高中数学奥赛讲义:动点轨迹方程的求法

高中数学奥赛讲义:动点轨迹方程的求法
高中数学奥赛讲义:动点轨迹方程的求法

高中数学奥赛讲义:

动点轨迹方程的求法

一、直接法

按求动点轨迹方程的一般步骤求,其过程是建系设点,列出几何等式,坐标代换,化简整理,主要用于动点具有的几何条件比较明显时.

例1(1994年全国)已知直角坐标平面上点Q (2,0)和圆C :122=+y x ,

动点M 到圆C 的切线长与MQ 的比等于常数()0>λλ(如图),求动点M 的轨迹方程,说明它表示什么曲线.

解:设M (x ,y ),直线MN 切圆C 于N ,

则有 λ

=MQ MN

即 λ=-MQ

ON

MO 22, λ

=+--+2222)2(1y x y x .

整理得

0)41(4)1()1(222222=++--+-λλλλx y x ,这就是动点M 的轨迹方程.

若1=λ,方程化为45=x ,它表示过点)0,45(和x 轴垂直的一条直线;

若λ≠1,方程化为222

2222

)1(3112-+=+-λλλλy x )-(,它表示以)0,12(22-λλ为圆心,

1

3122

-+λλ为半径的圆.

二、代入法

若动点M (x ,y )依赖已知曲线上的动点N 而运动,则可将转化后的动点N 的坐标入已知曲线的方程或满足的几何条件,从而求得动点M 的轨迹方程,此法称为代入法,一般用于两个或两个以上动点的情况.

例2 (1986年全国)已知抛物线12+=x y ,定点A (3,1),B 为抛物线

上任意一点,点P 在线段AB 上,且有BP ∶PA =1∶2,当点B 在抛物线上变动时,求点P 的轨迹方程,并指出这个轨迹为哪种曲线.

解:设),(),,(11y x B y x P ,由题设,P 分线段AB 的比

2==PB AP λ, ∴

.2121,212311++=++=y y x x 解得2123,232311-=-=

y y x x . 又点B 在抛物线12+=x y 上,其坐标适合抛物线方程,

∴ .1)2323()2123(2+-=-x y

整理得点P 的轨迹方程为

),31(32)31(2-=-x y 其轨迹为抛物线.

三、定义法

若动点运动的规律满足某种曲线的定义,则可根据曲线的定义直接写出动点的轨迹方程.此法一般用于求圆锥曲线的方程,在高考中常填空、选择题的形式出现.

例3 (1986年广东)若动圆与圆

4)2(22=++y x 外切且与直线x =2相切,则动圆圆心的轨迹方程是

(A )012122=+-x y

(B )012122=-+x y

(C )082=+x y

(D )082=-x y

解:如图,设动圆圆心为M ,由题意,动点M 到定圆圆心(-2,0)的距离等于它到定直线x =4的距离,故所求轨迹是以(-2,0)为焦点,直线x =4为准

线的抛物线,并且p =6,顶点是(1,0),开口向左,所以方程是)1(122--=x y .选

(B ).

例4 (1993年全国)一动圆与两圆122=+y x 和012822=+-+x y x 都外切,

则动圆圆心轨迹为

(A )抛物线 (B )圆

(C )双曲线的一支 (D )椭圆

解:如图,设动圆圆心为M ,半径为r ,则有

.1,

2,

1=-+=+=MO MC r MC r MO

动点M 到两定点的距离之差为1,由双曲线定义知,其轨迹是以O 、C 为焦点的双曲线的左支,选(C ).

四、参数法

若动点P (x ,y )的坐标x 与y 之间的关系不易直接找到,而动点变化受到另一变量的制约,则可求出x 、y 关于另一变量的参数方程,再化为普通方程.

例5 (1994年上海)设椭圆中心为原点O ,一个焦点为F (0,1),长轴和短轴的长度之比为t .

(A )求椭圆的方程;

(2)设经过原点且斜率为t 的直线与椭圆在y 轴右边部分的交点为Q ,点P 在该直线上,且12-=t t OQ

OP

,当t 变化时,求点P 的轨迹方程,并说明轨迹

是什么图形. 解:(1)设所求椭圆方程为

).0(122

22>>b a b x a y =+ 由题意得?????==-,,122t b a b a

解得 ???

????-=-=.11.12222

2t b t t a 所以椭圆方程为

222222)1()1(t y t x t t =-+-.

(2)设点),,(),,(11y x Q y x P 解方程组

???==-+-,,)1()1(1122122122tx y t y t x t t

得 ???????-=-=.)1(2,)1(212121t t y t x 由12-=t t OQ OP 和1x x OQ

OP

=得 ???????-=-=???????==,2,2

,2222t y t

x t y t x 或

其中t >1.

消去t ,得点P 轨迹方程为

)22(222>=x y x 和)22(222-<-=x y x . 其轨迹为抛物线

y x 222=在直线22=x 右侧的部分和抛物线y x 222-=在直线22

-=x 在侧的部分.

五、交轨法

一般用于求二动曲线交点的轨迹方程.其过程是选出一个适当的参数,求出二动曲线的方程或动点坐标适合的含参数的等式,再消去参数,即得所求动点轨迹的方程.

例6 (1985年全国)已知两点)2,0(),2,2(Q P -以及一条直线ι:y =x ,设长为2的线段AB 在直线λ上移动,求直线PA 和QB 交点M 的轨迹方程.

解:PA 和QB 的交点M (x ,y )随A 、B 的移动而变化,故可设)1,1(),,(++t t B t t A ,则

PA :

),2)(2(222-≠++-=-t x t t y QB :).1(112-≠+-=-t x t t y

消去t ,得.082222=+-+-y x y x

当t =-2,或t =-1时,PA 与QB 的交点坐标也满足上式,所以点M 的轨迹方程是

.0822222=+--+-y x x y x

以上是求动点轨迹方程的主要方法,也是常用方法,如果动点的运动和角度有明显的关系,还可考虑用复数法或极坐标法求轨迹方程.但无论用何方法,都要注意所求轨迹方程中变量的取值范围.

(完整版)轨迹方程的五种求法例题

动点轨迹方程的求法 一、直接法 按求动点轨迹方程的一般步骤求,其过程是建系设点,列出几何等式,坐标代换,化简整理,主要用于动点具有的几何条件比较明显时. 例1已知直角坐标平面上点Q (2,0)和圆C :,动点M 到圆C 的切线长与的比等于常数(如图),求动点M 的轨迹方程,说明它表示什么曲线. 【解析】:设M (x ,y ),直线MN 切圆C 于N ,则有 ,即 , .整理得,这就是动点 M 的轨迹方程.若,方程化为,它表示过点和x 轴垂直的一条直线;若λ≠1,方程化为,它表示以为圆心,为半径的圆. 二、代入法 若动点M (x ,y )依赖已知曲线上的动点N 而运动,则可将转化后的动点N 的坐标入已知曲线的方程或满足的几何条件,从而求得动点M 的轨迹方程,此法称为代入法,一般用于两个或两个以上动点的情况. 例2 已知抛物线,定点A (3,1),B 为抛物线上任意一点,点P 在线段AB 上,且有BP :PA =1:2,当点B 在抛物线上变动时,求点P 的轨迹方程,并指出这个轨迹为哪种曲线. 【解析】:设,由题设,P 分线段AB 的比,∴ 解得.又点B 在抛物线上,其坐标适合抛物线方程,∴ 整理得点P 的轨迹方程为其轨迹为抛物线. 三、定义法 若动点运动的规律满足某种曲线的定义,则可根据曲线的定义直接写出动点的轨迹方程.此法一般用于求圆锥曲线的方程,在高考中常填空、选择题的形式出现. 例3 若动圆与圆外切且与直线x =2相切,则动圆圆心的轨迹方程是 12 2 =+y x MQ ()0>λλλ=MQ MN λ=-MQ ON MO 2 2λ=+--+2 222)2(1y x y x 0)41(4)1()1(222222=++--+-λλλλx y x 1=λ45= x )0,4 5 (2 222 222)1(3112-+=+-λλλλy x )-()0,12(2 2-λλ1 3122-+λλ12 +=x y ),(),,(11y x B y x P 2== PB AP λ.2121,212311++=++= y y x x 2 1 23,232311-=-=y y x x 12+=x y .1)2 3 23()2123( 2+-=-x y ),3 1 (32)31(2-=-x y 4)2(2 2 =++y x

高中数学竞赛系列辅导材料 集合

集合(一) 内容综述: 本讲先介绍了以下一些重要的概念:集合、子集、两集合相等、真子集、并集、交集、相对补集,然后介绍了著名的容斥原理,接着介绍了以下几个定律:零律、分配律、排中律、吸收律、补交转换律、德·摩根律。 然后通过6道例题分析了一部分集合题目的解题方法与技巧,同学们应在熟悉以上定义、定理、定律的基础上仔细分析例题材解法,争取可以独立解决训练题。 要点讲解: §1.基本理论 除了课内知识外,我们补充以下知识 相对补集:称属于A而不属于B的全体元素,组成的集合为B对A的相对补集或差集,记作A-B。 容斥原理:以表示集合A中元素的数目,我们有 ,其中为n个集合称为A的阶。 n阶集合的全部子集数目为。 A,B,C为三个集合,就有下面的定律。 (1)分配律 (2)零律

(3)排中律 (4)吸收律 (5)补交转换律 (6)德·摩根律的相对形式 例题分析: 例1:对集合{1,2,…,n}及其每一个非空了集,定义一个唯一确定的“交替和”如下:按照递减的次序重新排列该子集,然后交替地减或加后继的数所得的结果,例 如,集合的“交替和”是9-6+4-2+1=6.的“交替和”是6-5=1,的交替和是2。那么,对于n=7。求所有子集的“交替和”的总和。 分析;n=7时,集合{7,6,5,4,3,2,1}的非空子集有个,虽然子集数 目有限,但是逐一计算各自的“交替和”再相加,计算量仍然巨大,但是,根据“交替和”的定义,容易看到集合{1,2,3,4,5,6,7}与{1,2,3,4,5,6}的“交替 和”是7;可以想到把一个不含7的集和A与的“交替和”之和应为7。那么,我们也就很容易解决这个问题了。 解:集合{1,2,3,4,5,6,7}的子集中,除去{7}外还有个非空子集合,把这个非空子集两两结组后分别计算每一组中“交替和”之和,结组原则是设 这是把结合为一组,显然,每组中,“交替和”之和应为7,共有组.所以,所有“交替和”之和应该为 。

求动点轨迹方程专题

求动点轨迹方程专题 一、直接法 步骤:1、建立恰当的坐标系,设动点坐标()y x ,; 2、由已知条件列出几何等量关系式,建立关于y x ,的方程()0=y x f ,; 3、化简整理; 4、检验,检验点轨迹的纯粹性与完备性。 [例1] 已知圆O 的方程是0222=?+y x ,圆O '的方程是01082 2=+?+x y x ,如图所示。由动点P 向圆O 和圆O '所引的切线长相等,求动点P 的轨迹方程。 [练习1] 已知平面上两定点()20?, M ,()20,N ,点P 满足MN PN MN MP ?=?,求点P 的轨迹方程。

步骤:1、分析几何关系; 2、由曲线的定义直接得出轨迹方程。 [例2] 已知圆A :()3622 2=++y x ,()02,B ,点P 是圆A 上的动点,线段PB 的中垂线交PA 于点Q ,求动点Q 的轨迹方程 [练习2] 已知圆1C :()1322=++y x 和圆2C :()932 2=+?y x ,动圆M 同时与圆1C 及圆2C 相外切,求动圆圆心M 的轨迹方程。

步骤:1、设所求轨迹的动点为()y x P ,,相关点()00y x Q ,; 2、根据点的产生过程,找到()y x ,和()00y x ,的关系,并将00y x ,用y x ,表示; 3、将()00y x ,代入相关点的曲线,化简即可得到所求轨迹方程。 [例3] 已知点P 在椭圆14 22=+y x 上运动,过P 作y 轴的垂线,垂足为Q ,点M 满足PQ PM 31=,求动点M 的轨迹方程。 [练习3] 过双曲线12 2=?y x 上一点Q 作直线2=+y x 的垂线,垂足为N ,求线段QN 的中点P 所形成的曲线方程。

高考数学难点之轨迹方程的求法

高考数学难点之轨迹方程的求法 求曲线的轨迹方程是解析几何的两个基本问题之一.求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系.这类问题除了考查学生对圆锥曲线的定义,性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问题成为高考命题的热点,也是同学们的一大难点. ●难点磁场 (★★★★)已知A 、B 为两定点,动点M 到A 与到B 的距离比为常数λ,求点M 的轨迹方程,并注明轨迹是什么曲线. ●案例探究 [例1]如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程. 命题意图:本题主要考查利用“相关点代入法”求曲线的轨迹方程,属★★★★★级题目. 知识依托:利用平面几何的基本知识和两点间的距离公式建立线段AB 中点的轨迹方程. 错解分析:欲求Q 的轨迹方程,应先求R 的轨迹方程,若学生思考不深刻,发现不了问题的实质,很难解决此题. 技巧与方法:对某些较复杂的探求轨迹方程的问题,可先确定一个较易于求得的点的轨迹方程,再以此点作为主动点,所求的轨迹上的点为相关点,求得轨迹方程. 解:设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|PR |. 又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2) 又|AR |=|PR |=22)4(y x +- 所以有(x -4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0 因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动. 设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1=2 ,241+= +y y x , 代入方程x 2+y 2-4x -10=0,得 2 4 4)2()24( 22+? -++x y x -10=0 整理得:x 2+y 2=56,这就是所求的轨迹方程. [例2]设点A 和B 为抛物线 y 2=4px (p >0)上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线.(2000年北京、安徽春招) 命题意图:本题主要考查“参数法”求曲线的轨迹方程,属★★★★★级题目. 知识依托:直线与抛物线的位置关系. 错解分析:当设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2)时,注意对“x 1=x 2”的讨论.

高中数学奥赛的技巧(上篇)

奥林匹克数学的技巧(上篇) 有固定求解模式的问题不属于奥林匹克数学,通常的情况是,在一般思维规律的指导下,灵活运用数学基础知识去进行探索与尝试、选择与组合。这当中,经常使用一些方法和原理(如探索法,构造法,反证法,数学归纳法,以及抽屉原理,极端原理,容斥原理……),同时,也积累了一批生气勃勃、饶有趣味的奥林匹克技巧。在2-1曾经说过:“竞赛的技巧不是低层次的一招一式或妙手偶得的雕虫小技,它既是使用数学技巧的技巧,又是创造数学技巧的技巧,更确切点说,这是一种数学创造力,一种高思维层次,高智力水平的艺术,一种独立于史诗、音乐、绘画的数学美。” 奥林匹克技巧是竞赛数学中一个生动而又活跃的组成部分。 2-7-1 构造 它的基本形式是:以已知条件为原料、以所求结论为方向,构造出一种新的数学形式,使得问题在这种形式下简捷解决。常见的有构造图形,构造方程,构造恒等式,构造函数,构造反例,构造抽屉,构造算法等。 例2-127 一位棋手参加11周(77天)的集训,每天至少下一盘棋,每周至多下12盘棋,证明这棋手必在连续几天内恰好下了21盘棋。 证明:用n a 表示这位棋手在第1天至第n 天(包括第n 天在内)所下的总盘数(1,2,77n =…),依题意 127711211132a a a ≤<<≤?=… 考虑154个数: 12771277,,,21,21,21a a a a a a +++…,?, 又由772113221153154a +≤+=<,即154个数中,每一个取值是从1到153的自然数,因而必有两个数取值相等,由于i j ≠时,i i a a ≠ 2121i j a a +≠+ 故只能是,21(771)i j a a i j +≥>≥满足 21i j a a =+ 这表明,从1i +天到j 天共下了21盘棋。 这个题目构造了一个抽屉原理的解题程序,并具体构造了154个“苹果”与153个“抽屉”,其困难、同时也是精妙之处就在于想到用抽屉原理。 例 2-128 已知,,x y z 为正数且()1xyz x y z ++=求表达式()()x y y z ++的最最小值。 解:构造一个△ABC ,其中三边长分别为a x y b y z c z x =+??=+??=+? ,则其面积为 1?= 另方面2()()2sin x y y z ab C ?++==≥ 故知,当且仅当∠C=90°时,取值得最小值2,亦即222()()()x y y z x z +++=+

高考动点轨迹方程的常用求法(含练习题及答案)

轨迹方程的经典求法 一、定义法:运用有关曲线的定义求轨迹方程. 例2:在ABC △中,24BC AC AB =,,上的两条中线长度之和为39,求ABC △的重心的轨迹方程. 解:以线段BC 所在直线为x 轴,线段BC 的中垂线为y 轴建立直角坐标系,如图1,M 为重心,则有 2 39263 BM CM +=?=. M ∴点的轨迹是以B C ,为焦点的椭圆, 其中1213c a ==, .5b =∴. ∴所求ABC △的重心的轨迹方程为 22 1(0)16925 x y y +=≠. 二、直接法:直接根据等量关系式建立方程. 例1:已知点(20)(30)A B -,,,,动点()P x y ,满足2PA PB x = ·,则点P 的轨迹是( ) A .圆 B .椭圆 C .双曲线 D .抛物线 解析:由题知(2)PA x y =--- ,,(3)PB x y =-- ,,由2P AP B x = ·,得22(2)(3)x x y x ---+=,即26y x =+, P ∴点轨迹为抛物线.故选D . 三、代入法:此方法适用于动点随已知曲线上点的变化而变化的轨迹问题. 例3:已知△ABC 的顶点(30)(10)B C -,,,,顶点A 在抛物线2y x =上运动,求ABC △的重心G 的轨迹方程. 解:设()G x y ,,00()A x y ,,由重心公式,得003133x x y y -++? =????=?? ,,00323x x y y =+??=?, ①∴. ② 又00()A x y ,∵在抛物线2y x =上,2 00y x =∴. ③ 将①,②代入③,得23(32)(0)y x y =+≠,即所求曲线方程是24 34(0)3 y x x y =++≠. 四、待定系数法:当曲线的形状已知时,一般可用待定系数法解决. 例5:已知A ,B ,D 三点不在一条直线上,且(20)A -, ,(20)B ,,2AD = ,1()2 AE AB AD =+ . (1)求E 点轨迹方程; (2)过A 作直线交以A B ,为焦点的椭圆于M N ,两点,线段MN 的中点到y 轴的距离为4 5 ,且直线MN 与E 点的轨迹相切,求椭圆方程. 解:(1)设()E x y ,,由1()2 AE AB AD =+ 知E 为BD 中点,易知(222)D x y -, . 又2AD = ,则22(222)(2)4x y -++=. 即E 点轨迹方程为221(0)x y y +=≠; (2)设1122()()M x y N x y ,,,,中点00()x y ,. 由题意设椭圆方程为22 2214 x y a a +=-,直线MN 方程为(2)y k x =+.

高中数学竞赛讲义

高中数学竞赛资料 一、高中数学竞赛大纲 全国高中数学联赛 全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。 全国高中数学联赛加试 全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是: 1.平面几何 几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。三角形中的几个特殊点:旁心、费马点,欧拉线。几何不等式。几何极值问题。几何中的变换:对称、平移、旋转。圆的幂和根轴。面积方法,复数方法,向量方法,解析几何方法。 2.代数 周期函数,带绝对值的函数。三角公式,三角恒等式,三角方程,三角不等式,反三角函数。递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。 第二数学归纳法。平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。 复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。 n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。 函数迭代,简单的函数方程* 3.初等数论 同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。

4.组合问题 圆排列,有重复元素的排列与组合,组合恒等式。组合计数,组合几何。抽屉原理。容斥原理。极端原理。图论问题。集合的划分。覆盖。平面凸集、凸包及应用*。 注:有*号的内容加试中暂不考,但在冬令营中可能考。 二、初中数学竞赛大纲 1、数 整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。 2、代数式 综合除法、余式定理;因式分解;拆项、添项、配方、待定系数法;对称式和轮换对称式;整式、分工、根式的恒等变形;恒等式的证明。 3、方程和不等式 含字母系数的一元一次方程、一元二次方程的解法,一元二次方程根的分布;含绝对值的一元一次方程、一元二次方程的解法;含字母系数的一元一次不等式的解法,一元二次不等式的解法;含绝对值的一元一次不等式;简单的多元方程组;简单的不定方程(组)。 4、函数 二次函数在给定区间上的最值,简单分工函数的最值;含字母系数的二次函数。 5、几何 三角形中的边角之间的不等关系;面积及等积变换;三角形中的边角之间的不等关系;面积及等积变换;三角形的心(内心、外心、垂心、重心)及其性质;相似形的概念和性质;圆,四点共圆,圆幂定理;四种命题及其关系。 6、逻辑推理问题 抽屉原理及其简单应用;简单的组合问题简单的逻辑推理问题,反证法;

高中数学动点轨迹问题专题讲解

动点轨迹问题专题讲解 一.专题内容: 求动点(, )P x y 的轨迹方程实质上是建立动点的坐标, x y 之间的关系式,首先要分析形成轨迹的点和已知条件的内在联系,选择最便于反映这种联系的坐标形式,寻求适当关系建立等式,常用方法有: (1)等量关系法.....:根据题意,列出限制动点的条件等式,这种求轨迹的方法叫做等量关系法,利用这种方法时,要求对平面几何中常用的定理和解析几何中的有关基本公式很熟悉. (2)定义法...:如果动点满足的条件符合某种已知曲线(如圆锥曲线)的定义,可根据其定义用待定系数法求出轨迹方程. (3)转移代入法.....:如果所求轨迹上的点(, )P x y 是随另一个在已知曲线C :(, )0F x y =上的动点00(, )M x y 的变化而变化,且00, x y 能用, x y 表示,即0(, )x f x y =,0(, )y g x y =,则将00, x y 代入已知曲线(, )0F x y =,化简后即为所求的轨迹方程. (4)参数法...:选取适当的参数(如直线斜率k 等),分别求出动点坐标, x y 与参数的关系式,得出所求轨迹的参数方程,消去参数即可. (5)交轨法...:即求两动直线交点的轨迹,可选取同一个参数,建立两动直线的方程,然后消去参数,即可(有时还可以由三点共线,斜率相等寻找关系).

注意:轨迹的完备性和纯粹性!一定要检验特殊点和线! 二.相关试题训练 (一)选择、填空题 1.( )已知1F 、2F 是定点,12||8F F =,动点M 满足12||||8MF MF +=,则动点M 的轨迹是 (A )椭圆 (B )直线 (C )圆 (D )线段 2.( )设(0,5)M ,(0,5)N -,MNP ?的周长为36,则MNP ?的顶点P 的轨迹方程是 (A )22125169x y + =(0x ≠) (B )22 1144169 x y +=(0x ≠) (C ) 22116925x y +=(0y ≠) (D )22 1169144 x y +=(0y ≠) 3.与圆2240x y x +-=外切,又与y 轴相切的圆的圆心轨迹方程是 ; 4.P 在以1F 、2F 为焦点的双曲线22 1169 x y -=上运动,则12F F P ?的重心G 的轨迹方程是 ; 5.已知圆C : 22(16x y +=内一点)A ,圆C 上一动点Q , AQ 的垂直平

高中数学奥林匹克竞赛

高中数学奥林匹克竞赛 奥数学林匹克竞竞~竞称奥数。年和年~竞竞竞始在列格勒宁和莫斯科竞竞中竞竞~学数学19341935 并冠以数学奥林匹克的名~称年在布加勒斯特竞竞第一届国数学奥竞竞竞竞林匹克。竞竞竞竞国数学奥1959 林匹克作竞一竞竞性竞事~由竞国国数学教育竞家命竞。 我的高中竞竞分三竞,每年国数学月中旬的全竞竞~次年一月的国;冬令竞,~次年三10CMO月竞始的家国集竞竞的竞竞竞拔。与 “全高中竞竞国数学”;竞竞于年,~承竞方式初中竞竞相同~每年与月竞行~分竞一竞和198110二竞~在竞竞竞竞中取得竞成竞的全竞异国名生有竞格加由中主竞的“学参国数学会中林国数学奥90 匹克;,竞全中生冬令竞”;每年元月,。国学数学CMO 全竞竞分竞一竞、加竞国数学(即称俗的“二竞”)。各省自己竞竞的“初竞”、个份“初竞”、“竞竞”等等~都不是正式的全竞竞名及程序。国称一竞 全高中竞竞的一竞竞竞大竞~完全按照全日制中《大竞》中所竞定的要求国数学学数学教学教学 和容~高考所竞定的知竞范竞和方法~在方法的要求上略有提高~其中率和内即概微竞分初步 不考。 二竞 平面何几 基本要求,掌握初中竞竞大竞所定的所有容。确内

竞充要求,面竞和周竞方法。 几个重要定理,梅涅竞斯定理、塞瓦定理、托勒密定理、西姆松定理。 几个重要的极竞,到三角形三竞点距之和最小的点离——竞竞点。到三角形三竞点距的离平方 和最小的点重心。三角形到三竞距之竞最大的点重心。——内离—— 几何不等式。 竞竞的等周竞竞。了解下述定理, 在周竞一定的竞形的集合中~正竞形的面竞最大。n n 在周竞一定的竞竞竞曲竞的集合中~竞的面竞最大。 在面竞一定的竞形的集合中~正竞形的周竞最小。nn 在面竞一定的竞竞竞曲竞的集合中~竞的周竞最小。 几运何中的竞,反射、平移、旋竞。 竞数方法、向量方法。* 平面凸集、凸包及竞用。 代数 在一竞大竞的基竞上外要求的容,另内 周期函数与周期~竞竞竞竞的函的竞像。数三倍角公式~三角形的一些竞竞的恒等式~三角不 等式。 第二竞竞法。竞竞~一竞、二竞竞竞~数学特征方程法。 函迭代~求数次迭代~竞竞的函方程数。n** 个竞元的平均不等式~柯西不等式~排序不等式及竞用。n 竞的指形式~数数欧拉公式~美弗定理棣~竞位根~竞位根的竞用。竞排列~有重竞的排列竞合。竞竞的与竞合恒等式。

【高中教育】最新高中数学奥林匹克竞赛训练题(206)

——教学资料参考参考范本——【高中教育】最新高中数学奥林匹克竞赛训练题(206) ______年______月______日 ____________________部门

第一试 一、填空题(每小题8分,共64分) 1。已知正整数组成等比数列,且则的最大值为 。 ()a b c a b c <<、、201620162016log log log 3,a b c ++=a b c ++ 2。关于实数的方程的解集为 。x 2 12sin 2222log (1sin )x x -=+- 3。曲线围成的封闭图形的面积为 。 2224x y y +≤ 4。对于所有满足的复数均有,对所有正整数,有,若 。 z i ≠z ()z i F z z i -= +n 1()n n z F z -=020162016,z i z =+=则 5。已知P 为正方体棱AB 上的一点,满足直线A1B 与平面B1CP 所成角 为,则二面角的正切值为 。1111ABCD A B C D -0 6011A B P C -- 6。已知函数,集合则A= 。 22 ()224,()2f x x x g x x x =+-=-+()()f x A x Z g x +?? =∈?? ?? 7。在平面直角坐标系中,P 为椭圆在第三象限内的动点,过点P 引圆的两条切线PA 、PB ,切点分别为A 、B ,直线AB 与轴、轴分别交于点M 、 N ,则面积的最小值为 。 xOy 22 12516x y +=22 9x y +=x y OMN ? 8。有一枚质地均匀的硬币,现进行连续抛硬币游戏,规则如下:在抛掷的过程中,无论何时,连续出现奇数次正面后出现一次反面,则游戏停止;否则游戏继续进行,最多抛掷10次,则该游戏抛掷次数的数学期望为 。 二、解答题(共56分)

(推荐)高中数学竞赛基本知识集锦

高中数学竞赛基本知识集锦 一、三角函数 常用公式 由于是讲竞赛,这里就不再重复过于基础的东西,例如六种三角函数之间的转换,两角和与差的三角函数,二倍角公式等等。但是由于现在的教材中常用公式删得太多,有些还是不能不写。先从最基础的开始(这些必须熟练掌握): 半角公式 α αααααα cos 1sin sin cos 1cos 1cos 12tan +=-=+-±= 积化和差 ()()[]βαβαβα-++=sin sin 2 1cos sin ()()[]βαβαβα--+=sin sin 2 1sin cos ()()[]βαβαβα-++=cos cos 2 1cos cos ()()[]βαβαβα--+-=cos cos 2 1sin sin 和差化积 2 cos 2sin 2sin sin βαβ αβα-+=+ 2 sin 2cos 2sin sin βαβαβα-+=- 2 cos 2cos 2cos cos βαβαβα-+=+ 2 sin 2sin 2cos cos βαβαβα-+-=- 万能公式 α αα2tan 1tan 22sin += α αα22tan 1tan 12cos +-= α αα2tan 1tan 22tan -= 三倍角公式 ()()αααααα+-=-= 60sin sin 60sin 4sin 4sin 33sin 3 ()() αααααα+-=-= 60cos cos 60cos 4cos 3cos 43cos 3 二、某些特殊角的三角函数值

三、三角函数求值 给出一个复杂的式子,要求化简。这样的题目经常考,而且一般化出来都是一个具体值。要熟练应用上面的常用式子,个人认为和差化积、积化和差是竞赛中最常用的,如果看到一些不常用的角,应当考虑用和差化积、积化和差,一般情况下直接使用不了的时候,可以考虑先乘一个三角函数,然后利用积化和差化简,最后再把这个三角函数除下去 举个例子 求值:7 6cos 74cos 72cos πππ++ 提示:乘以72sin 2π,化简后再除下去。 求值:??-?+?80sin 40sin 50cos 10cos 22 来个复杂的 设n 为正整数,求证n n n i n i 21212sin 1+=+∏=π 另外这个题目也可以用复数的知识来解决,在复数的那一章节里再讲 四、三角不等式证明 最常用的公式一般就是:x 为锐角,则x x x tan sin <<;还有就是正余弦的有界性。 例 求证:x 为锐角,sinx+tanx<2x 设12π ≥≥≥z y x ,且2π =++z y x ,求乘积z y x cos sin cos 的最大值和最小值。 注:这个题目比较难

高中数学轨迹求法

一、直接法 按求动点轨迹方程的一般步骤求,其过程是建系设点,列出几何等式,坐标代换,化简整理,主要用于动点具有的几何条件比较明显时 1.三角形ABC 中, ,且,则三角形ABC 面积最大值为__________. 2、 动点P (x,y )到两定点A (-3,0)和B (3,0)的距离的比等于2(即2| || |=PB PA ),求动点P 的轨迹方程? 3、一动点到y 轴距离比到点()2,0的距离小2,则此动点的轨迹方程为 .1. 4.已知()1,0A -, ()2,0B ,动点(),M x y 满足 1 2 MA MB = .设动点M 的轨迹为C . (1)求动点M 的轨迹方程,并说明轨迹C 是什么图形; (2)求动点M 与定点B 连线的斜率的最小值; 5、已知曲线C 是动点M 到两个定点()0,0O 、()3,0A 距离之比为1 2 的点的轨迹. (1)求曲线C 的方程; (2)求过点()1,3N 且与曲线C 相切的直线方程. 6.一条线段的长等于10,两端点,A B 分别在x 轴和y 轴上滑动,M 在线段AB 上且 4AM MB =u u u u r u u u r ,则点M 的轨迹方程是( ) A .221664x y += B .22 1664x y += C .22168x y += D .22 168x y += B 7.已知坐标平面上一点M (x ,y )与两个定点M 1(26,1),M 2(2,1),且 =5. (Ⅰ)求点M 的轨迹方程,并说明轨迹是什么图形; (Ⅱ)记(Ⅰ)中的轨迹为C ,过点M (﹣2,3)的直线l 被C 所截得的线段的长为8,求直线l 的方程. 1、【解析】建立如图所示的平面直角坐标系,则: ,设点A 的坐标为 ,由题意有: , 整理可得: ,结合三角形 的性质可得点C 的轨迹方程为以 为圆 心, 为半径的圆出去其与x 轴的交点,据此可得三角形ABC 面积的最大值为

2019年度高一数学奥林匹克竞赛决赛试题及答案解析

2019年**一中高一数学竞赛奥赛班试题(决赛) 及答案 (时间:5月16日18:40~20:40) 满分:120分 一、 选择题(本大题共6小题,每小题5分,满分30分) 1.已知 M =},13|{},,13|{},,3|{Z n n x x P Z n n x x N Z n n x x ∈-==∈+==∈=,且 P c N b M a ∈∈∈,,,设c b a d +-=,则∈d ( ) A. M B. N C. P D.P M 2.函数()1 42-+ =x x x x f 是( ) A 是偶函数但不是奇函数 B 是奇函数但不是偶函数 C 既是奇函数又是偶函数 C 既不是奇函数也不是偶函数 3.已知不等式m 2 +(cos 2 θ-5)m +4sin 2 θ≥0恒成立,则实数m 的取值范围是( ) A . 0≤m ≤4 B . 1≤m ≤4 C . m ≥4或x ≤0 D . m ≥1或m ≤0 4.在△ABC 中,c b a ,,分别是角C B A ,,所对边的边长,若 0sin cos 2sin cos =+- +B B A A ,则 c b a +的值是( ) A.1 B.2 C.3 C.2 5. 设 0a b >>, 那么 2 1 () a b a b + - 的最小值是 A. 2 B. 3 C. 4 D. 5 6.设ABC ?的内角A B C ,,所对的边,,a b c 成等比数列,则B C B A C A cos tan sin cos tan sin ++的取值范围是 ( ) A. (0,)+∞ B. C. D. )+∞. 二、填空题(本大题共10小题,每小题5分,满分50分) 7.母线长为3的圆锥中,体积最大的那一个的底面圆的半径为 8.函数| cos sin |2sin )(x x e x x f ++=的最大值与最小值之差等于 。

高中数学奥林匹克竞赛中的不变量技巧

数学奥林匹克竞赛中的不变量技巧 在一个变化的数学过程中常常有个别的不变元素或特殊的不变状态,表现出相对稳定的较好性质,选择这些不变性作为解题的突破口是一个好主意。 例1.从数集{}3,4,12开始,每一次从其中任选两个数,a b ,用345 5 a b -和435 5 a b +代替它们,能否通过有限多次代替得到数集{}4,6,12。 解:对于数集{},,a b c ,经过一次替代后,得出3 443,,5 5 5 5a b a b c ??-+???? , 有2222223443()()5555 a b a b c a b c -+++=++ 即每一次替代后,保持3个元素的平方和不变(不变量)。 由22222234124612++≠++知,不能由{}3,4,12替换为{}4,6,12。 例2.设21n +个整数1221,,,n a a a +…具有性质p ;从其中任意去掉一个,剩下的2n 个数可以分成个数相等的两组,其和相等。证明这2n+1个整数全相等。 证明:分三步进行,每一步都有“不变量”的想法: 第一步 先证明这2n+1个数的奇偶性是相同的 因为任意去掉一个数后,剩下的数可分成两组,其和相等,故剩下的2n 个数的和都是偶数,因此,任一个数都与这2n+1个数的总和具有相同的奇偶性; 第二步 如果1221,,,n a a a +…具有性质P ,则每个数都减去整数c 之后,仍具有性质P ,特别地取1c a =,得21312110,,,,n a a a a a a +---… 也具有性质P ,由第一步的结论知,2131211,,,n a a a a a a +---…都是偶数; 第三步 由21312110,,,,n a a a a a a +---…为偶数且具有性质P ,可得 31 211210, ,,,222 n a a a a a a +---… 都是整数,且仍具有性质P ,再由第一步知,这21n +个数的奇偶性相同,为偶数,所以都除以2后,仍是整数且具有性质P ,余此类推,对任意的正整数k ,均有 31 211210, ,,,222n k k k a a a a a a +---…为整数,且具有性质P ,因k 可以任意大,这就推得 21312110n a a a a a a +-=-==-=…即 1221n a a a +===…。

高中数学竞赛校本教材[全套](共30讲)

高中数学竞赛校本教材[全套](共30讲,含详细答案) 目录 §1数学方法选讲(1) (1) §2数学方法选讲(2) (11) §3集合 (22) §4函数的性质 (30) §5二次函数(1) (41) §6二次函数(2) (55) §7指、对数函数,幂函数 (63) §8函数方程 (73) §9三角恒等式与三角不等式 (76) §10向量与向量方法 (85) §11数列 (95) §12递推数列 (102) §13数学归纳法 (105) §14不等式的证明 (111) §15不等式的应用 (122) §16排列,组合 (130) §17二项式定理与多项式 (134) §18直线和圆,圆锥曲线 (143) §19立体图形,空间向量 (161) §20平面几何证明 (173)

§21平面几何名定理 (180) §22几何变换 (186) §23抽屉原理 (194) §24容斥原理 (205) §25奇数偶数 (214) §26整除 (222) §27同余 (230) §28高斯函数 (238) §29覆盖 (245) §29涂色问题 (256) §30组合数学选讲 (265) §1数学方法选讲(1) 同学们在阅读课外读物的时候,或在听老师讲课的时候,书上的例题或老师讲解的例题他都能听懂,但一遇到没有见过面的问题就不知从何处入手。看来,要提高解决问题的能力,要能在竞赛中有所作为,首先得提高分析问题的能力,这就需要学习一些重要的数学思想方法。 例题讲解 一、从简单情况考虑 华罗庚先生曾经指出:善于“退”,足够的“退”,退到最原始而又不失去重要性的地方,是学好数学的一个诀窍。从简单情况考虑,就是一种以退为进的一种解题策略。 1. 两人坐在一张长方形桌子旁,相继轮流在桌子上放入同样大小的硬币。条件是硬币一定要平放在桌子上,后放的硬币不能压在先放的硬币上,直到桌子上再也放不下一枚硬币为止。谁放入了最后一枚硬币谁获胜。问:先放的人有没有必定取胜的策略?

高中数学奥林匹克竞赛全真试题

1 2003年全国高中数学联合竞赛试题 一、选择题(本题满分36分,每小题6分) 1、删去正整数数列1,2,3,……中的所有完全平方数,得到一个新数列.这个新数列的第2003项是( ) A .2046 B .2047 C .2048 D .2049 2、设a ,b ∈R ,ab ≠0,那么,直线ax -y +b =0和曲线bx 2+ay 2=ab 的图形是( ) 3、过抛物线y 2=8(x +2)的焦点F 作倾斜角为60°的直线.若此直线与抛物线交于A 、B 两点,弦AB 的中垂线与x 轴交于P 点,则线段PF 的长等于( ) A . 163 B .8 3 C D . 4、若5[,]123 x ππ ∈--,则2tan()tan()cos()366y x x x πππ=+-+++的最大值是( ). A B C D 5、已知x 、y 都在区间(-2,2)内,且xy =-1,则函数2 2 4949u x y = + --的最小值是( ) A . 85 B .2411 C .127 D .125 6、在四面体ABCD 中,设AB =1,CD AB 与CD 的距离为2,夹角为3 π ,则四 面体ABCD 的体积等于( ) A B .12 C .1 3 D 二、填空题(本题满分54分,每小题9分) 7、不等式|x |3-2x 2-4|x |+3<0的解集是__________. 8、设F 1,F 2是椭圆22 194 x y +=的两个焦点,P 是椭圆上的点,且|PF 1|:|PF 2|=2:1,则△PF 1F 2的面积等于__________. 9、已知A ={x |x 2-4x +3<0,x ∈R },B ={ x |21- x +a ≤0,x 2-2(a +7)x +5≤0,x ∈R }.若A B ?,则实数a 的取值范围是__________. 10、已知a ,b ,c ,d 均为正整数,且35 log ,log 24 a c b d ==,若a - c =9,b - d =__________. 11、将八个半径都为1的球分两层放置在一个圆柱内,并使得每个球和其相邻的四个球相切,且与圆柱的一个底面及侧面都相切,则此圆柱的高等于__________. 12、设M n ={(十进制)n 位纯小数0.12 |n i a a a a 只取0或1(i =1,2,…,n -1) ,a n =1},

高中数学竞赛校本教材[全套](共30讲

高中数学竞赛校本教材[全套](共30讲,含详细答 案) 目录 §1数学方法选讲(1) (1) §2数学方法选讲(2) (11) §3集合 (22) §4函数的性质 (30) §5二次函数(1) (41) §6二次函数(2) (55) §7指、对数函数,幂函数 (63) §8函数方程 (73) §9三角恒等式与三角不等式 (76) §10向量与向量方法 (85) §11数列 (95) §12递推数列 (102) §13数学归纳法 (105) §14不等式的证明 (111) §15不等式的应用 (122) §16排列,组合 (130) §17二项式定理与多项式 (134) §18直线和圆,圆锥曲线 (143) §19立体图形,空间向量 (161)

§20平面几何证明 (173) §21平面几何名定理 (180) §22几何变换 (186) §23抽屉原理 (194) §24容斥原理 (205) §25奇数偶数 (214) §26整除 (222) §27同余 (230) §28高斯函数 (238) §29覆盖 (245) §29涂色问题 (256) §30组合数学选讲 (265) §1数学方法选讲(1) 同学们在阅读课外读物的时候,或在听老师讲课的时候,书上的例题或老师讲解的例题他都能听懂,但一遇到没有见过面的问题就不知从何处入手。看来,要提高解决问题的能力,要能在竞赛中有所作为,首先得提高分析问题的能力,这就需要学习一些重要的数学思想方法。 例题讲解 一、从简单情况考虑 华罗庚先生曾经指出:善于“退”,足够的“退”,退到最原始而又不失去重要性的地方,是学好数学的一个诀窍。从简单情况考虑,就是一种以退为进的一种解题策略。1. 两人坐在一张长方形桌子旁,相继轮流在桌子上放入同样大小的硬币。条件是硬币一定要平放在桌子上,后放的硬币不能压在先放的硬币上,直到桌子上再也放不下一枚硬币为止。谁放入了最后一枚硬币谁获胜。问:先放的人有没有必定取胜的策略?

《怎样求动点的轨迹方程2》教学设计方案

教学目标使学生, 在一轮复习的基础上,进 掌握和熟练运用求轨迹方程的常用方法。培养思 维的灵活性和严密性进一步渗透“数形结合”的 思想以完成本课的教学任务,我设计两种教学方 案(一种是总案教学设计,别一是分案分教案和 学案),从问题的引出,复习的目标 /高考导向、 前提测评(预习检测)达标导学用例题 2个达标 测评小结:知识要点,形象的展示了知识的精 华. 1. 求动点的轨迹方程的常见方法: 2. 求动点的轨迹方程的方法的恰当选择 《怎样求动点的轨迹方程》教学设计方案 课题名称 科―目 教学时间 《怎样求动点的轨迹方程》 数学 P 级 1课时 I 高三 、情感态度与价值观 1. 通过设置丰富的问题情境,鼓励学生从多角度思考、探索、交流, 激发学生的好奇心和主动学习的欲望; 2. 对数学中怎样求动点的轨迹方程的相关知识感兴趣,能够结合自 己的生活编出一道隐求动点的轨迹方程知识的数学题。 、过程与方法 教学目标 1. 初步能够从数学角度去观察事物,思考问题,体验解决问题方法 策略的多样性; 2. 经历将实际问题抽象为动点的轨迹方程方程模型的过程,体会 方程是刻画现实世界的有效数学模型和数学建模思想; 三、知识与技能. 1. 在一轮复习的基础上,进一步掌握和熟练运用求轨迹方程的常 用方法。 2. 培养思维的灵活性和严密性 3. 进一步渗透“数形结合”的思想 教材分析 为了完成高三第二轮专题复习中的曲线轨迹方程 教学重点、 难点

《怎样求动点的轨迹方程》教案 学校普格中学科目数学年级高三姓名黄鸿志课题怎样求动点的轨迹方程课型复习课 教学目标教学重点1、 2、 3、 识记:进一步掌握和熟练运用求轨迹方程的常用方法。 理解:“数形结合”的思想 应用:培养思维的灵活性和严密性 求动点轨迹的常用方法,重点强调相关点法

16高中数学奥林匹克竞赛训练题(2)编辑版

高中数学奥林匹克竞赛训练题(02) 第一试 一、选择题(本题满分30分,每小题5分) 1.(训练题07)十个元素组成的集合.的所有非空子集记为,每一非空子集中所有元素的乘积记为.则(C). (A)0 (B)1 (C) -1 (D)以上都不对 2.(训练题07)△ABC的三个内角依次成等差数列,三条边上的高也依次成等差数列.则为(B) (A)等腰但不等边三角形(B)等边三角形(C)直角三角形(D)钝角非等腰三角形 3.(训练题07)对一切实数,不等式恒成立.则的取值范围是(A) (A)(B) (C) (D) 4.(训练题07)若空间四点满足,则这样的三棱锥共有(A)个. (A)0 (B)1 (C)2 (D)多于2 5.(训练题07)已知不等式时恒成立,则的取值范围是(B) (A)(B) (C) (D) 6.(训练题07)方程在复数集内根的个数为.则(C) (A)最大是2 (B)最大是4 (C)最大是6 (D)最大是8 二、填空题(本题满分30分,每小题5分) 1.(训练题07)函数的值域是________ 2.(训练题07)已知椭圆,焦点为,,为椭圆上任意一点(但点不在x轴上),的内心为,过作平行于轴的直线交于.则________. 3.(训练题07)为的三个内角, 且.则_____. 4.(训练题07)实数满足.则的最小值是____. 5.(训练题07)在一次足球冠军赛中,要求每一队都必须同其余的各个队进行一场比赛,每场比赛胜队得2分,平局各得1分,败队得0分.已知有一队得分最多,但它胜的场次比任何一队都少.若至少有队参赛,则=__6____. 6.(训练题07)若是一个完全平方数,则自然数14 . 三、(训练题07)(本题满分20分)若正三棱锥底面的一个顶点与其所对侧面的重心距离为4,求这个正三棱锥的体积的最大值.(18) 四、(训练题07)(本题满分20分)一个点在轴上运动的速度为2米/秒,在平面其它地方速度为1米/秒.试求该点由原点出发在1秒钟内所能达到的区域的边界线. 五、(训练题07)(本题满分20分)已知为虚数,且是方程的实根.求实数的取值范围.() 第二试 一、(训练题07)(本题满分20分)在中,为边上的任一点,于,于,交于. 求证:. 二、(训练题07)(本题满分35分)用个数(允许重复)组成一个长为的数列,且.证明:可

相关文档
最新文档