液压缸焊接工艺规范

液压缸焊接工艺规范
液压缸焊接工艺规范

徐州光环液压科技有限公司

液压缸焊接工艺规范

技术部

2012年12月5日

编制:审核:会签:液压缸焊接工艺规范

1.目的和适用范围

本规范规定了液压缸焊接件的技术要求及检验规则。

本规范适用于我公司所有液压缸焊接件的CO2/MAG气体保护焊及焊条手工电弧焊接。对有特殊要求的,可参照此规范或按相关技术协议执行。

2.本规范引用如下标准

GB/T 985 气焊、手工电弧焊焊及气体保护焊焊缝坡口的基本形式与尺寸

GB/T 3323-2005 钢溶化焊对接接头射线照相和质量分级

GB/T 金属溶化焊焊缝缺陷分类及说明

GB/T 8110 气体保护电弧焊用碳钢、低合金钢焊丝

GB/T 12469-1990 焊接质量保证钢熔化焊接头的要求和缺陷分级

GB/T 15830-1995 钢制管道对接环焊用技术条件

JB/T 6046 碳钢、低合金钢焊接构件缝超声波探伤方法和检验结果的分级

JB/T 5943-1991 工程机械焊接件通焊后热处理方法

XYG8-10 抽样检查方法

3.技术要求

. 液压缸焊接件的制造应符合经规定程序批准的产品图样及技术文件和本标准的规定

钢瓶的使用要求

常温(20 °C~50°C)下瓶装液态CO2压力应在5MPa以上,瓶中压力小于1MPa时不得再继续使用,不用时钢瓶应放完余气以备再次充装。

. 焊接件材料和焊接材料

用于焊接件的材料钢号、规格尺寸等应符合图样要求,检验合格后方可使用。常用钢号为Q235、20、35、45、27SiMn。

用于焊接的材料和焊接材料进厂时应按材料标准规定,检验合格后方可使用。

焊接材料选用应按工艺技术文件的规定,凡技术文件中未明确规定焊条、焊丝型号时,焊条型号为E5016;焊丝型号为ER50-6,如需高强度焊丝时应选用HO8Mn2SiMoA.焊丝应符合GB/T 8110标准。

焊条在施焊前必须烘干,烘干后的焊条在一天内使用,超过一天,必须重新烘干,烘干次数不得超过三次。

焊前要求

全部零件须检验合格后,方可组装。

组装焊接零件的焊缝坡口形式与尺寸及焊缝间隙应符合经规定程序批准的产品图样及技术文件。设计编制工艺要求符合GB/T 985的规定。

CO2或混合保护气体焊前必须放水提纯。

焊接前需将距焊缝边缘(不小于10mm)范围内焊接结构表面上的铁锈、油、油渍、尘土等杂物除净,并去除潮湿。焊丝、焊条无缺损及油污。

液压缸用油管、芯管、缸体等过油腔体施焊前,必须对管内外表面进行酸洗、磷化或喷砂处理除锈。

焊前预热处理

凡公称尺寸≥Ф200mm的45#钢材料必须进行焊道预热处理,预热温度为200°C~250°C。特殊要求除外。

焊接要求

定位焊采用的焊接规范应与正式焊接时相同

首次采用焊接的新牌号钢材、新焊条、新焊丝的焊接工艺、新的焊接方法等,必须在正式施焊前做出工艺评定,评定合格后方能施焊。

禁止在非焊缝区引弧,焊接工艺参数应符合工艺要求。

在焊接过程中对粗糙度要求以上的表面应加以保护。

对图样及工艺规程中焊接表示不明确的零件不得焊接,经技术部门相关人员解释后方可施焊。

焊后要求

焊后应去除焊瘤、焊渍、保证焊缝表面的平整,对于未清理焊缝的工件视为不合格品。

没有特殊要求的焊缝不得打掉余高。

除特殊部位需要焊后低温热处理的零件按工艺要求参数焊后热处理,其余需要焊后热处理的焊接件应符合JB/T 6046标准。

对有油口、接头座、油管、螺纹等的焊接件,应特别注意避免磕碰,按相应的防护工艺规范加以保护。

焊接接头缺陷根据GB/T 标准,将焊接缺陷分为六大类来判断:裂纹、孔穴、固体夹杂、未熔合和未焊透、形状缺陷、其他缺陷。根据GB/T 3323-2005标准中,按缺陷的性质、缺陷的尺寸及数量将焊缝质量分为Ⅰ、Ⅱ、Ⅲ、Ⅳ共四级(质量依次降低),按规定我厂液压缸焊接件的焊缝质量等级为不低于Ⅱ级。

液压缸常见焊接形式的焊缝收弧位置见表1的要求。

外部形状缺陷应符合表2的要求。

焊缝的内部缺陷应符合表3的要求。

有密封性要求的液压缸零件焊缝,不得有渗漏。

焊后按要求打上焊工的印记。

4.检验规则

焊接件的质量应按图样、工艺文件及本标准进行检验。

焊缝的外部几何形状用量具或样板逐件检验,焊缝收弧位置应符合表1的规定,外部形状缺陷应按表2逐件进行检验。

焊缝的内部缺陷按《XYG8-10抽样检查方法》进行抽样检验,应符合表3的规定。

密封检验、探伤及机械性能检验按图样、相关技术文件或定货技术要求中的规定进行。

规定公称尺寸≥Ф200mm的缸筒、法兰及活塞杆上环形焊缝按工艺要求检查表面产生的气孔、裂纹,可用表面着色法检验。

规定公称尺寸≥Ф200mm的缸筒、法兰及活塞杆上环形焊缝按工艺要检查内部的气孔、裂纹、固体夹渣、未熔合和未焊透缺陷,可用超声波探伤检查,探伤长度不小于焊缝全长的30%,当发现缺陷时应加大透视长度,以及全部焊缝进行透视。

凡评定为不合格的焊缝,须经技术质量部门的同意后方可返修,同一焊缝最多返修次数不多于两次。

表1 液压缸常见焊接形式的焊缝收弧位置

表2 焊缝外部形状缺陷单位为毫米

表3焊缝内的缺陷单位为毫米

液压缸设计

第一章液压系统设计 1.1液压系统分析 1.1.1 液压缸动作过程 3150KN热压成型机液压系统属于中高压液压系统,涉及快慢速切换、多级调压、保压补压等多个典型的液压回路。工作过程为电机启动滑块快速下行滑块慢速下行保压预卸滑块慢速回程滑块快速回程推拉缸推出推拉缸拉回循环结束。按液压机床类型初选液压缸的工作压力为28Mpa,根据快进和快退速度要求,采用单杆活塞液压缸。1.1.2液压系统设计参数 (1)合模力; (2)最大液压压28Mp; (3)主缸行程700㎜; (4)主缸速度υ 快=38㎜/s、 υ 慢=4.85㎜/s。 1.1.2分析负载 (一)外负载压制过程中产生的最大压力,即合模力。 (二)惯性负载 设活塞杆的总质量m=100Kg,取△t=0.25s (三)阻力负载 活塞杆竖直方向的自重 活塞杆质量m≈1000Kg,同时设活塞杆所受的径向力等于重力。 静摩擦阻力 动摩擦阻力 由此得出液压缸在各个工作阶段的负载如表****所示。

工况负载组成负载值F 工况负载组成负载值F 启动981 保压3150×103加速537 补压3150×103快速491 快退+G 10301 按上表绘制负载图如图***所示。 F/N v/mm s-1 537 491 981 38 4.85 0 l/mm 0 l/mm -491 -981 由已知速度υ 快=38㎜/s、 υ 慢=4.85㎜/s和液压缸行程s=700mm,绘制简略速度图,如 图***所示。 1.2确定执行元件主要参数 1.2.1 液压缸的计算 (一)液压缸承受的合模力为3150KN,最大压力p1=28Mp。 鉴于整个工作过程要完成快进、快退以及慢进、慢退,因此液压缸选用单活塞杆式的。在液压缸活塞往复运动速度有要求的情况下,活塞杆直径d根据液压缸工作压力选取。 由合模力和负载计算液压缸的面积。 将这些直径按GB/T 2348—2001以及液压缸标准圆整成就近标准值,得:

油缸装配工艺规范

xxxxx有限公司 工艺规范 编号:xxxxxx 名称:液压油缸装配工艺规范(通用) 受控状态: 有效性: 持有部门: 日期:

一、准备 1、配套:按装配图上的“零件明细表”领取合格的零件成品、密封件标件等。未经检查合格的零配件不得进入装配。 2、清理: 检查并最终清除所有机加工零件、标准件上的飞边、毛刺、锈迹。清除时,零件不能有损伤,同时复查各零件外观是否合格; 3、清洁: A:用压缩空气吹净工作台及待装配零件各部位的异物,并用毛巾擦拭干净。要注意清除缸筒、沟槽、以及油口的铁屑、焊渣等细小异物; B:清洗后要用压缩空气将零件吹干; D:所有待装配的零件清理、清洁后都要放置在装配点的干净工位器具上; E:清理、清洗所有装配工具、工装。 4、零件检验 装配钳工做好自检工作,再向检验员提请检查。装配检验员必须按上述要求进行巡检和完工检查。 二、组装 1、组装活塞杆: A:活塞杆小端为卡键式:将活塞杆小端装上O型圈,然后装配活塞组件,再按图纸要求装轴用卡键、卡键帽、轴用挡圈及其它零件。整体焊接式活塞 杆,须先装导向套组件,再装活塞组件。 B:活塞杆小端为螺纹式:将活塞组件旋入活塞杆上拧紧到位,注意不能损伤O 形圈,然后装锁紧螺母压紧(装配前清除紧定螺钉孔的油脂),装钢球、紧定螺钉(装配前涂紧固胶)。整体焊接式活塞杆,须先装导向套组件,再装活塞组件。C:活塞杆杆端为叉头时,最后装叉头。 2、缸体组装: A:缸体为卡键式:将已组装好的活塞杆装入缸体,再按图纸要求装导向套、孔用卡键、挡环、轴用挡圈及其它零件(注意装配导向套时若O型圈过油口,必须用堵塞堵住油口以免损坏密封件)。 B:缸体为法兰式:将已组装好的活塞杆装入缸体,再按图纸要求装导向套、弹

通常版焊接工艺标准规范标准卡

焊接工艺编号HP-I-1/II-1-094 通用焊接工艺卡编号RXDTYS-01-02 适用范围 材料牌号20/16MnII 焊接层次及顺序简图 规格Φ57*5、Φ89*6 B7~B13 接头种类对接 焊接位置平焊 焊接方法 手工钨极氩弧焊 +焊条电弧焊 焊接 电源 种类直流 极性正接+反接 坡口形式Y 坡口角度(°)60±5 钝边(mm)1~1.5 组对间隙(mm) 2.5~2.8 背面清根:/ 焊前预热 加热方式/ 层间温度/ 温度范围/ 测温方法/ 焊后热处理 种类消应力保温时间0.25~1.5h 加热方式炉内加热冷却方式随炉缓冷炉外空冷 温度范围600~640℃测温方法热电偶 焊接工艺参数 焊层焊道焊材牌号 焊材规格 (mm) 焊接电流 (A) 电弧电压 (V) 焊接速度 Cm/min 气流量 L/min 钨极直径 (mm) 喷嘴直径 (mm) 线能量 (KJ/cm) 1 J50 ф2.5 90~95 13~14 8~9 9~11 2.5 10 7.8~10 2 J427 ф3.2 110~115 21~22 17~18 / / / 7.7~8.9 3 J427 ф3.2110~115 21~22 15~16 / / / 8.7~10.1 备注:其它焊接工艺要求,按本单位《通用焊接工艺规程》执行

焊接工艺编号HP-I-1/II-1-094 通用焊接工艺卡编号RXDTYS-01-01 适用范围 材料牌号20/16MnII 焊接层次及顺序简图 规格Ф25×3mm B16、B17 接头种类对接 焊接位置平焊 焊接方法 手工钨极氩弧焊 +焊条电弧焊 焊接 电源 种类直流 极性正接+反接 坡口形式Y 坡口角度(°)60±5 钝边(mm)1~1.5 组对间隙(mm) 2.5~2.8 背面清根:/ 焊前预热 加热方式/ 层间温度/ 温度范围/ 测温方法/ 焊后热处理 种类消应力保温时间0.25~1.5h 加热方式炉内加热冷却方式随炉缓冷炉外空冷 温度范围600~640℃测温方法热电偶 焊接工艺参数 焊层焊道焊材牌号 焊材规格 (mm) 焊接电流 (A) 电弧电压 (V) 焊接速度 Cm/min 气流量 L/min 钨极直径 (mm) 喷嘴直径 (mm) 线能量 (KJ/cm) 1 J50 ф2.5 90~95 13~14 8~9 9~11 2.5 10 7.8~10 2 J427 ф3.2 110~115 21~22 17~18 / / / 7.7~8.9 备注:其它焊接工艺要求,按本单位《通用焊接工艺规程》执行

液压缸焊接工艺规范

徐州光环液压科技有限公司 液压缸焊接工艺规范 技术部 2012年12月5日 编制: 审核: 会签: 液压缸焊接工艺规范 1.目的与适用范围 本规范规定了液压缸焊接件的技术要求及检验规则。 本规范适用于我公司所有液压缸焊接件的CO2/MAG气体保护焊及焊条手工电弧焊接。对有特殊要求的,可参照此规范或按相关技术协议执行。 2.本规范引用如下标准 GB/T 985 气焊、手工电弧焊焊及气体保护焊焊缝坡口的基本形式与尺寸 GB/T 3323-2005 钢溶化焊对接接头射线照相与质量分级 GB/T 6417、1-2005 金属溶化焊焊缝缺陷分类及说明 GB/T 8110 气体保护电弧焊用碳钢、低合金钢焊丝 GB/T 12469-1990 焊接质量保证钢熔化焊接头的要求与缺陷分级 GB/T 15830-1995 钢制管道对接环焊用技术条件 JB/T 6046 碳钢、低合金钢焊接构件缝超声波探伤方法与检验结果的分级 JB/T 5943-1991 工程机械焊接件通焊后热处理方法 XYG8-10 抽样检查方法 3.技术要求 3、1、液压缸焊接件的制造应符合经规定程序批准的产品图样及技术文件与本标准的规定 3、2、CO2钢瓶的使用要求 常温(20 °C~50°C)下瓶装液态CO2压力应在5MPa以上,瓶中压力小于1MPa时不得再继续使用,不用时钢瓶应放完余气以备再次充装。 3、3、焊接件材料与焊接材料 3、3、1 用于焊接件的材料钢号、规格尺寸等应符合图样要求,检验合格后方可使用。常用钢号为Q235、20、35、45、27SiMn。 3、3、2 用于焊接的材料与焊接材料进厂时应按材料标准规定,检验合格后方可使用。 3、3、3 焊接材料选用应按工艺技术文件的规定,凡技术文件中未明确规定焊条、焊丝型号时,焊条型号为E5016;焊丝型号为ER50-6,如需高强度焊丝时应选用HO8Mn2SiMoA、焊丝应符合GB/T 8110标准。3、3、4 焊条在施焊前必须烘干,烘干后的焊条在一天内使用,超过一天,必须重新烘干,烘干次数不得超过三次。 3、4 焊前要求 3、4、1 全部零件须检验合格后,方可组装。

液压油缸设计

液压油缸主要几何尺寸的计算: 上图中各个主要符号的意义: 错误!未找到引用源。— 液压缸工作腔的压力(Pa ) 错误!未找到引用源。— 液压缸回油腔的压力(Pa ) 错误!未找到引用源。—液压缸无杆腔工作面积 错误!未找到引用源。—液压缸有杆腔工作面积 D —液压缸内径 d —活塞杆直径 F — 液压缸推力 (N ) v —液压缸活塞运动速度 液压缸内径D 的计算 根据载荷力的大小和选定的系工作统压力来计算液压缸内径D 。液压缸内径D 和活塞杆直径d 可根据最大总负载和选取的工作压力来定,对单杆缸而言,无杆腔进油并不考虑机械效率时: ()212 1212 4F d p D p p p p π=---有杆腔进油并不考虑机械效率时: ()221 1212 4F d p D p p p p π=+--

一般情况下,选取回油背压 ,这时,上面两式便可简化,即无杆腔进油时 D = 有杆腔进油时: D = 设计调高油缸为无杆腔进油。 所以,216.91D mm = ==,按照GB/T2348-2001对液压缸内径进行圆整,取错误!未找到引用源。,即缸内径可以取为mm 250。 2.2活塞杆直径d 的计算 在液压油缸的活塞往复运动速度有一定要求的情况下,活塞杆的直径d 通常根 据液压缸速度比2 1v v v =λ的要求已经缸内径D 来确定。其中,活塞杆直径与缸内 径和速度比之间的关系为: d = 式中 D —液压缸内径 d —活塞杆直径 v λ—往复速度比 液压缸的往复运动速度比v λ,一般有2、1.46、1.33、1.25和1.15等几 种下表给出了不同往复速度比v λ时活塞杆直径d 和液压缸内径D 的关系。 v λ 1.15 1.25 1.33 1.46 2 d 0.36D 0.45D 0.5D 0.56D 0.71D 液压缸往复速度比v λ推荐值如下表所示:

液压缸零部件技术要求

一、缸体的技术要求 (1) 缸体采用H8、H9配合。表面粗糙并:当活塞采用橡胶密封圈密封时,Ra为0.1~0.4μm,当活塞用活塞环密封时, Ra为0.2~0.4μm。 (2) 缸体内径D的圆度公差值可按9、10或11级精度选取,圆柱度公差值可按8能精度选取。 (3) 缸体端面T的垂直度公差值可按7级精度选取。 (4) (5) (6) (7 、1. 1)直径D、D2、D3的圆柱度公差应按9、10、11级精度选取; 2)D2、D3与d同轴度公差值为0.03mm; 3)端面A、B与直径d轴心线的垂直度公差值按7级精度选取; 4)导向孔的表面粗糙度Ra=1.25μm 四、活塞的材料

液压缸活塞常用的材料为耐磨铸铁、灰铸铁(HT300、HT350)、钢(有的在外径上套有尼龙66、尼龙1010或夹布酚醛塑料的耐磨环)及铝合金等。 活塞的技术要求 1)活塞外径D对内径D1的径向跳动公差值,按7、8级精度选取。 2)端面T对内孔D1轴线的垂直度公差值,应按7级精度选取。 3)外径D的圆柱度公差值,按9、10或11级精度选取。 五、活塞杆

注:1.螺纹长度L:内螺纹时,是指最小尺寸;外螺纹时,是指最大尺寸。 2.当需要用锁紧螺母时,采用长型螺纹长度。 3.带*号的螺纹尺寸,为气缸专用。 端部尺寸(耳环型联接(mm))

注:1.耳环材料推荐用45号钢。 2.表中MS=1.4CX,EP=(1.2~1.4)CX(低压选用小值,高压选用大值)。 活塞杆结构 d2。 1)。 2) 3) 4) 5) 6)级精度制造。 7)级精度选取。 8)活塞杆上下工作表面的粗糙度为R a0.63μm,必要时,可以镀铬,镀层厚度约为0.05mm,镀后 六、活塞杆的导向、密封和防尘 导向套材料 导向套常用材料为铸造青铜或耐磨铸铁。 导向套的技术要求 导向套内径的配合,一般取为H8/f9(或H9/f9),其表面粗糙度则为R a0.63μm~1.25μm。

液压缸技术标准

攀钢液压中心 二O一0年一月 目录 1、总则 2、引用标准 3、各部分常用材料及技术要求 3.1、缸筒的材料和技术要求 3.2、活塞的材料和技术要求 3.3、活塞杆的材料和技术要求 3.4、端盖的材料和技术要求 4、液压缸维修工艺流程 5、液压缸的检查 5.1、缸筒内表面 5.2、活塞杆的滑动面 5.3、密封

5.4、活塞杆导向套的内表面 5.5、活塞的表面 5.6、其它 6、液压缸的装配 7、液压缸试验 附表1:检查项目和质量分等(摘录JB/T10205-2000) 附表2:液压缸、气缸铭牌编号 附表3:螺栓和螺母最大紧固力矩(仅供参考) 附表4:螺纹的传动力和拧紧力矩 液压缸维修技术标准 1、总则 1.1 适用范围本维修技术标准规定了液压缸各组成部分的常用材料和技术要求、液压缸的检查、装配以及试验,适用于攀钢液压中心范围内液压缸的维修,维修用户单位按本标准执行。

1.2 密封选择密封件应选择攀钢液压中心指定生产厂家的标准产品,特殊情况需得到攀钢相关技术部门审核同意。 1.3 螺纹防松液压缸的螺纹连接在安装时应采用攀钢液压中心联接螺纹的防松结构型式,不能从结构上采取防松措施的,应涂上攀钢液压中心指定的螺纹紧固胶。 1.4 液压缸防腐修理好的液压缸,若在仓库或现场存放时间超过3个月时间,需采用适当的防腐措施。 1.5 螺栓选择一般采用8.8级、10.9级、1 2.9级的高强度螺栓(钉),应采用国内著名生产厂的产品。 1.6 气缸维修标准参照本标准执行。 1.7 本标准的解释权属攀钢液压中心。 2、引用标准 液压缸的维修应执行下列国家标准,允许采用要求更高的标准。

焊接技术标准规范汇总

1范围 1.1主题内容 本标准规定了电子电气产品焊接用材料和导线与接线端子、印制电路板组装件等 的焊接要求以及质量保证措施。 1. 2适用范围 本标准适用于电子电气产品的焊接和检验。 2引用文件 GB 3131-88锡铅焊料 GB 9491-88锡焊用液态焊剂(松香基) QJ 3012-98电子电气产品元器件通孔安装技术要求 QJ 165A-95电子电气产品安装通用技术要求 QJ 2711-95静电放电敏感器件安装工艺技术要求 3定义 3. 1 MELF metal electrode leadless face MELF是指焊有金属电极端面,作端面焊接的元器件。 4 一般要求 4. 1环境要求 4.1.1环境条件按QJ 165A中3. 1. 4条要求执行。 4.1.2焊接场所所需工具及设备应保持清洁整齐。在焊接工位上应及时清除多余物(导线断头、焊料球、残留焊料等)。禁止在焊接工位上饮食;禁止在工位上有化妆品以及与生产操作无关的东西。 4. 2工具、设备及人员要求 4. 2. 1工具 电烙铁应为温控型的,烙铁头空焊温度应保持在预选温度的士5. 5℃之内,烙铁头的形状应符合焊接空间要求,并保证良好的接地。 4. 2. 2设备 4. 2. 2. 1波峰焊设备 波峰焊设备(包括焊剂装置、预热装置、焊槽)焊接前应能将印制板组装件预热到120℃以内,在整个焊接过程中,焊料槽焊接温度的控制精度应维持在士5.5℃,并具有排气系统。 4.2.2.2再流焊设备 再流焊设备应可将焊接表面迅速加热,并能在连续焊接操作时,迅速加热到预定温度的士6℃范围内。加热源不应引起印制电路板或元器件的损坏,也不应在加热源与被焊金属直接接触时污染焊料。再流焊设备包括采用平行等距电阻加热、短路棒电阻加热、热风加热、红外线加热、激光加热装置或非电烙铁热传导焊接的设备。 4. 2. 3人员 操作人员应经过专业技术培训,熟悉本标准及相关工艺的规定,具有判别焊点合格或不合格的能力,并经考核合格上岗。 4. 3焊点 4. 3. 1外观 4.3.1.1 焊点表面应无气孔、非晶态,以及有连续良好的润湿。焊点不应露出基底金属、不应有锐边、拉尖、焊剂残渣以及夹杂。与邻近导电通路之间焊料不应出现拉丝、桥接等现象。

液压缸设计说明书

1 设计课题 1.1设计要求 设计一台铣削专用机床液压系统用液压缸,要求液压系统完成的工作循环是:工件夹紧→工作台快进→工作台工进→工作台快退→工件松开。 1.2原始数据 运动部件的重力为25000N,快进、快退速度为5m/min,工进速度为100~1200mm/min,最大行程为400mm,其中工进行程为180mm,最大切削力为20000N,采用平面导轨,夹紧缸的行程为20mm,夹紧力为30000N,夹紧时间为1s。

2 液压系统的发展概况 一个完整的液压系统由五个部分组成,即动力元件、执行元件、控制元件、辅助元件(附件)和液压油。 由于液压技术广泛应用了高技术成果,如自动控制技术、计算机技术、微电子技术、磨擦磨损技术、可靠性技术及新工艺和新材料,使传统技术有了新的发展,也使液压系统和元件的质量、水平有一定的提高。尽管如此,走向二十一世纪的液压技术不可能有惊人的技术突破,应当主要靠现有技术的改进和扩展,不断扩大其应用领域以满足未来的要求。 液压系统在将机械能转换成压力能及反转换方面,已取得很大进展,但一直存在能量损耗,主要反映在系统的容积损失和机械损失上。如果全部压力能都能得到充分利用,则将使能量转换过程的效率得到显著提高。为减少压力能的损失,必须解决下面几个问题:减少元件和系统的部压力损失,以减少功率损失。主要表现在改进元件部流道的

压力损失,采用集成化回路和铸造流道,可减少管道损失,同时还可减少漏油损失。 减少或消除系统的节流损失,尽量减少非安全需要的溢流量,避免采用节流系统来调节流量和压力。采用静压技术,新型密封材料,减少磨擦损失。发展小型化、轻量化、复合化、广泛发展通径电磁阀以及低功率电磁阀。改善液压系统性能,采用负荷传感系统,二次调节系统和采用蓄能器回路。为及时维护液压系统,防止污染对系统寿命和可靠性造成影响,必须发展新的污染检测方法,对污染进行在线测量,要及时调整,不允许滞后,以免由于处理不及时而造成损失。 液压系统维护已从过去简单的故障拆修,发展到故障预测,即发现故障苗头时,预先进行维修,清除故障隐患,避免设备恶性事故的发展。 要实现主动维护技术必须要加强液压系统故障诊断方法的研究,当前,凭有经验的维修技术人员的感宫和经验,通过看、听、触、测等判断找故障已不适于现代工业向大型化、连续化和现代化方向发展,必须使液压系统故障诊断现代化,加强专家系统的研究,要总结专家的知识,建立完整的、具有学习功能的专家知识库,并利用计算机根据输入的现象和知识库中知识,用推理机中存在的推理方法,推算出引出故障的原因,提高维修方案和预防措施。要进一步引发液压系统故障诊断专家系统通用工具软件,对于不同的液压系统只需修改和增减少量的规则。 另外,还应开发液压系统自补偿系统,包括自调整、自润滑、自校正,在故障发生之前,进市补偿,这是液压行业努力的方向。 电子技术和液压传动技术相结合,使传统的液压传协与控制技术增加了活力,扩大了应用领域。实现机电一体化可以提高工作可靠性,实现液压系统柔性化、智能化,改变液压系统效率低,漏油、维修性差等缺点,充分发挥液压传动出力大、贯性小、响应快等优点,其主要发展动向如下:[1]

液压管焊接工艺要求

GD-NB-045 液压管焊接作业工艺要求 液压管焊接按管子装配方式有三种形式:一、法兰搭焊式按常规焊接方式;二、对接焊、支管焊,直径在32mm及以下,厚度3mm及以下的管用氩弧焊焊接;三、对接焊、支管焊,直径在40mm及以上的管用氩弧焊打底,尽可能用CO2焊盖面,也可根据实际情况采用手工电弧焊。 焊接方法:(1)氩弧焊(2) CO2焊 一、氩弧焊 1、焊前准备 1)焊工必须持证上岗。 2)焊工必须熟悉产品的焊接符号及工艺技术要求。 3)焊工必须根据产品的钢种级别或工艺技术设计要求选用焊条牌号。 4)焊工上岗必须备有保温筒焊条箱和焊接使用的生产工具,如电焊锤、钢丝刷、凿 子和砂轮机等。 5)焊工使用瓶装气体应检查气体压力,氩气纯度应不低于99%,若低于6kgf/mm2 时,应停止使用。 6)检查焊缝的坡口间隙公差(如表1、表2)和清洁要求,在坡口及坡口两边各20mm 范围内影响焊缝质量的锈、油污、氧化铁和水等必须彻底清除。 2、焊接操作 1)焊前应对管内充满氩气,以保证单面焊双面成型的焊缝质量。 2)开坡口的焊缝必须从下向上焊接,以便看清焊道成形,开坡口如表1、如表2。 3)第一道打底焊,焊丝应左右摆动,并在焊缝坡口的两边稍作停留,以保证单面焊 双面成型的背面饱满,如表1。 4)有坡口的焊缝,尤其是厚板多道焊,焊丝摆动时在焊道两侧稍作停留,但每层焊 道厚度不大于3mm,以保证焊缝的熔合良好。 5)每层焊道应打磨清洁后才能施焊,层间温度应在150 C-200 C左右。 二、CO2焊具体操作按<< CO2半自动焊作业指导书>>执行,但根据实际使用情况提 出以下要求: 1、焊前准备 1)焊工施焊前应对CO2焊机的送丝顺畅情况和气体流量作认真检查。 2)若使用瓶装气体应作排水提纯处理,且应检查气体压力,若低于

油缸制造工艺

油缸制造工艺 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

13、液压油缸和系统制造工艺说明 、液压缸缸体加工工艺 1、目的:控制操作过程,确保加工质量符合图纸要求 2、制造过程中执行的标准: JB4730压力容器无损检测 JB/磨料种类,粒度选择 GB1031表面粗糙度磨参数及其数值 JISB6911钢铁的正火与退火处理 Q/ZB75机械加工通用技术条件 Q/WYG0814-1997过程控制程序 Q/机械加工检验 Q/热处理零件检验 Q/无损检验 Q/工序质量控制点管理 3、深孔加工、深孔光整珩磨及埋弧自动焊接技术重要工艺特色 油缸缸体内孔加工工序被确立为关键工序质量控制点。为保证其全过程受控,专门编制了《工序控制点明细表》、《工序质量分析表》、《作业指导书》、《机械加工工序卡》、《深孔加工质量监控记录》并严格按照要求实施作业,加工全过程在严格受控状态下进行。 (1)、缸体的精镗工序

组合刀具内孔切削加工的稳定性和可靠性,直接影响到加工缸体的母线直线度、孔加工精度及表面粗糙度。缸体内孔加工切削的稳定性主要靠刀具本身结构的合理设计,我公司使用的组合刀具有效支承长度是加工缸体内孔直径的2倍或2倍以上。我公司经过多次技术论证和试验,当刀具支承长度小于内孔直径时,刀具加工时的切削稳定性较差,当刀具支承长度等于缸体直径时,刀具的切削稳定性明显提高。当组合刀具支承长度大于2倍缸体内孔直径时,其切削稳定性就更可靠,整个组合刀具切削加工过程平稳,刀具按导向套的引导进行缸体深孔加工,保证了缸体加工精度、表面粗糙度和母线的直线度。 组合刀具另件加工精度是组合刀具整体性能符合设计要求的关键。我公司组合刀具的制造、检验都选派有经验的、负责的专门人员把关,每个另件都必须满足设计提出的精度、形位公差要求,并且组合刀具总装后每道支承的径向跳动控制在0.01mm以下,多道支承必须一次磨成,道与道之间的直径偏差控制在0.015mm以下,保证刀具母线直线度误差在2倍缸体直径长度上不大于 0.015mm,刀具的直径尺寸与导向套过盈配合,精度为IT6。 (2)、合理的导向长度及组合夹具精度控制 液压启闭机的缸体都比较长,所以我公司采用推镗工艺,要实现推镗就必须有一个高精度的导向套,先把组合刀具放在导向套中,再把缸体接在导向套上,用导向套、组合刀具的精度直线度来保证缸体的加工精度和直线度,当组合刀具进入加工缸体后,已加工好的缸体又成为新的导向套。对导向套的要求是:导向套长度是组合刀具的倍,导向套内孔精度必须达到H7要求,导向套外径支承点跳动不大于0.01mm,端面与缸体结合部位跳动不超过0.02mm。组合刀具与导向套是过盈配合。由于导向套的内孔精度是H7,组合刀具在修磨后支承

铜管加工和焊接工艺标准规范标准

铜管加工和焊接工艺标准 铜管加工工艺 铜管一般要求 密封冷媒系统要求管件内部表面清洁、无氧化、无水、无油等; 不允许使用带有裂纹、不圆变形、扭曲、可见砂眼、喷墨(铜管厂检测有缺陷的标记)、发黑(氧化)等 缺陷的铜管。 铜管加工要求总则 管路的加工按设计图纸进行,形状、尺寸应符合设计要求; 断口处直径改变应在铜管标准直径的 2%以内,且断口不允许有飞边,毛刺; 管件要脱油、去污、无铜屑,内外表面光洁,不许有油污、伤痕、氧化皮; 焊接过程必须充氮保护,焊后用 0.3~0.5MPa 的干燥压缩空气吹净内部。 铜管下料、去毛刺 使用工具:割管刀,有效直尺,铜管修边器 铜管需定位固定后,再用割刀拆下,要保证割口平齐,不变形 切割过程中,铜管均匀进给,以保证管口圆滑 下料后必须用铜管修边器对端口去毛刺, 去毛刺后, 必须用 0.3~0.5MPa 的干燥压缩空气吹掉管内外的铜屑、 杂物。 铜管弯曲 使用工具:手工弯管机。根据图纸和铜管的外形,选择合适的弯管机 清除弯管机范围内一切可能影响弯管机运转的杂物,保证设备运行畅通无阻。 每次弯曲前需调整模具或参数,并进行空转试弯,确认设备正常后进行加工。 弯管后应把管子内部的油渍等异物清除掉。 喇叭口制作 将已制作合格的铜管先套入一对应的铜钠子, 再放入铜管喇叭口扩口专用工具相对应的孔中, 时铜管扩口端高出扩口器夹具面 0.5~1mm ,夹紧扩口器夹具, 在扩口器顶尖上涂少许空调冷冻油, 将手柄顺时针旋紧,再旋紧四分之三圈,退四分之一圈,如此反复进行,直到所扩口成 90± 2 扩成喇叭口后,喇叭口的接触面应光滑平整,且厚度均匀一致;不应有裂纹、损伤、麻点皱折等不 足;喇叭口不应有 偏斜不正等现象。 焊接 钎焊原理 钎焊是利用液态钎料填满钎焊金属结合面的间隙面形成牢固接头的焊接方法, 其工艺过程必须具备两 个基本条件。 a )液态钎料能润湿钎焊金属并能致密的填满全部间隙; b )液态钎料与钎焊金属进行必要的物理、化学反应达到良好的金属 间结合。 放入 然后

液压缸的设计_毕业论文设计-液压缸的设计

(此文档为word格式,下载后您可任意编辑修改!) 毕 业 设 计 液压缸的设计 姓名:_______________ 学号:_______________ 专业:_______________ 班级:_______________ 指导老师:_______________

2013 年11 月28 日

摘要 将液压缸提供的液压能重新转换成机械能的装置称为执行元件。执行元件是直接做功者,从能量转换的观点看,它与液压泵的作用是相反的。根据能量转换的形式,执行元件可分为两类三种:液压马达、液压缸、和摆动液压马达,后者也可称摆动液压缸。液压马达是作连续旋转运动并输出转矩的液压执行元件;而液压缸是作往复直线运动并输出力的液压执行元件。此说明书是针对液压缸的工作环境和工作要求来确定液压缸的工作压力和承载能力,来确定其缸筒内径、壁厚和活塞杆的直径。再根据液压缸的零部件的工作要求确定零件的工艺,根据零件的精度要求确定零件的加工方法,并生成工艺卡片,完成零件的加工。 关键字:液压缸、机械能、转矩、执行元件 Abstract Hydraulic cylinder will be able to provide the device called actuators. Work is a direct implementation of components, from the point of view of energy conversion; it is the role of the in the form of implementation of the three components can be divided into two categories: and the output of the of components

液压缸修复技术及工艺流程--绝密资料

液压缸修复简介及工艺流程 工程机械常见的破坏形式主要包括摩擦副的磨损和局部破坏(拉伤、电击伤、压坑等)。对于磨损件的修复,传统的修复方法包括:机械加工修理法(如修理尺寸法、附加零件法、局部更换法等)、焊接修理法(堆焊、补焊、钎焊等)和电镀修理法(低温镀铁、镀铬)等。对于结构简单的零部件也可以采用热喷涂(热喷焊)修复技术。对于重要零部件的局部破坏(如液压杆、油缸的拉伤、电击伤、压坑等),采用上述维修方法常常是费工、费时、费料甚至无法修复。以下主要介绍一些局部破坏的修理方法,并详细说明每种方法的优缺点。一、焊修技术的优缺点对于局部损伤,常用的焊修方法包括补焊、堆焊、钎焊等,每一种焊修方法都有其自身的特点和不足。1。补焊焊接技术用于修复零部件的局部缺陷时称之为补焊。补焊的最大特点是施工简便、修复成本低、时间短。补焊时应根据材质的种类选用恰当的补焊材料和补焊工艺。对于普通碳素钢,应根据材质的碳当量(而不是含碳量)确定补焊方法。对于不锈钢、铸铁、铝及铝合金应的补焊应特别注意材质的性能和工件的使用环境,做到基体问题具体分析,把握好焊前处理、施焊、焊后处理方法及施工参数。既然补焊是焊接的一种特殊形式,在施焊过程中不可避免地会在焊修部位形成熔池(产生局部高温),从熔池到工件本体之间的不均匀加热必然造成焊区及热影响区产生热应力,导致焊修件变形、裂纹(如铸铁件、高碳钢件炸口等)、局部硬化、相组织变化、疲劳性能下降等缺陷。焊修过程中还会导致熔池及熔池附近产生气孔、相变、机械性能降低等问题。因此,用补焊方法修复局部缺陷,常常是一种不得已而为之的选择。2。钎焊为了降低焊修时的施焊温度,人们使用熔点较低的焊料进行热熔焊——人们常称之为钎焊。补焊与钎焊的最大不同之处在于钎焊时在工件上不形成熔池,在钎焊过程中熔化的只是钎料(钎料的熔点较低),基体并未真正熔化,利用钎料熔化后的浸润作用粘附基体并在钎焊部位形成修复层。如果钎料、焊剂选择恰当,钎料与基体间的微扩散有助与提高钎焊层与基体间的结合强度。因此,与熔化焊相比,钎焊时工件的热影响小,零件很少变形,机械性能也不会受到太大的影响。目前,很多人采用钎焊——电刷镀复合修复技术修补压坑,具体方法是先钎焊锡-铋合金钎料(钎料熔点135~140℃),经刮研后再刷镀一层耐磨镀层,从而实现对压坑的修复。钎焊的最大缺点是焊层软、强度低,当钎料或助焊剂选用不当时,钎焊层与基体结合不牢。为了提高钎焊层与基体的结合力,对于铸造缺陷、易在金属表面形成氧化膜的材料(不锈钢、铝及其合金),应在钎焊之前,先刷镀铜,然后再钎焊锡-铋合金。镀铜的作用就是为了改善基材的可钎焊性。3。冷焊修复技术之一(补片修复技术)冷焊(补片)修复技术是利用电阻焊的原理开发出来的一种新型维修方法。当基体金属和补片金属之间有较高的接触电阻时,脉冲电源瞬间输出的大电流脉冲所产生的电阻热将金属片与基体粘结在一起。在单位面积上产生的电脉冲越多,粘结点越多,金属片与基体的粘结强度越高。这就如同传统的纳鞋底一样,针线越密,纳出的鞋底越结实。由于补片时只是在电极接触部位出现瞬间高温,在补片过程中工件本身不会升温,因此热影响小。补片修复技术的缺点是,当凹坑深度远高于金属片厚度时,需要多次修磨、多次补修,施工效率低下。因为补片是局部粘结,而不是整体焊接,所以金属片与基体间的结合强度不高,层间夹杂很多空隙。另外,由于补片层与基体之间无法形成一个完美的整体,所以对冷焊后的工件进行修磨时,在基体与补片部位之间不能形成平滑过渡。对于导电良好的基材(铜、铝等),由于其具有较低的表面接触电阻,无法用补片方法进行维修。4。冷焊修复技术之二(气体保护熔丝焊修复技术)气体保护熔丝焊修复技术有时也称之为微弧冷焊修复技术,它是在传统氩弧焊基础上开发出来的一类新型焊修技术。设备的主要构成部分包括脉冲电源、保护气体(氩气等惰性气体)和用来填补缺陷的金属丝。利用焊枪产生的电弧(电弧温度一般在6000℃以上)将金属丝熔化,用保护气体(惰性气体)把熔化的金属液滴吹射到工件的局部缺陷处,从而填平工件表面的凹坑。与一般意义的气体

凸焊工艺规范

凸焊工艺规范 1 范围 本规范规定了公司常用标准件凸焊工艺技术要求。 本规范适用于公司规划和设计部门对凸焊工艺的审查。 2 规范性引用文件 无 3术语 3.1 凸焊 凸焊是在焊接件的接合面上预先加工出一个或多个凸点,使其与另一焊接件表面相接触,加压并通电加热,凸点压溃后,使这些接触点形成焊点的电阻焊方法1)。凸焊的位置精度取决于定位销与被焊接对象之间的配合精度,奇瑞公司的凸焊理论定位偏差最大为:(螺母)0.2mm(螺栓)0.25mm。 ——————————《焊接工程师手册》 陈祝年 机械工业出版社 2002.1 第四章 凸焊工艺

3.2凸焊设备 8 1.上电极臂 4.下电极夹持器 7.定位销2) 2.下电极臂 5.上电极 8.凸焊标准件 3.上电极夹持器 6.下电极 9.钣金件 图1 螺栓凸焊 螺母凸焊

图3 图2 图4 4内容 4.1 螺母凸焊 4.1.1 凸焊电极需要的空间 螺母凸焊面必须为平面。 图1螺母凸焊下电极直径大小有Φ32、Φ35、Φ38、Φ42,常用为Φ32;上电极直径有Φ16、Φ20、Φ27,M5常用为Φ16,M6、M8常用为Φ20。所以普通螺母的下电极至少要预留Φ32的圆平面。 保险带安装螺母(如图2)上电极与下电极直径相同,有Φ38、Φ42两种。所以对于安全带螺母上下电极需要至少预留Φ38的圆平面。 4.1.2 凸焊定位底孔 为降低凸焊电极制造成本,凸焊螺母底孔统一定为(M+1)mm,其中M为焊接螺母的公称直径(螺纹大径)。 英制螺母螺纹大径加1后取整。如:7/16螺母(QR366716),螺纹大径约Φ11.1125mm,其螺母底孔直径为Φ12mm。 4.2 螺栓凸焊 螺栓凸焊有两种形式,一种为承面凸焊,钣件对应位置开孔(如图1,3);另一种为端面凸焊,钣件位置无孔(如图4),目前奇瑞公司基本为承面凸焊。 4.2.1 凸焊电极需要的空间 螺栓凸焊面必须为平面。 图3 螺栓凸焊下电极直径大小有Φ25、Φ32,上电极大小有Φ16、Φ20; M5、M6下电极常用深度为30mm,M8下电极常用深度为38mm。 4.2.2 凸焊定位底孔 为降低凸焊电极制造成本,凸焊螺栓底孔统一定为(M+0.5)mm,其中M为焊接螺栓的公称直径(螺纹大径)。 英制螺母公称直径(螺纹大径)加0.5后取整。 4.3 对凸焊钣件的要求 4.3.1凸焊钣件的焊接可操作空间 在焊接状态下,待凸焊钣件不能与焊机相干涉,焊机尺寸依据奇瑞公司目前设备状况要求如下(如图5,6,以“南京TN-400”为例): 零件凸焊位置点沿与凸焊螺母、螺栓轴线垂直方向,距零件边缘最小尺寸要小于焊机喉深C(奇瑞公司焊机喉深为420~770mm),以避免与焊机干涉; 其它尺寸A、B、D 因各种焊机的结构相差很大,详细请参看附录A。 在用普通直电极无法满足特殊设计要求时,可以考虑制作变形电极。目前奇瑞现场的变形电极请参看附录B。(特殊电极的制作会增加产品的成本,而且焊接质量没有保证,应尽量不采用)

液压油缸的一般设计步骤手册(精选.)

液压油缸的一般设计步骤 液压油缸的一般设计步骤 1)掌握原始资料和设计依据,主要包括:主机的用途和工作条件;工作机构的结构特点、负载状况、行程大小和动作要求;液压系统所选定的工作压力和流量;材料、配件和加工工艺的现实状况;有关的国家标准和技术规范等。 2)根据主机的动作要求选择液压缸的类型和结构形式。 3)根据液压缸所承受的外部载荷作用力,如重力、外部机构运动磨擦力、惯性力和工作载荷,确定液压缸在行程各阶段上负载的变化规律以及必须提供的动力数值。 4)根据液压缸的工作负载和选定的油液工作压力,确定活塞和活塞杆的直径。 5)根据液压缸的运动速度、活塞和活塞杆的直径,确定液压泵的流量。 6)选择缸筒材料,计算外径。

7)选择缸盖的结构形式,计算缸盖与缸筒的连接强度。 8)根据工作行程要求,确定液压缸的最大工作长度L,通常L>=D,D为活塞杆直径。由于活塞杆细长,应进行纵向弯曲强度校核和液压缸的稳定性计算。 9)必要时设计缓冲、排气和防尘等装置。 10)绘制液压缸装配图和零件图。 11)整理设计计算书,审定图样及其它技术文件。 液压缸工作时出现爬行现象的原因及排除方法 1)缸内有空气侵入,应增设排气装置或使液压缸以最大行程快速运动,强迫排除空气。 2)液压缸的端盖处密封圈压得太紧或太松,应调整密封圈使之有适当的松紧度,保证活塞杆能用手来回平稳地拉动而无泄漏。 3)活塞与活塞杆同轴度不好,应校正、调整。 4)液压缸安装后与导轨不平行,应进行调整或重新安装。 5)活塞杆弯曲,应校直活塞杆。 6)活塞杆刚性差,加大活塞杆直径。 7)液压缸运动零件之间间隙过大,应减小配合间隙。 8)液压缸的安装位置偏移,应检查液压缸与导轨的平行度,并校正。

液压缸修复技术及工艺流程 绝密

液压缸修复简介及工艺流程工程机械常见的破坏形式主要包括摩擦副的磨损和局部破坏(拉伤、电击伤、压坑等)。对于磨损件的修复,传统的修复方法包括:机械加工修理法(如修理尺寸法、附加零件法、局部更换法等)、焊接修理法(堆焊、补焊、钎焊等)和电镀修理法(低温镀铁、镀铬)等。对于结构简单的零部件也可以采用热喷涂(热喷焊)修复技术。对于重要零部件的局部破坏(如液压杆、油缸的拉伤、电击伤、压坑等),采用上述维修方法常常是费工、费时、费料甚至无法修复。以下主要介绍一些局部破坏的修理方法,并详细说明每种方法的优缺点。一、焊修技术的优缺点对于局部损伤,常用的焊修方法包括补焊、堆焊、钎焊等,每一种焊修方法都有其自身的特点和不足。1。补焊焊接技术用于修复零部件的局部缺陷时称之为补焊。补焊的最大特点是施工简便、修复成本低、时间短。补焊时应根据材质的种类选用恰当的补焊材料和补焊工艺。对于普通碳素钢,应根据材质的碳当量(而不是含碳量)确定补焊方法。对于不锈钢、铸铁、铝及铝合金应的补焊应特别注意材质的性能和工件的使用环境,做到基体问题具体分析,把握好焊前处理、施焊、焊后处理方法及施工参数。既然补焊是焊接的一种特殊形式,在施焊过程中不可避免地会在焊修部位形成熔池(产生局部高温),从熔池到工件本体之间的不均匀加热必然造成焊区及热影响区产生热应力,导致焊修件变形、裂纹(如铸铁件、高碳钢件炸口等)、局部硬化、相组织变化、疲劳性能下降等缺陷。焊修过程中还会导致熔池及熔池附近产生气孔、相变、机械性能降低等问题。因此,用补焊方法修复局部缺陷,常常是一种不得已而为之的选择。2。钎焊为了降低焊修时的施焊温度,人们使用熔点较低的焊料进行热熔焊——人们常称之为钎焊。补焊与钎焊的最大不同之处在于钎焊时在工件上不形成熔池,在钎焊

焊接工艺规范标准

! 焊缝质量标准 保证项目 焊接材料应符合设计要求和有关标准的规定,应检查质量证明书及烘焙记录。Ⅰ、Ⅱ级焊缝必须经探伤检验,并应符合设计要求和施工及验收规范的规定,检查焊缝探伤报告。 焊缝表面Ⅰ、Ⅱ级焊缝不得有裂纹、焊瘤、烧穿、弧坑等缺陷。Ⅱ级焊缝不得有 表面气孔、夹渣、弧坑、裂纹、电弧擦伤等缺陷,且Ⅰ级焊缝不得有咬边、未焊满等缺陷。 基本项目 焊缝外观:焊缝外形均匀,焊道与焊道、焊道与基本金属之间过渡平滑,焊渣和 飞溅物清除干净。 表面气孔:Ⅰ、Ⅱ级焊缝不允许;Ⅲ级焊缝每50mm 长度焊缝内允许直径≤;且≤3mm 气孔2 个;气孔间距≤6 倍孔径。 咬边:Ⅰ级焊缝不允许。 Ⅱ级焊缝:咬边深度≤,且≤,连续长度≤100mm,且两侧咬边总长≤10%焊缝长度。 Ⅲ级焊缝:咬边深度≤,且≤lmm。 注:t 为连接处较薄的板厚。 允许偏差项目,见表5-1。 5 成品保护 焊后不准撞砸接头,不准往刚焊完的钢材上浇水。低温下应采取缓冷措施。 不准随意在焊缝外母材上引弧。 各种构件校正好之后方可施焊,并不得随意移动垫铁和卡具,以防造成构件尺寸偏差。隐蔽部位的焊缝必须办理完隐蔽验收手续后,方可进行下道隐蔽工序。低温焊接不准立即清渣,应等焊缝降温后进行。 6 应注意的质量问题 尺寸超出允许偏差:对焊缝长宽、宽度、厚度不足,中心线偏移,弯折等偏差,应严格控制焊接部位的相对位置尺寸,合格后方准焊接,焊接时精心操作。 焊缝裂纹:为防止裂纹产生,应选择适合的焊接工艺参数和施焊程序,避免用大电流,不要突然熄火,焊缝接头应搭10~15mm,焊接中不允许搬动、敲击焊件。 表面气孔:焊条按规定的温度和时间进行烘焙,焊接区域必须清理干净,焊接过程 中选择适当的焊接电流,降低焊接速度,使熔池中的气体完全逸出。

活塞杆加工工艺规范

xxxx有限公司 文件名称:活塞杆加工工艺规范 文件编号:GY03-14-2015 文件签章有效/受控状态: 编制 : 技术工艺科 审核: 审批: 修改记录单 活塞杆加工工艺规范

1 引用标准 GB/T1800.4-99 孔、轴的极限偏差表 GB/T1801-99 公差配合的选择 GB/T1184-96 形位公差值 GB/T1031-95 表面粗糙参数及其数值 厂标等效JB/Z307 GB/T193-81 GB/T196-81 GB/T5786.2-86 GB/T5796.3-86 GB/T6403.5-86 GB/T145-89 GB200-89 GB699-1999 GB908-87 GB/T3-79 JB/ZQ0138-80 金属切削加工工艺守则 普通螺纹直径与螺距系列 梯形螺纹基本尺寸 普通螺纹直径与螺距系列 梯形螺纹基本尺寸 砂轮越程槽 中心孔 碳素结构钢 优质碳素结构钢 锻制圆钢和方钢规格 普通螺纹的收尾、兼距、退刀槽和倒角 单线梯形螺纹的收尾、退刀槽和倒角尺寸 2 需用设备 (1)100t 开式油压机 (2)校直用一组支承滚轮、划针盘、直尺 (3)乙炔氧气加热器 (4)卧式车床C6163,长8m (5)手工交流焊机 (6) 热处理(回火)设备 (7) 砂带磨头、外圆磨床、砂盘抛磨头 (8)螺纹检验用环、塞规 3 适用范围 本工艺守则适用于加工液压启闭机活塞杆、柱塞杆及部分工业液压缸的活塞杆。 4 活塞杆类型基本有三种 4.1 实心活塞杆,见图4.1

4.2中空型活塞杆 由杆头、杆身(无缝管)、杆尾组焊而成,见图4.2 4.3中空带进油管的活塞杆,见图4.3 由杆头、杆身、杆尾及内进油管组焊而成。 将4.2、4.3两种活塞杆称为组合活塞杆 图4.1 图4.2 图4.3 5 备料及毛坯制作

钣金与焊接工艺规范(精选)

钣金与焊接工艺规范 1、总则 1.1、本守则规定了钣金件、焊接件在下料、折弯、焊接、清理、焊接等主要工序的工艺守则。 1.2、当本守则与工艺文件和图纸冲突时,以工艺文件和图纸为准。 2、零件的下料 2.1、材料的清理: 2.1.1、零件使用的板、型材原则上要求下料前进行抛喷丸清理后在进行切割。尤其是图纸尺寸小、下料后和焊接后难以进行抛丸清理的小件,更要在下料前进行清理。 2.1.2、振动类工件,必须使用原平板,或者依照图纸要求材质使用板材。所使用的板型材必须进行焊前清理。 2.2、钣金件的下料一般采用砂轮切割机下料、剪板机下料、冲床下料、手工气割下料、自动气割下料、等离子切割下料等方式,具体下料方式一般按以下原则进行选择: a、图样及工艺文件已明确规定的应按照图样及工艺规定的执行。 b、适用剪板机下料的必须用剪板机下料。 c、型钢下料应尽量采用切割机下料。 d、适用自动气割机下料的应尽量采用自动气割机下料。 e、图样要求下料表面粗糙度Ra≤25的应采用剪板下料、自动气割机下料。 2.3、零件下料技术要求: 2.3.1、下料尺寸应符合图样及工艺文件的要求。 2.3.2、下料后进行机械加工的零件应留有合理的加工余量。

手工气割下料毛坯每边加工余量(参考件) 毛坯长度和直径毛坯厚度 ≤25 >25-50 >50-100 >100-200 >200-300 每边留量 长度 100 3 4 5 8 10 >100-250 4 5 6 9 >250-630 11 >630-1000 5 6 7 10 >1000-1600 12 >1600-2500 6 7 8 11 >2500-4000 13 >4000-5000 7 8 9 12 直径 60-100 5 7 10 14 16 >100-150 6 8 11 15 17 >150-200 7 9 12 16 18 >200-250 8 10 13 17 19 >250-300 9 11 14 18 20 2.3.3、剪板下料的工件周边应齐平,不得有咬边现象,直线度误差每1000mm≤ 1.5mm,相互垂直面的垂直度每1000mm≤3mm。 2.3.4、气割下料前应检查场地是否符合安全要求,工件应垫平,工件下面应留有一定间隙,为防止飞溅物烫伤,必要时应加挡板遮挡。 2.3.5、气割切口表面应光滑干净,而且粗细纹要一致,边缘棱角无融化,直线表面直线度误差每1000mm≤3mm,相互垂直面的垂直度每1000mm≤5mm。2.3.6、下料后直接入半成品库的零件应采用锉削、磨光机打磨。钢丝刷刷除、喷砂校直等措施保护零件的表面质量。 2.3.7、下料后直接入半成品库的零件应表面平整,无毛刺、锈蚀、气割飞溅物、明显弯曲及凹凸不平等现象,并按《涂漆工艺守则》的要求涂底漆。 3、零件的弯曲 3.1、零件的弯曲一般采用折弯机折弯、冲床模具弯曲、卷板机弯曲及手工火焰加热弯曲等方法。具体选择方式按下列方式选择: a、图样及工艺文件已明确规定的应按图样及工艺规定的执行。

相关文档
最新文档