能量免疫:洞察代谢和淋巴细胞功能

能量免疫:洞察代谢和淋巴细胞功能
能量免疫:洞察代谢和淋巴细胞功能

所翻译综述发表于Science的时间:2013-10-11 影响因子:31.027

译者:谢金攀 翻译完成时间:2013-12-20

REVIEW

综述

Fueling Immunity: Insights into Metabolism and Lymphocyte Function

能量免疫:洞察代谢和淋巴细胞功能

Erika L. Pearce, Maya C. Poffenberger, Chih-Hao Chang, Russell G. Jones

Lymphocytes face major metabolic challenges upon activation. They must meet the bioenergetic and biosynthetic demands of increased cell proliferation and also adapt to changing environmental conditions, in which nutrients and oxygen may be limiting. An emerging theme in immunology is that metabolic reprogramming and lymphocyte activation are intricately linked. However, why T cells adopt specific metabolic programs and the impact that these programs have on T cell function and, ultimately, immunological outcome remain unclear. Research on tumor cell metabolism has provided valuable insight into metabolic pathways important for cell proliferation and the influence of metabolites themselves on signal transduction and epigenetic programming. In this Review, we highlight emerging concepts regarding metabolic reprogramming in proliferating cells and discuss their potential impact on T cell fate and function.

淋巴细胞在活化时面临主要的代谢挑战。它们必须满足增长的细胞增殖对生物能量和生物合成的要求,并且适应营养和氧气可能受限的变化中的环境条件。免疫学一个新兴的主题是,代谢重编程和淋巴细胞活化有复杂的联系。不管怎样,为什么T细胞采用特定的代谢程序,这些程序对T细胞功能的影响,以及最终的免疫结果都仍不明确。关于肿瘤细胞代谢的研究已经提供了有价值的洞见,涉及细胞增殖的重要代谢途径和代谢本身对信号转导和表观遗传学编程的影响。在这篇综述,我们突出关于增殖细胞中代谢重编程新兴的概念并探讨它们对T细胞命运和功能的潜在影响。

The immune system is comprised of a series of specialized cells conditioned to respond rapidly to“danger”signals such as foreign pathogens or inflammatory stimuli. T lymphocytes,or T cells, are sentinels of the adaptive immune system that respond to antigen-specific signals by blasting, proliferating, and differentiating into effector subsets tailored to identify and eliminate threats to the host. Integrated into this program of activation is the regulation of cellular metabolism.Upon activation, T cells dramatically alter their metabolic activity to meet the increased metabolic demands of cell growth, proliferation, and effector function. Metabolism fundamentally underpins T cell function; thus, there is great interest in understanding how metabolic pathways influence immune responses and ultimately affect disease progression.It should be noted that“metabolism”refers to a complex network of biochemicalreactions involved in energy production and macromolecular biosynthesis, and comprehensive coverage of such a broad topic is difficult. Several recent reviews have highlighted the molecular mechanisms that govern metabolic reprogramming in the immune system (1–3). This Review will focus on emerging areas in intermediary metabolism in lymphocytes and will discuss their potential impact on T cell fate, plasticity, and effector

function.

免疫系统由一系列有条件快速应答例如外来病原体或者炎症刺激物等“危险”信号的专门细胞组成。T淋巴细胞或者T细胞,是应答抗原特异性信号的适应性免疫的哨兵,因为它们爆发、增殖并分化为识别和清除对宿主的威胁的定制的效应细胞亚群。细胞代谢的调节被整合到活化的程序。在活化时,T细胞戏剧性地转变它们的代谢活动来满足细胞生长、分化及效应细胞功能所增加的代谢需求。代谢从根本上支撑T细胞功能;因此,搞明白代谢途径怎样影响免疫应答并最终影响疾病进展会很让人感兴趣。应当指出的是,“代谢”指一个涉及能量产生和大分子生物合成的复杂生化反应网络,而全面覆盖这样一个宽的话题是困难的。最近的几篇综述已经强调了免疫系统中控制代谢重编程的分子机制(1–3)。本篇综述将关注淋巴细胞中间代谢的新兴领域,并将探讨它们对T细胞命运和效应细胞功能的潜在影响。 Differential Regulation of T Cell Metabolism

T细胞代谢的不同调节

Lymphocyte Metabolism Is Dynamically Regulated

淋巴细胞代谢被动态地调节

Maintenance of cellular bioenergetics is an essential function of all living cells, and lymphocytes are no exception. In T lymphocytes, glucose is a critical substrate for adenosine triphosphate(ATP) production (4). During glycolysis, glucose is broken down into two molecules of pyruvate.This process, which does not require oxygen,yields two reduced nicotinamide adenine dinucleotide (NADH) molecules and two net ATP molecules per molecule of glucose. Pyruvate has two alternate fates. Most terminally differentiated, nonproliferating cells can fully oxidize pyruvate in the tricarboxylic acid (TCA) cycle. This process generates NADH and reduced flavin adenine dinucleotide (FADH2), which the cell can use to fuel OXPHOS, an oxygen-dependent process that produces up to 36 molecules of ATP per glucose molecule. Alternatively, pyruvate can be transformed (or fermented) into lactate, regenerating NAD+ for subsequent use in glycolysis (5). From a bioenergetic perspective, engaging OXPHOS maximizes the amount of ATP that can be derived from glucose.

细胞的能量维持是所有活细胞的一项必要的功能,并且淋巴细胞也不例外。在T淋巴细胞,葡萄糖是三磷酸腺苷(ATP)产物的关键底物(4)。在糖酵解中,葡萄糖被分解为两分子丙酮酸。这个不需要氧的过程,每分子葡萄糖产生两分子还原型烟酰胺腺嘌呤二核苷酸(NADH)和两个净ATP分子。丙酮酸有两种可选择的命运。大部分终末分化的非增殖细胞能在三羧酸循环中充分氧化丙酮酸。该过程产生NADH和还原型黄素腺嘌呤二核苷酸(FADH2),细胞能用它给氧化磷酸化加料,该氧依赖的过程中每分子葡萄糖产生大于36个ATP分子。另外,丙酮酸能被转化(或者发酵)为乳酸,再生NAD+给随后的糖酵解利用(5)。从生物能学这一观点来看,参与的氧化磷酸化最大化能来自葡萄糖的ATP数量。

Bioenergetic profiling of T cells has revealed that T cell metabolism changes dynamically with activation state (Fig. 1). Upon antigen encounter,T cells become activated, undergo extensive proliferation, and differentiate into effector T cells(TEFF); upon pathogen clearance, most (TM). Consistent with the metabolism of othernonproliferating cells,resting na?ve T cells (T cells that have not yet encountered antigen) maintain low rates of glycolysis and predominantly oxidize glucose-derived pyruvate via OXPHOS or engage fatty acid oxidation (FAO) to make ATP. Upon activation, T cells switch to a program of anabolic growth and biomass accumulation to generate daughter cells, which by definition dictates increased demand for ATP and metabolic resources. In this state,T cells are considered to be metabolically activated (Fig. 1).

T cell receptor (TCR) signaling directs the metabolic reprogramming of na?ve T cells. TCR ligation promotes the coordinated up-regulation of glucose and amino acid transporters (6–8), facilitating nutrient uptake and T cell blastogenesis. TCR-mediated up-regulation of the transcription factors c-Myc (9) and estrogenrelated receptor α(ERRα)(10) enhances the expression of genes involved in intermediary metabolism. In addition, catabolic pathways of ATP generation such as fatty acidβ-oxidation are actively suppressed (9). The predominant metabolic phenotype of activated T cells is a shift to aerobic glycolysis [reviewed in (11)]. Both CD4+ and CD8+TEFF cells engage aerobic glycolysis,which is marked by the conversion of glucose derived pyruvate to lactate despite the availability of oxygen for complete glucose oxidation. This process, also known as the Warburg effect from earlier work in cancer biology, is a common trait of actively proliferating cells (5). It is important to note that OXPHOS is still engaged in TEFF cells (9); however, the production of lactate from pyruvate by aerobic glycolysis is the dominant pathway of glucose metabolism in TEFF cells. Regulating energy metabolism may provide a way for T cells to reversibly switch between quiescent and highly proliferative states (12).

T细胞生物能学的侧面已显露出T细胞的代谢随着活化状态而动态地改变(图1)。当遇到抗原时,T细胞变得活化,经历广泛的增殖并分化为效应T细胞(TEFF);当抗原清除时,大部分的细胞死掉,留下少量长命的抗原特异性记忆T细胞(TM)。与其它非增殖的细胞的代谢一致,静止的原始T细胞(那些还没遭遇抗原的T细胞)保持低比率的糖酵解并主要通过氧化磷酸化氧化来自葡萄糖的丙酮酸或者进行脂肪酸氧化(FAO)来产生ATP。一旦活化,T细胞转向一个合成代谢的生长和生物量的累积的程序来产生子代细胞,这基于增加ATP和代谢原料的要求的定义指令。在这状态,T细胞被认为是代谢上的活化(图1)。T细胞受体(TCR)发信号指导原始T细胞的代谢重编程。TCR被结合促进葡萄糖和氨基酸转运载体的同步上调(6–8),推进营养摄取和T细胞母细胞化。TCR介导的转录因子c-Myc (9)上调和雌激素相关性受体α(ERRα)(10)增强参与中间代谢的基因的表达。此外,ATP合成的分解代谢途径被积极抑制,如β脂肪酸氧化(9)。活化的T细胞主要的代谢表型是转向有氧糖酵解[综述于(11)]。CD4+和CD8+的TEFF细胞都进行有氧糖酵解,其标志是尽管有足够的氧进行葡萄糖的完全氧化,仍将葡萄糖来源的丙酮酸转化为乳酸。该过程也被称为Warburg效应,源于肿瘤生物学的早期工作,这也是活化增殖细胞的共同特点(5)。应重要注意氧化磷酸化仍存在于TEFF细胞(9);不管怎样,通过有氧糖酵解从丙酮酸产生乳酸是TEFF细胞的主要葡萄糖代谢途径。调节能量代谢可能提供T细胞在静止和高度增殖的状态之间可逆性转变的一种方式(12)。

As a quiescent T cell population, TM cells adopt a metabolic profile similar to that of na?ve T cells—a catabolic metabolism characterized by increased reliance on OXPHOS and lower rates of nutrient uptake and biosynthesis relative to TEFF cells (Fig. 1). However, TM cells also display a characteristic increase in mitochondrial mass, which translates into greater mitochondrial spare respiratory capacity (SRC) relative to na?ve or TEFF populations (13). SRC can be viewed as the maximal respiratory capacity available to a cell, much like the maximum speed that can be achieved by a car engine. Under increased workload, stress, or nutrient limitation, cells engage this reserve capacity to generate more energy and promote cell viability (14,15). We have recently shown that increased mitochondrial mass and SRC of TM cells allows for rapid mitochondrial ATP production upon TCR engagement, conferring a bioenergetic advantage to TM cells upon secondary exposure to antigen (16). From this vantage, TM cells may be viewed as being metabolically primed, with mitochondrial

metabolism fueling the rapid recall response to reinfection.The memory T cell–promoting cytokine interleukin (IL)–15 plays a key role in this catabolic switch by promoting mitochondrial biogenesis (13).

作为静止的T细胞群,TM细胞采用类似于原始T细胞的代谢模式(metabolic profile)——具有相对于TEFF细胞更依赖氧化磷酸化和更低比率的营养摄取及生物合成的特点的分解代谢(图1)。然而,TM细胞也显示线粒体物质的特征性增加,这转化为相对于原始的或TEFF 群更强的线粒体呼吸储备能力(SRC) (13)。SRC能被视为对一个细胞有用的最大呼吸能力,很像一个汽车发动机能获得的最大速度。在增加的工作负担、压力或者营养限制下,细胞动用该储备能力来产生更多的能量并促进细胞的生存能力(14,15)。我们最近已经表明,在TCR 参与时TM细胞增加的线粒体物质和SRC允许快速的线粒体ATP产生,赋予在二次暴露于抗原时TM细胞的生物能学的优势(16)。从这优势出发,TM细胞可能被视为有代谢准备,在线粒体代谢下为再次感染的快速应答供能。促进记忆T细胞的细胞因子白介素(IL)—15通过促进线粒体生物合成在这个分解代谢的转换中起关键作用(13)。

The mechanisms governing the transition of T cells from effector to memory states are still poorly understood, but recent work hints that changes in metabolism may influence this process.We previously demonstrated that mitochondrial FAO stimulated downstream of TNF (tumor necrosis factor) receptor–associated factor 6 (TRAF6) is required for memory CD8+T cell development(17). Oxidation of free fatty acids (FFAs) generates acetyl–coenzyme A (CoA), which can be metabolized further in the TCA cycle, as well as FADH2 and NADH, which can be used directly by the electron transport chain (ETC) to make ATP. FFAs are energy-dense molecules, and FAO may be a preferred fuel source for TM cells as they rely on OXPHOS-dependent metabolic program. Administration of metformin, a metabolic stressor that activates the energy sensor adenosine monophosphate–activated protein kinase (AMPK),enhances the generation of CD8+T cell memory(17). One consequence of AMPK activation is the suppression of mammalian target of rapamycin complex 1 (mTORC1) activity in response to energetic stress (18). Consistent with this, the drug rapamycin, which also inhibits mTORC1, enhances the generation of CD8+TM cells (17,19,20). These observations suggest that manipulating the metabolism of antigen-specific cells during contraction can influence the development of TM cells.Given these observations, TM formation may be influenced by a number of enzymes and transporters involved in fatty acid synthesis, desaturation, and oxidation, as well as the availability of FFAs to memory precursor cells. Some important players to consider in this regard include acetyl-CoA carboxylase (ACC2) (21), the mitochondrial lipid transporter CPT1A (13, 22), and metabolites such as acetyl-CoA and malonyl-CoA (23).AMPK activation and mTOR inhibition are also both potent activators of autophagy, a catabolic process induced during starvation that promotes the degradation and recycling of cellular components [reviewed in detail in (24)]. Proper induction of autophagy has been shown to be important for the maintenance of cellular bioenergetics and sustained T cell viability after activation (25,26).It will be interesting to determine whether autophagy,by coupling catabolic fuel supply to mitochondrial metabolism, is important for TM formation after infection.

控制T细胞从效应状态转变为记忆状态的机制仍知之甚少,但最近的工作提示代谢中的改变可能影响该过程。我们先前证明线粒体FAO刺激的TNF(肿瘤坏死因子)受体相关因子6 (TRAF6)的下游为CD8+T记忆性细胞发展所需(17)。游离脂肪酸(FFAs)氧化产生乙酰辅酶A (CoA),CoA在TCA循环中能被进一步代谢,同FADH2和NADH一样能被电子传递链(ETC)

直接用来产生ATP。FFAs是高能分子,而FAO可能是TM细胞所偏好的一种能量来源,因为它们依赖基于氧化磷酸化的代谢程序。二甲双胍是一种激活单磷酸腺苷活化的蛋白激酶(AMPK)的代谢应激物,施用二甲双胍增强CD8+T细胞记忆的产生(17)。一系列的AMPK活化将抑制对能量压力应答的哺乳动物靶向的雷帕霉素复合物1 (mTORC1)的活动(18)。与此一致,雷帕霉素药物也抑制mTORC1,增强CD8+T细胞的产生(17,19,20)。这些观察提示对缩减期抗原特异性细胞的代谢的操纵能影响TM细胞的发展。基于所给这些观察推测,TM 的形成可能受涉及脂肪酸合成、去饱和和氧化的许多酶及转运体所影响,就同游离脂肪酸对记忆前体细胞的有效性一样。从这角度考虑,重要的参与者包括乙酰辅酶A羧化酶(ACC2) (21),线粒体脂质转运体CPT1A (13, 22),以及例如乙酰辅酶A和丙二酰辅酶A的代谢产物(23)。AMPK活化和mTOR抑制物也都是自吞噬强有力的激活剂,自吞噬是饥饿时诱发的分解代谢过程,促进降解和细胞组成部分的回收再利用[详尽综述于(24)]。适当诱发自吞噬已被表明对细胞生物能学的维持和TM细胞活化后持续的生存能力很重要(25,26)。决定是否自吞噬将是有趣的,伴随分解代谢线粒体的能量供应,这对感染后TM形成是重要的。 Mitochondrial OXPHOS and T Cell Activation

线粒体的氧化磷酸化和T细胞活化

Although much focus has been placed on the shift toward glycolysis that accompanies T cell activation, evidence suggests that mitochondrial OXPHOS is also important for T cell activation.Oligomycin, a specific inhibitor of mitochondrial ATP synthase, can block the expression of early activation markers after TCR ligation and blunts subsequent T cell proliferation (27), suggesting that the na?ve-to-effector transition requires either de novo production of ATP by mitochondria or specific signals generated during mitochondrial ATP production. Mitochondrial-derived reactive oxygen species (ROS) may function as such a“bioenergetic”second messenger. There has long been evidence that ROS can play critical roles in shaping T cell responses (28–30). However, recent work suggests that mitochondrial ROS produced during OXPHOS is essential for T cell activation.T cells deficient for ubiquinol-cytochrome c reductase (Uqcrfs1), a component of complex III of the ETC, display impaired TCR-dependent ROS production and defects in antigen-specific proliferation (31). Intracellular calcium (Ca2+) flux, an early event in TCR signal transduction, may provide the functional link between TCR ligation,mitochondrial OXPHOS, and cell proliferation. Uptake of Ca2+ by mitochondria stimulates Ca2+-dependent dehydrogenases of the TCA cycle, driving mitochondrial NADH production and ATP production by OXPHOS during early T cell activation (32). T cells lacking the apoptosis regulators Bax and Bak, which display defects in intracellular Ca2+ homeostasis, exhibit reduced Ca2+-dependent mitochondrial ROS production and T cell proliferation after TCR stimulation (33).Restoring Ca2+ signals in Bax/Bak-null T cells restores mitochondrial ROS production and T cell proliferation (33). Thus, although toxic in many biological settings, mitochondrial-dependent ROS may prime T cells and license full T cell activation.

尽管许多焦点聚焦于向伴随T细胞活化的糖酵解方的转移,但证据提示线粒体的氧化磷酸化对T细胞活化也重要。寡霉素是线粒体ATP合酶的一种特异抑制剂,它能阻碍TCR接合后早期活化标志的表达并使T细胞的进一步增殖变得迟钝(27),这提示原始细胞到效应细胞的转变需要线粒体ATP的重新产生或者线粒体ATP产生过程中生成的特殊信号。来自线粒体的活性氧(ROS)可能作为这样一个“生物能学的”第二信使起作用。长期以来有证明表明ROS能在形成T细胞应答中起关键作用(28–30)。不管怎样,最近的工作提示氧化磷酸化过程中产生的线粒体活性氧对于T细胞活化必不可少。T细胞缺乏泛醌-细胞色素C还原酶

(Uqcrfs1),电子传递链的复合物III的一个组成部分,就显示受损的TCR依赖的活性氧产生和抗原特异性增殖的缺失(31)。细胞内的钙(Ca2+)流出,是TCR信号转导的早期事件,它可能提供TCR接合、线粒体氧化磷酸化及细胞增殖之间的功能性关系。线粒体摄取的Ca2+激活TCA循环中Ca2+依赖的脱氢酶,驱使线粒体在早期T细胞活化过程中通过OXPHOS产生NADH和ATP (32)。缺少细胞凋亡调节剂Bax和Bak的T细胞,显示细胞内动态平衡的缺陷,呈现Ca2+依赖的线粒体ROS产量和TCR激活后T细胞增殖的减少(33)。无Bax/Bak 的T细胞中Ca2+信号的修复,恢复线粒体ROS的产生和T细胞活化。因此,尽管在许多生物环境里是有毒的,线粒体依赖的ROS可能装备T细胞并许可完全的T细胞的活化。 Metabolic Signatures Vary with Differentiation State

代谢的识别标志随着分化状态变化

Fig. 1. T cell metabolism changes over the course of an immune response.T cells display distinct metabolic profiles depending on their state of activation. Na?ve T cells (TN, blue) are metabolically quiescent;they adopt a basal level of nutrient uptake and use OXPHOS as their primary pathway of ATP production. Upon immune challenge, TEFF (green) cells shift to a state of metabolic activation characterized by increased nutrient uptake, elevated glycolytic and glutaminolytic metabolism, biomass accumulation,and reduced mitochondrial SRC. TEFF cells preferentially use glycolysis over OXPHOS for ATP production. Transition to the TM(orange) stage is characterized by a quiescent metabolism, with increased reliance on FAO

to fuel OXPHOS. Mitochondrial mass and SRC are elevated in TM cells, suggesting that these cells are metabolically primed to respond upon reinfection.

图1.一个免疫应答的过程中T细胞代谢改变。T细胞基于它们的活化状态显示不同的代谢侧面。原始T细胞(TN,蓝色)在代谢上静止;它们采用基础水平的营养摄取并利用OXPHOS 作为它们产生ATP的主要途径。在免疫挑战时,TEFF (绿色)细胞转换为一个代谢活化的状态,特征是营养摄取增加、提高的糖酵解和谷氨酸代谢、生物物质积累、以及减少线粒体SRC。TEFF细胞优先通过OXPHOS利用糖酵解产生ATP。过渡到TM(橙色)阶段,以静止性代谢为特点,增加依赖FAO来为OXPHOS供能。在TM细胞中线粒体物质和SRC提高,提示这些细胞代谢上在再次感染时准备应答。

Although the paradigm of T cell metabolism as summarized in Fig. 1 holds true with respect to activated versus quiescent states, the metabolic signature of T cells can also vary depending on differentiation state. This was first demonstrated by Michalek et al.(34), who determined that proinflammatory CD4+T helper(TH) cells (TH 1, TH 2, and TH17 lineages) displayed a strong bias toward glycolysis over mitochondrial metabolism, whereas induced CD4+T regulatory (Treg) lineage cells displayed a mixed metabolism involving glycolysis, lipid oxidation, and OXPHOS.In particular, TH17 cells display increased reliance on glycolysis for their development and maintenance.TH17 cell development is promoted by hypoxia inducible factor–1α(HIF-1α)(35,36), an oxygen-sensitive transcription factor that regulates glycolytic gene expression in TH 17 cells.Blocking glycolysis during TH17 cell differentiation reduced the development of TH17 cells and favored the formation of Tregs (35). Added to this are recent results indicating that extracellular salt (NaCl) (37, 38) and short-chain fatty acids (39) can influence TH17 and Treg homeostasis, respectively.This raises the intriguing possibility that the metabolic microenvironment (i.e., nutrient and oxygen availability) can influence T cell polarization (to be discussed later). Determining whether the metabolic signature of differentiated T cells is simply a consequence of lineage-specific cytokine signaling or is instructive for T cell function (i.e., essential for regulating T cell plasticity and/or effector function) remains a question for the field. Examining the influence of key metabolic regulators such as HIF-1α, mTOR, and AMPK on T cell differentiation and plasticity will help in resolving these issues.

尽管如图1所总结的T细胞代谢范例相对于与静止比较的活化状态是正确的,但T细胞的代谢识别标志也会根据分化状态变化。这首先由Michalek等人所证明(34),他们确定促炎症反应的CD4+T辅助(TH)细胞(TH1,TH2和TH17系)显示胜过线粒体代谢的对糖酵解的强烈偏好,而诱导的CD4+T调节(Treg)系的细胞显示涉及糖酵解、脂质氧化及氧化磷酸化的混合代谢。特别地,TH17细胞显示为了发展和维持对糖酵解依赖的增加。缺氧诱导因子—1α(HIF-1α)促进TH17细胞的发展(35,36),它是调节TH17细胞中糖酵解基因表达的一种氧敏感的转录因子。对TH17细胞分化过程中糖酵解的阻碍,减少了TH17细胞的发展并促成Treg的形成(35)。补充这点的是,最近的结果提示细胞外的盐(NaCl) (37, 38)和短链脂肪酸(39)分别能影响TH17和Treg的动态平衡。这提高代谢微环境(即,营养和氧可利用性)能影响T细胞极化(将在稍后讨论)的有趣的可能性。确定已分化的T细胞的代谢识别标志仅仅是一系列系特异性的细胞因子信号转导,还是对T细胞功能有益(即,对调节T细胞可塑性和/或效应功能必不可少),在该领域仍是一个问题。检测例如HIF-1α、mTOR及AMPK等关键代谢调节剂对T细胞分化和可塑性的影响将有助于解决这些问题。

Metabolism of Proliferating Cells:Lessons from Tumor Metabolism

增殖细胞的代谢:来自肿瘤代谢的教训

Research in cancer metabolism over the past 10 years has increased our understanding of the metabolic requirements of proliferating cells, as well as the metabolic alterations that promote tumor growth. One of the great innovations we have learned from the cancer metabolism field is that signaling pathways, or more specifically the oncogenes and tumor suppressors that comprise and regulate signal transduction pathways, can influence cellular metabolism as part of their program of action. The previous paradigm of metabolic regulation argued that metabolic pathways were exclusively controlled through allosteric regulation of metabolic enzymes, either by ATP levels or metabolites themselves (the reactive model) (40). One example of this is the glycolytic enzyme phosphofructokinase (PFK), which is inhibited allosterically by ATP and citrate (indicating a high energy state in the cell) and stimulated by AMP (indicative of low energy). Although allosteric regulation is important for regulating local flux through metabolic pathways, we now understand that activation of signal transduction pathways (such as phosphatidylinositol 3-kinase or Akt) by growth factor receptors stimulates global changes in metabolic flux independent of ATP levels. This allows a cell that receives a proliferative signal, such as a T cell activated through its TCR, to drive cellular metabolism above the capacity normally maintained in the quiescent state. Overall, metabolism in T cells is likely regulated at several levels: (i) TCR-mediated changes in the expression of metabolic genes facilitate the reprogramming required to match metabolic pathways to biological need; (ii)signal transduction downstream of cell surface receptors (i.e., costimulatory molecules and cytokine receptors) serve to fine-tune flux through these metabolic pathways; and (iii) feedback inhibition and other forms of allosteric regulation can regulate metabolic flux through local nodes in the network. By directly influencing metabolic reprogramming, oncogenes and tumor suppressors gain control over the metabolic currency of the cell, namely, energetic intermediates (ATP, NAD+/NADH, FAD+/FADH2,and NADP+/NADPH) and metabolites involved in bioenergetic and biosynthetic reactions that influence cell growth and survival.

过去十年里肿瘤代谢的研究以及促进肿瘤生长的代谢改变已增加了我们对增殖细胞的代谢需求的理解。我们从肿瘤代谢领域学来的大的创新观念之一是,信号传导途径,或者更特异地,组成并调节信号转导途径的癌基因和肿瘤抑制物,能影响作为他们活动程序部分的细胞代谢。先前的代谢调节范例争论到,代谢途径通过代谢酶的变构调节被专门控制,经由ATP 水平或者代谢产物本身(活化型)(40)。其中一个例子是糖酵解酶磷酸果糖激酶(PFK),PFK 被ATP和柠檬酸盐变构抑制(预示细胞内的高能状态)并被AMP激活(预示低能量)。尽管变构调节对调节代谢途径局部通量是重要的,但我们现在明白信号转导途径(例如磷脂酰肌醇3激酶或者Akt)通过生长因子受体,不依赖于ATP水平刺激代谢通量的整体改变。这允许一个接受增殖信号的细胞,例如通过自身TCR活化的一个T细胞,驱动优于在静止状态下正常维持的能力的细胞代谢。总之,T细胞内的代谢可能在几个水平调节:(i)TCR介导的代谢基因表达的改变,促进配合生物学需要的代谢途径要求的重编程;(ii)细胞表面受体(即,共刺激分子和细胞因子受体)的信号转导下游,有助于微调这些代谢途径的通量;并且(iii)反馈抑制和其它形式的变构调节能通过网络的局部结点调节代谢通量。靠直接影响代谢的重编程,癌基因和肿瘤抑制物加强控制细胞的代谢流通,即,能量中间体(ATP, NAD+/NADH, FAD+/FADH2和NADP+/NADPH)和涉及影响细胞生长生存的生物能学的与生物合成的反应的代谢产物。

The implication of these findings for immunologists is that metabolic pathways are indirectly

connected to cell surface receptors of the immune system via signal transduction pathways.TCR/CD28 stimulation of T cells (6), the stimulation of surface immunoglobulin on B cells (41),and TLR stimulation of macrophages and dendritic cells (DCs) (42,43) all promote changes in aerobic glycolysis characteristic of the Warburg effect. These results likely just scratch the surface of the complex metabolic networks at work in proliferating cells. The challenge going forward will be to identify key pathways of metabolic flux integral for lymphocyte function. In this regard,research into tumor cell metabolism has provided valuable insight into the metabolic pathways important for cell proliferation. Many of the metabolic pathways abnormally activated in cancer, such as aerobic glycolysis, have been shown to play similar roles in normal lymphocyte physiology. Here, we highlight recent advances in intermediate metabolism observed in cancer that are likely to be relevant to T cell biology. 这些发现给免疫学家的暗示是,代谢途径通过信号转导途径间接联系免疫系统的表面受体。T细胞的TCR/CD28刺激(6)、B细胞表面球蛋白的刺激(41)、以及巨噬细胞和树突状细胞的TLR刺激(DCs) (42,43),都促进在有氧糖酵解Warburg效应特征方面的改变。这些结果可能只抓到在增殖细胞中起作用的复杂代谢网络的浅表。前进的挑战将是识别淋巴细胞功能所必须的代谢通量的关键途径。从这点看,肿瘤细胞代谢中的研究已经提供了对于细胞增殖重要代谢途径的有价值的洞见。许多在肿瘤中异常激活的代谢途径,例如有氧糖酵解,已被表明在正常的淋巴细胞生理中发挥类似作用。这里,我们强调在肿瘤中观察到的可能与T细胞生物学有关的中间代谢的最近进展。

The Warburg Effect: More than ATP Synthesis

Warburg效应:不仅是ATP合成

Rapid glucose processing promoted by the Warburg effect allows proliferating T cells to generate ATP quickly; glycolysis also generates metabolic intermediates important for cell growth and proliferation (Fig. 2). Metabolism of glucose through the oxidative or nonoxidative arms of the pentose phosphate pathway (PPP) generates ribose-5-phosphate (Rib-5P), a key intermediate in nucleotide biosynthesis. The oxidative arm of the PPP also produces NADPH, the key metabolic currency for nucleotide and fatty acid biosynthesis. T cell activation promotes a rapid increase in glucose flux through the oxidative PPP (9).Dihydroxyacetone-phosphate (DHAP) is used to generate the glycerol backbone for glycerophospholipids, and 3-phosphoglycerate (3PG) is a key intermediate in both amino acid and nucleotide biosynthesis (discussed below). Pyruvate that is not converted to lactate can enter into the mitochondria and be converted into acetyl-CoA by the pyruvate dehydrogenase (PDH) complex.In proliferating cells, mitochondria adopt an additional role as a biosynthetic hub, converting pyruvate and other metabolites into metabolic intermediates involved in protein and fatty acid biosynthesis (44).

由Warburg效应促进的快速葡萄糖处理允许增殖的T细胞很快产生ATP;糖酵解也产生对细胞生长和增殖重要的代谢中间物(图2)。通过磷酸戊糖途径(PPP)的氧化或非氧化的部分,葡萄糖代谢产生5-磷酸核糖(Rib-5P),一种核苷酸生物合成的关键中间物。PPP氧化的部分(arm)也产生核苷酸和脂肪酸生物合成的关键代谢通货NADPH。通过氧化的PPP,T细胞活化促进葡萄糖通量的快速增加(9)。磷酸二羟丙酮(DHAP)被用来产生环甘油磷脂的甘油主链,而3-磷酸甘油酸(3PG)同时是氨基酸和核苷酸生物合成的关键中间物(下文讨论)。没被转化为乳酸的丙酮酸能进入线粒体并被丙酮酸脱氢酶(PDH)复合物转化为乙酰辅酶A。在增殖的细胞,线粒体采取作为一个生物合成枢纽的附加作用,将丙酮酸和其它代谢产物转化为参与蛋白及脂肪酸生物合成的代谢中间物(44)。

One of the key metabolic intermediates for biosynthesis is acetyl-CoA. Acetyl-CoA has a central role in membrane biogenesis because it provides two-carbon units for fatty acid and isoprenoid biosynthesis, as well as in other diverse processes such as protein prenylation and N-glycosylation (45). The flow of glucose to the cytosolic acetyl-CoA pool is regulated by using TCA cycle intermediates and a truncated TCA cycle (46). In this model, mitochondrial citrate is formed from condensation of oxaloacetate and acetyl-CoA, after which citrate is exported from the mitochondrion to the cytosol and converted back to acetyl-CoA by ATP citrate lyase(ACL) (47). Despite the availability of extracellular lipids for membrane biosynthesis, FFAs are generated de novo from glucose in proliferating cells using this pathway (46). CD8+ T cells unable to engage acetyl-CoA–dependent lipid biosynthetic pathways display defects in antigen-driven blastogenesis and clonal expansion in response to pathogens (48). Acetyl-CoA can also influence metabolic flux through acetylation of metabolic enzymes (49, 50), reinforcing metabolic pathways such as glycolysis when carbon availability is high. Glucose availability and acetylCoA production can also influence epigenetics by regulating the cytosolic acetyl-CoA pools available for histone acetylation reactions (51), raising the prospect that glucose-dependent metabolic flux may help drive or reinforce T cell differentiation programs.

生物合成的关键代谢中间物之一是乙酰辅酶A。乙酰辅酶A在膜生物合成中起中心作用,因为它为脂肪酸和类异戊二烯的生物合成提供两个碳单元,在例如蛋白质异戊烯化和N端糖基化的其它多种多样的加工中也一样(45)。TCA循环的中间物和截断的TCA循环,调节葡萄糖流向胞浆乙酰辅酶A池。该模式中,线粒体的柠檬酸盐形成于草酰乙酸和乙酰辅酶A的缩合,之后柠檬酸盐被从线粒体排出到胞质并被ATP柠檬酸裂解酶(ACL)转化回乙酰辅酶A (47)。细胞外的脂质除了对膜生物合成有用外,在增殖细胞中用此途径从头产生FFAs(46)。CD8+ T细胞不能进行依赖乙酰辅酶A的脂质生物合成途径,显示抗原驱动的母细胞化和对抗原应答的克隆扩增两方面的缺陷(48)。乙酰辅酶A也能通过代谢酶的乙酰化作用影响代谢通量(49, 50),当碳利用率高时加强例如糖酵解的代谢途径。葡萄糖利用率和乙酰辅酶A的产量也能通过调节对组蛋白乙酰化反应有用的胞浆乙酰辅酶A池来影响表观遗传学(51),提高依赖葡萄糖的代谢通量可能有助于驱动或加强T细胞分化程序的前景。

One consequence of using glucose-derived mitochondrial citrate for lipid biosynthesis is the potential depletion of TCA cycle intermediates.Oxaloacetate (OAA) is a rate-limiting substrate for acetyl-CoA entry into the TCA cycle. OAA generated from ACL-mediated cleavage of cytosolic citrate can potentially cycle back into the mitochondria to maintain the TCA cycle. Inefficient cycling of this pathway would lead to cumulative depletion of mitochondrial OAA,leading to collapse of the TCA cycle and disruption of mitochondrial function. One way tumor cells counter this is by engaging glutaminolysis, a metabolic shunt that converts glutamine into α-ketoglutarate (α-KG, also known as 2-oxoglutarate) for use in the TCA cycle (Fig. 2).Glutamine has long been known as a key metabolite for supporting T cell function (52). Recent evidence suggests that glutamine metabolism is as dynamically regulated in T cells as glucose metabolism. Glutamine transporters (SNAT1and SNAT2) as well as key glutaminolysis enzymes (GLS, GPT, GOT, and GLUD) are upregulated early after T cell activation similar to glycolysis genes (7, 9); several groups have correlated these changes in gene expression to enhanced glutaminolytic flux in lymphocytes (9,53).Recently, it was found that engagement of the TCR leads to the expression of Slc7a5, an amino acid transporter that mediates the import of large neutral amino acids, such as leucine (8). Amino acid influx via this transporter

is required for the activation of mTOR and expression of c-Myc and as such coordinates activation-induced metabolic reprogramming and differentiation of T cells.Thus, amino acids such as glutamine and leucine appear to play additional roles in T cell function beyond protein biosynthesis and may directly influence T cell activation by regulating metabolic reprogramming.

利用来自葡萄糖的线粒体柠檬酸进行脂质生物合成的一个后果是TCA循环中间物潜在的耗竭。草酰乙酸(OAA)是乙酰辅酶A进入TCA循环的一个速率限制性底物。产生于ACL介导的胞浆柠檬酸裂解的OAA,能潜在地循环回线粒体来维持TCA循环。该途径的无效循环将导致线粒体OAA的累积性耗竭,引起TCA循环的的崩溃和线粒体功能的中断。肿瘤细胞对付这个的一种方式是通过进行谷氨酰胺代谢的一种代谢分流,将谷氨酰胺转化为α-酮戊二酸盐(α-KG,也被称为2-酮戊二酸)用于TCA循环(图2)。谷氨酰胺长久以来就被认为是支持T细胞功能的关键代谢物(52)。最近的证据提示谷氨酰胺同葡萄糖代谢一样在T细胞中被动态地调节。谷氨酰胺转运蛋白(SNAT1和SNAT2)同关键的谷氨酰胺代谢酶(GLS, GPT, GOT和 GLUD)一样类似于糖酵解基因在T细胞活化后被上调(7, 9);几个代谢组已经相互关联了在基因表达中的这些改变,来加强淋巴细胞中的谷氨酰胺通量(9,53)。最近发现,TCR的参与导致Slc7a5的表达,Slc7a5是介导例如亮氨酸的大的中性氨基酸输入的氨基酸转运体(8)。mTOR的活化和c-Myc的表达,以及与此协调的活化诱导的代谢重编程和T细胞分化,需要经由该转运体的氨基酸流入。这样,像谷氨酰胺和亮氨酸的氨基酸,显示出在蛋白生物合成之外的T细胞功能中的额外作用,并可能通过调节代谢重编程直接影响T细胞活化。 Control of Glycolytic Flux by Pyruvate Kinase M2 (PKM2)

丙酮酸激酶M2(PKM2)对糖酵解通量的控制

Fig. 2. Metabolic pathways that support cell growth and proliferation.Glycolysis and the TCA

cycle are two separate yet connected biochemical pathways that function to generate ATP as well as metabolic precursors for biosynthesis. Glucose is broken down to pyruvate by glycolysis (orange); pyruvate can be further oxidized by the TCA cycle in the mitochondrion. Glycolytic intermediates can be used to generate other metabolites required for growth and proliferation. Glucose 6-phosphate and 3PG produced from glycolysis are metabolized in the PPP (green) and the SBP (blue), respectively, providing important precursors for nucleotide biosynthesis. Similarly, acetyl-CoA, generated from glucose-derived citrate in the TCA cycle, can be used for lipid biosynthesis. OAA, produced as part of the TCA cycle, can be used to generate aspartate, another precursor for nucleotide synthesis. An alternate source of carbonfor the TCA cycle occurs via glutaminolysis (purple); in this pathway, glutamine is converted to glutamate and then toa-KG, which joins the TCA cycle. Glutamine is also a precursor for amino acid and nucleotide biosynthesis. Key enzymes in these pathways are PHGDH; PKM2;LDHA, lactate dehydrogenase; PDH; GLS, glutaminase; SDH, succinate dehydrogenase; and FH.

图2.支持细胞生长和增殖的代谢途径。糖酵解和TCA循环是两个独立又连接的生化途径,功能是产生ATP和生物合成的代谢前体。葡萄糖通过糖酵解(橙色)分解为丙酮酸;丙酮酸能在线粒体中通过TCA循环进一步被氧化。糖酵解中间物能被用于产生生长和增殖需要的其它代谢产物。产生于糖酵解的6-磷酸葡萄糖和3PG,分别在PPP(绿色)和SBP(蓝色)中被代谢,提供核苷酸生物合成的重要前体。类似地,乙酰辅酶A,产生于TCA循环中葡萄糖来源的柠檬酸,能被用于脂质生物合成。OAA,作为TCA循环的部分被产生,能被用于产生天冬氨酸,另一个核苷酸生物合成的前体。TCA循环的一个可选的碳来源通过谷氨酰胺代谢(紫色)发生;在这个途径,谷氨酰胺被转变为谷氨酸,然后变成α-KG,α-KG参与TCA循环。谷氨酰胺也是氨基酸和核苷酸生物合成的一个前体。这些途径中的关键酶是:PHGDH; PKM2;LDHA, 乳酸脱氢酶; PDH; GLS, 谷氨酰胺酶; SDH, 琥珀酸脱氢酶; 以及FH。

Pyruvate kinase (PK) is a key enzyme of the glycolytic pathway. It catalyzes the terminal reaction of glycolysis by promoting the conversion of phosphoenolpyruvate (PEP) to pyruvate(Fig. 2), and is one of two ATP-generating steps of glycolysis (the second is mediated by phosphoglycerate kinase). The muscle version of PK exists as one of two isoforms, M1 or M2, generated from differential splicing of the PKM primary mRNA transcript, with the PKM2 splice variant expressed in embryonic tissues, proliferating cells,and tumor cells (54). Na?ve T cells express both M1 and M2 isoforms at rest; mitogen-dependent activation promotes the rapid accumulation of the M2 isoform, which becomes the dominant isoform expressed in TEFF cells (55). PKM2 exists as either an inactive dimer or an active tetramer, and oscillation between these two states influences the ability of cells to maintain anabolic metabolism (56). 丙酮酸激酶(PK)是糖酵解途径的一个关键酶。它通过促进磷酸烯醇式丙酮酸(PEP)转化为丙酮酸,催化糖酵解的终末反应(图2),并且是糖酵解两个ATP生成步骤之一(另一个由磷酸甘油酸激酶介导)。肌肉中的PK以M1或M2两种异构体之一存在,产生于PKM初始mRNA 的不同剪接,同时PKM2的剪接变异体表达于胚胎组织、增殖的细胞及肿瘤细胞(54)。原始T细胞在静止时同时表达M1和M2异构体;依赖有丝分裂原的活化促进M2异构体的快速积累,变成TEFF细胞中表达的主要异构体(55)。PKM2以无活性的二聚体或者有活性的四聚体存在,而在这两种状态之间的波动影响细胞维持合成代谢的能力(56)。

Multiple lines of evidence point to a role for PKM2 in coordinating glycolytic flux and cell proliferation. Tumor cells engineered to exclusively express the M2 isoform display increased

lactate production characteristic of the Warburg effect and gain a growth advantage in vivo over M1-expressing tumors (57). Interestingly, the M2 isoform is actually less efficient at converting PEP to pyruvate than the M1 isoform. Moreover, growthfactor–stimulated tyrosine phosphorylation of PKM2 further decreases its activity (58,59). This prompts the question: Why would proliferating cells, including T cells, promote the expression of a pyruvate kinase isoform that is less efficient at generating ATP? The answer to this question may lie with the second function of Warburg metabolism, namely, supporting anabolic growth. Buildup of PEP because of reduced PKM2 activity promotes the accumulation of glycolytic intermediates, which can then be shunted into upstream biosynthetic pathways to support amino acid, triglyceride, and nucleotide biosynthesis.Activating PKM2 by using small-molecule agonists increases PEP-to-pyruvate conversion, reducing the flux of glycolytic intermediates toward anabolic pathways and slowing tumor cell growth(56,60). Thus, the ability of PKM2 to support cell proliferation may have less to do with ATP production and more with supporting biosynthetic pathways required for tumor cell growth.

多条线索的证据指明PKM2在协调糖酵解通量和细胞增殖中的作用。被设计专门表达M2异构体的肿瘤细胞显示高乳酸生产特点的Warburg效应,并获得胜过表达M1的肿瘤的体内生长优势(57)。有趣的是,M2异构体确实比M1异构体在将PEP转化为丙酮酸方面更低效。此外,生长因子刺激的PKM2酪氨酸磷酸化进一步降低它的活性 (58,59)。这引发一个问题:为什么增殖的细胞,包括T细胞,促进表达一种低效产生ATP的丙酮酸激酶异构体?这个问题的答案可能藏于Warburg代谢的第二个功能,即,支持合成代谢的生长。因为PKM2活性减低导致的PEP堆积,促进糖酵解中间物的积累,这然后能分流进入上游的生物合成途径来支持氨基酸、甘油三酯和核苷酸的生物合成。通过使用小分子激动剂活化的PKM2增加PEP向丙酮酸的转化,减少糖酵解中间物流向合成代谢途径并减慢肿瘤细胞生长(56,60)。因此,PKM2支持细胞增殖的能力可能与ATP生成的关系较少,而与支持肿瘤细胞生长需要的生物合成途径的关系较多。

PKM2 may also exert some of its effects on cell proliferation through nonmetabolic functions, including transcriptional and epigenetic regulation (61, 62). Of particular interest to immunologists is that PKM2 can phosphorylate signal transducer and activator of transcription 3 (STAT3)at Tyr705, promoting increased STAT3-dependent transcription (63). The phosphorylation of STAT3 by PKM2 demonstrates that PKM2 possesses both protein and pyruvate kinase activities, the former using PEP as a phosphate donor rather than ATP. The protein kinase activity of PKM2(and any subsequent effects on STAT3 activity)would be predicted to be sensitive to metabolic flux, favored under high-glycolysis PEP conditions and antagonized by low-energy high-ADP concentrations. The development of mouse models to study the impact of PKM2 activity in vivo will be important for elucidating the role(s) of PKM2 in immune function.

PKM2也可能通过非代谢的功能发挥它在细胞增殖的一些效应,包括调节转录和表观遗传学(61, 62)。使免疫学家特别感兴趣的是,PKM2能在第705位酪氨酸磷酸化信号转导和转录激活因子3 (STAT3),促进依赖STAT3的转录增加(63)。STAT3被PKM2磷酸化显示,PKM2同时具有蛋白激酶和丙酮酸激酶的活性,前者利用PEP作为一个磷酸供体而不是利用ATP。PKM2的蛋白激酶活性(以及对STAT3活性的任何后续效应)可预测是对代谢通量敏感的,在高糖酵解PEP条件下被促进,而被低能量的高ADP条件拮抗。研究体内PKM2活性的影响的老鼠模型的发展,对阐明PKM2在免疫功能中的作用将是重要的。

The Serine Biosynthesis Pathway

丝氨酸生物合成途径

Fig. 3. Serine biosynthesis and reductive carboxylation are anabolic pathways that support cell proliferation.(A) The SBP converts glucose-derived 3PG into serine and glycine, which are precursors for lipid and nucleotide biosynthesis. Serine is also involved in folate-mediated one carbon metabolism by acting as a methyl group donor for THF to methylene-THF conversion. Key enzymes in this pathway are PHGDH, PSAT, and SHMT. (B) Reductive carboxylation is an alternate pathway of glutamine metabolism in which glutamine-derivedα-KG is converted to citrate through reverse TCA cycle flux. Under conditions of hypoxia or mitochondrial dysfunction (right), isocitrate dehydrogenase (IDH1 in cytosol, IDH2 in mitochondria) uses CO2 and NADPH to convertα-KG into isocitrate. Citrate produced downstream of this reaction is converted into cytosolic acetyl-CoA without passing through the conventional clockwise steps of the TCA cycle. Acetyl-CoA generated by this pathway can function as a precursor for fatty acid synthesis. α-KGDH, α–KG dehydrogenase.

图3,丝氨酸生物合成和还原性羧化作用是支持细胞增殖的合成代谢途径。(A)SBP转化葡萄糖衍生的3PG为丝氨酸和甘氨酸,它们是脂质和核苷酸生物合成的前体。丝氨酸也参与叶酸介导的一碳代谢,通过作为THF到亚甲基-THF的转变的一个甲基供体。在该途径关键的酶是PHGDH、PSAT和SHMT。(B)还原性羧化作用是谷氨酰胺代谢的一个交替的途径,其中谷氨酰胺来源的α-KG通过反向的TCA通量被转化为柠檬酸。在缺氧或线粒体功能障

碍(右)的条件下,异柠檬酸脱氢酶(IDH1在胞质,IDH2在线粒体)利用CO2和NADPH 转化α-KG为异柠檬酸。不用通过TCA循环常规的的顺向步骤,该反应下游产生的柠檬酸被转化为胞浆的乙酰辅酶A。由该途径产生的乙酰辅酶A能作为脂肪酸合成的一个前体。α-KGDH,α–KG 脱氢酶。

Another glycolytic intermediate that can double as an anabolic precursor is 3PG. 3PG is the starting point for the glucose-dependent biosynthesis of serine and glycine via the serine biosynthesis pathway (SBP) (Fig. 3A). Key enzymes of the SBP are phosphoglycerate dehydrogenase (PHGDH), the rate-limiting step for serine biosynthesis, and serine hydroxymethyltransferase (SHMT),which uses serine as a methyl donor to convert tetrahydrofolate (THF) to methylene-THF, generating glycine in the process. Methylene-THF is a key intermediate in folate-mediated one-carbon metabolism that fuels nucleotide biosynthesis and methylation reactions. Serine is also an allosteric activator of PKM2 (64) and thus provides feedback to the glycolytic pathway to regulate 3PG levels and serine biosynthesis.

能兼作一个合成代谢前体的另一个糖酵解中间物是3PG。3PG是经由丝氨酸生物合成途径(SBP)依赖葡萄糖的丝氨酸和甘氨酸生物合成的起始点(图3A)。SBP的关键酶是磷酸甘油酸脱氢酶(PHGDH) 和丝氨酸羟甲基转移酶(SHMT),PHGDH是丝氨酸生物合成的限速步骤, SHMT利用丝氨酸作为甲基供体将四氢叶酸转化为亚甲基,在这过程中产生甘氨酸。亚甲基四氢叶酸是叶酸介导的一碳代谢的关键中间物,一碳代谢供能核苷酸生物合成和甲基化反应。丝氨酸也是PKM2的一个变构激活剂(64),从而提供反馈给糖酵解途径来调节3PG水平和丝氨酸生物合成。

In mammals, serine and glycine are nonessential amino acids and are widely abundant in serum (and tissue culture medium). However,glucose-dependent serine biosynthesis is actively engaged in some tumors regardless of serine abundance. Amplification of PHGDH has been observed in breast cancer and melanoma (65),and increased PHGDH expression can promote both enhanced serine biosynthesis and the proliferation of cancer cells (65, 66). Enhanced flux through the SBP may confer a growth advantage to tumor cells beyond providing increased serine and glycine for biosynthetic reactions. First,PHGDH produces NADH, which can be used to maintain cytosolic redox balance or fuel mitochondrial OXPHOS to make ATP. The second step of the pathway, the conversion of 3-phosphohydroxypyruvate to 3-phosphoserine by phosphoserine aminotransferase (PSAT), requires glutamate and producesa-KG (Fig. 3A)(66). Thus, the SBP may promote an alternate pathway of α-KG production for mitochondrial metabolism or promote the activity of α-KG–dependent enzymes (to be discussed later). Last, serine and glycine are both intermediates in the production of reduced glutathione (GSH), a key cellular antioxidant. Recent evidence indicates that cancer cells actively produce GSH from glucose via the SBP as a buffer against oxidative damage (67). The expression of SBP enzymes is up-regulated in Myc-driven lymphomas (68); thus,we hypothesize that TEFF cells may actively engage the SBP upon activation, even in the presence of exogenous serine. Future investigation will be needed to determine how the SBP influences T cell biology.

在哺乳动物,丝氨酸和谷氨酸是非必需氨基酸,并且在血清中(以及组织培养基)是广泛丰富的。不管怎样,葡萄糖依赖性丝氨酸生物合成积极参与一些肿瘤,无论丝氨酸的丰度。PHGDH的放大作用被观察于乳腺癌和黑色素瘤(65),并且PHGDH表达的增加能同时促进

丝氨酸生物合成增强和肿瘤细胞的增殖(65, 66)。通过SBP增高通量,除了为生物合成反应提供增加的丝氨酸和谷氨酸之外,可能赋予肿瘤细胞生长优势。首先,PHGDH 产生 NADH,NADH能被用于维持胞浆的氧化还原的平衡或者为线粒体氧化磷酸化供能来制造ATP。该途径的第二个步骤,通过磷酸丝氨酸转氨酶(PSAT)将3-磷酸羟基丙酮酸转化为3-磷酸丝氨酸,需要谷氨酸并产生α-KG(图3A)(66)。因此,SBP可能为线粒体代谢促进α-KG生成的代替途径,或者促进依赖α-KG的酶的活性(后面将讨论)。最后,丝氨酸和甘氨酸都是还原型谷胱甘肽(GSH)产生过程的中间物,GSH是一个关键的细胞抗氧化剂。最近证据提示肿瘤细胞经由SBP积极从葡萄糖产生GSH,作为抗氧化损伤的一个缓冲剂(67)。在Myc基因诱导的淋巴瘤中SBP酶的表达被上调(68);因此,我们假设TEFF细胞在活化时可能积极进行SBP,甚至外源性丝氨酸存在时。将需要未来的研究来确定SBP怎样影响T细胞生物学。 Reductive Carboxylation ofα-KG

α-KG的还原性羧化

As mentioned previously, it is now appreciated that in proliferating cells the TCA cycle functions as a source of biosynthetic precursors in addition to its role in ATP production (46). Carbon enters the TCA cycle primarily at one of two entry points:(i) the condensation of glucose-derived acetyl-CoA with OAA to generate citrate and (ii) conversion of glutamine to α-KG via glutaminolysis(Fig. 3B). Carbon-tracing experiments using proliferating glioblastoma cells have established that both glucose and glutamine contribute to mitochondrial citrate pools and subsequent lipid synthesis (69). The oxidative decarboxylation of isocitrate toα-KG by isocitrate dehydrogenase(IDH) is highly favored thermodynamically, such that this reaction is believed to be irreversible and the reason for the“clockwise”flow of metabolic intermediates through the TCA cycle.

如先前提到的,现在赏识,在增殖的细胞TCA循环除了产生ATP,还有生物合成前体的来源的功能(46)。碳主要在两个切入点之一进入TCA循环:(i)来自葡萄糖的乙酰辅酶A和OAA 的缩合产生柠檬酸,以及(ii)谷氨酸通过谷氨酰胺转变为α-KG(图3B)。使用增殖的胶质母细胞瘤细胞的碳追踪实验已经证实,葡萄糖和谷氨酸都有助于线粒体柠檬酸池和随后的脂质合成(69)。异柠檬酸通过异柠檬酸脱氢酶(IDH)氧化脱羧为α-KG被热力学地高度促进,这样该反应被相信是不可逆的并且是代谢中间物通过TCA循环“顺时针” 单向流动的原因。 Groundbreaking new work suggests that metabolite flow through biochemical pathways does not always conform to conventional dogma.Although oxidation of glutamine-derivedα-KG in the TCA cycle serves as a minor source of lipogenic acetyl-CoA under normal growth conditions, α-KG can be converted to citrate through reductive carboxylation under conditions of stress such as hypoxia or mitochondrial dysfunction (70–72). In this reaction, glutamine-derivedα-KG is carboxylated, rather than decarboxylated, by IDH1 (in the cytosol) or IDH2 (in mitochondria) to generate citrate (Fig. 3B). This switch to reductive versus oxidative metabolism of α-KG is regulated in part by HIF-1α(71,72), although the exact mechanism by which HIF-1αdoes so remains unclear. Engaging reductive carboxylation of α-KG in essence bypasses the conventional TCA cycle by using glutamine to generate the acetyl-CoA required for fatty acid synthesis (Fig. 3B). Under such metabolic reprogramming, cancer cells continue to use glycolysis for ATP production but switch from glucose to glutamine as the major lipogenic precursor.

突破性的新工作提示,经过生化途径的代谢流不是经常符合传统的教条。尽管在正常生长条件下来自谷氨酸的α-KG的氧化作为脂源性乙酰辅酶A的小来源,在应激条件下例如缺氧或者线粒体功能障碍,α-KG能通过还原羧化作用转变为柠檬酸(70–72)。在这个反应,谷氨酸

来源的α-KG被羧化,而不是被脱羧,通过IDH1 (在胞质) 或者IDH2 (在线粒体)来生成柠檬酸(图3B)。α-KG还原性与氧化性代谢的转换被HIF-1α(71,72)部分调节,虽然HIF-1α靠什么这样做的确切的机制还不清楚。α-KG吸引人的还原性羧化作用在本质上绕过传统的TCA循环,通过利用谷氨酸来生成脂肪酸合成所需的乙酰辅酶A(图3B)。在这样的代谢重编程下,肿瘤细胞继续利用糖酵解产生ATP,但从葡萄糖转向将谷氨酸作为主要的脂源性前体。

One implication of this work is that tumor cells display a high degree of metabolic plasticity and can adapt their metabolism to support proliferation and viability under fluctuating environmental conditions.Whether T cells display similar metabolic flexibility in response to environmental cues requires further investigation. The work from Metallo and colleagues (71) suggests that T cells can use reductive glutamine metabolism for fatty acid biosynthesis under hypoxic conditions.Physiologic oxygen tension varies significantly between tissues, and hypoxic regions can be detected in the bone marrow, thymus, and spleen(73). Moreover, T cells are likely to experience hypoxia at sites of tissue inflammation (74). Stabilization of HIF-1α and metabolic reprogramming to favor reductive carboxylation may help T cells maintain proliferation and/or effector function at hypoxic inflammatory sites. HIF-1α protein expression has also been observed early after T cell activation (75), so it is unclear whether reductive carboxylation may also be engaged as part of the normal program of T cell expansion.As mentioned, HIF-1α has been implicated in the differentiation of both proinflammatory TH17 cells (35,36) and CD4+FoxP3+Tregcells (76). It is tempting to speculate that this alternate pathway of glutamine metabolism may influence the expansion or phenotypic stability of these T cell subsets.

这项工作的暗示是,肿瘤细胞显示高度的代谢可塑性并能使它们的代谢适应在波动的环境条件下支持增殖和生存能力。T细胞对环境信号应答时是否显示类似的代谢灵活性,需要进一步的研究。来自Metallo和同事们的工作(71)表明T细胞能利用还原性谷氨酸代谢在缺氧条件下合成脂肪酸。生理氧张力在组织间有意义地变化,并且在骨髓、胸腺以及脾能检测到缺氧区域(73)。此外,T细胞可能在组织炎症位置经历缺氧(74)。HIF-1α的稳定性与促进还原性羧化的代谢重编程可能帮助T细胞在缺氧的炎症部位维持增殖和/或效应细胞作用。在T细胞活化后的早期也观察到HIF-1α蛋白表达(75),所以不清楚是否还原性羧化可能也作为一部分参与T细胞扩增的正常程序。如提到的,HIF-1α被密切关联于促炎症反应的TH17细胞(35,36)和CD4+FoxP3+Treg细胞(76)的分化。吸引人的推测是,这个谷氨酸代谢的替代途径影响这些T细胞亚群的扩增或者表型稳定性。

Metabolites As Signaling Molecules

作为信号分子的代谢物

Cancer genome sequencing efforts yielded an unexpected discovery in 2008 with the identification of somatic mutations in a metabolic enzyme,the TCA cycle enzyme IDH1, in glioblastoma multiforme (GBM) (77). Mutations in IDH1 presented at significant frequency (~12% of GBM patients) with high frequency of missense mutations targeting an arginine residue in the active enzyme site (Arg132). This mutation alters the enzymatic ability of IDH1, allowing it to convert α-KG to 2-hydroxyglutarate (2-HG) rather than promote normal isocitrate–to–α-KG interconversion (78). In the cancer setting, 2-HG has been shown to influence a number of biological processes, including cell differentiation, DNA methylation, and histone methylation (79–82),leading to its classification as an oncometabolite. These results have shifted thinking in cancer biology to consider that specific metabolites may also

act as signaling molecules to influence cell physiology. Given certain similarities between metabolic programming in tumor cells and proliferating T cells, it stands to reason that metabolites will participate in T cell signaling as well.Some examples of how metabolites shape T cell function and fate through metabolic pathways are discussed in detail here.

在2008年,肿瘤基因组测序的努力产生了一个出乎意料的发现,即,在多形性胶质母细胞瘤(GBM)中TCA循环一个代谢酶IDH1的体细胞突变的鉴定(77)。在IDH1的突变以有意义的频率(~12%的GBM患者)出现,伴随在活性酶位点(Arg132)针对精氨酸残基的高频率错义突变。这个突变改变了IDH1的酶能力,使它转化α-KG为2-羟基戊二酸(2-HG),而不是促进正常的异柠檬酸到α-KG的互变(78)。在肿瘤环境里,2-HG已显示影响许多生物过程,包括细胞分化、DNA甲基化及组蛋白甲基化(79–82),导致它被归类为一个癌代谢物。这些结果已经转变在肿瘤生物学的想法去思考,特殊的代谢产物可能也作为信号分子去影响细胞生理。基于所给的肿瘤细胞和增殖的T细胞代谢重编程之间的相似性,按理说代谢产物将也参与T细胞的信号传导。代谢产物怎样通过代谢途径形成T细胞功能和命运的一些例子在这里具体讨论。

Regulation of LKB1-AMPK Signaling by Adenylates

靠腺苷酸的LKB1-AMPK信号调节

Fig. 4. Metabolites can influence signal transduction.(A) The AMPK pathway is influenced by adenylate concentration. AMPKα is activated by phosphorylation on Thr172 of its activation loop by the kinases LKB1, TAK1, or CaMKKβ.LKB1 promotes enhanced AMPK phosphorylation under a high AMP:ATP ratio. One biological output of AMPK activity is the inhibition of mRNA translation under low-energy conditions through inhibition of mTORC1 activity. (B) α-KG–dependent enzymes (in yellow) are a class of enzymes regulated by TCA cycle intermediates that require molecular oxygen (O2)and α-KG for their enzymatic activity. Oxygen, α-KG, ascorbate, and iron (green)are positive regulators of these enzymes, whereas the TCA cycle intermediates fumarate and succinate (blue) antagonize their reactions. PHDs destabilize HIF-1α protein, resulting in decreased expression of HIF-1α targets and a reduction in glycolysis. TET2 hydroxylates 5-methylcytosine residues to promote DNA demethylation, whereas JmjC promotes demethylation of trimethylated histones in chromatin.

图4. 代谢产物能影响信号转导。(A)AMPK途径受腺苷酸浓度影响。AMPKα靠它活性环的Thr172磷酸化被激活,通过激酶LKB1、TAK1或 CaMKKβ。在一个高AMP:ATP 比率下LKB1促进AMPK磷酸化增强。AMPK活性的一个生物学输出是,在低能量条件下mRNA翻译的

抑制,通过mTORC1活性的抑制。(B)α–KG依赖性酶(黄色的)是由TCA循环中间物调节的一类酶,它们的酶活性需要分子氧(O2)和α–KG。氧气、α–KG、抗坏血酸和铁绿色)是这些酶的积极调控者,然而TCA循环中间物延胡索酸和琥珀酸(蓝色)对抗它们的反应。PHDs使HIF-1α蛋白不稳定,导致HIF-1α目标的表达降低和糖酵解的减少。TET2羟基化5-甲基胞嘧啶残基来促进DNA去甲基化,然而JmjC促进染色质中三甲基化的组蛋白去甲基化。

ATP is the primary carrier of chemical energy in the cell and essential for life. Thus, adenylates[ATP, adeonsine diphosphate (ADP), and AMP]are important units of cellular metabolic currency. In mammalian cells, fluctuations in cellular energy are monitored by the heterotrimeric AMPK complex [reviewed in (83)]. ATP, ADP,and AMP compete for nucleotide-binding sites of the γ regulatory subunit of AMPK, with AMP (low energy) promoting and ATP (high energy) antagonizing AMPK activation. As such, AMPK functions as a sensor of the cellular adenylate energy charge (84, 85). Elevation of the cellular AMP:ATP ratio leads to increased phosphorylation of AMPK at Thr172 of its activation loop by the kinase LKB1 (Fig. 4A). AMPK can also be activated by Ca2+(via CamKKβ) and the cytokine transforming growth factor–β(TGF-β)(via TAK1), although LKB1 appears to be the sole kinase that couples adenylate binding to AMPK activation.

ATP是细胞中主要的化学能量载体并且对生命必不可少。因此,腺苷酸[ATP,二磷酸腺苷(ADP)和AMP]是细胞代谢的重要货币单位。在哺乳动物的细胞,细胞能量的波动被异三聚体的AMPK复合物监控[综述于(83)]。ATP、ADP和 AMP竞争AMPK的γ调节亚基的核苷酸结合位点,AMP(低能量)促进而ATP(高能量)拮抗AMPK活化。如此,AMPK作为细胞的腺苷酸能量指示的一个传感器起作用(84, 85)。细胞的AMP:ATP比例升高导致AMPK在Thr172的活化环磷酸化增加,通过激酶LKB1(图4A)。AMPK也能被Ca2+(通过CamKKβ)和细胞因子转化生长因子-β(TGF-β)(通过TAK1)活化,尽管LKB1似乎是连接绑定于AMPK活化的腺苷酸的唯一酶。

Together LKB1 and AMPK function as part of an evolutionarily conserved energy-sensing pathway that maintains cellular energy balance by promoting catabolic pathways of ATP production and limiting processes that consume ATP. Protein synthesis is one of the most energy consuming processes in the cell, accounting for ~20% of cellular ATP consumption (86). As mentioned, AMPK antagonizes mRNA translation through negative regulation of mTORC1 (Fig. 4A)(18). By regulating AMPK activity, adenylates directly influence pathways of energy usage in the cell. As ATP levels drop, AMP binds to AMPK, and AMPK is switched on to promote ATP production and block its consumption; once ATP homeostasis has been reestablished, increased binding of ATP to AMPK shuts off the kinase.

LKB1 和AMPK一起作为一个进化上保守的能量感知途径的一部分起作用,该途径通过促进ATP生成的分解代谢途径和限制消耗ATP的过程维持细胞的能量平衡。蛋白质合成是细胞中最耗能的过程之一,占~20%的细胞ATP消耗(86)。如提到的,AMPK通过mTORC1的负性调节拮抗mRNA翻译(图4A)(18)。通过调节AMPK活化,腺苷酸直接影响细胞内的能量利用途径。当ATP水平下降时,AMP结合到AMPK,而AMPK开始促进ATP产生并阻断它的消耗;一旦ATP动态平衡被重新建立,增加的结合到AMPK的ATP关闭该激酶。

Recent work indicates that LKB1-AMPK signaling can influence T cell metabolism and function. Lymphocytes exclusively express the α1 catalytic subunit of AMPK (87), and TCR stimulation promotes LKB1-dependent AMPK activation in lymphocytes (87, 88). Glycolysis is enhanced

in resting AMPKα-deficient T cells(88), consistent with observations that silencing AMPK in tumor cells promotes the Warburg effect (89). Loss of LKB1-AMPK signaling promotes increased mTORC1 activity in both na?ve and TEFF cells (88, 90), which in turn facilitates production of the TH1 cytokine interferon-γ(IFN-γ) by TEFF cells (88). Thus, LKB1 and AMPK act in concert to limit the anabolic growth of T cells by suppressing glycolysis and mTOR-dependent biosynthesis. Perhaps not surprisingly, deletion of either LKB1 or AMPKα1 disrupts normal lymphocyte homeostasis, resulting in an accumulation of activated (CD44hiCD62Llo)CD8+T cells in animals (88). These results suggest that cellular adenylate levels and AMPK may help regulate lymphocyte pools in the whole organism.

最近的工作表明LKB1-AMPK信号能影响T细胞代谢和功能。淋巴细胞专门表达AMPK的α1催化亚基(87),并且TCR刺激促进淋巴细胞中依赖LKB1的 AMPK活化(87, 88)。在静止的AMPKα-缺失的T细胞中糖酵解被增强(88),与观察到的肿瘤细胞中AMPK沉默促进效应一致(89)。LKB1-AMPK信号丢失促进原始的和TEFF细胞中mTORC1活化都增加(88, 90),这转而促进TEFF细胞产生TH1细胞因子白介素-γ(IFN-γ) (88)。因此,LKB1 和AMPK作用符合限制T细胞的合成代谢生长,通过抑制糖酵解和依赖mTOR的生物合成。可能不奇怪,LKB1或者AMPKα1的消除扰乱正常的淋巴细胞动态平衡,导致动物中活化的(CD44hiCD62Llo)CD8+T细胞累积(88)。这些结果提示细胞的腺苷酸水平和AMPK可能帮助调节整个器官中的淋巴细胞池。

Why would a signaling pathway that normally monitors cellular energy levels regulate T cell function? Similar to tumor cells (91), AMPK may regulate a metabolic checkpoint in T cells, acting as a brake on lymphocyte expansion when energy conditions are poor. TEFF cells with defective AMPK signaling would be freed from these metabolic checkpoints and continue to proliferate and produce cytokines as if cellular bioenergetics were suitable to support T cell function. Additionally, AMPK may regulate the metabolic plasticity of lymphocytes, coordinating metabolic changes in response to nutrient fluctuation and allowing T cells to survive changes in their environment. As evidence for this, the AMPK agonist metformin, which promotes FAO in activated T cells, enhances the production of CD8+ memory T cells in vivo (17). Furthermore, it was recently shown that AMPK-deficient T cells are defective in their ability to generate CD8+ memory T cells during infection (92). There is also a growing body of evidence implicating AMPK in the control of inflammation (3). Future work will focus on the role of AMPK in regulating the metabolic fitness of lymphocytes, dissecting LKB1-and AMPK-specific effects on immune function and investigating the role(s) of LKB1 and AMPK in regulating inflammation in vivo.

为什么一个正常地监控细胞能量水平的信号途径可调节细胞的功能?类似于肿瘤细胞(91),AMPK可能调节T细胞中的一个代谢关卡,当能量状况差时作为淋巴细胞扩增的一个闸门起作用。缺失AMPK信号的TEFF细胞可摆脱这些代谢的关卡并继续增殖和产生细胞因子,好像细胞的生物能量适合支持T细胞功能。此外,AMPK可能调节淋巴细胞的代谢可塑性,协调对营养波动反应的代谢变化并允许T细胞在它们的环境变化中幸存。作为这的证据,AMPK 的激动剂二甲双胍,促进活化的T细胞中的FAO,增强体内CD8+记忆T细胞的产生(17)。再者,最近表明AMPK缺陷的T细胞在感染过程中产生CD8+记忆T细胞能力的缺陷(92)。在炎症控制方面越来越多的证据牵涉AMPK (3)。未来的工作将集中于AMPK在调节淋巴细胞的代谢适合度中的作用,剖析对免疫功能LKB1-和 AMPK-特异的作用并研究体内LKB1 和 AMPK调节炎症的作用。

Regulation of α-Ketoglutarate-Dependent Enzymes by TCA Cycle Metabolites

免疫分型 基础介绍

近年来白血病的免疫分型已成为诊断血液恶性肿瘤不可缺少的重要标准之一。早年曾用过的荧光显微镜或APAAP方法基本被废弃。国际上公认的通用的方法是流式细胞术(FCM)。流式细胞术白血病免疫分型是利用荧光素标记的单克隆抗体(McAb)作分子探针,多参数分析白血病细胞的细胞膜和细胞浆或细胞核的免疫表型,由此了解被测白血病细胞所属细胞系列及其分化程度。 1.流式细胞仪诊断白血病的依据 ⑴FCM能快速,多参数,客观的定性又定量测定细胞膜、浆、核的抗原表达 ⑵至今尚未发现白血病的特异抗原。 ⑶能用正常血细胞的单抗来进行免疫分型是基于白血病形成的分化阻断学说。即白血病细胞基因异常,分化受阻于某阶段形成不同亚型的白血病。这群细胞充盈于骨髓。正常血细胞从多能干细胞分化、发育、成熟为功能细胞的过程中,细胞膜、细胞浆或胞核抗原的出现、表达增多与减少甚至消失与血细胞的分化发育阶段密切相关,而且表现出与细胞系列及其分化程度相关的特异性。因此,这些抗原的表达与否可作为鉴别和分类血细胞的基础。白血病是造血系统的恶性肿瘤,在形态上变化虽相当大,但仍能表达正常血细胞所具有的抗原,因而仍可依据其抗原的表达谱对白血病进行免疫分型。 2.流式细胞仪诊断白血病的意义 ⑴骨髓血细胞是形态学分型的基础,FCM白血病免疫分型是对形态学分型的重要补充和进一步深化,国际白血病MIC分型协作组认为免疫分型对每一例急性白血病都是必不可少的,对下列情况意义更大:①用形态学、细胞化学染色不能肯定细胞来源的白血病。②形态学为急性淋巴细胞白血病(ALL)或急性未分化白血病(AUL)但缺乏特异性淋巴细胞系列抗原标记。③混合性白血病。④部分髓系白血病。目前,免疫分型对粒细胞和单核细胞白血病的鉴别尚有一定困难。⑤慢性淋巴细胞白血病。⑥微小残留白血病。 ⑵临床预测;可根据抗原的表达情况预测病情的预后:如白血病患者有CD7+与CD34+共表达,预后不好。 ⑶疾病监测:可监测病程的发展,疗效,可进行微小残留白血病的检测。 二、免疫分型常用的免疫标志及其意义 1.白血病系列分化抗原 T淋巴细胞白血病:CD3、CD5、CD7。 B淋巴细胞白血病:CD10、CD19、CD22。 NK淋巴细胞白血病:CD16、CD56、CD57。 髓系白血病:CD13、CD14、CD33、MPO(髓过氧化物酶)。 红白血病:GlyA(血型糖蛋白A)。 巨核细胞白血病:CD41、CD42、CD61。 2.白血病系列非特异性抗原 CD34、HLA-DR为早期细胞抗原,无系列特异性,可与CD38联合运用于免疫分型。一般而言,干/祖细胞CD34+、HLA-DR+、CD38-,原始细胞CD34+、HLA-DR+、CD38+,而幼稚细胞(如早幼粒细胞)CD34-、HLA-DR-、CD38+。 3.白血病分化阶段抗原 T细胞抗原CD4、CD8。 B细胞抗原:CD10、Cyμ(胞浆μ链)、SmIg(表面膜免疫球蛋白)、CD38和CyIg(胞浆免疫球蛋白)、CD11C。 4.白细胞共同抗原 CD45为白细胞共同抗原,其表达量在淋巴细胞最高,单核细胞,成熟粒细胞,早期造血细胞(blasts)依次减弱。红细胞(中,晚幼红细胞,成熟红细胞)不表达CD45。用SSC/CD45 PerCP双参数分析可十分容易鉴别骨髓和血液中的原始或成熟细胞。用两个系列或阶段特异性McAb加CD45进行三色免疫荧光染色,经FSC、SSC、McAbl-FITC、McAb2-PE、CD45 PerCP五参数分析,可特异地分析原幼白血病细胞的免疫表型而不受成熟细胞的干扰。

封闭抗体治疗新技术活化淋巴细胞主动免疫治疗

封闭抗体治疗新技术---活化淋巴细胞主动免疫治疗 l 您是否有封闭抗体经过治疗后仍然长期阴性的烦恼么? l 您是否仍然为找不到淋巴细胞的第三供者所困扰? l 您是否在为丈夫无法每次来抽取新鲜血液提取淋巴细胞而忧愁? 中山大学孙逸仙纪念医院生殖免疫专科和生物治疗技术中心合作提供了一项新技术,为您解决上述问题,这就是活化淋巴细胞主动免疫治疗。这,将带给你新的希望! 什么是封闭抗体? 在妊娠过程中,封闭抗体是母体接触父源性抗原所产生的抗体,能与胎盘细胞表面抗原结合,从而阻断母体细胞毒性T细胞对胚胎发动免疫攻击,发挥保护胎儿、维持妊娠的作用。 封闭抗体与习惯性流产的关系 习惯性流产的妇女约80%~90%测不到这种特异性的封闭抗体,其体内存在未被抑制的细胞毒性细胞。这些细胞可直接作用于胎盘,或通过释放炎性介质间接损害胎儿或胎盘,从而导致流产的发生。 什么是淋巴细胞主动免疫治疗?

淋巴细胞主动免疫治疗是用丈夫或第三者的淋巴细胞注入习惯性流产患者的体内,诱导产生同种免疫反应,并获得封闭抗体及微淋巴细胞毒抗体。这样,母体免疫系统就不会对胎儿产生免疫攻击,提高再次妊娠的成功率。 活化淋巴细胞主动免疫治疗比一般的淋巴细胞主动免疫治疗有什么优势? 1、一次少量抽血,够用全疗程。抽取丈夫或第三者血液40m l分离淋巴细胞,经体外活化增殖,用增殖的淋巴细胞行免疫注射,将剩余的淋巴细胞冻存备用。可以维持1年左右,注射10次以上。 2、疗效更佳。活化的淋巴细胞纯度更高,活性更强,更易激起患者体内的封闭抗体。 3、保证健康的供给。丈夫患有乙肝等传染病不宜供血时,活化淋巴细胞可以解决找不到第三者供血的难题。 什么是活化淋巴细胞主动免疫治疗 活化淋巴细胞是指抽取丈夫或者第三者的血液,分离淋巴细胞,并用细胞因子进行体外刺激,使其活化并增殖。得到纯度更高、活性更强的淋巴细胞,注入患者体内后更容易刺激封闭抗体的产生。 活化淋巴细胞主动免疫治疗的适应人群:

人脐血及骨髓淋巴细胞免疫表型的比较及其意义

人脐血及骨髓淋巴细胞免疫表型的比较及其意义 郭 荣,邹 萍,邹典斌1 (华中科技大学同济医学院附属协和医院血液病研究所,武汉430022; 1郑州大学医学院第一附属医院血液科,郑州450052) 摘要 为比较脐血和骨髓淋巴细胞及祖细胞分化抗原,通过流式细胞术(FCM)双标法对38份脐血及10份骨髓免疫细胞表型进行了分析研究。研究发现:①脐血及骨髓淋巴细胞中均测到幼稚淋巴细胞(CD3-CD4+),且前者中含量较多,但脐血细胞毒T细胞含量(CTL,CD3+CD16+56+)低于骨髓;②脐血中N K细胞(CD3-CD16+56+)比例高于骨髓;③脐血有核细胞中CD34+细胞的比值接近于骨髓,但脐血CD34+细胞中髓系祖细胞(CD34+ CD13+,CD34+HLA2DR+)及淋巴系祖细胞(CD34+CD19+)含量均低于骨髓。结论:①脐血免疫细胞具有不成熟性,这估计是脐血移植后GVHD程度轻的主要原因;②脐血淋巴细胞中N K细胞含量较高,推测脐血移植后移植物抗白血病效应(GVL)并不会降低;③脐血CD34+细胞中髓系祖细胞及淋巴系祖细胞比例均低于骨髓,可能是脐血移植后造血及免疫重建速度较慢的原因之一。 关键词 脐血;骨髓;淋巴细胞;免疫表型 中图分类号 R33111;R331.2 A Comparison bet w een Immunophenotypes of Lymphoid Cells from H uman Umbilical Cord Blood and Bone Marrow and Its Signif icance GUO Rong,ZOU Ping,ZOU Dian2Bin1 (Instit ute of Hematology,The A f f iliated U nion Hospital,Tongji Medical College,Huaz hong Science and Technology U niversity, W uhan430022,Chi na;1Depart ment of Hematology,The Fi rst A f f iliated Hospital of Medical College of Zhenz hou U niversity, Zhenz hou450052,Chi na) Abstract To compare the expression of CD antigens on immune cells from umbilical cord blood(UCB)and bone marrow(BM)and analyze its clinical significance,the phenotypes of lymphoid cells and nucleated cells from38UCB and 10BM samples were investigated by flow cytometry with double labeling monoclonal antibodies.The results showed that the immature lymphocytes(CD3-CD4+)were detedcted in UCB and higher than those in BM;cytotoxic T lymphocytes (CD3+CD16+CD56+)in UCB were significantly lower than those in BM.N K cells(CD3-CD16+CD56+)in UCB were higher than those in BM.The ratio of CD34+cells in nucleated cells of UCB was similar to that of BM,however,both the contents of myeloid(CD34+CD13+and CD34+HLA2DR+)and lymphoid(CD34+CD19+)progenitor cells in UCB were lower than those in BM.It is concluded that the immune cells in UCBpossess immaturity,which might lead to mild GVHD after UCB trans plantation.It is infered from the higher ratio of N K cells in UCB,GVL will not decrease after UCB transplantation.The lower contents of myeloid and lymphoid progenitor cells in UCB probably accounted for the slow hematopoiesis and immune reconstitution following UCB transplantation. K ey w ords umbilical cord blood;bone marrow;lymphoid cell;immunophenotype 脐血具有经济、来源广、采集方便、无采集并发症,移植后移植物抗宿主病(graft versus host dis2 ease,GV HD)程度轻,移植物抗白血病(graft versus leukemia,GVL)效应不降低等优点。但是脐血也存在造血重建速度慢,易合并感染的问题。本研究应用流式细胞术(flow cytometry,FCM)对脐血和骨髓免疫细胞分化抗原进行检测,比较二者在淋系祖细胞、髓系祖细胞、幼稚淋巴细胞及N K细胞含量方面有无差别,旨在分析二者免疫表型差异,探讨其在扩大脐血应用范围中的作用和意义。 材料与方法 标本采集 无菌条件下采集正常足月分娩新生儿脐血38份。母亲年龄24-35岁,平均(29.3±3.3)岁。新生儿娩出后,立即(不超过30秒)用止血钳在距脐轮2-3cm处夹住脐带,在两钳间剪断脐带,用含少许肝素的注射器抽取脐血,加入离心管中混匀。骨髓  通讯作者:郭荣 电话:(027)85730575.E2mail:gh7311@yahoo. https://www.360docs.net/doc/d89932698.html, ? 9 1 5 ? 中国实验血液学杂志 Journal of Ex perimental Hem atology2002;10(6):519-522

WHO软组织肿瘤免疫表型大全

2013版WHO软组织肿瘤免疫表型大全2014-11-06艾迪康病理诊断 主要根据2013年“WHO肿瘤分类——软组织和骨肿瘤”翻译而来 第1章脂肪细胞肿瘤(adipocytictumours) 良性 1、脂肪瘤(lipoma) 免疫表型:成熟脂肪细胞表达S-100、leptin和HMGA2阳性。 2、脂肪瘤病(lipomatosis) 免疫表型:和正常脂肪相似。 3、神经脂肪瘤病(lipomatosisof nerve)

免疫表型:因为病变的所有成分均存在于正常神经内,故免疫组化对诊断没有帮助。 4、脂肪母细胞瘤(lipoblastoma)/脂肪母细胞瘤病(lipoblastomatosis)免疫表型:脂肪细胞表达S-100和CD34,原始间叶细胞常表达desmin。 5、血管脂肪瘤(angiolipoma) 免疫表型:血管内皮成分CD31等内皮标记阳性,细胞性血管脂肪瘤增生的梭形细胞CD31阳性,证明为血管内皮。 6、软组织平滑肌脂肪瘤(myolipomaof soft tissue) 免疫表型:梭形细胞SMA和desmin染色弥漫强阳性,证明为平滑肌分化;ER 和PR阳性也有报道;HMB-45阴性。 7、软骨样脂肪瘤(chondroidlipoma) 免疫表型:成熟脂肪细胞S-100强阳性,脂肪母细胞S-100弱阳性,随脂肪细胞逐渐成熟S-100染色逐渐增强。无脂肪母细胞分化特征的细胞S-100阴性。少数病例角蛋白阳性,但EMA一致阴性。 8、梭形细胞脂肪瘤/多形性脂肪瘤(spindlecell lipoma/pleomorphic lipoma) 免疫表型:梭形细胞脂肪瘤和多形性脂肪瘤中的梭形细胞均为CD34强阳性, S-100罕见阳性,偶见desmin阳性。

淋巴细胞主动免疫治疗母胎免疫识别低下型反复性流产疗效分析

淋巴细胞主动免疫治疗母-胎免疫识别低下型 反复性流产疗效分析 白 静1,赵 芳1,李 岩1,马红丽2 (1.洛阳市妇女儿童医疗保健中心生殖医学研究所,河南 洛阳 471002;2.洛阳市中心血站) 摘 要:目的 分析淋巴细胞主动免疫疗法治疗母-胎免疫识别低下型反复性流产(RSA)的临床疗效和作用机制。方法 以临床筛查封闭抗体确诊为母-胎免疫识别低下型R S A未孕患者86例为研究对象,采用淋巴细胞主动免疫疗法治疗,将妊娠患者与同期不明原因反复性自然流产(UR S A)已孕患者治疗情况对比观察疗效,对母-胎免疫识别低下型R S A患者治疗后不同归向原因进行对比分析该方法的作用机制。结果 治疗后妊娠56例,妊娠成功51例,成功率91 07%,与对照组比较P<0 01,主动免疫治疗疗效与患者年龄、反复流产次数有相关性,与注射淋巴细胞密度无相关性。结论 母-胎免疫低下型RSA患者宜早期治疗,淋巴细胞主动免疫疗法是治疗母-胎免疫识别低下型RSA的有效方法。 关键词:反复性早期自然流产;主动免疫;母-胎免疫低下型;封闭抗体 中图分类号:R714 21 文献标识码:A 文章编号:1006-9534(2009)10-0067-02 E ff ect ana lysis on m other-f oe t us hypo m i m uno log ic recogn ition recurren t spon t aneous abortion us e l y m phocyt e ac tive m i m un ity me thod.BA I J i ng1,Z H AO Fang1,LI Yan1,M A H ong-li2.(1.Luoyang W o m en and Chil dren H ealt h Car eH osp it al ReproductiveM edicine Unit;2.the B lood Cen ter of Luoyang H enan471002) Abstrac:t Ob j ec ti ve:Ana l ys i s t he curati ve effect and f unction m echanis m about l ymphocyte active i m m un ity t herapy m other-foe-t us hypo i m muno l og ic recognition recu rrent spontaneous abortion(RSA).M ethods:86mo t her-foetus hypo i m m unolog i c recogn ition recurrent spontaneous aborti on through check block i ng anti body as i nvestigate b j ec t,treat w ith ly m pho cy te active i m m un ity,con trast w it h unexp lai ned recurrent spontaneous abortion(UR S A)i n t he sa m e per i od,ana l y si s the function m echanis m t h rough compareing therapeutic resu lt.R esults:A fter treat ment,56person g esta ted,51person gestate conti nuousl y,achiev e m ent ra ti o91 07%,co m-pared w ith contro l g roup P<0 01,the the rapeutic effec t of active i m m un i ty has assoc i a tiv ity on pa ti ent s age、recurrent spontaneous aborti on par ity and unassoc i a tiv ity on l ymphocyte density.C onc l usi on:M othe r-foetus hypo i m muno l og ic recognition recurren t sponta-neous aborti on shou l d be ear l y treated,t he ly m pho cy te acti ve i m mun ity therapy ism odus operandi on it. Key w ords:R ecurren t spontaneous abo rti on;A c tive i m munity;M other-foetus hypo i m m uno l og ic recogn iti on recu rrent spontane-ous abo rti on;B l ocki ng anti body 反复性自然流产(RSA)是一种常见的妊娠并发症,临床发病率约为1%,其病因复杂,80%以上原因不明,约2/3为母-胎免疫识别低下型反复性流产[1]。2006年5月~2008年12月,我们运用配偶淋巴细胞皮内注射法对母-胎免疫识别低下型RSA患者进行治疗,疗效满意,报道如下。 对象与方法 1.对象 以06年5月~08年12月就诊的母-胎免疫识别低下型RSA未妊娠患者为治疗对象,所有患者具备以下条件并签署知情同意书:(1)流产次数 2次;(2)夫妻染色体核型分析正常;(3)系统检查:无生殖道结构异常、内分泌检查正常、抗心磷脂抗体阴性、病毒四项(TORC H)Ig M阴性;(4)封闭抗体阴性;(5)男方精液分析正常。治疗后妊娠56例为治疗组,同期就诊的UR S A患者就诊时已妊娠者(所有患者具备:上述(1)、(2)、(3)、(5)条)57例对照组。 2.方法 以微量淋巴细胞毒理学试验方法判定R S A患者封闭抗体情况,无菌条件下分离配偶血液淋巴细胞。治疗组:将淋巴细胞悬液1m l于患者左右前臂内侧分3点皮内注射。疗程:每隔3~4周一次,3~4次后复查封闭抗体,转阳性者安排怀孕;如未孕4~8周加强一次,同时检查不孕原因;妊娠后治疗间隔同前,同时联合给予黄体支持和中药保胎直至孕5月。对照组:仅给予黄体支持。 3.疗效判断标准及统计学方法 妊娠达16周以上,或分娩正常新生儿为妊娠成功,再次流产、死胎及新生儿畸形作为妊娠失败。采用SPSS10 0软件进行数据分析。 结果 治疗组治疗后妊娠56例,其中分娩29例,妊娠超过16周22例,再次流产5例;对照组57例,两组患者年龄、反复流产次数比较无差异性,治疗组妊娠成功率明显高于对照组。结果见表1。 67 中国优生与遗传杂志2009年第17卷第10期

中国人血液淋巴细胞免疫表型参考值调查

中国人血液淋巴细胞免疫表型参考值调查 来源:https://www.360docs.net/doc/d89932698.html,时间:2007-10-06 字体:[大中小] 收藏我要投稿 文章出处:朱敏转载请注明出处 【摘要】目的建立健康中国成人血液淋巴细胞免疫表型分析参考值。方法用Simultest IMK-Lymphocyte试剂盒的荧光抗体对102例健康中国成人血液进行染色,以FACSort流式细胞仪进行分析,Simulset程序获取数据并分析结果,SPSS软件进行统计。结果18~65岁健康中国成人淋巴细胞参考值范围CD+3细胞是50%~84%(955~2 860/μl),CD-3CD+19细胞为5%~18%(90~560/μl),CD+3CD+4细胞为27%~51%(550~1 440/μl),CD+3CD+8细胞为15%~44%(320~1 250/μl),CD-3、CD+16和/或CD+56细胞为7%~40%(150~1 100/μl),CD+3CD+4/CD+3CD+8比值为0.71~2.87。随着年龄增长CD+3CD+4细胞略有升高,CD+3CD+8细胞略有降低。NK细胞在大年龄组女性低于男性,且有统计学差异(P<0.05)。与高加索人和美国人相比,中国人的CD+3CD+8细胞和NK细胞(CD-3,CD+16和/或CD+56)的相对值(百分率)与绝对值均高,CD-3CD+19细胞和CD+3CD+4细胞仅相对值较低,但绝对值不少。CD+3CD+4/CD+3CD+8比值向低值漂移。结论种族、性别、年龄和环境因素可影响健康人淋巴细胞表型分布。 Reference values on blood lymphocyte immunophenotype in healthy Chinese adult Zhu Lihua, Wang Jianzhong, First Hospital, Beijing Medical University, Beijing,100034 【Abstruct】Objective To establish the reference values on blood lymphocyte immunophenotype in healthy Chinese adults.Method Staining whole blood with fluorescein-conjugated monoclonal antibodies supplied by simultest TM IMK lymphocyte kit, we analyzed 102 healthy Chinese residents (age range 18~65 years) by FACSort flow cytometer, acquired results by Simultest programme, and performed statistical analysis by SPSS software.Results The 95% reference ranges in absolute counts per microliter of whole blood (percentage of lymphocytes) for CD+3, CD+3CD+4, CD+3CD+8, CD-3CD+19, CD-3/CD+16 and/or CD+56 cells were 955 to 2 860 (50% to 84%), 550 to 1 440 (27% to 51%), 320 to 1250 (15% to 44%), 90 to 560 (5% to 18%), 150 to 1 100 (7% to 40%) respectively. The CD+3CD+4/CD+3CD+8 ratio was 0.71 to 2.87. CD+3CD+4 cells increased and CD+3CD+8 cells decreased slightly with age. Women were compared to men in old age group, NK cells (CD-3/CD+16 and/or CD+56) were lower (P<0.05). Compared with Caucasians and Americans, Chinese had higher percentage and absolute numbers of CD+3CD+8 and NK cells, but had lower percentage of CD-3CD+19 and CD+3CD+4 cells without absolute number change. So CD+3CD+4/CD+3CD+8ratio skew to the lower values.Conclusion The race, age and environment could influence the reference value of lymphocyte immunophenotype. 【Key words】Lymphocyte immunophenotype Reference value Flow cytometry 淋巴细胞免疫表型分析在原发或获得性免疫缺陷病、自身免疫性疾病的辅助诊断和移植免疫的监测中具有重要作用。随着流式细胞仪的广泛应用,采用流式细胞术进行淋巴细胞免疫表型分析已逐渐成为临床检验的常规工作之一。各国的流式细胞术实验室均建立了自己的参考值,并对其种族、性别、年龄等影响因素进行了探讨。目前我国还没有用流式细胞术、采用双染色分析淋巴细胞免疫表型参考值的报告。为此我们对102例健康成人进行了淋巴细胞免疫表型分析,现报告如下。材料和方法 一、研究对象 102例标本均取自于无免疫性疾病、无现症、不吸烟、体检健康、血细胞计数及肝、肾功能检查正常的成人。年龄18~65岁,其中男性54人,女性48人。首先按男女性别分为两大组,每组中又以40岁为界,≤40岁者为小年龄组(男24人,女19人),>40岁者为大年龄组(男30人,女29人)。

淋巴细胞主动免疫治疗反复性流产的步骤及原理

淋巴细胞主动免疫治疗反复性流产的步骤及原 理 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

淋巴细胞主动免疫治疗反复性流产的步骤及原理 步骤:抽取丈夫静脉血20ml,用淋巴细胞分离液分离提取出淋巴细胞。用生理盐水洗涤2次后,加生理盐水1ml稀释,于妻子前臀内侧处作皮内放射状6~8点接种,淋巴细胞数为2~×10(7)/ml。注射后24~72小时局部出现直径3~10mm不等红润硬结,每疗程注射4次,每次间隔3周。第一疗程结束后鼓励怀孕,怀孕后再注射2次。对孕期治疗2次后仍有先兆流产症状的患者,再增强治疗2~4次。 原理:从现代生殖免疫观点来看,原发性习惯性流产,可能是由于患者对胚胎父系抗原的免疫低反应性所致。基于该理论国内外学者采用丈夫或无关个体白细胞、淋巴细胞等对母体进行免疫治疗。目的是诱导母体对胚胎抗原或相关同种异体抗原产生免疫反应性。 妊娠是成功的半同种异体移植过程,胚胎所携带的夫源性HLA抗原能刺激母体免疫系统,并产生一类IgG型抗体,称之为封闭抗体,它存在妊娠妇女血清中,可抑制针对丈夫HLA特异性抗体的淋巴细胞毒活性,并可抑制异体移植物的排斥,原因不明的习惯性流产妇女血清中缺乏该封闭抗体,但通过注射丈夫的淋巴细胞可获得。 注射部位皮肤反应与疗效的关系,皮肤反应的轻重可判断免疫疗法的效果非常有用的观察指标之一,第1次注射后皮肤反应重,即24~48小时局部出现红润硬结直径为3~10mm,而几次注射皮肤反应逐渐减轻者妊娠预后良好。免疫疗法治疗习惯性流产的疗效肯定且安全简

便。但由于治疗后并非所有患者封闭抗体都转阳性,而正常妊娠妇女封闭抗体也可能为阴性,作用机理尚待进一步研究。

急性淋巴细胞白血病免疫表型特点及其临床意义

急性淋巴细胞白血病免疫表型特点及其 临床意义 (作者:___________单位: ___________邮编: ___________) 【摘要】目的为探讨急性淋巴细胞白血病(ALL)的免疫表型特征及与治疗的关系。方法采用流式细胞仪对77例ALL患者进行免疫表型分析。结果① 77例ALL中L1型44.16%,L2型50.65%,L3型 5.19%;B淋巴细胞性ALL(B-ALL)80.52%,T淋巴细胞性ALL(T-ALL)15.58%。② 77例ALL中髓系抗原(My)阳性率为57.14%;其中表达CD13的阳性率最高,为84.09%,其次为CD33和CD15;My+ B-ALL占B-ALL的58.06%,My+ T-ALL占T-ALL的50%,两组比较差别无统计学意义(P0.05);My+ ALL组CR率为81.82%,略低于My-ALL 组(88.24%),但差异无统计学意义(P0.05)。③ CD34表达阳性率为49.35%,B-ALL中为56.45%,明显高于T-ALL的25%(P0.05);My+ ALL 中CD34表达阳性率为71.05%,高于My-ALL的33.33%(P0.05);CD+34 ALL组CR率为76.47%,低于CD-34ALL组的90.91%,但差异无统计学意义(P0.05)。结论 ALL免疫分型与FAB分型变化无相关性;My+ ALL 患者中CD34表达阳性率高于My-ALL患者;CD34和髓系抗原的表达与CR率无相关性。

【关键词】急性淋巴细胞白血病;免疫表型 急性淋巴细胞白血病(acute lymphoblastic leukemia,ALL)的免疫分型对其诊断、治疗及预后判断有重要意义,而ALL不同的恶性克隆来源存在着显著不同的生物学特征及预后因素。为进一步探讨ALL各亚型免疫表型的特点及其与预后的关系,我们对本院77例ALL患者资料进行了研究,现报告如下。 1 资料和方法 1.1 病例资料 宁夏医科大学附属医院血液科及儿科2002-2008年间的住院初治ALL患者77例。男54例,女23例,年龄2.2~72岁,其中14岁儿童患者42例,中位年龄5.6岁,≥14岁患者35例,中位年龄23岁。所有病例均根据临床表现、骨髓细胞形态学、细胞化学染色及免疫分型而确诊。细胞形态学诊断根据FAB分型标准[1],对于免疫分型诊断ALL又同时存在髓系抗原表达阳性,但又不够急性混合细胞白血病诊断标准,视为伴髓系抗原表达的ALL(My+ ALL)[2]。 1.2 免疫表型分析 受检者抽取骨髓或外周血经肝素抗凝,采用活细胞三色免疫荧光法标记,流式细胞仪检测,通过二维点图分析抗原表达情况。流式细胞仪型号为FACS Calibur,美国Becton-Dickinson公司生产,所用单克隆抗体亦均为美国BD公司产品。B淋巴细胞系单抗:CD10、CD19、CD20、CD22;T淋巴细胞系单抗:CD3、CD5、CD7;髓系单抗:CD13、CD14、CD15、CD33、CD117;造血干/祖细胞单抗:CD34。结果判定用

主动免疫治疗注意事项

主动免疫治疗注意事项 生活中我们可能会遇到各种各样的疾病,这其中有一些疾病还可能会比较难缠,普通的治疗方法难以奏效,可能会用到一些比较特殊的治疗方法,比如说主动免疫治疗,这个时候有一些事项是需要多注意的,那么,主动免疫治疗注意事项有哪些? 主动免疫治疗注意事项有哪些? 1.单次剂量与总剂量的关系这类药物的累积剂量与抑制复发的关系更为密切,而单次剂量与副作用的关系更为明显,单次剂量越大时副作用越明显。如环磷酰胺一次应用〇.8g以上,有胃肠反应的在80%左右,而0.4g则很少发生不良反应,以较小剂量慢慢累积,达到一定剂量后会产生良好的效果。 2.激素与免疫抑制剂的关系激素由于良好的抑制炎症反应的作用,可以产生良好的即时效应,属治标的措施,但减量时往往容易复发,造成反复加量,以致产生严重的副作用。免疫抑制剂作用于免疫细胞,抑制淋巴细胞增殖和抗体合成,起到治本的作用。两者合用,相辅相成,成为不可缺少的两方面。在CTX慢慢累积的过程中,将激素缓慢减量,达到一种平稳的治疗过程。 3.注意生殖功能的保护免疫抑制剂可能对某些患者的生育能力造成不良影响。在实际应用的过程中,我们要注意患者特别是儿童生育功能的维护,在治疗过程中坚持长期服用具有保护生殖功能的中药,如枸杞子、玄参、菟丝子,仙灵脾等。 主动免疫和被动免疫有什么区别? 主动免疫给机体注射的是抗原,抗原再刺激机体产生抗体,这样机体获得的免疫相对牢固,持续时间长,但机体产生抗体需要一定的时间,即从疫苗接种到保护性免疫产生需要一定的时间。主要用于暴露前的预防。 被动免疫是直接给机体注射现成的特异性抗体,抗体进入机体后马上会发挥保护作用,主要用于紧急预防,但维持时间较短。 以上就是关于主动免疫治疗注意事项的介绍了,希望在进行主动免疫治疗的时候患者可以对这些事项有一定的了解,并把它们贯彻实施到自己的生活当中,这样才可以让自己更快赶走疾病,恢复健康身体,重新投入美好的生活当中。

淋巴细胞主动免疫治疗对反复自然流产的疗效分析及其护理策略

·论著·淋巴细胞主动免疫治疗对反复自然流产的 疗效分析及其护理策略 黄华英 孙鸿燕 廖运梅 【摘要】 目的 探讨采用淋巴细胞主动免疫治疗对反复自然流产(RSA)的疗效及其护理策略。方法  选择2010年4月至2011年9月于本院确诊为RSA后完成淋巴细胞主动免疫治疗,并成功随访的154 例患者为研究对象。淋巴细胞主动免疫治疗方法为:采集配偶(健康)淋巴细胞,若配偶不宜作为免疫原提 供者,则选用无关健康个体的淋巴细胞。外周血淋巴细胞治疗方法:患者治疗前应严格避孕。将淋巴细胞 悬液1mL于患者前臂内侧分6~8点皮内注射,治疗1个疗程后检测抗磷脂抗体(APLA),每隔3~4周皮 内注射1次,4次为1个疗程。治疗1个疗程结束后,医师指导下妊娠,妊娠后继续巩固治疗1个疗程。疗 效判断标准:维持妊娠至20孕周后者判断为治愈。对接受采用淋巴细胞主动免疫治疗患者的护理策略包 括:健全登记管理制度、良好的心理疏导、严格护理操作规范(本研究遵循的程序符合本院人体试验委员会 所制定的伦理学标准,得到该委员会批准,征得受试对象本人的知情同意,并与之签署临床研究知情同意 书)。结果 ①154例RSA患者接受免疫治疗2个疗程后,APLA呈阳性为146例(94.81%),与治疗前 比较,差异有统计学意义(P<0.01)。②154例患者中,136例再次妊娠,妊娠率为88.31%;妊娠至20周 后为98例,28例在妊娠后治疗疗程中,49例足月分娩,2例早产,所产婴儿体格、智力发育正常。实施护理 策略后,患者满意度提高。结论 淋巴细胞主动免疫治疗对治疗RSA安全有效,但是否值得临床推广应 用,尚需进一步研究证实。健全登记管理制度、良好的心理疏导、严格护理操作规范、适时的健康指导等护 理策略,可提高对本病患者护理质量。 【关键词】 自然流产; 反复自然流产; 淋巴细胞免疫治疗; 护理 Effect of Lymphocytes Active Immunotherapy on Recurrent Spontaneous Abortion and its Nursing Measures  HUANG Hua-ying,SUN Hong-yan,LIAO Yun-mei. Department of Reproductive Center,Affiliated Hospital of Luzhou Medical College,Luzhou646000,Sichuan Province,China.(Corresponding author: HUANG Hua-ying,Email:592372827@qq.com) 【Abstract】 Objective To investigate the effect of lymphocytes active immunotherapy on recurrent spontaneous abortion(RSA)and its nursing measures.Methods From April 2010to September 2011,a total of 154RSA cases who underwent lymphocytes active immunotherapy treatment were included into this study.The procedure of this treatment were the following,peripheral blood lymphocytes of husband (healthy individuals)were collected.If the spouse should not be used as immunogen,then selected unrelated healthy individuals lymphocytes.The standard of the efficacy was the maintenance of pregnancy to 20 gestation weeks.The nursing measures were:improve the registration and management system,good psychological counseling and strict care practices.All of the 154patients completed the follow-up.The study protocol was approved by the Ethical Review Board of Investigation in Human Being of Affiliated Hospital of Luzhou Medical College.Informed consent was obtained from each participate.Results  ①After receiving two courses of immune therapy,positive for anti-phospholipid antibody(APLA)was 146 cases(94.81%),there had significant difference between before and after the treatment(P<0.01). ②Among 154patients,136cases(88.31%)were re-pregnancy;pregnancy to 20weeks after the 98cases, 28cases in the course of treatment in pregnancy.Conclusions Lymphocytes active immunotherapy is safe and effective.But whether it is worthy of clinical application,further studies are needed to confirm.The improvement of the registration and management system,good psychological counseling,strict care practices and timely guidance of the health care strategy can improve the quality of care to the patients.【Key words】 abortion; recurrent spontaneous abortion; lymphocyte immune therapy; nursing DOI:10.3877/cma.j.issn.1673-5250.2012.03.014 作者单位:646000四川泸州,泸州医学院附属医院生殖部通讯作者黄华英(Email:592372827@qq.com) 对妊娠28孕周前连续发生自然流产≥3次,称为反复自然流产(recurrent spontaneous abortion,RSA),与母体缺乏抗磷脂抗体(anti-phospholipidantibody,APLA)有关,可分为免疫性RSA和非免疫 · 1 0 3 · 中华妇幼临床医学杂志(电子版)2012年6月第8卷第3期

不明原因复发性流产的主动免疫治疗

不明原因复发性流产的主动免疫治疗 吴 菁,黄艳仪,黄华梅,尹爱华,钟燕芳,潘小英 (广东省妇幼保健院,广东 广州 510010) 摘 要:目的:探讨主动免疫治疗对不明原因复发性流产的疗效,及不同免疫治疗次数疗效的比较。方法:将56例诊断为不明原因复发性流产,封闭抗体检测阴性的患者分为A、B两组,进行2次或3次的免疫治疗,每次间隔4周。观察封闭抗体在治疗前后的比较及受孕后妊娠结局。结果:A组22例患者治疗后17例受孕,14例足月分娩,妊娠成功率为82.35%。B组34例患者治疗后28例受孕,24例足月分娩,成功率为85.71%。两组无显著性差异。结论:主动免疫治疗对原因不明的复发性流产具有良好的治疗效果,为避免免疫治疗的潜在风险,免疫治疗次数可选择2次。 关键词:复发性流产;主动免疫治疗;封闭抗体 中图分类号:R714.21 文献标识码:A 文章编号:1001-5779(2007)03-0392-02 不明原因复发性流产(unexp l a i n ed recurrent spontaneous aborti o n,URSA),发病率约为1%,其病因复杂,容易复发,是一种难以治愈的不育症[1]。病因有染色体异常、母体生殖道解剖结构异常、内分泌失调、生殖道感染及自身免疫,如经过严格筛查排除前述原因后的复发性流产称为不明原因复发性流产。对于这些病例,经进一步检查母体体内不存在封闭抗体的患者,选择淋巴细胞免疫疗法来进行治疗。现关于主动免疫治疗次数的选择有所不同[2、3],有研究表明采用每疗程免疫3次,亦有研究报道采用2次免疫治疗患者免疫反应性即可获得良好改善,我们将2次和3次的淋巴细胞免疫疗法进行临床比较,以了解不同免疫次数的疗效。 1 资料与方法 1.1 一般资料 研究对象均为在本院门诊就诊的连续流产3次或3次以上,并经系统病因检查排除其他原因,封闭抗体检测阴性,诊断为不明原因复发性流产的患者。将56例研究对象随机分为两组[5]: A组行2次淋巴细胞免疫疗法,每间隔3周一次,共22例;B组行3次免疫疗法,每间隔4周一次,共34例。 1.2 方法 两组均采用丈夫淋巴细胞作为免疫原[4],每次免疫剂量为20 106~30 106淋巴细胞。末次免疫后2周复查封闭抗体,如转阳性后,安排受孕,如为阴性则继续加强免疫治疗,直至转阳后安排受孕。 A组:孕前免疫2次,每次免疫间隔时间3周,妊娠后再免疫2次。B组:孕前免疫3次,每次间隔4周,妊娠后再免疫3次。 2 结 果 2.1 免疫后两组封闭抗体变化的比较 A组经2次免疫治疗后2周复查封闭抗体,共14例转阳,8例仍为阴性,阳性率为6 3.6%。B组经3次免疫后2周复查封闭抗体,共29例转阳,5例阴性,阳性率为85.3%(P>0.01),两者无显著差别。 2.2 妊娠结局比较 A组22例患者中有17例患者受孕,14例足月分娩,3例流产,成功率为82.35%。而B组34例患者中有28例受孕,24例足月分娩,4例流产,成功率85.71%。两组比较,P >0.01,差异无显著性。 3 讨 论 妊娠是一种同种异体移植,正常妊娠时,因受丈夫HLA受体致敏,妻T、B淋巴细胞表达出针对丈夫H LA抗原的抗HLA受体,并产生抗H LA受体的自身抗体,即抗独特型抗体,它存在于妊娠期妇女血清中,可抑制针对丈夫HLA特异性抗体的淋巴细胞毒活性,是一种封闭抗体,并可抑制异体移植的排斥,使孕妇免于流产。从近代生殖免疫学观点看来,不明原因复发性流产可能是由于患者对胚胎父系H LA抗原的免疫低反应性所致,即患者由于对胚胎同种异体抗原无法产生足够的封闭抗体,而使胚胎得不到免疫防护而流产[6]。 主动免疫治疗有很多文献报道,其主要机理是由于淋巴细胞免疫可提高患者的免疫反应性,使其获得封闭抗体,而防止胚胎或胎儿父系抗原被母免疫系统识别和杀伤,产生免疫保护[7]。关于免疫治疗的次数,各家研究报道均有所不同,我们希望采用疗效好、次数少的方法,经过比较我们发现2次免疫治疗的效果和3次无显著差别,因而可以采用2次的免疫疗法。目前,虽未见到淋巴细胞免疫疗法不良反应的报道,然而免疫疗法有一定的潜在危险性,如血源性感染和移植物抗宿主反应等,仍值得注意和长期观察。 第27卷第3期 赣 南 医 学 院 学 报 Vo l.27NO.3 2007年6月 J OURNAL OF GANNAN MEDI CAL UN I V ERSI TY JU N.2007

相关文档
最新文档