分式与分式方程综合练习与答案解析

分式与分式方程综合练习与答案解析
分式与分式方程综合练习与答案解析

分式及分式方程综合练习

一、选择题:

1.分式1

322--+x x x 的值为0,则x 的值为 ( ) A. x=-3 B. x=1 C. x=-3或 x=3 D. x=-3或 x=1

2.若关于x 的方程2

22-=-+x m x x 有增根,则m 的值与增根x 的值分别是( ) =-4,x=2 B. m=4,x=2 C. m=-4,x=-2 D. m=4,x=-2

3.若已知分式

96122+---x x x 的值为0,则x -2的值为 ( ) A. 91或-1 B.

91或1 C.-1 4.如果分式33

--x x 的值为1,则x 的值为 ( )

A. x ≥0

B. x>3

C. x ≥0且x ≠3

D. x ≠3

5.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙

志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志

愿者计划完成此项工作的天数是 ( )

A .8 B.7 C .6 D .5

6.在同一段路上,某人上坡速度为a ,下坡速度为b ,则该人来回一趟的平均速

度是 ( )

A .a

B .b

C .2b a +

D .b

a 2a

b + 二、填空题

7、已知

4

32z y x ==,则=+--+z y x z y x 232 。 8.已知,2x 1-x =则代数式22x 1x +的值为 9.已知113x y -=,则代数式21422x xy y x xy y

----的值为 。 10.当m = 时,关于x 的分式方程213x m x +=--无解。 11.若关于x 的分式方程311x a x x

--=-无解,则a = 。

12.若方程

42123=----x

x x 有增根,则增根是 . 13.如果b a b a +=+111,则=+b a a b . 14.已知2

3=-+y x y x ,那么xy y x 22+= . 15.全路全长m 千米,骑自行车b 小时到达,为了提前1小时到达,自行车每小时应多走 千米.

三、计算题

16、解方程 ⑴ x x 523=- ⑵ 6

25--=-x x x x

⑶ 2-x -313-x x -2= ⑷ 1132422x x

+=--

17.已知12,4-=-=+xy y x ,求1

111+++++y x x y 的值;

18.求)

1999)(1998(1.....)3)(2(1)2)(1(1)1(1+++++++++++x x x x x x x x 的值,并求当x=1时,该代数式的值.

19.已知21

x x x -+=5,求2421x x x ++的值。

20.已知2410x x -+=,求441x x +

的值。

21.设1=abc ,求

111

a b c ab a bc b ca c ++++++++的值。

22.已知M =2

22y x xy -、N =2222y x y x -+,其中x :y=5:2,求: M – N 的值。

23. 某校师生到距学校20千米的公路旁植树,甲班师生骑自行车先走45分钟后,乙班的师生乘汽车出发,结果两班师生同时到达.已知汽车的速度是自行车速度的倍,求两种车的速度各是多少

24.某校原有600张旧课桌急需维修,经过A 、B 、C 三个工程队的竞标得知,A 、B 的工作效率相同,且都为C 队的2倍,若由一个工程队单独完成,C 队比A 队要多用10天.学校决定由三个工程队一齐施工,要求至多6天完成维修任务.三个工程队都按原来的工作效率施工2天时,学校又清理出需要维修的课桌360张,为了不超过6天时限,工程队决定从第3天开始,各自都提高工作效率,A 、B 队提高的工作效率仍然都是C 队提高的2倍.这样他们至少还需要3天才能成整个维修任务.

⑴求工程队A 原来平均每天维修课桌的张数;

⑵求工程队A 提高工作效率后平均每天多维修课桌张数的取值范围.

25.北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000

元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.

(1)该商场两次共购进这种运动服多少套

(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元(利润率100%=?利润成本

26.某工程,甲工程队单独做40天完成,若乙工程队单独做30天后,甲、乙两

工程队再合作20天完成.

(1)求乙工程队单独做需要多少天完成

(2)将工程分两部分,甲做其中一部分用了x 天,乙做另一部分用了y 天,

其中x 、y 均为正整数,且x<15,y<70,求x 、y..

27.某公司为了扩大经营,决定购进6台机器用于生产某种活塞。现有甲、乙两

种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所34万元.

(1)按该公司要求可以有几种购买方案 (2)若该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择哪种

方案

一、选择题

1、A

2、B

3、D

4、C

5、A

6、D

二、填空题

7、43 8、6 9、4 10、-6 11、1 12、x=2 13、-1 14、526 15、)

(1-b b m 三、计算

16、(1)x=5 (2)x=10 (3)无解 (4)x=-5

17、-15

34 18、)1999(1999+x x ,20001999 (提示:将)1(1+x x 拆成111+-x x …)

19、12+-x x x =5,∴5112=+-x x x ∴x-1+x 1=51 ∴x+x 1=56 ∴2514122-=+x

x ∴原式=112525

14111

1x 1

22=-=++x 20、x 2-4x+1=0 ∴x+

x 1=4 ∴x 2+142-x 1x x 122=+=)( ∴原式= x 2+2

x 1-2 =14-2 =12 21、原式=1111111=++++=++++++++bc

b b

c b b bc bc b bc b bc b 22、x:y=5:2 所以y=x 52 M-N=73))(()(xy 222222-=+-=-+--=---y x x y y x y x y x y

x y x 23、45分钟=3/4小时

解:设自行车的速度为x 千米/小时,则汽车的速度为千米/小时

依题意列方程:

20/x-20/()=3/4

x=16 所以=16×=40

自行车的速度为16千米/小时,汽车的速度为40千米/小时。

%2068000

32000≥+ 解这个不等式,得y≥200,

所以每套运动服的售价至少是200元.

由题意,得7x+5(6-x)≤34

解不等式,得x≤2,

故x可以取0,1,2三个值

所以,该公司按要求可以有以下三种购买方案:

方案一:不购买甲种机器,购买乙种机器6台;

方案二:购买甲种机器1台,购买乙种机器5台;

方案三:购买甲种机器2台,购买乙种机器4台;

(2)按方案一购买机器,所耗资金为30万元,日产量6×60= 360(个);

按方案二购买,资金为1×7+5×5=32(万元),日产量为1×100+5×60=400(个),按方案三购买,资金为2×7+4×5=34(万元);日产量为2×100+4×60=440(个)因此,选择方案二既能达到生产能力不低于380(个),又比方案三节约2万元资金,故应选择方案二。

八年级数学下册《分式第二讲分式方程》知识点及典型例习题.doc

【知识要点】 1. 分式方程的概念以及解法 ; 2. 分式方程产生增根的原因 3. 分式方程的应用题 【主要方法】 2. 1. 分式方程主要是看分母是否有外未知数 ; 解分式方程的关健是化分式方程为整式方程 ; 方程两边同乘以最简公分 母. 3. 解分式方程的应用题关健是准确地找出等量关系, 恰当地设末知数 . 2019-2020 年八年级数学下册《分式第二讲 分式方程》知识点和典型例习题 题型一:用常规方法解分式方程 【例 1】解下列分式方程 ( 1) 1 3 ;( 2) 2 1 0 ;( 3) x 1 4 1 ;( 4) 5 x x 5 x 1 x x 3 x x 1 x 2 1 x 3 4 x 提示易出错的几个问题: ①分子不添括号;②漏乘整数项;③约去相同因式至使漏根; ④忘 记验根 . 题型二:特殊方法解分式方程 【例 2】解下列方程 ( 1) x 4 x 4 4 ; ( 2) x 7 x 9 x 10 x 6 x 1x x 6 x 8 x 9 x 5 提示:( 1)换元法,设 x y ;( 2)裂项法, x 7 1 1 . x 1 x 6 x 6 【例 3】解下列方程组 1 1 1 (1) x y 2 1 1 1 (2) y z 3 1 1 1 (3) z x 4 题型三:求待定字母的值 【例 4】若关于 x 的分式方程 2 1 m 有增根,求 m 的值 . x 3 x 3

【例 5】若分式方程 2 x a 1的解是正数,求 a 的取值范围 . x 2 提示: 2 a 0 且 x 2 , a 2 且 a 4 . x 3 题型四:解含有字母系数的方程 【例 6】解关于 x 的方程 x a c b x d (c d 0) 提示:( 1) a, b, c, d 是已知数;( 2) c d 0 . 题型五:列分式方程解应用题 练习: 1.解下列方程: ( 1) x 1 2x 0 ; (2) x 2 4 ; x 1 1 2x x 3 x 3 ( 3) 2x 3 2 ; (4) 7 3 1 7 x 2 x 2 x 2 x 2 x x x 2 x 2 1 ( 5) 5x 4 2x 5 1 (6) 1 1 1 1 2x 4 3x 2 2 x 1 x 5 x 2 x 4 ( 7) x x 9 x 1 x 8 x 2 x 7 x 1 x 6 2.解关于 x 的方程: ( 1) 1 1 2 (b 2a) ;( 2) 1 a 1 b (a b) . a x b a x b x 3.如果解关于 x 的方程 k 2 x 会产生增根,求 k 的值 . x 2 x 2 4.当 k 为何值时,关于 x 的方程 x 3 (x k 2) 1 的解为非负数 . x 2 1)( x 5.已知关于 x 的分式方程 2a 1 a 无解,试求 a 的值 . x 1 (二)分式方程的特殊解法 解分式方程,主要是把分式方程转化为整式方程,通常的方法是去分母,并且要检验, 但对一些特殊的分式方程,可根据其特征,采取灵活的方法求解,现举例如下: 一、交叉相乘法 例 1.解方程: 1 x 3 x 2 二、化归法 例 2.解方程: 1 2 0 1 x 2 x 1

分式典型易错题难题

分式一 分式的概念 一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子A B 叫做分式. 整式与分式统称为有理式. 在理解分式的概念时,注意以下三点: ⑴分式的分母中必然含有字母; ⑵分式的分母的值不为0; ⑶分式必然是写成两式相除的形式,中间以分数线隔开. 与分式有关的条件 ①分式有意义:分母不为0(0B ≠) ②分式无意义:分母为0(0B =) ③分式值为0:分子为0且分母不为0(? ??≠=00 B A ) ④分式值为正或大于0:分子分母同号(?? ?>>00B A 或???<<0 B A ) ⑤分式值为负或小于0:分子分母异号(???<>00B A 或? ??><00 B A ) ⑥分式值为1:分子分母值相等(A=B ) ⑦分式值为-1:分子分母值互为相反数(A+B=0) 增根的意义: (1)增根是使所给分式方程分母为零的未知数的值。 (2)增根是将所给分式方程去分母后所得整式方程的根。 一、分式的基本概念 【例1】 在下列代数式中,哪些是分式?哪些是整式? 1t ,(2)3x x +,2211x x x -+-,24x x +,52a ,2m ,21321 x x x +--,3πx -,32 3a a a + 【例2】 代数式2222 1131321223 x x x a b a b ab m n xy x x y +--++++, ,,,,,,中分式有( ) A.1个 B.1个 C.1个 D.1个 练习: 下列代数式中:y x y x y x y x b a b a y x x -++-+--1 , ,,21,2 2 π,是分式的有:. 二、分式有意义的条件

分式题型易错题难题大汇总

分式单元复习 (一)、分式定义及有关题型 一、分式的概念: 形如 B A (A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式。 概念分析:①必须形如“B A ”的式子;②A 可以为单项式或多项式,没有其他的限制; ③B 可以为单项式或多项式,但必须含有字母。... 例:下列各式中,是分式的是 ①1+ x 1 ②)(21y x + ③3x ④x m -2 ⑤3-x x ⑥1394y x + ⑦π x 练习:1、下列有理式中是分式的有( ) A 、 m 1 B 、162y x - C 、xy x 7151+- D 、5 7 2、下列各式中,是分式的是 ① x 1 ②)(21y x + ③3x ④x m -2 ⑤3-x x ⑥13 94y x + ⑦πy +5 1、下列各式:()x x x x y x x x 2 225 ,1,2 ,34 ,151+---π其中分式共有( )个。 A 、2 B 、3 C 、4 D 、5 二、有理式:整式和分式统称有理式。 即:? ?????? ?分式 多项式单项式整式有理式 例:把下列各有理式的序号分别填入相应的横线上 ① 2 1x ②) (51y x + ③x -3 ④0 ⑤3a ⑥c ab 12+ ⑦y x +2 整式: ;分式 。 ①分式有意义:分母不为0(0B ≠) ②分式无意义:分母为0(0B =) ③分式值为0:分子为0且分母不为0(? ??≠=00 B A ) ④分式值为正或大于0:分子分母同号(?? ?>>00B A 或???<<0 B A )

⑤分式值为负或小于0:分子分母异号(???<>00B A 或???><0 B A ) ⑥分式值为1:分子分母值相等(A=B ) ⑦分式值为-1:分子分母值互为相反数(A+B=0) ⑧分式的值为整数:(分母为分子的约数) 例:当x 时,分式 22 +-x x 有意义;当x 时,2 2-x 有意义。 练习:1、当x 时,分式 6 53 2 +--x x x 无意义。 8.使分式 ||1 x x -无意义,x 的取值是( ) A .0 B .1 C .1- D .1± 2、分式 5 5+x x ,当______x 时有意义。 3、当a 时,分式 3 21 +-a a 有意义. 4、当x 时,分式 22 +-x x 有意义。 5、当x 时, 2 2-x 有意义。 分式 x -- 1111有意义的条件是 。 4、当x 时,分式 43 5 x x +-的值为1; 2.(辨析题)下列各式中,无论x 取何值,分式都有意义的是( ) A .121x + B .21x x + C .2 31 x x + D .2221x x + (7)当x 为任意实数时,下列分式一定有意义的是( ) A. 23 x + B.212x - C.1x D. 21 1x + 四、分式的值为零说明:①分式的分子的值等于零;②分母不等于零 例1:若分式2 4 2+-x x 的值为0,那么x 。 例2 . 要使分式 9 632+--x x x 的值为0,只须( ). (A )3±=x (B )3=x (C )3-=x (D )以上答案都不对

【精品】分式方程的几种特殊解法

【关键字】精品 分式方程的几种特殊解法 白云中学:孙权兵 解分式方程的一般步骤:(1)去分母,化分式方程为整式方程;(2)解整式方程;(3)检验,判断所求整式方程的解是否是原分式方程的解。但在具体求解时却不能死搬硬套,尤其是在解某些特殊的分式方程时,应能根据方程的特点,采用灵活多变的解法,并施以适当的技巧,才能避繁就简,巧妙地将题目解出。下面举例谈谈解分式方程的几种特殊技巧。 一、加减相消法。 例1、解方程:。 分析:若直接去分母固然可以求出该题的解,但并不是最佳解题方法。如果我们发现方程两边都加上分式,则可以通过在方程两边都加上分式,就将原方程化简成,从而轻松获解。 解:原方程两边都加上,则可得: 去分母,得: 解得: 经检验,是原分式方程的解。 二、巧用合比性质法。 例2:解方程:。 分析:若我们能发现方程两边的分式的分子比分母都多1的话,则可以利用合比性质将分子化为1,从而可以轻易将方程的解求出。 解:由合比性质可得: 去分母并化简得:,即 解得: 经检验,是原分式方程的解。 三、巧用等比性质法。 例3、解方程:。 分析:该方程两边的分式的分子之差和分母之差都是常数,故可考虑先用等比性质将原

方程化简后再求解。 解:由等比性质可得:。 化简得: 经检验,是原分式方程的解。 四、分组化简法。 例4、解方程:。 分析:此方程若直接通分将会出现高次方程,并且运算过程十分复杂,做法不可取。此题可采用分组组合后各自通分的方法来求解。 解:原方程可化为: 分别通分并化简,得: 解得: 经检验,是原分式方程的解。 五、倒数法。 例5、解方程:。 分析:本题若按常规方法去做,需通分和去分母,然后再求解,过程较复杂。但如果采用倒数法,则可以简化解题过程。 解:原方程两边取倒数,得: 移项化简,得: 方程两边取倒数,得: 解得: 经检验,是原分式方程的解。 六、列项变形法。 例6、解方程:。 分析:将该方程直接去分母,方程两边的运算十分繁杂。若注意到方程的分母特点是两个连续因式的积,它们的差为1。凡是这样的分式或分数都能拆开成两个分式或分数的差,使得除首、末两项之外的中间项可以相互抵消,从而达到化繁为简。。

分式典型易错题难题

分式一 分式的概念 一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子A B 叫做分式. 整式与分式统称为有理式. 在理解分式的概念时,注意以下三点: ⑴分式的分母中必然含有字母; ⑵分式的分母的值不为0; ⑶分式必然是写成两式相除的形式,中间以分数线隔开. 与分式有关的条件 ①分式有意义:分母不为0(0B ≠) : ②分式无意义:分母为0(0B =) ③分式值为0:分子为0且分母不为0(?? ?≠=0 B A ) ④分式值为正或大于0:分子分母同号(?? ?>>00B A 或???<<00 B A ) ⑤分式值为负或小于0:分子分母异号(?? ?<>00B A 或???><0 B A ) ⑥分式值为1:分子分母值相等(A=B ) ⑦分式值为-1:分子分母值互为相反数(A+B=0) 增根的意义: (1)增根是使所给分式方程分母为零的未知数的值。 (2)增根是将所给分式方程去分母后所得整式方程的根。 . 一、分式的基本概念 【例1】 在下列代数式中,哪些是分式哪些是整式 1t ,(2)3x x +,2211x x x -+-,24x x +,52a ,2m ,21321 x x x +--,3πx -,32 3a a a + 【例2】 代数式2222 1131321223 x x x a b a b ab m n xy x x y +--++++, ,,,,,,中分式有( ) & 个 个 个 个 练习: 下列代数式中:y x y x y x y x b a b a y x x -++-+--1 , ,,21,22π,是分式的有: .

分式题型易错题难题大汇总完整版

分式题型易错题难题大 汇总 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

分式单元复习 (一)、分式定义及有关题型 一、分式的概念: 形如 B A (A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式。 概念分析:①必须形如“ B A ”的式子;②A 可以为单项式或多项式,没有其他的限制; ③B 可以为单项式或多项式,但必须含有字母。... 例:下列各式中,是分式的是 ①1+ x 1 ②)(21y x + ③3x ④x m -2 ⑤3-x x ⑥1394y x + ⑦π x 练习:1、下列有理式中是分式的有( ) A 、 m 1 B 、162y x - C 、xy x 7151+- D 、5 7 2、下列各式中,是分式的是 ①x 1 ②)(21y x + ③3x ④x m -2 ⑤3-x x ⑥13 94y x + ⑦πy +5 1、下列各式:()x x x x y x x x 2 225 ,1,2 ,34 ,151+---π其中分式共有( )个。 A 、2 B 、3 C 、4 D 、5 二、有理式:整式和分式统称有理式。

即:? ?????? ?分式 多项式单项式整式有理式 例:把下列各有理式的序号分别填入相应的横线上 ① 2 1x ②)(51y x + ③x -3 ④0 ⑤3a ⑥c ab 12+ ⑦y x +2 整式: ;分式 。 ①分式有意义:分母不为0(0B ≠) ②分式无意义:分母为0(0B =) ③分式值为0:分子为0且分母不为0(???≠=0 B A ) ④分式值为正或大于0:分子分母同号(???>>00B A 或???<<00 B A ) ⑤分式值为负或小于0:分子分母异号(???<>00B A 或???><00 B A ) ⑥分式值为1:分子分母值相等(A=B ) ⑦分式值为-1:分子分母值互为相反数(A+B=0) ⑧分式的值为整数:(分母为分子的约数) 例:当x 时,分式 22 +-x x 有意义;当x 时,2 2-x 有意义。

分式方程解法的标准

分式方程解法的标准 一,内容综述: 1.解分式方程的基本思想 在学习简单的分式方程的解法时,是将分式方程化为一元一次方程,复杂的(可化为一元二次方程)分式方程的基本思想也一样,就是设法将分式方程"转化"为整式方程.即 分式方程整式方程 2.解分式方程的基本方法 (1)去分母法 去分母法是解分式方程的一般方法,在方程两边同时乘以各分式的最简公分母,使分式方程转化为整式方程.但要注意,可能会产生增根.所以,必须验根. 产生增根的原因: 当最简公分母等于0时,这种变形不符合方程的同解原理(方程的两边都乘以或除以同一个不等于零的数,所得方程与原方程同解),这时得到的整式方程的解不一定是原方程的解. 检验根的方法: 将整式方程得到的解代入原方程进行检验,看方程左右两边是否相等. 为了简便,可把解得的根直接代入最简公分母中,如果不使公分母等于0,就是原方程的根;如果使公分母等于0,就是原方程的增根.必须舍去. 注意:增根是所得整式方程的根,但不是原方程的根,增根使原方程的公 分母为0. 用去分母法解分式方程的一般步骤: (i)去分母,将分式方程转化为整式方程; (ii)解所得的整式方程; (iii)验根做答 (2)换元法 为了解决某些难度较大的代数问题,可通过添设辅助元素(或者叫辅助未知数)来解决.辅助元素的添设是使原来的未知量替换成新的未知量,从而把问题化繁为简,化难为易,使未知量向已知量转化,这种思维方法就是换元法.换元法是解分式方程的一种常用技巧,利用它可以简化求解过程. 用换元法解分式方程的一般步骤: (i)设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数 式; (ii)解所得到的关于辅助未知数的新方程,求出辅助未知数的值; (iii)把辅助未知数的值代回原设中,求出原未知数的值; (iv)检验做答. 注意:(1)换元法不是解分式方程的一般方法,它是解一些特殊的分式方程的特殊

特殊分式方程的几种特殊解法

特殊分式方程的几种特殊解法 解分式方程最常用的方法是去分母法,把分式方程化为整式方程,以之求解的过程, 但在一些具体方程中,若用去分母的方法,其未知数的次数会增大,运算复杂,计算量加 大,易出现错误,因此要善于观察具体方程的特点,对一些特殊分式方程,采用特殊方法, 会简化解题过程。 一 ?比例法 x 1 a b 例1.解方程 (b 0) x 1 a b A D 分式:观察方程,形如: 的形式,可根据比例"两外项之积等于两内项之积” B C 而直接求解。 解:原方程化为 (x 1)(a b) (a b)(x 1) 2a a x b 2 3x 3 2x 3x 1 2x 2 解:原方程化为 (2 3x)(2x 2) (3 2x)(3x 整理得13x 7, 7 x 13 经检验x —是原方程的根。 13 二.换元法 y 3 4y 8 例3.解方程 y 2 y 3 分析:本题若移项,形如— D ,如果用比例法则去分母后方程变为 B C 2 3y 24y 7 0,对一元二次方程我们还不能求解。因此,经观察发现 8 4 匚2,其中匚2与丄虫互为倒数关系,可利用换元法简便求解。 y 3 y 3 y 3 y 2 解:设'一3 A ,则原方程变形为 y 2 整理得2bx b 0, 例2.解方程: 1)

4 A 0 A 整理得A 2 4 A 2 y 3 当A 2时, 2,解得y i 7 ; y 2 当A 2时,乂卫 2,解得y y 3 3 1 、 经检验,y 1 7, y 2 都是原方程的解。 3 例4.解方程组 3 2 5 (1) x y x y 1 4 4 ⑵ y x x y 分析:方程(1),( 2)中都含有 --------------- x y 1 i 设 a , b x y x y 则方程组变形为 3b 2a 5 b 4a 4 解这个二元一次方程组, 1 1 求出a 、b 的值,代入 禾口 中,即可解出x , y 的值。 x y x y 三.倒数法 关系,可有下面解法。 解: x - 2,或x 1 4 4 因此可运用换元法, 例5.已知:x - x 分析:已知条件中, 1 ~2 x , 1 —互为倒数2- 2 21,求 x 2 2 1 ......... x , x 2 -,其中 2 2, 1 —互为倒数关系,利用此 2 1 ~~2 x 例6. 解方程: 2x 3x 2 17 分析: 3x 2 方程的左边两项为倒数之和, 2x 1 4 因此可用倒数法简化求解,

二次根式单元 易错题难题检测试卷

一、选择题 1.下列二次根式中,是最简二次根式的是( ) A . 15 B .8 C . 13 D .26 2.若3x +在实数范围内有意义,则x 的取值范围是( ) A .x >3 B .x >-3 C .x≥-3 D .x≤-3 3.已知x 1=3+2,x 2=3-2,则x?2+x?2等于( ) A .8 B .9 C .10 D .11 4.下列式子一定是二次根式的是 ( ) A .2a B .-a C .3a D .a 5.设a 为3535+--的小数部分,b 为633633+--的小数部分,则 21 b a -的值为( ) A .621+- B .621-+ C .621-- D .621++ 6.若化简1682+-x x -1x -的结果为5-2x ,则x 的取值范围是( ) A .为任意实数 B .1≤x≤4 C .x≥1 D .x≤4 7.实数a ,b 在数轴上的位置如图所示,则化简﹣ +b 的结果是 ( ) A .1 B .b+1 C .2a D .1﹣2a 8.已知0xy <,化简二次根式2 y x - ) A y B y - C .y - D .y -- 9.() 2 3- A .﹣3 B .3 C .﹣9 D .9 10.1272a -是同类二次根式,那么a 的值是( ) A .﹣2 B .﹣1 C .1 D .2 二、填空题 11.设42 a,小数部分为 b.则1 a b - = __________________________. 12.已知实数,x y 满足(2 22008 20082008x x y y --=,则 2232332007x y x y -+--的值为______.

分式方程的解法与技巧_知识精讲

分式方程的解法与技巧 【典型例题】 1. 局部通分法: 例1. 解方程:x x x x x x x x -----=-----34456778 分析:该方程的特点是等号两边各是两个分式,相邻两个分式的分子与分子,分母与分母及每个分式的分子与分母都顺序相差1,象这类通常采取局部通分法。 解:方程两边分别通分并化简,得: 145178()()()() x x x x --=-- 去分母得:()()()()x x x x --=--4578 解之得:x =6 经检验:x =6是原分式方程的根。 点拨:此题如果用常规法,将出现四次项且比较繁,而采用局部通分法,就有明显的优越性。 但有的时候采用这种方法前需要考虑适当移项,组合后再进行局部通分。 2. 换元法: 例2. 解方程: 7643165469222x x x x x x ----+=--+ 分析:此方程中各分式的分母都是含未知数x 的二次三项式,且前两项完全相同,故可考虑用换元法求解。令或或或k x x k x x k x x =--=-+=-+222646569 k x x =-26均可。 解:设,则原方程可化为:k x x =-+265 793144k k k --=-+ 去分母化简得:20147111602k k --= ∴()()k k -+=1220930 ∴,k k ==-129320 当时,k x x =--=126702 ()()x x -+=710 解之得:,x x 1217=-=

当时,k x x =--+=-93206593202 2012019302x x -+= 解此方程此方程无解。 经检验:,是原分式方程的根。x x 1217=-= 点拨:换元法解分式方程,是针对方程实际,正确而巧妙地设元,达到降次,化简的目的,它是解分式方程的又一重要的方法,本题还有其它的设法,同学们可自己去完成。 3. 拆项裂项法: 例3. 解方程: 12442212x x x x ++-+-= 分析:这道题虽然可用通分去分母的常规解法,但若将第二项拆项、裂项,则更简捷。 解:原方程拆项,变形为: ()()()()12222222221x x x x x x ++++-+---= 裂项为: 122222221x x x x ++-++--= 化简得:321x += 解之得:x =1 经检验:x =1是原分式方程的解。 4. 凑合法: 例4. 解方程:x x x x 4143412 +-=--- 分析:观察此方程的两个分式的分母是互为相反数,考虑移项后易于运算合并,能使运算过程简化。 解:部分移项得: x x x x 4143412=--+--- ∴x x x x 4143412=------ ∴x 412= ∴x =2 经检验:x =2是原分式方程的根。

分式方程的特殊解法

分式方程的特殊解法 分式方程的解法除常规的去分母法和换元法之外,还有许多特殊的解法。 一、 分组通分法: 例1、 解方程 3 2411423---=---x x x x 分析:要整个方程一起通分,计算量大又易出错。观察方程中分母的特点可联想分组通分求解。 略解:方程两边分别通分,相减得 ) 3)(4(5)1)(2(5---=---x x x x x x 当05≠-x 时,)3)(4()1)(2(--=--x x x x ,解得2 51= x 当05=-x 时,解得52=x 经检验,2 51= x 52=x 都是原方程的解 二、 分离分式法: 例2、解方程43325421+++++=+++++x x x x x x x x 分析:每个分式的分母与分子相差1,利用这特点可采用分离分式法求解 略解:原方程可变形为 4 11311511211+-++-=+-++-x x x x 整理得 )4)(3(72)5)(2(72+++=+++x x x x x x 当072=+x 时,解得2 7- =x 当072≠+x 时,方程无解 经检验2 7- =x 是原方程的解 练习:② 6 5327621+++++=+++++x x x x x x x x 解:29-=x 三、 巧添常数 例3、解方程 33224411+-++-=+-++-x x x x x x x x 解析:同样若整体通分,次数增高,运算复杂,求解困难,而方程中每个分式的分子和分母都是相同两数的差与和,可在每个分式中添加常数“1”,会使问题柳暗花明,迅捷可解,可谓别有洞天. )133()122()144()111(++-+++-=++-+++-x x x x x x x x ,即:3 2224212+++=+++x x x x x x x x

分式方程的解法及应用(提高)知识讲解

分式方程的解法及应用(提高) 责编:杜少波 【学习目标】 1. 了解分式方程的概念和检验根的意义,会解可化为一元一次方程的分式方程. 2. 会列出分式方程解简单的应用问题. 【要点梳理】 【高清课堂分式方程的解法及应用知识要点】 要点一、分式方程的概念 分母中含有未知数的方程叫分式方程. 要点诠释:(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未知数. (2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母系数).分母中含有未知数的方程是分式方程,分母中不含有未知数 的方程是整式方程. (3)分式方程和整式方程的联系:分式方程可以转化为整式方程. 要点二、分式方程的解法 解分式方程的基本思想:将分式方程转化为整式方程.转化方法是方程两边都乘以最简公分母,去掉分母.在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根.因为解分式方程时可能产生增根,所以解分式方程时必须验根. 解分式方程的一般步骤: (1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母); (2)解这个整式方程,求出整式方程的解; (3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解. 要点三、解分式方程产生增根的原因 方程变形时,可能产生不适合原方程的根,这种根叫做原方程的增根. 产生增根的原因:去分母时,方程两边同乘的最简公分母是含有字母的式子,这个式子有可能为零,对于整式方程来说,求出的根成立,而对于原分式方程来说,分式无意义,所以这个根是原分式方程的增根. 要点诠释:(1)增根是在解分式方程的第一步“去分母”时产生的.根据方程的同解原理,方程的两边都乘以(或除以)同一个不为0的数,所得方程是原方 程的同解方程.如果方程的两边都乘以的数是0,那么所得方程与原方 程不是同解方程,这时求得的根就是原方程的增根. (2)解分式方程一定要检验根,这种检验与整式方程不同,不是检查解方程过程中是否有错误,而是检验是否出现增根,它是在解方程的过程中 没有错误的前提下进行的. 要点四、分式方程的应用 分式方程的应用主要就是列方程解应用题. 列分式方程解应用题按下列步骤进行: (1)审题了解已知数与所求各量所表示的意义,弄清它们之间的数量关系; (2)设未知数; (3)找出能够表示题中全部含义的相等关系,列出分式方程; (4)解这个分式方程;

解分式方程的特殊方法与技巧

分式方程意义及解法 一、内容综述: 1.解分式方程的基本思想 在学习简单的分式方程的解法时,是将分式方程化为一元一次方程,复杂的(可化为一元二次方程)分式方程的基本思想也一样,就是设法将分式方程“转化”为整式方程.即分式方程整式方程 2.解分式方程的基本方法 (1)去分母法 去分母法是解分式方程的一般方法,在方程两边同时乘以各分式的最简公分母,使分式方程转化为整式方程.但要注意,可能会产生增根。所以,必须验根。 产生增根的原因: 当最简公分母等于0时,这种变形不符合方程的同解原理(方程的两边都乘以或除以同一个不等于零的数,所得方程与原方程同解),这时得到的整式方程的解不一定是原方程的解. 检验根的方法: (1)将整式方程得到的解代入原方程进行检验,看方程左右两边是否相等。 (2)为了简便,可把解得的根直接代入最简公分母中,如果不使公分母等于0,就是原方程的根;如果使公分母等于0,就是原方程的增根。必须舍去.注意:增根是所得整式方程的根,但不是原方程的根,增根使原方程的公分母为0.

用去分母法解分式方程的一般步骤: (i)去分母,将分式方程转化为整式方程; (ii)解所得的整式方程; (iii)验根做答 (2)换元法 为了解决某些难度较大的代数问题,可通过添设辅助元素(或者叫辅助未知数)来解决.辅助元素的添设是使原来的未知量替换成新的未知量,从而把问题化繁为简,化难为易,使未知量向已知量转化,这种思维方法就是换元法.换元法是解分式方程的一种常用技巧,利用它可以简化求解过程. 用换元法解分式方程的一般步骤: (i)设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数式; (ii)解所得到的关于辅助未知数的新方程,求出辅助未知数的值; (iii)把辅助未知数的值代回原设中,求出原未知数的值; (iv)检验做答. 注意: (1)换元法不是解分式方程的一般方法,它是解一些特殊的分式方程的特殊方法。它的基本思想是用换元法把原方程化简,把解一个比较复杂的方程转化为解两个比较简单的方程。 (2)分式方程解法的选择顺序是先特殊后一般,即先考虑能否用换元法解,不能用换元法解的,再用去分母法。 (3)无论用什么方法解分式方程,验根都是必不可少的重要步骤。

分式方程的几种特殊解法

分式方程的几种特殊解法 白云中学:孙权兵 解分式方程的一般步骤:(1)去分母,化分式方程为整式方程; (2)解整式方程;(3)检验,判断所求整式方程的解是否是原分式方程的解。但在具体求解时却不能死搬硬套,尤其是在解某些特殊的分式方程时,应能根据方程的特点,采用灵活多变的解法,并施以适当的技巧,才能避繁就简,巧妙地将题目解出。下面举例谈谈解分式方程的几种特殊技巧。 一、加减相消法。 例1、解方程:2017 2018112017201811222++-=++-+x x x x x 。 分析:若直接去分母固然可以求出该题的解,但并不是最佳解题方法。如果我们发现方程两边都加上分式 2017 201812++x x ,则可以通过在方程两边都加上分式2017201812++x x ,就将原方程化简成112=+x ,从而轻松获解。 解:原方程两边都加上2017201812++x x ,则可得:11 2=+x 去分母,得:12+=x 解得:1=x 经检验,1=x 是原分式方程的解。 二、巧用合比性质法。

例2:解方程:7 81222++=++x x x x 。 分析:若我们能发现方程两边的分式的分子比分母都多1的话,则可以利用合比性质将分子化为1,从而可以轻易将方程的解求出。 解:由合比性质可得:7 7-811-2222+++=+++x x x x x x )()()()( ∴ 7 1112+=+x x 去分母并化简得:062=--x x ,即0)2)(3=+-x x ( 解得:23-==x x 或 经检验,23-==x x 或是原分式方程的解。 三、巧用等比性质法。 例3、解方程:1 3242344++=++x x x x 。 分析:该方程两边的分式的分子之差和分母之差都是常数,故可考虑先用等比性质将原方程化简后再求解。 解:由等比性质可得: 1324)13()23(2444++=+-++-+x x x x x x )()(。 ∴ 13242++= x x 化简得: 02=x ∴ 0=x 经检验,0=x 是原分式方程的解。

二次根式单元 易错题难题提高题学能测试

一、选择题 1.下列计算正确的是( ) A = B .2= C .(2 6 = D == 2.若01x <<=( ). A . 2x B .2x - C .2x - D .2x 3.下列等式正确的是( ) A 7=- B 3= C .5 D .= 4的倒数是( ) A B C . D .- 5.x 的取值范围是( ) A .0x < B .0x C .2x D .2x 6.下列各式中,不正确的是( ) A > D 5= 7.下列二次根式是最简二次根式的是( ) A B C D 8.下列运算正确的是( ) A = B .(2 8-= C 12 = D 1= 9.若 a = ,2b =+a b 的值为( ) A .1 2 B .1 4 C D 10.下列各式计算正确的是( ) A . 2 3= B 5=± C =D .3= 二、填空题

11.已知412x =-,则() 21142221x x x x -??+? = ?-+-??_________ 12.已知2216422x x ---=,则22164x x -+-=________. 13.(1)已知实数a 、b 在数轴上的位置如图所示,化简 () 2 22144a a ab b +--+=_____________; (2)已知正整数p ,q 满足32016p q +=,则整数对()p q , 的个数是_______________; (3)△ABC 中,∠A=50°,高BE 、CF 所在的直线交于点O,∠BOC 的度数__________. 14.若a ,b ,c 是实数,且21416210a b c a b c ++=-+-+--,则 2b c +=________. 15.对于任何实数a ,可用[a]表示不超过a 的最大整数,如[4]=4,[3]=1.现对72进行如下操作:72 [72]=8 [8]=2 2]=1,类似地,只需进行3次操作 后变为1的所有正整数中,最大的是________. 16.已知函数1 x f x x ,那么21 f _____. 17.已知1<x <2,1 71 x x + =-11x x --_____. 18.1112 2323 -=11113-23438??= ???11114-345415??= ???据上述各等式反映的规律,请写出第5个等式:___________________________. 19.计算: 2008 2009 2+3 23 ?-=_________. 20.36,3,2315, ,则第100个数是_______. 三、解答题 21.计算 (1)22131 13 a a a a a a +--+- +-; (2)已知a 、b 26a ++2b =0.求a 、b 的值 (3)已知abc =1,求111 a b c ab a bc b ac c ++++++++的值 【答案】(1)222 23 a a a ----;(2)a =-3, b 2;(3)1. 【分析】

分式及分式方程知识点总结

分式及分式方程 聚焦考点☆温习理解 一、分式 1、分式的概念 一般地,用A 、B 表示两个整式,A ÷B就可以表示成B A 的形式,如果B 中含有字母,式子B A 就叫做分式。其中,A叫做分式的分子, B 叫做分式的分母。分式和整式通称为有理式。 2、分式的性质 (1)分式的基本性质: 分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。 (2)分式的变号法则: 分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。 3、分式的运算法则 ;;bc ad c d b a d c b a bd ac d c b a =?=÷=? );()(为整数n b a b a n n n = ;c b a c b c a ±=± bd bc ad d c b a ±=± 二、分式方程 1、分式方程 分母里含有未知数的方程叫做分式方程。 2、分式方程的一般方法 解分式方程的思想是将“分式方程”转化为“整式方程”。它的一般解法是: (1)去分母,方程两边都乘以最简公分母 (2)解所得的整式方程 (3)验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根。

3、分式方程的特殊解法 换元法: 换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法。 名师点睛☆典例分类 考点典例一、分式的值 【例1】(2015·黑龙江绥化)若代数式6 265x 2-+-x x 的值等于0 ,则x=_________. 【点睛】分式6 265x 2-+-x x 的值为零则有x2-5x +6为0分母2x-6不为0,从而即可求出x 的值. 【举一反三】 1.要使分式x 1x 2 +-有意义,则x 的取值应满足( ) A. x 2≠ B. x 1≠- C. x 2= D. x 1=- 2.(2015·湖南常德)若分式211 x x -+的值为0,则x = 考点典例二、分式的化简 【例2】化简:2x x x 1x 1 ---=( ) A、0 B 、1 C 、x D、 1 x x - 【点睛】观察所给式子,能够发现是同分母的分式减法。利用同分母分式的减法法则计算即可得到结果. 【举一反三】 1.化简22 a b ab b a --结果正确的是【 】 2.若241()w 1a 42a +?=--,则w =( )

分式典型易错题难题

分式一 分式得概念 一般地,如果,表示两个整式,并且中含有字母,那么式子叫做分式. 整式与分式统称为有理式. 在理解分式得概念时,注意以下三点: ⑴分式得分母中必然含有字母; ⑵分式得分母得值不为0; ⑶分式必然就是写成两式相除得形式,中间以分数线隔开. 与分式有关得条件 ①分式有意义:分母不为0() ②分式无意义:分母为0() ③分式值为0:分子为0且分母不为0() ④分式值为正或大于0:分子分母同号(或) ⑤分式值为负或小于0:分子分母异号(或) ⑥分式值为1:分子分母值相等(A=B) ⑦分式值为-1:分子分母值互为相反数(A+B=0) 增根得意义: (1)增根就是使所给分式方程分母为零得未知数得值。 (2)增根就是将所给分式方程去分母后所得整式方程得根。 一、分式得基本概念 【例1】在下列代数式中,哪些就是分式?哪些就是整式? ,,,,,,,, 【例2】代数式中分式有( ) A、1个 B、1个 C、1个 D、1个 练习: 下列代数式中:,就是分式得有: 、 二、分式有意义得条件 【例3】求下列分式有意义得条件: ⑴⑵⑶⑷⑸⑹⑺ 【例4】⑴为何值时,分式有意义?⑵要使分式没有意义,求得值、 【例5】为何值时,分式有意义?为何值时,分式有意义? 【例6】若分式有意义,则; 若分式无意义,则; 【例7】⑴若分式有意义,则; ⑵若分式无意义,则; 练习: 当有何值时,下列分式有意义 1、(1) (2) (3) (4) (5) 2、要使分式有意义,则须满足得条件为. 3、若有意义,则( )、 A、无意义 B、有意义 C、值为0 D、以上答案都不对 4、为何值时,分式有意义? 三、分式值为零得条件 【例8】当为何值时,下列分式得值为0? ⑴⑵⑶⑷

因式分解及分式的计算练习题(题型全)

分式计算练习二 周案序 总案序 审核签字 一.填 空: 1.x 时,分式 4 2-x x 有意义; 当x 时,分式122 3+-x x 无意义; 2.当x= 时,分式 2 152x x --的值为零;当x 时,分式x x --11 2的值等于零. 3.如果b a =2,则2 222b a b ab a ++-= 4.分式ab c 32、bc a 3、ac b 25的最简公分母是 ; 5.若分式2 31 -+x x 的值为负数,则x 的取值范围是 . 6.已知2009=x 、2010=y ,则()??? ? ??-+?+4422y x y x y x = . 二.选 择: 1.在 31x+21y , xy 1 ,a +51 ,—4xy , 2x x , πx 中,分式的个数有( ) A 、1个 B 、2个 C 、3个 D 、4个 2.如果把 y x y 322-中的x 和y 都扩大5倍,那么分式的值( ) A 、扩大5倍 B 、不变 C 、缩小5倍 D 、扩大4倍 3.下列各式:()x x x x y x x x 2 225 ,1,2 ,34 ,151+---π其中分式共有( )个。 A 、2 B 、3 C 、4 D 、5 4.下列判断中,正确的是( )A 、分式的分子中一定含有字母 B 、当B=0时,分式B A 无意义 C 、当A=0时,分式B A 的值为0(A 、 B 为整式) D 、分数一定是分式 5.下列各式正确的是( ) A 、1 1++= ++b a x b x a B 、22 x y x y = C 、()0,≠=a ma na m n D 、a m a n m n --=

分式方程的解法及应用(提高)导学案+习题【含标准答案】

分式方程的解法及应用(提高) 【学习目标】 1. 了解分式方程的概念和检验根的意义,会解可化为一元一次方程的分式方程. 2. 会列出分式方程解简单的应用问题. 【要点梳理】 要点一、分式方程的概念 分母中含有未知数的方程叫分式方程. 要点诠释:(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未知数. (2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母 系数).分母中含有未知数的方程是分式方程,分母中不含有未知数的 方程是整式方程. (3)分式方程和整式方程的联系:分式方程可以转化为整式方程. 要点二、分式方程的解法 解分式方程的基本思想:将分式方程转化为整式方程.转化方法是方程两边都乘以最简公分母,去掉分母.在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根.因为解分式方程时可能产生增根,所以解分式方程时必须验根. 解分式方程的一般步骤: (1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母); (2)解这个整式方程,求出整式方程的解; (3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解. 要点三、解分式方程产生增根的原因 方程变形时,可能产生不适合原方程的根,这种根叫做原方程的增根. 产生增根的原因:去分母时,方程两边同乘的最简公分母是含有字母的式子,这个式子有可能为零,对于整式方程来说,求出的根成立,而对于原分式方程来说,分式无意义,所以这个根是原分式方程的增根. 要点诠释:(1)增根是在解分式方程的第一步“去分母”时产生的.根据方程的同解原理,方程的两边都乘以(或除以)同一个不为0的数,所得方程是原方程 的同解方程.如果方程的两边都乘以的数是0,那么所得方程与原方程 不是同解方程,这时求得的根就是原方程的增根. (2)解分式方程一定要检验根,这种检验与整式方程不同,不是检查解 方程过程中是否有错误,而是检验是否出现增根,它是在解方程的过程 中没有错误的前提下进行的. 要点四、分式方程的应用 分式方程的应用主要就是列方程解应用题. 列分式方程解应用题按下列步骤进行: (1)审题了解已知数与所求各量所表示的意义,弄清它们之间的数量关系; (2)设未知数; (3)找出能够表示题中全部含义的相等关系,列出分式方程; (4)解这个分式方程; (5)验根,检验是否是增根; (6)写出答案.

相关文档
最新文档