置的信息。在Eve可以获得Fred的量子态时,Alice端的源额外噪声与通道额外噪声是等效的。2.设计并制作了适用于量子通信领域的全光纤时域脉冲平衡零拍探测装置,该探测装置的脉冲重复速率可达2MHz,增益为3.2μV/光子,共模抑制比为76dB,信噪比可达20dB以上,总的量子效率为66%。论文详细分析了该探测装置的工作原理和特性,包括共模抑制比、散粒噪声极限和探测装置的稳定性。要获得高的共模抑制比,不仅要选取两个响应特性尽量相同的光电二极管,而且要求两光电二

系统密钥管理制度

系统密钥管理制度 汇通(总)字[2011]第025号 第一条前言 1.本制度是对汇通(总)字[2011]第013号的修改,原第013号文作废,系 统密钥管理制度以本次发文为标准 第二条目的 1.为了规范系统密钥管理,特制定本制度。 第三条适用范围 1.本制度适用于公司总部及境内所有分(子)公司。 第四条加密机管理 1.逻辑POSP加密机使用双机同时运行,互为热备运行机制,出现故障时 实时自动切换;统一POSP加密机使用双机冷备份运行机制,出现故障时立即进行替换。 2.加密机由运营维护部人员负责日常的管理,其他人员未经允许不得对加 密机进行设置、修改等。密钥由运营维护部专人输入并保管,其他部门

的人员不得进行密钥的输入工作。 3.对加密机进行任何的操作应遵照《中国银联密钥管理规范》等有关规定, 经本公司密钥安全管理小组审批同意后方能予以实施。 4.当加密机需要外出维修或软硬件升级时,要将原有密钥及时销毁。 5.加密机密钥销毁由设备管理员提交《密钥销毁申请表》给到信息技术中 心运维部经理进行确认,最终由信息技术中心总监审批之后,设备管理员对加密机进行密钥销毁操作。 第五条系统密钥管理 1.加密机主密钥由三个成份构成,应由三名主管公司汇通卡业务主管部门 负责人各自手工生成一个成份,同时输入加密机。 2.用于汇通卡业务(非联名卡)的区域主密钥和传输主密钥由两个成份构 成,应由两名主管公司汇通卡业务主管部门负责人各自手工生成一个成份,同时输入加密机。 3.密钥持有人应在预先打印的密钥表上填写各自掌握的密钥成份,各自打 印并以绝密文件形式安全保管所拥有的密钥成份,不得丢失或泄露。4.打印的密钥成份输入加密机完毕后,应装入信封密封,由密钥保管人和 见证人分别在封口签字。 5.区域主密钥、传输主密钥由16进制数组成,由‘0’-‘9’的数字或 ‘A’-‘F’的字母构成,每个成份的密钥长度为32个字符,加密机主密钥每个成份为48个字符。

密钥管理

1. 密钥管理系统技术方案 1.1. 密钥管理系统的设计前提 密钥管理是密码技术的重要环节。在现代密码学中,在密码编码学和密码分析学之外,又独立出一支密钥管理学。密钥管理包括密钥的生成、分配、注入、保管、销毁等环节,而其中最重要的就是密钥的分配。IC卡的密钥管理机制直接关系到整个系统的安全性、灵活性、通用性。密钥的生成、发行、更新是系统的一个核心问题,占有非常重要的地位。 为保证全省医疗保险系统的安全使用、保证信息不被侵犯,应在系统实施前建立起一套完整的密钥管理系统。 密钥管理系统的设计目标是在安全、灵活的前提下,可以安全地产生各级主密钥和各类子密钥,并将子密钥安全地下发给子系统的发卡中心,用来产生SAM卡、用户卡和操作员卡的各种密钥,确保以上所有环节中密钥的安全性和一致性,实现集中式的密钥管理。在全省内保证各个城市能够发行自己的用户卡和密钥卡,并由省级管理中心进行监控。 1.2. 密钥管理系统的设计方法 1.2.1. 系统安全的设计 本系统是一个面向省级医疗保险行业、在各个城市进行应用的系统,系统最终所发行的卡片包括SAM卡和用户卡。SAM卡将放在多种脱机使用的设备上;用户卡是由用户自己保存与使用并存储用户的基本信息和电子资金信 息。系统设计的关键是保障系统既具有可用性、开放性,又具有足够的安全性。 本系统密钥的存储、传输都是使用智能卡来实现的,因为智能卡具有高度的安全性。用户卡(提供给最终用户使用的卡片)上的密钥根本无法读出,只是在达到一定的安全状态时才可以使用。SAM卡(用来识别用户卡的认证密

钥卡)中的密钥可以用来分散出用户卡中部分脱机使用的密钥,但也无法读出。各级发行密钥母卡上的密钥在达到足够的安全状态时可以导出,但导出的密钥为密文,只有送到同类的卡片内才可以解密。本系统的安全机制主要有卡片的物理安全、智能卡操作系统的安全、安全的算法、安全的密钥生成与存储、密钥的安全传输与分散、保障安全的管理措施与审计制度。 1.2.2. 密钥的分层管理 密钥主要分层进行管理,即省级密钥管理中心只负责生成种子密钥,各个城市根据密钥种子负责生成自己的密钥系统和用户卡,这样既可以在全省范围内统一规划,又可以灵活使用。 1.2.3. 安全的密钥管理体制 密钥受到严格的权限控制,特别是对密钥的使用权限进行分级管理和控制; 密钥的生成、注入、导出等功能由发卡中心(省医疗保险基金管理中心)进行统一的控制和管理。 1.3. 系统功能 密钥管理系统的目标就是安全地产生各级主密钥和各类子密钥,并将子密钥安全地下发给子系统的发卡中心,用来产生SAM卡、用户卡和操作员卡中的各种密钥,确保以上所有环节中密钥的安全性和一致性,实现集中式的密钥管理。系统通过IC卡硬件、IC卡操作系统、合理的密钥管理系统设计、严格的安全管理规定来实现以上目标。 密钥管理系统是IC卡应用系统中最重要的环节,主要功能有密钥的产生、分配、使用、更新和销毁。 密钥的生成 产生省级各类主密钥和市级各类子密钥;产生用户卡和操作员卡的各种密 钥。密钥生成主要由三种形式结合使用: 使用安全可靠、快速的软件生成

量子密钥分发的后处理简介

量子密钥分发的后处理过程 摘要 在当今的信息社会中,通信技术发挥着越来越重要的作用,同时人们对通信安全性也提出了越来越高的要求。经典密码学是保障信息安全的有效工具,然而随着计算机和量子计算的发展,基于数学计算复杂性假设的经典密码体制日益受到严峻的挑战。量子密码学建立在量子力学原理基础上,被证明能够提供信息论意义上的绝对安全性。 量子密钥分发(QKD)作为量子密码学的一种重要应用,在量子测不准原理和不可克隆性定理保障下,使合法通信双方Alice 和Bob 能够在存在窃听者Eve 的情况下建立无条件安全的共享密钥。QKD 包括量子信道传输、数据筛选、密钥协商和保密增强等步骤,其中密钥协商和保密增强合称为后处理。后处理算法对QKD 的密钥速率和安全距离起着至关重要的作用。 本文主要介绍量子密钥分发后处理过程的基本含义,步骤和主要的算法。(量子信道传输的过程请参见汇报PPT。)

I.简介 在量子密钥分发实验中,通过量子信道通信后双方获得的密钥元素并不能直接作为密钥来使用,由于信道不完善性以及窃听者Eve 的影响,使得双方拥有的密钥元素串之间存在误差,并且有部分信息为窃听者Eve 所了解,我们需要引入后处理算法来获得最终完全一致且绝对安全的密钥串。 后处理算法包括三个步骤,即数据筛选、密钥协商和保密增强,其中主要的步骤是密钥协商和保密增强。 (1)筛选数据(Distill Data) 发端Alice 和收端Bob 先交换部分测量基(例如前10%)放弃基不同的数据后公开进行比对,测量得到误码率,若误码率低于我们的要求(例如25%),确定没有窃听存在,即本次通信有效,若超过这个要求值则发端Alice和收端Bob 放弃所有的数据并重传光量子序列。若通信有效,则通过对剩下的数据比较测量基后会放弃那些在传送过程中测量基矢不一致或者是没有收到的数据,或者是由于各种因素的影响而不合要求的测量结果,这一过程称为筛选数据。通过这一过程也可以检测出是否有窃听的存在,并确定双方的误码率,以便下一步进行数据协调。 (2)数据协调(Error Reconciliation) 经过筛选之后所得到的筛选数据(sifted key)并不能保证发端Alice和收端Bob的数据完全一致,因此要对双方的筛选数据进行纠错。即通过一定的算法,利用公开信道对筛后数据进行纠错,这一过程称之为数据协调。对数据协调的要求有:将误码率降低至适宜于使用;尽量减少窃听者获取的信息;尽量保留最多的有效数据;速度要够快并尽量节省计算以及通信资源。这样虽然使密钥长度有所缩短,但保证了密钥的安全性。 (3)密性放大(Privacy Amplification) 密性放大最早是应量子保密通信的需要而提出来的,但是现在已经成为经典保密通信的重要课题之一。密性放大又称作密性强化,它是一种通过公开信道提

卫士通证书密钥管理系统技术白皮书

卫士通证书密钥管理系统技术白皮书 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

证书及密钥管理系统技术白皮书 Westone Host Security Module Serial White Paper 卫士通信息产业股份有限公司 Westone Information Industry Inc.

目录

前言 随着信息保障要求的不断提高,我们迫切需要一种能产生高质量随机数的发生设备。众所周知,密钥、密表的随机质量直接影响加密结果的安全性,而随机数作为密钥、密表的原始素材也就显得尤为重要。为此,卫士通信息产业股份有限公司于2003年研制成功了证书及密钥管理系统。 目前,许多银行、企事业单位安全系统已经不止一种安全产品应用于系统中。为各种安全产品分发密钥时,密钥的载体不相同(常用的存储密钥设备有存储卡、USBkey、智能IC卡);由于原有运行在PC机上的软件系统功能比较单一,一般是一种安全产品对应一套分发密钥的软件系统(发卡系统),这些已经越来越不适应发展的需要。为此,将不同设备分发密钥的软件系统制作成COM控件模块挂接到证书及密钥管理系统中,这样将大大提高设备本身的扩展性能和灵活性。

1产品概述 1.1产品简介 证书密钥管理系统(Manage System of Certificate & Key, 简称 MSCK)是卫士通信息产业股份有限公司自主研制的证书/密钥管理工具。该设备具有标准化、高安全、高可靠、高扩展性四大特性,其主要目是产生和分发密钥,及对用户信息和密钥进行管理,是专业的各类安全应用系统的密钥管理解决方案。 1.2产品组成 1.证书及密钥管理系统1台 2.智能IC卡4张 3.用户手册 1本 4.产品合格证1份 5.装箱清单 1份 1.3产品功能 证书及密钥管理系统主要功能如下: 系统管理 系统管理是MSCK的系统管理核心,包括系统用户和系统维护两大部分。系统用户是系统的管理者,负责和维护整个系统的正常运行。权限控制是主管对操 作员执行权限的控制。系统维护包括系统配置(系统备份和恢复)和日志管理 (登录日志和操作日志)两部分。 证书管理 证书管理是MSCK的证书管理核心,包括用户注册、注册审核、颁发证书、注销证书、证书发布和黑表发布六大部分。 密钥管理 密钥管理是MSCK的密钥管理核心,包括系统密钥和用户密钥两大部分。系统密钥包括主密钥、域密钥、主算法密表、主算法代码和保护算法密表。用户密 钥包括本地主密钥、RSA密钥对和保护算法密钥。

信息系统口令、密码和密钥管理

信息系统口令、密码和密钥管理 1范围 本标准规定了信息网网络安全管理人员的职责、管理内容和工作要求,以及信息系统口令、密码和密钥管理。 本标准适用于公司所有信息网络、应用系统及设备和用户所有层次的口令管理。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款,凡是注日期的引用文件,其随后所 1994 1998 2000 2003 2006 2006 3 3.1 3.2 密钥 4职责 4.1 4.1.2 部门设置应用系统的口令、密码和密钥;指导各用户设置开机口令。 4.2信息中心各专职职责 4.1.3网络安全管理员负责保管网络设备及相关安全防护设备(系统)的账号、口令的设置和更改。 4.1.4主机管理员负责主机、数据库系统的账号、口令的设置和更改。 4.1.5应用系统管理员负责应用系统的账号、口令的设置和更改。 4.1.6网络信息安全员负责管理和监督检查信息网络的安全工作,参加信息网系统事故调查、分析处理和信息网安全事故上报及督促现场安全措施落实,以及网络系统各类分析、统计报告的编制和上报工作。 5管理内容与要求 5.1主机与网络设备(含安全防护系统)口令、密码管理 5.1.1各类主机、网络设备应有明确的管理员负责管理,管理员负责其管辖范围的账号、口令的设

置和更改。 5.1.2各类主机的超级用户口令和网络设备配置口令必须定期更换,更换周期不得超过1个月。 5.1.3各管理员应将口令用信封封存后交网络信息安全员统一保管,如遇管理员出差等情况需打开信封,必须征得信息中心主管同意后方可打开信封使用口令,管理员回来后及时更改口令并重新封存。口令的保存、更改和开封启用均要有详细记录。严禁私自启封。 5.1.4更换账号、口令后,必须立即提交新的密封件交网络信息安全员保管,并重新进行登记,旧的密封件当面销毁。 5.1.5不同权限人员应严格保管、保密各自职责的口令,严格限制使用范围,不得向非相关人员透露,原则上不允许多人共同使用一个帐户和口令。系统管理员不得拥有数据库管理员(DBA)的权限;数据库管理员不得同时拥有系统管理员的权限;数据库管理员应为不同的不同应用系统的数据 5.1.6 证, 户名、 5.1.7 5.2 5.2.1 5.2.2 5.2.3 5.2.4 借他人。 5.2.5 相同。 5.2.6应用系统的各类口令和密码必须加密保存,系统不得采用明文方式保存于服务器或客户端计算机的注册表或硬盘文件系统中。 5.2.7涉密应用系统所采用的各种加解密措施应采用统一的加密算法和密钥管理,并具有权限分级,以适合不同级别的用户存取。同时密钥必须定期更换。 5.3 工作站口令、密码管理 5.3.1各工作站按要求必须设置开机密码和操作系统管理员密码,并开启屏幕保护中的密码保护功能。妥善保管密码,并定期更改;同时严禁使用人员泄露自己的口令和密码。 5.3.2各工作站不得设置共享目录,原则上使用办公自动化(OA)系统来相互传送文件,如确有必要,则需要为共享目录设置读取密码,以防止无关人员获得相关信息。 5.4 口令的废止 5.4.1用户因职位变动,而不需使用其原有职责的信息资源,必须移交全部技术资料,明确离岗后的保密义务,并立即更换有关口令和密钥,注销其专用用户。涉及核心部门开发人员调离时,应确

分布式密钥分发方案的安全性证妹

1000.9825/2005/16(04)0570◎2005Jo啪alofsoftware软件学报 V01.16,No.4 分布式密钥分发方案的安全性证明木 徐海霞+,李宝 (信息安全国家重点实验室(中国科学院研究生院),北京100049) Securi衄ProofforDistributedKeyDistributionScheme XUHai.Xia+.LIBao (StateKeyLaboratoryofInfo皿ationSecurity(GraduateSchoolofChineseAcademyofSciences)Be主jing100049,China) +corTespondingauthor:Phn:+86一lO一88256433,Fax:+86-10-88258713,E‘mail:hxxu@gscas.ac.cn,http:,,www-gscas.ac.cn Received2003-07-29;Acc印ted2003-1l-17 XuHX,LiB.Securityprooffbrdistributedkeydistributionscheme.。,西即,?栉口,盯.S咖口,岛2005,16(4):570一576.DOI:10.1360/josl60570 Abstract:Securit)rforconlpositionofpmtocolsishotspotofintemationalscope.Byusingcompositionmetllod,itisprovedtllatthedis旬ributedkeydistributionschemein仃oducedbyDaza甜口,issecure.Thescheme叩pendsverifiablesecretsharing锄dzem—knowledgeproofstothebasiconewhichfitsintllecaseofpassiVeadversarytoprevent行omt11eactionofanactiveadversary. Keywords:keydistribution;compositionofprotocol;muhi-part)7secure compu枷on 摘要:复合协议的安全性是当前国际上的热点问题.应用复合协议的观点证明了Daza等人提出的分布式密钥分发方案是安全的.该方案在抵抗被动敌手攻击方案的基础上添加了可验证秘密分享和零知识证明,以抵抗主动敌手的攻击,从而具有更高的安全性. 关键词:密钥分发;复合协议;多方安全计算 中图法分类号:TP309文献标识码:A 群组用户为了在不安全信道上实现安全通信,要应用对称或公钥密码系统加密传输的消息.应用对称密码算法时,一个重要的问题是如何构造有效协议给群组中每个用户发送共用密钥.Needh锄和schroeder在文献[1】中的解决方案是:设置一个服务器负责分发和管理共用密钥.文献【2】将这种密钥分发中心的思想形式化.在这种模型中。一个单独的服务器负责给群组用户分发密钥的模式有一些弱点,服务器可能成为瓶颈而且它必须可信.为了克服这些弱点,有很多解决方案被提出,其中分布式密钥分发中心是应用最多的方法之一.文献[3]最早介绍了分布式密钥分发中心模型,这个模型中把单个服务器的任务分配给一组服务器.适用于这种模型的方案称为分布式密钥分发方案.文献[4]提出一种新的分布式密钥分发方案,其基本方案只能抵抗被动敌手(或称为“偷听” ?supportedbytheNational NatumlscienceFoundationofchinaunderGmtNo.90304013,60173016@家自然科学基金);theNationalHigh-TcchResearch粕dDevelopmentPlanofchinauⅢerGrantNos.863-317-Ol-04—99,2003AAl4415l(国家高技术研究发展计划(863)) 作者简介:徐海霞(1973一),女,河北乐亭人,博士,主要研究领域为理论密码学,安全多方计算;李宝(1962一),男,博士,研究员,主要研究领域为信息安全. 万方数据

长距离量子密钥分发系统

长距离量子密钥分发系统 【摘要】:量子保密通信提供了一种绝对安全的通信方案,它的安全性由不可改变的自然规律保证,是任何技术都无法攻破的。本文以实用的长距离量子密钥分发系统为研究目的,围绕着困扰长距离量子密钥分发的三个主要技术障碍,分别就纠缠光子产生,单光子探测,稳定和安全的量子密钥分发方案展开研究。我们通过BBO晶体内非共线光参量放大,同时实现了光参量下转换和上转换。这种光子级联四波混频过程产生了紫外和可见的纠缠彩虹对。彩虹对由波长连续变化的紫外和可见光子组成,这些光子一一对应相互纠缠,并且按照角度变化组成彩虹环。纠缠彩虹对能够同时提供多波长的纠缠光子对,其中紫外纠缠光子能够用于产生进一步纠缠。进而,本文提出了基于多波长纠缠光子对的高效的量子通信网络方案。在单光子探测研究中,本文提出了电容平衡门脉冲单光子探测技术,利用可调电容产生一个相同的尖峰噪声,然后通过差模网络抵消。该技术克服了尖峰噪声的影响,使基于InGaAs/InP-APD的近红外单光子探测器能够工作在最佳状态,获得了极高的信噪比,其在1550nm的暗计数与探测效率比为1.7×10~(-6)/脉冲,是目前国际上最好的指标之一。基于电容平衡门脉冲单光子探测技术,我们随即成功开发了新型的近红外单光子探测器,它具有操作简便,结构紧凑,性能优异,工作稳定等特点。我们提出和实现了基于Sagnac干涉仪的量子密钥分发方案,被美国LosAlamos国家实验室的量子保密通信路线图列为代表性方案之一。

随后我们在50km光纤中完成了长期稳定的PlugPlay量子密钥分发系统,平均光子数0.1,误码率低于4%。在该PlugPlay系统基础上,我们利用自行研制的高信噪比的近红外单光子探测器,实现了155km 单光子路由实验,干涉对比度达到87%。由于光纤本身不均匀,以及外界压力和温度变化,使得光纤双折射无规则随机变化,从而使偏振态在长距离光纤中无法稳定传输。本文发展了一种单光子水平的偏振反馈补偿技术,解决了偏振光在光纤中传输时因光纤双折射变化引起的随机抖动,在长距离光纤中实现了长时间稳定的单光子水平的偏振态传输,并首次在100km长距离光纤中实现了基于偏振编码的量子密钥分发模拟实验。我们在实验上模拟了截取-重发攻击,并且提出了基于强参考光的量子密钥分发方案,通过监测强参考光,可以有效地阻止光子分束攻击,从而使基于相干光源的量子密钥分发系统的安全距离延长至146km。【关键词】:量子保密通信量子密钥分发单光子探测纠缠光子Sagnac干涉仪单光子路由截取-重发攻击光子分束攻击 【学位授予单位】:华东师范大学 【学位级别】:博士 【学位授予年份】:2007 【分类号】:TN918

密钥管理系统

密钥管理系统(Key Management System),是IC项目安全的核心。作为卡应用系统的安全保证与应用基础,作用是规范卡应用系统密钥的产生、传输、分散、使用、管理;提供智能卡的密钥灌装、更新、文件初始化、交易记录验证,保证密钥的安全传输及应用管理。 高校密钥管理系统是由高校统一管理、统一授权、统一配发的安全管理系统,符合中国人民银行发布的《中国金融集成电路(IC)卡规范》即PBOC2.0标准的金融IC卡;是保障校园IC卡项目安全及将来与城市、金融等其它领域IC卡互联互通应用的核心;为今后校园一卡通项目的拓展应用奠定了基础,也大大提升了高校数字化信息管理水平。 高校密钥管理系统由系统加密设备、密钥前置服务、密钥数据库服务器、密钥管理工作站组成;由四个领导输入的密钥因子产生总控密钥根密钥卡,同时加入校园卡业务总控密钥导入到系统加密设备中生成系统种子信息,然后分散出各类应用系统密钥,包括消费业务密钥、圈存业务密钥、身份识别业务密钥、洗卡密钥母卡、用户卡密钥母卡等等。 密钥管理系统作为高可靠的管理系统,满足了不同的业务流程对安全和密钥管理的需求。对电子钱包圈存可以使用圈存密钥,消费可以使用消费密钥,清算可以使用TAC密钥,更新数据可以使用卡片应用维护密钥,卡片个人化过程中可以使用卡片传输密钥、卡片主控密钥、应用主控密钥等,真正做到一卡一密,一应用一密。 整个密钥管理系统的信息更新和密钥注入的过程中,都采用安全报文的方式,保证数据和密钥更新的正确性和安全性。而且密钥注入的次序和相互保护的依存关系,也充分体现了密钥的安全设计,此次密钥生成采用四个领导各自管理输入自己的密钥片段,生成四张领导卡,然后组合生成高校的总控密钥,总控密钥通常被用来保护导入应用主控密钥,应用主控密钥通常被用来保护导入其他应用密钥,比如消费密钥、圈存密钥等。 高校校园卡管理系统密钥生成是标志着学校建设的校园卡整体工程顺利完成,顺利投入使用。

密钥管理系统实施方案

密钥管理系统实施方案

神州数码思特奇IC卡密钥管理系统 实施方案 1.关键缩略语 ....................................................................................................... 5 2.引用标准 ........................................................................................................... 6 3.开发思路 ........................................................................................................... 73.1. 系统设计目标 ................................................ 7 3.1.1.系统设计起点高 ........................................ 7 3.1.2.高度的安全体系 ........................................ 8 3.1.3.借鉴其他行业经验 .................................... 83.2. 系统开发原则 ................................................ 9 3.2.1.卡片选择原则 ............................................ 9 3.2.2.加密机选择原则 ........................................ 9 3.2.3.读卡机具选择原则 ................................ 10 3.2. https://www.360docs.net/doc/d82371050.html,B KEY选择原则 ................................. 11 3.2.5.开发工具选择原则 ................................ 11 3.2.6.系统整体构造图 .................................... 123.3. 系统安全设计 ............................................ 12 3.3.1.安全机制 ................................................ 12 3.3.2.密钥类型 ................................................ 13 3.3.3.加密算法 ................................................ 13 4.卡片设计方案 ............................................................................................... 23

信息系统口令密码和密钥管理

信息系统口令密码和密 钥管理 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

信息系统口令、密码和密钥管理 1范围 本标准规定了信息网网络安全管理人员的职责、管理内容和工作要求,以及信息系统口令、密码和密钥管理。 本标准适用于公司所有信息网络、应用系统及设备和用户所有层次的口令管理。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款,凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 1994 国务院中华人民共和国计算机信息系统安全保护条例 国务院273号令商用密钥管理条例 1998 国家保密局中华人民共和国计算机信息系统保密管理暂行规定 2000 国家保密局中华人民共和国计算机信息系统国际联网保密管理规定 2003 公司网络与信息安全管理办法(试行) 2006 公司信息网防病毒运行统计管理规范(试行) 2006 公司信息网用户行为规范(试行) 3术语与定义 以下术语和定义适用于本标准。 3.1 信息系统 信息系统是用系统思想建立起来的,以电子计算机为基本信息处理手段,以现代通讯设备为基本传输工具,且能为管理决策提供信息服务的人机系统。即,信息系统是一个由人和计算机等组成的,能进行管理信息的收集、传输、存储、加工、维护和使用的系统。 3.2 密钥 密钥是一组信息编码,它参与密码的“运算”,并对密码的“运算”起特定的控制作用。密钥是密码技术中的重要组成部分。在密码系统中,密钥的生成、使用和管理至关重要。密钥通常是需要严格保护的,密钥的失控将导致密码系统失效。 4职责 4.1 信息中心职责 4.1.2信息中心负责信息网系统的服务器、网络设备的口令、密码和密钥的设置和保管,指导相关部门设置应用系统的口令、密码和密钥;指导各用户设置开机口令。 4.2信息中心各专职职责 4.1.3网络安全管理员负责保管网络设备及相关安全防护设备(系统)的账号、口令的设置和更改。 4.1.4主机管理员负责主机、数据库系统的账号、口令的设置和更改。 4.1.5应用系统管理员负责应用系统的账号、口令的设置和更改。 4.1.6网络信息安全员负责管理和监督检查信息网络的安全工作,参加信息网系统事故调查、分析处理和信息网安全事故上报及督促现场安全措施落实,以及网络系统各类分析、统计报告的编制和上报工作。 5管理内容与要求

相关文档
最新文档