北航惯性导航综合实验四实验报告.

北航惯性导航综合实验四实验报告.
北航惯性导航综合实验四实验报告.

基于运动规划的惯性导航系统动态实验

二零一三年六月十日

实验4.1 惯性导航系统运动轨迹规划与设计实验

一、实验目的

为进行动态下简化惯性导航算法的实验研究,进行路径和运动状态规划,以验证不同运动状态下惯导系统的性能。通过实验掌握步进电机控制方法,并产生不同运动路径和运动状态。

二、实验内容

学习利用6045B 控制板对步进电机进行控制的方法,并控制电机使运动滑轨产生定长运动和不同加速度下的定长运动。

三、实验系统组成

USB_PCL6045B 控制板(评估板)、运动滑轨和控制计算机组成。

四、实验原理

IMU安装误差系数的计算方法

USB_PCL6045B 控制板采用了USB 串行总线接口通信方式,不必拆卸计算机箱就可以在台式机或笔记本电脑上进行运动控制芯片PCL6045B 的学习和评估。

USB_PCL6045B 评估板采用USB 串行总线方式实现评估板同计算机的数据交换,由评估板的FIFO 控制回路完成步进电机以及伺服电机的高速脉冲控制,任意 2 轴的圆弧插补,2-4 轴的直线插补等运动控制功能。USB_PCL6045B 评估板上配置了全部PCL6045B 芯片的外部信号接口和增量编码器信号输入接口。由

USB_PCL6045B 评估测试软件可以进行PCL6045B 芯片的主要功能的评估测试。

图4-1-1USB_PCL6045B 评估板原理框图

如图4-1-1 所示,CN11 接口主要用于外部电源连接,可以选择DC5V 单一电源或DC5V/24V 电源。CN12 接口是USB 信号接口,用于USB_PCL6045B 评估板同计算机的数据交换。

USB_PCL6045B 评估板已经完成对PCL6045B 芯片的底层程序开发和硬件资源与端口的驱动,并封装成156 个API 接口函数。用户可直接在VC 环境下利用API 接口函数进行编程。

五、实验内容

1、操作步骤

1)检查电机驱动电源(24V)

2)检查USB_PCL6045B 控制板与上位机及电机驱动器间的连接电缆

3)启动USB_PCL6045B 控制板评估测试系统检查系统是否正常工作。

4)运行编写的定长运动程序,并比较实际位移与设定位移。

5)修改程序设定不同运动长度,并重复执行步骤4)。

6)对记录实验数据,并进行误差分析。

2、实验数据处理

基于VC的控制界面:

本次实验必须先设计控制系统的上位机,通过上位机的串口向下位机发送控制命令,下位机接收到命令后,产生PWM波,控制电机的正反转以此达到控制导轨运动的目的。系统的控制界面如图1所示:

图1 系统的控制界面

控制导轨运动,运动采取正向运动,再返回,即IMU的实际运行位移为零。并保存数据

控制界面的应用程序

源程序仅写出VC中按钮的响应程序:

void CAaaDlg::Online() ////定长运动

{

// TODO: Add your control notification handler code here

USB_initial();

USB_default_set();

USB_set_org_logic(AXS_AX,0);//原点开关的逻辑, 负逻辑

USB_set_el_logic(AXS_AX,0);//硬极限输入逻辑,低电平使能

USB_set_sd_logic(AXS_AX,0);//减速开关的输入逻辑,负逻辑

USB_set_alm_logic(AXS_AX, 1);//报警输入信号逻辑

USB_set_inp_logic(AXS_AX,1);//in的输入信号逻辑

USB_ez_logic(AXS_AX,0);//Z相的输入逻辑

USB_set_pls_outmode(AXS_AX,1);

USB_set_out_enable(AXS_AX,1);//脉冲输出使能

// USB_jog_continue(AXS_AX,150,20000,20,20,20,20,1,30000);

USB_start_tr_move(AXS_AX, m_dist, 0, m_inspeed, 5000, 5000); // USB_tv_move(AXS_AX, 150, 2000, 3000);

/* USB_v_change(AXS_AX, 5000, 5000);

while(1)

{

USB_get_speed(AXS_AX, &m_speed);

UpdateData(FALSE);

MSG msg;

while(PeekMessage(&msg,0,0,100,PM_REMOVE))

{

TranslateMessage(&msg);

DispatchMessage(&msg);

}

Sleep(100);

}

*/

}

void CAaaDlg::OnButton1() //////停止运动

{

// TODO: Add your control notification handler code here

USB_sd_stop(AXS_AX);

}

void CAaaDlg::OnGetSpeed() //////获得速度

{

// TODO: Add your control notification handler code here

USB_get_speed(AXS_AX, &m_speed);

UpdateData(FALSE);

}

void CAaaDlg::OnButton3() ///OK 按钮程序

{

// TODO: Add your control notification handler code here

UpdateData(true);

}

3,处理数据

由实验原理可知,惯性测量单元(IMU)可以通过自身独立的测量结果进行积分,计算出目标运动的角度和位移等量。本次实验就是利用IMU的加速度计的某一敏感轴测量导轨运行的加速度,通过加速度两次积分得到物体的位移,计算结果如图2所示:

实验经过往返,从原理上讲位移应该为零。

处理结果:

位移曲线:

速度曲线:

4,源程序:

A=load('E:\惯性器件综合实验\我的作业\实验四\X300000_V10000.txt');

T=1/200; %%%%单位为秒

g=9.78;

Ax=A(:,4)*g/1000; %%%提取加速度计的值转化为m/s^2

Ax=Ax*(1.0009)-0.0036595*g;

vx=zeros(12657,1);

sx=zeros(12657,1);

u=zeros(12657,1);

%%%%%计算位移

for i=2:12657

vx(i)=vx(i-1)+(Ax(i-1)+Ax(i-1))*T /2;

sx(i)=sx(i-1)+(vx(i-1)+ vx(i))/2*T+0.5*A(i-1)*T*T;

u(i)=i;

end

figure

plot(u/100,vx);

xlabel('时间/秒'),ylabel('速度米/秒');

figure

plot(u/100,sx);

xlabel('时间/秒'),ylabel('位移米');

5,实验结果分析

从原理上讲IMU做往返运动,位移应该出现增大和减小的趋势,但是由于各种误差角,而且滑轨也不能保证当地水平,在计算过程中,也未减去有害加速度。所以误差很大。而且根据所采集的数据可知加速度计并没有感知方向,在实验过程中应该根据计算脉冲与时间,自己计算方向时间

惯性导航系统半物理仿真实验

一、实验目的

进行惯导系统半物理仿真实验,以验证惯性器件真实误差特性情况下惯性导航系统的性能。

二、实验内容

将采集到陀螺仪与加速度计的真实误差数据叠加到轨迹发生器产生的导航参数真值上,进行惯导解算,并分析误差特性。

三、实验系统组成

真实的陀螺仪、加速度计或 IMU,数据采集系统和数据处理计算机。

四、实验步骤

(1)采集实验数据

(2)处理采集的实验数据,生成半物理的惯性器件误差数据

(3)生成半物理的导航数据,进行导航解算

(4)对导航解算结果进行分析

(5)完成实验报告

五、实验内容及结果

(1)半物理仿真数据的生成:

a)应用前面IMU实验或惯性导航系统动态实验中采集的陀螺仪与加速度计的

静态数据DATA

b)对以上采集的静态数据求取均方差X(结果为X度/小时或Xg)

c)将DATA中数据去掉均值生成新的数据DATA1(器件噪声)

d)自己设定要仿真的陀螺或加速度计的精度Y(度/小时或g)

e)将DATA1中数据乘以Y/X生成新的数据DATA2(半物理仿真噪声)

f)从DATA2中读取数据并叠加到轨迹发生器产生的标准数据(不含噪声)上,

进行导航解算。(如初始采集的数据长度不够,可以将DATA2中数据重复利用,即将生成一个几倍长度于DATA2和数据文件DATA3,并从DATA3中读取半物理数据并叠加到轨迹发生器产生的标准数据上)

(2)加半物理仿真噪声数据的导航结果:

(3)叠加噪声的导航结果:

(4)结果分析:

由实验结果可见,叠加的仿真噪声数据对姿态的解算影响很大;但由于所加噪声较小,所以噪声数据对位移和速度的解算影响不大。

六,源程序

clear,clc

invout=load('E:\惯导实验数据\第四次\实验4.3\第四部分半物理仿真数据生成方法及数据格式说明\IMU数据\invout.dat');

CaijiShuju=load('E:\惯导实验数据\第四次\实验4.3\第四部分半物理仿真数据生成方法及数据格式说明\IMU数据\data2.txt');

W=CaijiShuju(:,3:5);

F=CaijiShuju(:,9:11);

W_pingjun=mean(W);

F_pingjun=mean(F);

%%%%%%%%%%%%%%%%%%%%%%%%%%生成噪声%%%%%%%%%%%%%%

wx=W(:,1)-W_pingjun(1,1);%器件噪声

wy=W(:,2)-W_pingjun(1,2);

wz=W(:,3)-W_pingjun(1,3);

fx=F(:,1)-F_pingjun(1,1);

fx=F(:,2)-F_pingjun(1,2);

fx=F(:,3)-F_pingjun(1,3); %%%%%%%%%%%%%%%%%%%%%%%%%%%求陀螺均方差%%%%%%%%%%%%%%%%%%%%

N=size(W);

n=N(1,1);

%%%%%%%%%%%%%陀螺的精度设为0.5度/小时%%%%%%%%%%%%%%%%%%%

w_jingdu=0.5/3600*pi/180%0.5度/小时转成弧度

sx=0;

for i=1:n

sx=sx+(W(i,1)-W_pingjun(1,1))^2

end

wx_junfangcha=sqrt(sx/n);%x陀螺的均方差

wx1=w_jingdu/wx_junfangcha;

Wx=wx*wx1 %半物理仿真噪声Wx

sx=0;

for i=1:n

sx=sx+(W(i,2)-W_pingjun(1,2))^2

end

wy_junfangcha=sqrt(sx/n);%y陀螺的均方差

wy2=w_jingdu/wy_junfangcha;

Wy=wy*wy2 %半物理仿真噪声Wy

sx=0;

for i=1:n

sx=sx+(W(i,3)-W_pingjun(1,3))^2

end

wz_junfangcha=sqrt(sx/n);%z陀螺的均方差

wz3=w_jingdu/wz_junfangcha;

Wz=wz*wz3 %半物理仿真噪声Wz %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%求加计的均方差%%%%%%%%%%%%%%%%%%%%%%%

f_jingdu=1/1000*9.8%加计的精度为1mg

sx=0;

for i=1:n

sx=sx+(F(i,1)-F_pingjun(1,1))^2

end

fx_junfangcha=sqrt(sx/n);%x加计的均方差

fx1= f_jingdu/fx_junfangcha;

Fx=fx*fx1;

sx=0;

for i=1:n

sx=sx+(F(i,2)-F_pingjun(1,2))^2

end

fy_junfangcha=sqrt(sx/n);%y加计的均方差

fx2= f_jingdu/fy_junfangcha;

Fy=fx*fx2;

sx=0;

for i=1:n

sx=sx+(F(i,3)-F_pingjun(1,3))^2

end

fz_junfangcha=sqrt(sx/n);%z加计的均方差

fx3= f_jingdu/fz_junfangcha;

Fz=fx*fx3;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%轨迹发生器数据叠加噪声%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Wx_invout=invout(:,5);

Wy_invout=invout(:,6);

Wz_invout=invout(:,7);

Fx_invout=invout(:,2);

Fy_invout=invout(:,3);

Fz_invout=invout(:,4);

L_invout=invout(:,8); %纬度

Jingdu_invout=invout(:,9);%经度

Height_invout=invout(:,10);%高度

%%%%%%%%%%%%%%%开始叠加%%%%%%%%%%%%%%%%%%%%

N1=size(invout);

n1=N1(1,1);%%%%应为采样点数大于轨迹发生器的个数,所以以轨迹发生器的个数为准

Wxx=Wx(1:n1,1)+Wx_invout;

Wyy=Wy(1:n1,1)+Wy_invout ;

Wzz=Wz(1:n1,1)+Wz_invout;

Wibb=[Wxx,Wyy,Wzz];

Fxx=Fx(1:n1,1)+Fx_invout;

Fyy=Fy(1:n1,1)+Fy_invout ;

Fzz=Fz(1:n1,1)+Fz_invout;

Fibb=[Fxx,Fyy,Fzz];

q0=zeros(n1,1);

q1=zeros(n1,1);

q2=zeros(n1,1);

q3=zeros(n1,1);

Phai=zeros(n1,1);

Thita=zeros(n1,1);

Gama=zeros(n1,1);

Phai(1)=0/180*pi;%偏航初始角

Thita(1)=(0)*pi/180;%俯仰初始角

Gama(1)=(0)*pi/180;%横滚初始角

L=zeros(n1,1);

nmda=zeros(n1,1);

Vxt=zeros(n1+1,1);

Vyt=zeros(n1+1,1);

q0(1)=cos(-Phai(1)/2)*cos(Thita(1)/2)*cos(Gama(1)/2)+sin(-Phai(1)/2)*sin(Thita(1)/2)*sin(Gama(1)/2);

q1(1)=cos(-Phai(1)/2)*sin(Thita(1)/2)*cos(Gama(1)/2)+sin(-Phai(1)/2)*cos(Thita(1)/2)*sin(Gama(1)/2);

q2(1)=cos(-Phai(1)/2)*cos(Thita(1)/2)*sin(Gama(1)/2)-sin(-Phai(1)/2)*sin(Thita(1)/2)*cos(Gama(1)/2);

q3(1)=cos(-Phai(1)/2)*sin(Thita(1)/2)*sin(Gama(1)/2)-sin(-Phai(1)/2)*cos(Thita(1)/2)*cos(Gama(1)/2);

Wie=0.000072921151467;%已经是弧度制

L(1)=40/180*pi;

nmda(1)=116.0/180*pi;

T=0.01;%采样频率为100Hz

Vxt(1)=0;

Vyt(1)=0;

Re=6378245+80;%加高度80米

e=1/298.3;

for k=1:n1

c11=q0(k)^2+q1(k)^2-q2(k)^2-q3(k)^2;

c12=2*(q1(k)*q2(k)+q0(k)*q3(k));

c13=2*(q1(k)*q3(k)-q0(k)*q2(k));

c21=2*(q1(k)*q2(k)-q0(k)*q3(k));

c22=q0(k)^2-q1(k)^2+q2(k)^2-q3(k)^2;

c23=2*(q2(k)*q3(k)+q0(k)*q1(k));

c31=2*(q1(k)*q3(k)+q0(k)*q2(k));

c32=2*(q2(k)*q3(k)-q0(k)*q1(k));

c33=q0(k)^2-q1(k)^2-q2(k)^2+q3(k)^2;

Cnb=[c11,c12,c13

c21,c22,c23

c31,c32,c33];

if abs(c22)>0.0000000000001

Phai(k)=atan(-c21/c22);

end

if abs(c22)>0.0000000000001 & c21>0

Phai(k)=pi/2;

end

if abs(c22)>0.0000000000001 & c21<0

Phai(k)=-pi/2;

end

if abs(c22)>0.0000000000001 & c22>0

Phai(k)=atan(-c21/c22);

end

if abs(c22)>0.0000000000001 & c22>0 & c21>0

Phai(k)=atan(c21/c22)+pi;

end

if abs(c22)>0.0000000000001 & c22>0 & c21<0

Phai(k)=atan(-c21/c22)-pi;

end

Thita(k)=asin(c23);

Gama(k)=-atan(c13/c33);

Cbn=inv(Cnb);

Aibn=Cbn*Fibb(k,:)';

Rxt=Re/(1-e*(sin(L(k))*sin(L(k))));

axt=Aibn(1,1)+2*Wie*sin(L(k))*Vyt(k)+Vyt(k)*Vxt(k)*tan(L(k))/Rxt; ayt=Aibn(2,1)-2*Wie*sin(L(k))*Vxt(k)-Vxt(k)*Vxt(k)*tan(L(k))/Rxt;

Vxt(k+1)=axt*T+Vxt(k);

Vyt(k+1)=ayt*T+Vyt(k);

Ryt=Re/(1+2*e-3*e*(sin(L(k))*sin(L(k))));

L(k+1)=0.5*T*(Vyt(k+1)+Vyt(k))/Ryt+L(k);

nmda(k+1)=0.5*T*(Vxt(k+1)+Vxt(k))/Rxt*sec(L(k))+nmda(k);

Wenn=[-Vyt(k)/Ryt;Vxt(k)/Rxt;Vxt(k)/Rxt*tan(L(k))];%课本86页4.2-38式

Winn=Wenn+[0;Wie*cos(L(k));Wie*sin(L(k))];

Winb=Cnb*Winn;

Wtbb=Wibb(k,:)'-Winb;

dltaTita0_fang=(Wtbb(1,1)*T)^2+(Wtbb(2,1)*T)^2+(Wtbb(3,1)*T)^2;

dltaTita=[0,-Wtbb(1,1)*T,-Wtbb(2,1)*T,-Wtbb(3,1)*T;

Wtbb(1,1)*T,0,Wtbb(3,1)*T,-Wtbb(2,1)*T;

Wtbb(2,1)*T,-Wtbb(3,1)*T,0,Wtbb(1,1)*T;

Wtbb(3,1)*T,Wtbb(2,1)*T,-Wtbb(1,1)*T,0]

Q=((1-

dltaTita0_fang/8)*eye(4)+0.5*dltaTita)*[q0(k);q1(k);q2(k);q3(k)]; q0(k+1)=Q(1);

q1(k+1)=Q(2);

q2(k+1)=Q(3);

q3(k+1)=Q(4);

end

figure

hold on

i=1:n1;

subplot(1,2,1),plot(i,Vxt(i))%速度误差

title('叠加噪声后的东向速度误差')

subplot(1,2,2),plot(i,Vyt(i))

title('叠加噪声后的的北向速度误差')

figure

hold on

i=1:n1;

subplot(1,2,1),plot(i,L(i)*180/pi)%位置误差

title('叠加噪声后的的纬度误差')

subplot(1,2,2),plot(i,nmda(i)*180/pi)

title('叠加噪声后的的经度误差')

figure

hold on

i=1:n1;

plot(i,Phai(i)*180/pi)%姿态角误差subplot(1,3,1),

title('叠加噪声后的的航向角误差')

figure

hold on

i=1:n1;

plot(i,Thita(i)*180/pi)%subplot(1,3,2),

title('叠加噪声后的俯仰角误差')

figure

hold on

i=1:n1;

plot(i,Gama(i)*180/pi)%subplot(1,3,3),

title('叠加噪声后的横滚角误差')

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%轨迹发生器的数据处理%%%%%%%%%%%%%%%

clear,clc

invout=load('E:\惯导实验数据\第四次\实验4.3\第四部分半物理仿真数据生成方法及数据格式说明\IMU数据\invout.dat');

Wx_invout=invout(:,5);

Wy_invout=invout(:,6);

Wz_invout=invout(:,7);

Wibb=[Wx_invout,Wy_invout,Wz_invout];

Fx_invout=invout(:,2);

Fy_invout=invout(:,3);

Fz_invout=invout(:,4);

Fibb=[Fx_invout,Fy_invout,Fz_invout];

L_invout=invout(:,8); %纬度

Jingdu_invout=invout(:,9);%经度

Height_invout=invout(:,10);%高度

N1=size(invout);

n1=N1(1,1);

q0=zeros(n1,1);

q1=zeros(n1,1);

q2=zeros(n1,1);

q3=zeros(n1,1);

Phai=zeros(n1,1);

Thita=zeros(n1,1);

Gama=zeros(n1,1);

Phai(1)=0/180*pi;%偏航初始角

Thita(1)=0*pi/180;%俯仰初始角

Gama(1)=0*pi/180;%横滚初始角

L=zeros(n1,1);

nmda=zeros(n1,1);

Vxt=zeros(n1+1,1);

Vyt=zeros(n1+1,1);

q0(1)=cos(-Phai(1)/2)*cos(Thita(1)/2)*cos(Gama(1)/2)+sin(-

Phai(1)/2)*sin(Thita(1)/2)*sin(Gama(1)/2);

q1(1)=cos(-Phai(1)/2)*sin(Thita(1)/2)*cos(Gama(1)/2)+sin(-Phai(1)/2)*cos(Thita(1)/2)*sin(Gama(1)/2);

q2(1)=cos(-Phai(1)/2)*cos(Thita(1)/2)*sin(Gama(1)/2)-sin(-Phai(1)/2)*sin(Thita(1)/2)*cos(Gama(1)/2);

q3(1)=cos(-Phai(1)/2)*sin(Thita(1)/2)*sin(Gama(1)/2)-sin(-Phai(1)/2)*cos(Thita(1)/2)*cos(Gama(1)/2);

Wie=0.000072921151467;%已经是弧度制

L(1)=40/180*pi;

nmda(1)=116.0/180*pi;

T=0.01;%采样频率为100Hz

Vxt(1)=0;

Vyt(1)=0;

Re=6378245+80;%加高度80米

e=1/298.3;

for k=1:n1

c11=q0(k)^2+q1(k)^2-q2(k)^2-q3(k)^2;

c12=2*(q1(k)*q2(k)+q0(k)*q3(k));

c13=2*(q1(k)*q3(k)-q0(k)*q2(k));

c21=2*(q1(k)*q2(k)-q0(k)*q3(k));

c22=q0(k)^2-q1(k)^2+q2(k)^2-q3(k)^2;

c23=2*(q2(k)*q3(k)+q0(k)*q1(k));

c31=2*(q1(k)*q3(k)+q0(k)*q2(k));

c32=2*(q2(k)*q3(k)-q0(k)*q1(k));

c33=q0(k)^2-q1(k)^2-q2(k)^2+q3(k)^2;

Cnb=[c11,c12,c13

c21,c22,c23

c31,c32,c33];

if abs(c22)>0.0000000000001

Phai(k)=atan(-c21/c22);

end

if abs(c22)>0.0000000000001 & c21>0

Phai(k)=pi/2;

end

if abs(c22)>0.0000000000001 & c21<0

Phai(k)=-pi/2;

end

if abs(c22)>0.0000000000001 & c22>0

Phai(k)=atan(-c21/c22);

end

if abs(c22)>0.0000000000001 & c22>0 & c21>0

Phai(k)=atan(c21/c22)+pi;

end

if abs(c22)>0.0000000000001 & c22>0 & c21<0

Phai(k)=atan(-c21/c22)-pi;

end

Thita(k)=asin(c23);

Gama(k)=-atan(c13/c33);

Cbn=inv(Cnb);

Aibn=Cbn*Fibb(k,:)';

Rxt=Re/(1-e*(sin(L(k))*sin(L(k))));

axt=Aibn(1,1)+2*Wie*sin(L(k))*Vyt(k)+Vyt(k)*Vxt(k)*tan(L(k))/Rxt; ayt=Aibn(2,1)-2*Wie*sin(L(k))*Vxt(k)-Vxt(k)*Vxt(k)*tan(L(k))/Rxt;

Vxt(k+1)=axt*T+Vxt(k);

Vyt(k+1)=ayt*T+Vyt(k);

Ryt=Re/(1+2*e-3*e*(sin(L(k))*sin(L(k))));

L(k+1)=0.5*T*(Vyt(k+1)+Vyt(k))/Ryt+L(k);

nmda(k+1)=0.5*T*(Vxt(k+1)+Vxt(k))/Rxt*sec(L(k))+nmda(k);

Wenn=[-Vyt(k)/Ryt;Vxt(k)/Rxt;Vxt(k)/Rxt*tan(L(k))];%课本86页4.2-38式

Winn=Wenn+[0;Wie*cos(L(k));Wie*sin(L(k))];

Winb=Cnb*Winn;

Wtbb=Wibb(k,:)'-Winb;

dltaTita0_fang=(Wtbb(1,1)*T)^2+(Wtbb(2,1)*T)^2+(Wtbb(3,1)*T)^2;

dltaTita=[0,-Wtbb(1,1)*T,-Wtbb(2,1)*T,-Wtbb(3,1)*T;

Wtbb(1,1)*T,0,Wtbb(3,1)*T,-Wtbb(2,1)*T;

Wtbb(2,1)*T,-Wtbb(3,1)*T,0,Wtbb(1,1)*T;

Wtbb(3,1)*T,Wtbb(2,1)*T,-Wtbb(1,1)*T,0]

Q=((1-

dltaTita0_fang/8)*eye(4)+0.5*dltaTita)*[q0(k);q1(k);q2(k);q3(k)]; q0(k+1)=Q(1);

q1(k+1)=Q(2);

q2(k+1)=Q(3);

q3(k+1)=Q(4);

end

figure

hold on

传感器测试实验报告

实验一 直流激励时霍尔传感器位移特性实验 一、 实验目的: 了解霍尔式传感器原理与应用。 二、基本原理: 金属或半导体薄片置于磁场中,当有电流流过时,在垂直于磁场和电流的方向上将产生电动势,这种物理现象称为霍尔效应。具有这种效应的元件成为霍尔元件,根据霍尔效应,霍尔电势U H =K H IB ,当保持霍尔元件的控制电流恒定,而使霍尔元件在一个均匀梯度的磁场中沿水平方向移动,则输出的霍尔电动势为kx U H ,式中k —位移传感器的灵敏度。这样它就可以用来测量位移。霍尔电动势的极性表示了元件的方向。磁场梯度越大,灵敏度越高;磁场梯度越均匀,输出线性度就越好。 三、需用器件与单元: 霍尔传感器实验模板、霍尔传感器、±15V 直流电源、测微头、数显单元。 四、实验步骤: 1、将霍尔传感器安装在霍尔传感器实验模块上,将传感器引线插头插入实验模板的插座中,实验板的连接线按图9-1进行。1、3为电源±5V , 2、4为输出。 2、开启电源,调节测微头使霍尔片大致在磁铁中间位置,再调节Rw1使数显表指示为零。 图9-1 直流激励时霍尔传感器位移实验接线图 3、测微头往轴向方向推进,每转动0.2mm 记下一个读数,直到读数近似不变,将读数填入表9-1。 表9-1 X (mm ) V(mv)

作出V-X曲线,计算不同线性范围时的灵敏度和非线性误差。 五、实验注意事项: 1、对传感器要轻拿轻放,绝不可掉到地上。 2、不要将霍尔传感器的激励电压错接成±15V,否则将可能烧毁霍尔元件。 六、思考题: 本实验中霍尔元件位移的线性度实际上反映的时什么量的变化? 七、实验报告要求: 1、整理实验数据,根据所得得实验数据做出传感器的特性曲线。 2、归纳总结霍尔元件的误差主要有哪几种,各自的产生原因是什么,应怎样进行补偿。

北航电子电路设计数字部分实验报告

电子电路设计数字部分实验报告 学院: 姓名:

实验一简单组合逻辑设计 实验内容 描述一个可综合的数据比较器,比较数据a 、b的大小,若相同,则给出结果1,否则给出结果0。 实验仿真结果 实验代码 主程序 module compare(equal,a,b); input[7:0] a,b; output equal; assign equal=(a>b)1:0; endmodule 测试程序

module t; reg[7:0] a,b; reg clock,k; wire equal; initial begin a=0; b=0; clock=0; k=0; end always #50 clock = ~clock; always @ (posedge clock) begin a[0]={$random}%2; a[1]={$random}%2; a[2]={$random}%2; a[3]={$random}%2; a[4]={$random}%2; a[5]={$random}%2; a[6]={$random}%2; a[7]={$random}%2; b[0]={$random}%2; b[1]={$random}%2; b[2]={$random}%2; b[3]={$random}%2; b[4]={$random}%2;

b[5]={$random}%2; b[6]={$random}%2; b[7]={$random}%2; end initial begin #100000 $stop;end compare m(.equal(equal),.a(a),.b(b)); endmodule 实验二简单分频时序逻辑电路的设计 实验内容 用always块和@(posedge clk)或@(negedge clk)的结构表述一个1/2分频器的可综合模型,观察时序仿真结果。 实验仿真结果

北航物理实验绪论考试真题(4套题含问题详解)

物理实验绪论测试题1 一、单项选择题 1.某测量结果0.01010cm有( b )位有效数字。 A.3位 B.4位 C.5位 D.6位 2.已知常数e=2.718281828……,测量L=0.0023,N=2.73,则(e-L)/N=( c ) A.0.994 B.0.9949 C.0.995 D.1.00 3.物理量A=x+y x?y ,那末其相对不确定度为( a ) A. 2 x2?y2 √x2u2(y)+y2u2(x) B.2 x2?y2 √x2u2(y)?y2u2(x) C.√u 2(x)+u2(y) (x+y)2 +u2(x)+u2(y) (x?y)2 D.√u 2(x)+u2(y) (x+y)2 ?u2(x)?u2(y) (x?y)2 4.用作图法处理数据时,为保证精度,至少应使坐标纸的最小分格和测量值的( c )相对 应。 A.第一位有效数字 B.第二位有效数字 C.最后一位有效数字 D.最后一位准确数字 二、填空题: 5.用计算器算出圆柱体的转动惯量J=645.0126g?cm2,平均值的不确定度为u(J)= 则J+u(J)=( ± )×102g?cm2 6.多量程电压表(1级,3- 7.5-15-30V)用于检测某电路两端的电压,如果用3V档去测3V 电压,其相对不确定度为。如果用7.5V档去测3V电压,其相对不确定度为。 三、多项选择题: 7.满足正态分布的物理量,下面的叙述哪些是正确的?abc A 做任何次测量,其结果有68.3%的可能性落在区间[A?δ,A+δ] B 设某次测量的结果为X i,则X i±δ(x)表示真值落在[X i?δ(x),X i+δ(x)]的概率为0.683 C X i±δ(x)与x±δ(x)的置信概率是相同的 D x±δ(x)的置信概率比X i±δ(x)的置信概率高 8.指出下列关于仪器误差的叙述哪些是错误的(按物理实验课的简化要求)bcd A.千分尺的仪器误差等于最小分度的一半 B.游标卡尺的仪器误差等于游标精度的一半 C.磁电式仪表的仪器误差=等级%×测量值 D.箱式电桥? 仪 =等级%(测量值+基准值) 四、计算题

北航基础物理实验研究性实验报告_分光仪的调整及应用

北京航空航天大学物理研究性实验报告 分光仪的调整及其应用 第一作者:所在院系:就读专业:第二作者:所在院系:就读专业:

目录 目录 一.报告简介 (1) 二.实验原理 (1) 实验一.分光仪的调整 (1) 实验二.三棱镜顶角的测量 (3) 实验三.最小偏向角法测棱镜折射率 (1) 二.实验仪器 (1) 三.实验主要步骤 (2) 实验1.分光仪的调整 (2) 1.调整方法 (2) 2.要求 (4) 实验2.三棱镜顶角的测量 (4) 1.调整要求 (4) 2.实验操作 (5) 实验3.棱镜折射率的测定(最小偏向角法) (6) 四.实验数据记录 (6) 五.数据处理 (7) 实验2.反射法测三棱镜顶角 (7) 实验3.最小偏向角法测棱镜折射率 (7) 六.误差分析 (8) 七.分析总结 (8) 八.实验改进 (9) 九.实验感想 (10) 十.参考文献及图片附件: (11)

一.报告简介 本报告以分光仪的调整、三棱镜顶角和其折射率的测量为主要内容,先介绍了实验的基本原理与过程,而后进行了数据处理与不确定度计算。并以实验数据对误差的来源进行了分析。同时还给出了调节分光仪的经验总结与方法,并对现有实验仪器和试验方法提出了改进的意见。 二.实验原理 实验一.分光仪的调整 分光仪的结构因型号不同各有差别,但基本原理是相同的,一般都由底座、刻度读数盘、自准直望远镜、平行光管、载物平台5部分组成。 1-狭缝套筒;2-狭缝套筒紧固螺钉;3-平行光管;4-制动架;5-载物台;6-载物台调平螺钉;7-载物台锁紧螺钉;8-望远镜;9-望远镜锁紧螺钉;10-阿贝式自准直目镜;11-目镜;12-仰角螺钉;13-望远镜光轴水平螺钉;14-支臂;15-望远镜转角微调螺钉;16-读数刻度盘止动螺钉;17-制动架;18-望远镜止动螺钉;19底座;20-转座;21-

传感器实验报告

金属箔式应变片——半桥性能实验 一. 实验目的:比较半桥与单臂电桥的不同性能,了解其特点。 二. 基本原理:不同受力方向的两片应变片接入电桥作为邻边,电桥输出 三. 灵敏度提高,非线性得到改善。当两片应变片阻值和应变量相同时,其桥路输出电 压U02=EK/ε2。 四. 需用器件和单元:应变式传感器实验模板、应变式传感器、砝码、数显表、+15V 电源、+-4V 电源、万用表 五. 实验步骤: ① 按要求将应变式传感器装与传感器模板上。 ② 按要求进行电路接线,将两个应变片接入桥路。 ③ 进行测量,将数据记录到表格中。 六.实验数据 所以可知灵敏度δ=0.3639,非线性误差为δf1=Δm/Y F.s =1.112/65=1.71% 七、思考题: 1、半桥侧量时两片不同受力状态的电阻应变片接入电桥时,应放在: (1)对边 (2)邻边。 2、桥路(差动电桥)测量时存在非线性误差,是因为:(1)电桥测量原理上存在非线性 (2)应变片应变效应是非线性的 (3)调零值不是真正为零。 答:都是。但是调零值可以通过记录最初的非零值来消除此误差

金直流全桥的应用——电子秤实验 一. 实验目的:了解应变片直流全桥的应用电路的标定。 二. 基本原理:电子秤实验原理为实验三全桥测量原理,通过对电路调节 三. 使电路输出的电压值为重量对应值,电压量纲(V)改为重量量纲(g)即成为一台原始 电子秤。 四. 需用器件和单元:应变式传感器实验模板、应变式传感器、砝码、±15V 电源、± 4V 电源 五. 实验步骤: 1、按实验一中2的步骤将差动放大器调零:参考图1-2将四个应变片按正确的接法接成全桥形式,合上主控箱电源开关调节电桥平衡电位器Rw1,使数显表显示0.00V 。 2、将10只砝码全部置于传感器的托盘上,调节电位器Rw3(增益即满量程调节),使数显表显示为0.200V(2V 档测显)或-0.200V 。 3、拿去托盘上的所有法码,调节电器Rw4(零位调节),使数显表显示为0。000V 或—0。000V 。 4、重复2、3步骤的标定过程,一直到精确为止,把电压量纲V 改为重量量纲g ,就可秤重,成为一台原始的电子秤。 6、根据上表计算误差与非线性误差。 所以可知灵敏度δ=1,非线性误差为δ f1=Δm/Y F.s =0

北航电子电路设计训练模拟分实验报告

北航电子电路设计训练模拟部分实验报告

————————————————————————————————作者:————————————————————————————————日期:

电子电路设计训练模拟部分实验 实验报告

实验一:共射放大器分析与设计 1.目的: (1)进一步了解Multisim的各项功能,熟练掌握其使用方法,为后续课程打好基础。 (2)通过使用Multisim来仿真电路,测试如图1所示的单管共射放大电路的静态工作点、电压放大倍数、输入电阻和输出电阻,并观察 静态工作点的变化对输出波形的影响。 (3)加深对放大电路工作原理的理解和参数变化对输出波形的影响。 (4)观察失真现象,了解其产生的原因。 图 1 实验一电路图 2.步骤: (1)请对该电路进行直流工作点分析,进而判断管子的工作状态。 (2)请利用软件提供的各种测量仪表测出该电路的输入电阻。 (3)请利用软件提供的各种测量仪表测出该电路的输出电阻。 (4)请利用软件提供的各种测量仪表测出该电路的幅频、相频特性曲线。 (5)请利用交流分析功能给出该电路的幅频、相频特性曲线。 (6)请分别在30Hz、1KHz、100KHz、4MHz和100MHz这5个频点利用示波器测出输入和输出的关系,并仔细观察放大倍数和相位差。 (提示:在上述实验步骤中,建议使用普通的2N2222A三极管,并请注 意信号源幅度和频率的选取,否则将得不到正确的结果。) 3.实验结果及分析: (1)根据直流工作点分析的结果,说明该电路的工作状态。 由simulate->analyses->DC operating point,可测得该电路的静态工作点为:

北航基础物理研究性报告讲解

北航基础物理研究性报告讲解

北航基础物理实验研究性报告1051 电位差计及其应用 140221班 2015-12-13 第一作者:邓旭锋14021014 第二作者:吴聪14021011

目录 1.引言 (4) 2.实验原理 (5) 2.1补偿原理 (5) 2.2 UJ25型电位差计 (8) 3.实验仪器 (10) 4.实验步骤 (10) 4.1自组电位差计 (10) 4.2 UJ25型箱式电位差计 (11) 5.实验数据处理 (12) 5.1 实际测量Ex的大小 (13) 5.2 不确定度的计算 (13) 5.3 测量结果最终表述 (14) 5.4 实验误差分析 (14) 6.实验改进与意见 (14) 6.1 实验器材的改进 (8) 6.2 实验方法改进 (10) 6.3 实验内容的改进 (10)

7.实验感想与体会 (21) 【参考文献】 (24) 摘要:将电位差计实验中的补偿法原理应用于电学物理量的测量中,该方法可以用来精确测量电流、电阻、电压等电学量,也可以利用电位差计,获得比较精确的二极管伏安特性曲线可以避免了因电表的内阻而引起的测量误差。利用实验室现有仪器设计了一些切实可行的新实验。 关键字:电位差计;补偿法;UJ23型电位差计;电阻;系统误差。 1.引言 电位差计是电压补偿原理应用的典型范例,它是利用电压补偿原理使电位差计变成一内阻无穷大的电压表,用于精密测量电势差或者电压。同理,利用电流补偿原理也可以制作一内阻为零的电流表,用于电流的精密测量。 电位差计的测量精确度高,且避免了测量的接入误差,但它的操作比较复杂,也不易实现测量的自动化。在数字仪表迅速发展的今天,电压

北航物理实验研究性报告

第0页 本人声明 我声明,本论文为本人独立完成的,在完成论文时所利用的一切资料均已在参考文献中列出。 3903·2415 高等工程学院 李柏

第1页 晶体的电光效应的深入剖析 第一作者:李柏(自主独立完成) 摘要 本文基于作者在认真做过实验并对内容的深刻理解,旨在对该实验从原理到操作流程以及实验数据处理进行更加深入的剖析。 在正文的第一部分,本文从一名大二本科生的角度对实验原理进行了系统地重新表述,查阅资料并补充了部分《大学物理·光学》的必要知识(例如1/4玻片、单轴晶体的定义)力求让下一届的学生们能彻底理解原理部分,部分素材也可适当补充进新版的《物理实验》课本中。 在第二部分,本文细致地描述了实验操作的各个流程,从等高共轴的调节方法开始,给出了有理有据的调节方法,可以作为今后教师指导学生的基本判据。 在第三部分,本文重新安排了数据处理,采用了更加翔实的原始数据,但必须指出本文的缺陷:依然未能定量地得出产生误差的原因。 在第四部分,包含作者对试验中一些现象的理论层面的深入剖析,以及实验感想、建议等等。 最后的最后,是完成本文参阅资料的声明。 关键词:晶体电光效应电光调制大学物理实验论文测量半波电压

第2页 第一章:实验原理的重新表述 1.1电光效应与一次电光效应 晶体在外电场作用下折射率会产生变化,这种现象称为电光效应。这种效应由于n 随电场变化而变化时间极短,甚至能跟得上1010Hz的电场变化频率,故可制成响应迅速的各种光电设备(例如斩波器、激光测距仪)。仅仅在同一教室内的光纤陀螺寻北的陀螺仪中就有电光效应制成的元件,可见电光效应的广泛应用。 电场引起折射率变化可表示为n - n0 = aE0 + bE02+…… 由一次项aE0 引起的变化称为一次电光效应,也称泡耳克斯效应。一次效应又区分纵横方向,以加载电场的取向决定。本实验研究铌酸锂晶体的一次纵向电光效应。 光在晶体中传播时,在不平行于光轴方向上,由于e光和o光传播速度不同,而出现两个不同折射率的光的像,这种现象叫做双折射现象(图1-1)。只有一个光轴的晶体就叫单轴晶体,铌酸锂原本是单轴晶体,但晶体外加电场后,将变成双轴晶体,导致与双折射类似的结果,出射光可能为椭圆偏振光。 图1-1 双折射原理示意图 1.2电光调制 在无线电通信中,为了传递信息,总是通过表征电磁波特性的正弦波性质受传递信号控制来实现,这种控制过程被称作调制。接收时,逆过程则称为解调。本实验采用强

传感器实验报告

传感器实验报告(二) 自动化1204班蔡华轩 U2 吴昊 U5 实验七: 一、实验目的:了解电容式传感器结构及其特点。 二、基本原理:利用平板电容C=εA/d 和其它结构的关系式通过相应的结 构和测量电路可以选择ε、A、d 中三个参数中,保持二个参数不变,而只改变其中一个参数,则可以有测谷物干燥度(ε变)测微小位移(变d)和测量液位(变A)等多种电容传感器。 三、需用器件与单元:电容传感器、电容传感器实验模板、测微头、相敏 检波、滤波模板、数显单元、直流稳压源。 四、实验步骤: 1、按图6-4 安装示意图将电容传感器装于电容传感器实验模板上。 2、将电容传感器连线插入电容传感器实验模板,实验线路见图7-1。图 7-1 电容传感器位移实验接线图 3、将电容传感器实验模板的输出端V01 与数显表单元Vi 相接(插入主控 箱Vi 孔),Rw 调节到中间位置。 4、接入±15V 电源,旋动测微头推进电容传感器动极板位置,每间隔 记下位移X 与输出电压值,填入表7-1。

5、根据表7-1 数据计算电容传感器的系统灵敏度S 和非线性误差δf。 图(7-1) 五、思考题: 试设计利用ε的变化测谷物湿度的传感器原理及结构,并叙述一 下在此设计中应考虑哪些因素 答:原理:通过湿度对介电常数的影响从而影响电容的大小通过电压表现出来,建立起电压变化与湿度的关系从而起到湿度传感器的作用;结构:与电容传感器的结构答大体相同不同之处在于电容面板的面积应适当增大使测量灵敏度更好;设计时应考虑的因素还应包括测量误差,温度对测量的影响等

六:实验数据处理 由excle处理后得图线可知:系统灵敏度S= 非线性误差δf=353=% 实验八直流激励时霍尔式传感器位移特性实验 一、实验目的:了解霍尔式传感器原理与应用。 二、基本原理:霍尔式传感器是一种磁敏传感器,基于霍尔效应原理工作。 它将被测量的磁场变化(或以磁场为媒体)转换成电动势输出。 根据霍尔效应,霍尔电势UH=KHIB,当霍尔元件处在梯度磁场中 运动时,它就可以进行位移测量。图8-1 霍尔效应原理

北航_仪器光电综合实验报告_彩色线阵CCD传感器系列实验

2012/4/29

彩色线阵CCD传感器系列实验 实验时间:2012年4月27日星期五 (一)实验目的: 1.了解并学习CCD的使用、驱动原理和功能特性等。 (二)实验内容: 1.本实验共分为以下四个实验部分,主要内容为: 1)线阵原理及驱动 2)特性测量实验 3)输出信号二值化 4)线阵CCD的AD数据采集 (三)实验仪器: 1.双踪迹同步示波器(带宽50MHz以上)一台, 2.彩色线阵CCD多功能实验仪YHCCD-IV一台 3.实验用PC计算机及A/D数据采集基本软件 (四)实验结果及数据分析: 一、线阵原理及驱动 1)驱动频率与周期 表格 1 驱动频率与周期实验结果

由于对不同驱动频率示值,对应不同驱动频率,当显示数值为0时,f=1Mhz;为1时,f=500Khz;为2时,f=250Khz;为3时,f=125Khz; 对应F1,F2频率始终是驱动信号的8分之一,而RS则为F1,F2频率的2倍; 现象及数据分析:由上图可知,在同一频率档位上,随着积分时间档位的增长,FC周期逐渐增加;对于同一积分档位,考虑到驱动频率间的关系,FC周期恰好成倍数关系; 2)积分时间测量 表格 2 积分时间测量结果 现象及数据分析:由上图可知,在同一频率档位上,随着积分时间档位的增长,FC周期逐渐增加;对于同一积分档位,考虑到驱动频率间的关系,FC周期恰好成倍数关系; 二、特性测量实验 表格 3 输出信号幅度与积分时间的关系0档

对应曲线: 图表 1 输出信号幅度与积分时间的关系0档 表格 4 输出信号幅度与积分时间的关系 1档

图表 2 输出信号幅度与积分时间的关系1档 表格 5 输出信号幅度与积分时间的关系2档

北航自动控制原理实验报告(完整版)

自动控制原理实验报告 一、实验名称:一、二阶系统的电子模拟及时域响应的动态测试 二、实验目的 1、了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系 2、学习在电子模拟机上建立典型环节系统模型的方法 3、学习阶跃响应的测试方法 三、实验内容 1、建立一阶系统的电子模型,观测并记录在不同时间常数T时的响应曲线,测定过渡过程时间T s 2、建立二阶系统电子模型,观测并记录不同阻尼比的响应曲线,并测定超调量及过渡过程时间T s 四、实验原理及实验数据 一阶系统 系统传递函数: 由电路图可得,取则K=1,T分别取:0.25, 0.5, 1 T 0.25 0.50 1.00 R2 0.25MΩ0.5M Ω1MΩ C 1μ1μ1μ T S 实测0.7930 1.5160 3.1050 T S 理论0.7473 1.4962 2.9927 阶跃响应曲线图1.1 图1.2 图1.3 误差计算与分析 (1)当T=0.25时,误差==6.12%; (2)当T=0.5时,误差==1.32%; (3)当T=1时,误差==3.58% 误差分析:由于T决定响应参数,而,在实验中R、C的取值上可能存在一定误差,另外,导线的连接上也存在一些误差以及干扰,使实验结果与理论值之间存在一定误差。但是本实验误差在较小范围内,响应曲线也反映了预期要求,所以本实验基本得到了预期结果。 实验结果说明 由本实验结果可看出,一阶系统阶跃响应是单调上升的指数曲线,特征有T确定,T越小,过度过程进行得越快,系统的快速性越好。 二阶系统 图1.1 图1.2 图1.3

系统传递函数: 令 二阶系统模拟线路 0.25 0.50 1.00 R4 210.5 C2 111 实测45.8% 16.9% 0.6% 理论44.5% 16.3% 0% T S实测13.9860 5.4895 4.8480 T S理论14.0065 5.3066 4.8243 阶跃响应曲线图2.1 图2.2 图2.3 注:T s理论根据matlab命令[os,ts,tr]=stepspecs(time,output,output(end),5)得出,否则误差较大。 误差计算及分析 1)当ξ=0.25时,超调量的相对误差= 调节时间的相对误差= 2)当ξ=0.5时,超调量的相对误差==3.7% 调节时间的相对误差==3.4% 4)当ξ=1时,超调量的绝对误差= 调节时间的相对误差==3.46% 误差分析:由于本试验中,用的参量比较多,有R1,R2,R3,R4;C1,C2;在它们的取值的实际调节中不免出现一些误差,误差再累加,导致最终结果出现了比较大的误差,另外,此实验用的导线要多一点,干扰和导线的传到误差也给实验结果造成了一定误差。但是在观察响应曲线方面,这些误差并不影响,这些曲线仍旧体现了它们本身应具有的特点,通过比较它们完全能够了解阶跃响应及其性能指标与系统参数之间的关系,不影响预期的效果。 实验结果说明 由本实验可以看出,当ωn一定时,超调量随着ξ的增加而减小,直到ξ达到某个值时没有了超调;而调节时间随ξ的增大,先减小,直到ξ达到某个值后又增大了。 经理论计算可知,当ξ=0.707时,调节时间最短,而此时的超调量也小于5%,此时的ξ为最佳阻尼比。此实验的ξ分布在0.707两侧,体现了超调量和调节时间随ξ的变化而变化的过程,达到了预期的效果。 图2.2 图2.1 图2.3

北航物理演示实验报告-旋光色散

旋光色散 【实验目的】:观察旋光色散现象。 【实验仪器】:旋光色散演示仪。 【实验原理】: 图1 旋光色散原理图 旋光色散是研究光学活性材料的偏振角随波长变化的一种色散效应。当偏振光通过某些物质(如石英、氯酸钠等晶体或食糖水溶液、松节油等),光矢量的振动面将以传播方向为轴发生转动,这一现象称为旋光现象。 本实验利用糖溶液的旋光性演示旋光现象及影响旋光效应的因素。糖溶液放在两个偏振片中间,一个偏振片用于起偏,另一个偏振片用于检偏。单色偏振光通过液态旋光物质时,振动面转过的角度即旋光度ΔΦ与旋光物质的性质、偏振光在旋光物质中经过的距离L、溶液浓度C有关,其关系为 ΔΦ=αCL 比例系数α称溶液的旋光率,它是与入射光波长有关的常数。旋光度大致与入射偏振光波长的平方成反比,这种旋光度随波长而变化的现象称为旋光色散。 【实验步骤】:

图2 旋光色散实验装置图 1、配置溶液。大约用300克蔗糖,玻璃管内的溶液大约占整个容器的2/3左右为妥,将溶液摇匀。 2、打开仪器灯箱光源,连续缓慢转动前端偏振片,可观察到玻璃管下半部有糖溶液的地方透过来的光的颜色赤橙黄绿青兰紫依次变化;管的上部没有糖溶液的地方仅有明暗的变化。 3、在光源和装有糖溶液的玻璃管之间加上滤色片,旋转偏振片,观察玻璃管上下半部的变化情况。 4、换用另一种颜色的滤色片,重复3的操作。 5、实验结束,关闭电源。 【实验应用】: 1、半定量地测量不同波长的光对偏振面旋转角度的影响。 在光源和装有糖溶液的玻璃管之间加上滤色片,旋转检偏器,记录下从玻璃管上方看视场最暗时检偏器的角度;再旋转检偏器,再记下从玻璃管下方看视场最暗时检偏器的角度;上述两个测量角位置之差就是糖溶液的旋光角度。 2、旋光法可用于各种光学活性物质的定量测定或纯度检验。 将样品在指定的溶剂中配成一定浓度的溶液,由测得的旋光度算出比旋光度,与标准比较,或以不同浓度溶液制出标准曲线,求出含量。在旋光计的基础上还发展了一种糖量计,专门用于测量蔗糖含量。用白光为光源,以石英楔抵消蔗糖溶液对不同波长光的色散,并将石英楔校正,标以蔗糖的百分含量,即可直接测出浓度,简便迅速,常用于制糖工业。

北航电涡流传感器实验报告

电涡流传感器实验报告 38030414蔡达 一、实验目的 1.了解电涡流传感器原理; 2.了解不同被测材料对电涡流传感器的影响。 二、实验仪器 电涡流传感器实验模块,示波器:DS5062CE,微机电源:WD990型,士12V,万用表:VC9804A型,电源连接电缆,螺旋测微仪 三、实验原理 电涡流传感器由平面线圈和金属涡流片组成,当线圈中通以高频交变电流后,在与其平行的金属片上会感应产生电涡流,电涡流的大小影响线圈的阻抗Z,而涡流的大小与金属涡流片的电阻率、导磁率、厚度、温度以及与线圈的距离X有关,当平面线圈、被测体(涡流片)、激励源确定,并保持环境温度不变,阻抗Z只与距离X有关,将阻抗变化转为电压信号V输出,则输出电压是距离X的单值函数。

四. 实验数据及处理 1.铁片 0.5 1 1.52 2.5 3 3.5 电涡流传感器电压位移曲线—铁片 电压/V 位移/mm

0.5 1 1.5 2 2.53 3.5 电涡流传感器电压位移拟合曲线—铁片 电压/V 位移/mm 其线性工作区为0.6——3.4,对该段利用polyfit 进行函数拟合,可得V=-1.0488X-1.2465 2.铜片

电涡流传感器电压位移曲线—铜片 电压/V 位移/mm 2.2 2.4 2.6 2.83 3.2 3.4 3.6 -6-5.95-5.9-5.85 -5.8-5.75-5.7 -5.65-5.6-5.55-5.5电涡流传感器电压位移拟合曲线—铜片 电压/V 位移/mm 其线性工作区为2.4——3.4,对该段利用polyfit 进行函数拟合,可得V= -0.4500X -4.4667

FPGA实验报告北航电气技术实验

FPGA电气技术实践 实验报告 院(系)名称宇航学院 专业名称飞行器设计与工程(航天)学生学号XXXXXXXX 学生姓名XXXXXX 指导教师XXXX 2017年11月XX日

实验一四位二进制加法计数器与一位半加器的设计实验时间:2017.11.08(周三)晚实验编号20 一、实验目的 1、熟悉QuartusII的VHDL的文本编程及图形编程流程全过程。 2、掌握简单逻辑电路的设计方法与功能仿真技巧。 3、学习并掌握VHDL语言、语法规则。 4、参照指导书实例实现四位二进制加法计数器及一位半加器的设计。 二、实验原理 .略 三、实验设备 1可编程逻辑实验箱EP3C55F484C8 一台(包含若干LED指示灯,拨码开关等)2计算机及开发软件QuartusII 一台套 四、调试步骤 1四位二进制加法计数器 (1)参照指导书实例1进行工程建立与命名。 (2)VHDL源文件编辑 由于实验箱上LED指示灯的显示性质为“高电平灭,低电平亮”,为实现预期显示效果应将原参考程序改写为减法器,且”q1<= q1+1”对应改为”q1<= q1-1”,以实现每输入一个脉冲“亮为1,灭为0”。 由于参考程序中的rst清零输入作用并未实现,所以应将程序主体部分的最外部嵌套关于rst输入是否为1的判断,且当rst为1时,给四位指示灯置数”1111”实现全灭,当rst为0时,运行原计数部分。 (3)参照指导书进行波形仿真与管脚绑定等操作,链接实验箱并生成下载文件 (4)将文件下载至实验箱运行,观察计数器工作现象,调试拨动开关查看是否清零。 可以通过改变与PIN_P20(工程中绑定为clk输入的I/O接口)相连导线的另一端所选择的实验箱频率时钟的输出口位置,改变LED灯显示变化频率。 并且对照指导书上对实验箱自带时钟频率的介绍,可以通过改变导线接口转换输入快慢,排查由于clk输入管脚损坏而可能引起的故障。

北航17系光电子实验报告实验5讲解

光电子技术实验报告

实验五光电池特性实验 一.实验目的: 1.学习掌握硅光电池的工作原理。 2.学习掌握硅光电池的基本特性。 3.掌握硅光电池基本特性测试方法。 二.实验原理: 光电池是一种不需要加偏置电压就能把光能直接转换成电能的PN结光电器件,按光电池的功用可将其分为两大类:即太阳能光电池和测量光电池,本仪器用的是测量用的硅光电池,其主要功能是作为光电探测,即在不加偏置的情况下将光信号转换成电信号。 图(20)图(21)如图(20)所示为2DR型硅光电池的结构,它是以P型硅为衬底(即在本征型硅材料中掺入三价元素硼或镓等),然后在衬底上扩散磷而形成N型层并将其作为受光面。如图(21)所示当光作用于PN结时,耗尽区内的光生电子与空穴在内建电场力的作用下分别向N区和P区运动,在闭合电路中将产生输出电流IL,且负载电阻RL上产生电压降为U。显然,PN结获得的偏置电压U与光电池输出电流IL与负载电阻RL有关,即U=IL?RL,当以输出电流的IL为电流和电压的正方向时,可以得到如图(22)所示的伏安特性曲线。

图(22)图(23)光电池在不同的光强照射下可以产生不同的光电流和光生电动势,硅光电池的光照特性曲线如图(23)所示,短路电流在很大范围内与光强成线性关系,开路电压随光强变化是非线性的,并且当照度在2000lx时就趋于饱和,因此,把光电池作为测量元件时,应把它当作电流源来使用,不宜用作电压源。 硒光电池和硅光电池的光谱特性曲线如图(25)所示,不同的光电池其光谱峰值的位置不同,硅光电池的在800nm附近,硒光电池的在540nm附近,硅光电池的光谱范围很广,在450~1100nm之间,硒光电池的光谱范围为340~750nm。 图(24)图(25)光电池的温度特性主要描述光电池的开路电压和短路电流随温度变化的情况,由于它关系到应用光电池设备的温度漂移,影响到测量精度或控制精度等主要指标,光电池的温度特性如图(24)所示。开路电压随温度升高而下降的速度较快,而短路电流随温度升高而缓慢增加,因此,当使用光电池作为测量元件时,在系统设计中应考虑到温度的漂移,并采取相应的措施进行补偿。 三.实验所需部件: 两种光电池、各类光源、实验选配单元、数字电压表(4 1/2位)自备、微安表(毫安表)、激光器、照度计(用户选配)。

北航物理实验绪论考试真题含答案

北航物理实验绪论测试题1 一、 单项选择题 1. 某测量结果0.01010cm 有( B )位有效数字。 A.3位 B.4位 C.5位 D.6位 2. 已知常数e=2.718281828……,测量L=0.0023,N=2.73,则(e-L)/N=( C ) A.0.994 B.0.9949 C.0.995 D.1.00 3. 物理量A=错误!未找到引用源。,那末其相对不确定度为(A ) A.错误!未找到引用源。 B.错误!未找到引用源。 C .错误!未找到引用源。 D.错误!未找到引用源。 4. 用作图法处理数据时,为保证精度,至少应使坐标纸的最小分格和测量值的( C )相 对应。 A.第一位有效数字 B.第二位有效数字 C.最后一位有效数字 D.最后一位准确数字 二、填空题: 5. 用计算器算出圆柱体的转动惯量J=645.0126错误!未找到引用源。,平均值的不确定度为 u(J)= :6.5、0.2 6:0.0058 7:ABC 8:BCD 则J+u(J)=( 6.5 0.2 )错误!未找到引用源。 6. 多量程电压表(1级,3- 7.5-15-30V )用于检测某电路两端的电压,如果用3V 档去测3V 电压,其相对不确定度为 0,0058 。如果用7.5V 档去测3V 电压,其相对不确定度为 。 三、多项选择题: 7. 满足正态分布的物理量,下面的叙述哪些是正确的? A 做任何次测量,其结果有68.3%的可能性落在区间错误!未找到引用源。内 B 设某次测量的结果为错误!未找到引用源。,则错误!未找到引用源。表示真值落在错误!未找到引用源。的概率为0.683 C 错误!未找到引用源。与错误!未找到引用源。的置信概率是相同的 D 错误!未找到引用源。的置信概率比错误!未找到引用源。的置信概率高 8. 指出下列关于仪器误差的叙述哪些是错误的(按物理实验课的简化要求) A.千分尺的仪器误差等于最小分度的一半 B.游标卡尺的仪器误差等于游标精度的一半 C.磁电式仪表的仪器误差=等级%×测量值 D.箱式电桥错误!未找到引用源。=等级%(测量值+基准值) 四、计算题 9. 弹簧振子的周期T 与质量m 的关系为错误!未找到引用源。。其中错误!未找到引用源。

北航惯性导航综合实验一实验报告

实 验一 陀螺仪关键参数测试与分析实验 加速度计关键参数测试与分析实验 二零一三年五月十二日 实验一陀螺仪关键参数测试与分析实验 一、实验目得 通过在速率转台上得测试实验,增强动手能力与对惯性测试设备得感性认识;通过对陀螺仪测试数据得分析,对陀螺漂移等参数得物理意义有清晰得认识,同时为在实际工程中应用陀螺仪与对陀螺仪进行误差建模与补偿奠定基础。 二、实验内容 利用单轴速率转台,进行陀螺仪标度因数测试、零偏测试、零偏重复性测试、零漂测试实验与陀螺仪标度因数与零偏建模、误差补偿实验。 三、实验系统组成 单轴速率转台、MEMS 陀螺仪(或光纤陀螺仪)、稳压电源、数据采集系统与分析系统。

四、实验原理 1.陀螺仪原理 陀螺仪就是角速率传感器,用来测量载体相对惯性空间得角速度,通常输出与角速率对应得电压信号。也有得陀螺输出频率信号(如激光陀螺)与数字信号(把模拟电压数字化)。以电压表示得陀螺输出信号可表示为: (1-1)式中就是与比力有关得陀螺输出误差项,反映了陀螺输出受比力得影响,本实验不考虑此项误差。因此,式(1-1)简化为 (1-2)由(1-2)式得陀螺输出值所对应得角速度测量值: (1-3) 对于数字输出得陀螺仪,传感器内部已经利用标度因数对陀螺仪模拟输出进行了量化,直接输出角速度值,即: (1-4)就是就是陀螺仪得零偏,物理意义就是输入角速度为零时,陀螺仪输出值所对应得角速度。且 (1-5) 精度受陀螺仪标度因数、随机漂移、陀螺输出信号得检测精度与得影响。通常与表现为有规律性,可通过建模与补偿方法消除,表现为随机特性,可通过信号滤波方法抵制。因此,准确标定与就是实现角速度准确测量得基础。 五、陀螺仪测试实验步骤 1)标度因数与零偏测试实验 a、接通电源,预热一定时间; b、陀螺工作稳定后,测量静止情况下陀螺输出并保存数据;

北航eda实验报告

2014-2015-2-G02A3050-1 电子电路设计训练(数字EDA部分) 实验报告 (2015年5月19日) 教学班学号姓名组长签名成绩120311王天然* 120311马璇 120312唐玥 自动化科学与电气工程学院

目录 ( 2015年5月19日).........................................错误!未定义书签。目录 .........................................................错误!未定义书签。实验一、简单组合逻辑和简单时序逻辑............................错误!未定义书签。 简单的组合逻辑设计..................................错误!未定义书签。 实验目的和内容:..................................错误!未定义书签。 实验源代码:......................................错误!未定义书签。 测试模块源代码:..................................错误!未定义书签。 简单分频时序逻辑电路的设计...........................错误!未定义书签。 实验目的和内容:..................................错误!未定义书签。 实验源代码:......................................错误!未定义书签。 实验测试源代码:..................................错误!未定义书签。 (选作)设计一个字节(8位)比较器....................错误!未定义书签。 实验内容:........................................错误!未定义书签。 实验代码:........................................错误!未定义书签。 实验测试源代码:..................................错误!未定义书签。 实验小结.............................................错误!未定义书签。实验二、条件语句和always过程块...............................错误!未定义书签。 实验任务1——利用条件语句实现计数分频时序电路.......错误!未定义书签。 实验要求.........................................错误!未定义书签。 模块的核心逻辑设计...............................错误!未定义书签。 测试程序的核心逻辑设计...........................错误!未定义书签。 仿真实验关键结果及其解释.........................错误!未定义书签。 实验任务2——用always块实现较复杂的组合逻辑电路....错误!未定义书签。

北航物理实验绪论考试真题(套题含标准答案)

北航物理实验绪论考试真题(套题含答案)

————————————————————————————————作者:————————————————————————————————日期:

物理实验绪论测试题1 一、 单项选择题 1. 某测量结果0.01010cm 有( b )位有效数字。 A.3位 B.4位 C.5位 D.6位 2. 已知常数e=2.718281828……,测量L=0.0023,N=2.73,则(e-L)/N=( c ) A.0.994 B.0.9949 C.0.995 D.1.00 3. 物理量A=x+y x?y ,那末其相对不确定度为( a ) A. 2 x 2?y 2√x 2u 2(y )+y 2u 2(x) B. 2x 2?y 2 √x 2u 2(y )?y 2u 2(x) C .√ u 2(x )+u 2(y)(x+y)2 + u 2(x )+u 2(y)(x?y)2 D.√ u 2(x )+u 2(y)(x+y)2 ? u 2(x )?u 2(y)(x?y)2 4. 用作图法处理数据时,为保证精度,至少应使坐标纸的最小分格和测量值的( c )相对 应。 A.第一位有效数字 B.第二位有效数字 C.最后一位有效数字 D.最后一位准确数字 二、填空题: 5. 用计算器算出圆柱体的转动惯量J=645.0126g ?cm 2,平均值的不确定度为u(J)= 则J+u(J)=( ± )×102g ?cm 2 6. 多量程电压表(1级,3- 7.5-15-30V )用于检测某电路两端的电压,如果用3V 档去测3V 电压,其相对不确定度为 。如果用7.5V 档去测3V 电压,其相对不确定度为 。 三、多项选择题: 7. 满足正态分布的物理量,下面的叙述哪些是正确的?abc A 做任何次测量,其结果有68.3%的可能性落在区间[A ?δ,A +δ]内 B 设某次测量的结果为X i ,则X i ±δ(x)表示真值落在[X i ?δ(x),X i +δ(x)]的概率为0.683 C X i ±δ(x)与x ±δ(x)的置信概率是相同的 D x ±δ(x)的置信概率比X i ±δ(x )的置信概率高 8. 指出下列关于仪器误差的叙述哪些是错误的(按物理实验课的简化要求)bcd A.千分尺的仪器误差等于最小分度的一半 B.游标卡尺的仪器误差等于游标精度的一半 C.磁电式仪表的仪器误差=等级%×测量值 D.箱式电桥?仪=等级%(测量值+基准值) 四、计算题

北航物理研究性实验报告——示波器

北航物理研究性实验报告 专题:模拟示波器的使用及其应用 学号:10151192 班级:101517

姓名:王波 目录 目录 (2) 摘要 (3) 一.实验目的 (3) 二.实验原理 (3) 1.模拟示波器简介 (3) 2.示波器的应用 (6) 三.实验仪器 (6) 四.实验步骤 (7) 1.模拟示波器的使用 (7) 2.声速测量 (8) 五.数据记录与处理 (8) 六.讨论 (10)

摘要 示波器是一种用途十分广泛的电子测量仪器,它能直观、动态地显示电压信号随时间变化的波形,便于人们研究各种电现象的变化过程,并可直接测量信号的幅度、频率以及信号之间相位关系等各种参数。示波器是观察电路实验现象、分析实验中的问题、测量实验结果的重要仪器,也是调试、检验、修理和制作各种电子仪表、设备时不可或缺的工具。 一.实验目的 1.了解示波器的主要结构和波形显示及参数测量的基本原理,掌握 示波器、信号发生器的使用方法; 2.学习用示波器观察波形以及测量电压、周期和频率的方法; 3.学会用连续波方法测量空气速度,加深对共振、相位等概念的理 解; 4.用示波器研究电信号谐振频率、二极管的伏安特性曲线、同轴电 缆中电信号传播速度等测量方法。 二.实验原理

1.模拟示波器简介 模拟示波器是利用电子示波管的特性,将人眼无法直接观测的交变电信号转换成图像并显示在荧光屏上以便测量和分析的电子仪器。它主要由阴极射线示波管,扫描、触发系统,放大系统,电源系统四部分组成。 示波管结构图 (1)工作原理 模拟示波器的基本工作原理是:被测信号经Y轴衰减后送至Y1放大器,经延迟级后到Y2放大器,信号放大后加到示波管的Y轴偏转板上。 若Y轴所加信号为图所示的正弦信号,X输入开关S切换到“外”输入,且X轴没有输入信号,则光点在荧光屏竖直方向上按正弦规律上下运动,随着Y轴方向信号的提高,由于视觉暂留,在荧光屏上显示一条竖直扫描线。同理,如在X轴所加信号为锯齿波信号,且Y轴没有输入信号,则光点在荧光屏上显示一条水平直线。

相关文档
最新文档