C栈实现将中缀表达式转换为后缀表达式

C栈实现将中缀表达式转换为后缀表达式
C栈实现将中缀表达式转换为后缀表达式

5 将中缀表达式转换为后缀表达式

【问题描述】表达式转换。输入的中缀表达式为字符串,转换得到的后缀表达式存入字符数组中并输出。

例如:a*(x+y)/(b-x) 转换后得:a x y + * b x - /

【数据结构】

●定义一个暂时存放运算符的转换工作栈opst。

●中缀表达式字符串char *infix;

●后缀表达式字符串char *postfix;

【算法提示】转换规则:把运算符移到它的两个操作数后面,删除掉所有的括号。

从头到尾扫描中缀表达式,对不同类型的字符按不同情况处理:

●数字或小数点,直接写入字符串postfix,并在每个数值后面写入一个空格;

●左括号,进栈,直到遇见相配的右括号,才出栈;

●右括号,表明已扫描过括号内的中缀表达式,把从栈顶直到对应左括号之间的运算

符依次退栈,并把结果推入栈内;

●对于运算符,分两种情况处理:

◆该运算符的优先级大于栈顶符号的优先级,则入栈;

◆若该运算符的优先级小于栈顶优先级,则先弹出栈顶运算符、写入postfix串;继续将该

运算符与栈顶运算符比较,直到能把它推入栈内为止(即优先级大于栈顶运算符)。

说明:自行设计运算符优先级的表示。

【主要代码】

#include

#include

//#include

const int stackIncreament=20;

class SeqStack

{

private:

char *elements;

int top;

int maxSize;

void overflowProcess();

public:

SeqStack(int sz=50);

~SeqStack()

{ delete []elements; }

void Push(const char &x);

bool Pop(char &x);

bool getTop(char &x);

int isdigit(char ch);

int isp(char ch1);

int icp(char ch2);

bool IsEmpty() const

{ return (top == -1)? true:false; }

bool IsFull() const

{ return (top == maxSize-1)? true:false; }

int getSize() const { return top+1; }

void MakeEmpty() { top= -1; }

};

SeqStack::SeqStack(int sz)

{ top = -1; maxSize = sz; elements = new char[maxSize];

assert(elements!=NULL);

}

void SeqStack::overflowProcess()

{ char*newArray=new char[maxSize+stackIncreament];

/* if (newArray==NULL)

{

cerr<<"存储分配失败!"<

exit(1);

}*/

for (int i = 0; i <= top; i++) newArray[i] = elements[i];

maxSize= maxSize+stackIncreament;

delete []elements; elements = newArray; }

void SeqStack::Push(const char &x)

{

if (IsFull()==true) overflowProcess();

elements[++top]=x;

}

bool SeqStack::Pop(char &x)

{ if (IsEmpty() == true) return false;

x = elements[top--]; return true;

}

bool SeqStack::getTop(char &x)

{ if (IsEmpty()==true) return false;

x=elements[top]; return true;

}

int SeqStack::isdigit(char ch)

{ if(ch>='0'&&ch<='9'||ch=='.'||ch>='a'&&ch<='z'||ch>='A'&&ch<='Z') return 1; e lse return 0;

}

int SeqStack::isp(char ch1)

{ int val; switch(ch1)

{ case '#': val=0; break;

case '(': val=1; break;

case '*': case '/': case '%': val=5; break;

case '+': case '-': val=3; break;

case ')': val=6; break;

}

return val;

}

int SeqStack::icp(char ch2)

{ int val; switch(ch2)

{ case '#': val=0; break;

case '(': val=6; break;

case '*': case '/': case '%': val=4; break;

case '+': case '-': val=2; break;

case ')': val=1; break;

} return val;

}

class Show:public SeqStack

{ public:

Show(int sz):opst(sz){} void Clear(); void Postfix();void Input();void Output(); private:

SeqStack opst; char *infix; char *postfix;

};

void Show::Clear()

{ opst.MakeEmpty();

}

void Show::Input()

{ infix=new char[20];cout<<"请输入中缀表达式:"<>infix;

}

void Show::Postfix()

{ postfix=new char[20];cout<<"输出的后缀表达式为:"<

SeqStack opst;char ch='#',ch1,op;opst.Push(ch);

int i=0; ch=infix[i];while(opst.IsEmpty()==false&&ch!='#')

if(opst.isdigit(ch)==1)

{ cout<

}else { cout<<" ";opst.getTop(ch1);

if(opst.isp(ch1)

{opst.Push(ch); i++;ch=infix[i];

}

else

if(opst.isp(ch1)>opst.icp(ch))

{opst.Pop(op); if(op!='#') cout<

}

else{opst.Pop(op); i++; c h=infix[i]; }

} cout<

}

void main()

{ Show Sh(100); Sh.Input(); Sh.Postfix();}

【实验过程】

【实验体会】一直都不理解为什么要加语句“if (newArray==NULL) {cerr<<"存储分配失败!"<

利用栈实现c语言计算器

栈的应用:C实现简单计算器(表达式的计算) 作为栈的著名应用,表达式的计算可以用下面方法实现: 首先建立两个栈,操作数栈NUM_S和运算符栈OPR_S。 其中,操作数栈用来存储表达式中的操作数;运算符栈用来存储表达式中的运算符。可以用字符‘=’来表示表达式结束符。 自左至右的扫描待处理的表达式,并假设当前扫描到的符号为W,根据不同的符号W 做如下不同的处理: 1.若W为操作数,则将W压入操作数栈NUM_S,且继续扫描下一个字符; 2.若W为运算符,则根据运算符的性质做相应的处理: (0)若符号栈为空,无条件入栈当前指针指向的字符 (1)若w为不大于运算符栈栈顶的运算符,则从操作数栈NUM_S中弹出两个操作数,设先后弹出的操作数为a、b,再从运算符栈 OPR_S中弹出一个运算符,比如为+,然后作运算a+b,并将运算结果压入操作数栈NUM_S。 (2)若w为左括号或者运算符的优先级大于运算符栈栈顶的运算符,则将运算符W 压入运算符栈OPR_S,并继续扫描下一个字符。 (3)若运算符W为右括号,循环操作(设先后弹出的操作数为a、b,再从运算符栈OPR_S中弹出一个运算符,比如为+,然后作运 算a+b, 并将运算结果压入操作数栈NUM_S),直到从运算符栈中弹出第一个左括号。 (4)若运算符W为表达式结束符‘=’,循环操作(设先后弹出的操作数为a、b,再从运算符栈OPR_S中弹出一个运算符,比如为 +,然后作运算a+b, 并将运算结果压入操作数栈NUM_S),直到运算符栈为空为止。此时,操作数栈栈顶元素即为表达式的 值。 ====================================================================== === 举例:计算3+(5-2*3)/4-2= (1)开始栈为空,3入栈,+入栈,(无条件入栈,5入栈,-号优先级比(高,所以-号入栈,2入栈,*优先级比目前栈顶的-号优先级高,所以*入栈,3入栈,接着扫描到)括号,)括号不入栈 | | | | --------- ---------- | 3 | | * | --------- ---------- | 2 | | - |

后缀表达式求值

一、设计思想 首先,将中缀表达式转换为后缀表达式。转换算法思路:设中缀表达式已存入数组E[n];由于后缀表达式中操作数的次序与中缀表达式一致,故扫描到中缀表达式操作数时直接输出到B[n]即可;对于运算符,视其优先级别,优先级高的运算符先输出;设一存放运算符的栈s,先将s置空;依次扫描E[n]中各分量E[i]送x: 若x=“”(结束符),依次输出栈s中运算符,转换结束; 若x=操作数,直接输出x到B[n]中; 若x=‘)’,反复退栈输出栈s中子表达式运算符,直到栈顶符=‘(’,并退掉栈顶的‘(’; 若x=操作符,反复退栈输出栈s中运算符,直到栈顶符

三、源代码 下面给出的是用后缀表达式求值算法实现的程序的源代码: #include #include #define MaxSize 50 struct { char data[MaxSize]; int top; } op;//定义栈; struct { float data[MaxSize]; int top; } st; //中缀转换为后缀 void trans(char*exp,char*postexp) { int i=0; op.top=-1; while(*exp!='\0') { switch(*exp) { case'(': op.top++;op.data[op.top]=*exp; exp++;break; case')': while(op.data[op.top]!='(') { postexp[i++]=op.data[op.top]; op.top--; } op.top--;exp++;break; case'+': case'-': while(op.top!=-1&&op.data[op.top]!='(') { postexp[i++]=op.data[op.top]; op.top--; }

数据结构算术表达式求值实验报告

软件技术基础实验报告 实验名称:表达式计算器 系别:通信工程 年级: 班级: 学生学号: 学生姓名: 《数据结构》课程设计报告 题目简易计算表达式的演示 【题目要求】 要求:实现基本表达式计算的功能 输入:数学表达式,表达式由整数和“+”、“-”、“×”、“/”、“(”、“)”组成输出:表达式的值 基本操作:键入表达式,开始计算,计算过程和结果记录在文档中 难点:括号的处理、乘除的优先级高于加减

1.前言 在计算机中,算术表达式由常量、变量、运算符和括号组成。由于不同的运算符具有不同的优先级,又要考虑括号,因此,算术表达式的求值不可能严格地从左到右进行。因而在程序设计时,借助栈实现。 算法输入:一个算术表达式,由常量、变量、运算符和括号组成(以字符串形式输入)。为简化,规定操作数只能为正整数,操作符为+、-*、/、=,用#表示结束。 算法输出:表达式运算结果。 算法要点:设置运算符栈和运算数栈辅助分析算符优先关系。在读入表达式的字符序列的同时,完成运算符和运算数的识别处理,以及相应运算。 2.概要设计 2.1 数据结构设计 任何一个表达式都是由操作符,运算符和界限符组成的。我们分别用顺序栈来寄存表达式的操作数和运算符。栈是限定于紧仅在表尾进行插入或删除操作的线性表。顺序栈的存储结构是利用一组连续的存储单元依次存放自栈底到栈顶的数据元素,同时附设指针top 指示栈顶元素在顺序栈中的位置,base 为栈底指针,在顺序栈中,它始终指向栈底,即top=base 可作为栈空的标记,每当插入新的栈顶元素时,指针top 增1,删除栈顶元素时,指针top 减1。 2.2 算法设计 为了实现算符优先算法。可以使用两个工作栈。一个称为OPTR ,用以寄存运算符,另一个称做OPND ,用以寄存操作数或运算结果。 1.首先置操作数栈为空栈,表达式起始符”#”为运算符栈的栈底元素; 2.依次读入表达式,若是操作符即进OPND 栈,若是运算符则和OPTR 栈的栈顶运算符比较优先权后作相应的操作,直至整个表达式求值完毕(即OPTR 栈的栈顶元素和当前读入的字符均为”#”)。 2.3 ADT 描述 ADT Stack{ 数据对象:D={ i a |i a ∈ElemSet,i=1,2,…,n, n ≧0} 数据对象:R1={< 1 ,-i i a a >| 1-i a ,D a i ∈,i=2,…,n}

中缀表达式求值

江西理工大学软件学院计算机类课程实验报告 课程名称:数据结构 班级:11软件会计4班 姓名:黄健 学号:11222122 江西理工大学软件学院

一、目录(中缀表达式求值) 1、目录--------------------------------------------------------------2 2、实验目的--------------------------------------------------------3 3、实验要求--------------------------------------------------------3 4、实验仪器设备与材料-----------------------------------------3 5、实验原理--------------------------------------------------------4 6、实验步骤--------------------------------------------------------5 7、实验原始记录--------------------------------------------------6 8、实验数据分析计算结果--------------------------------------10 9、实验心得体会--------------------------------------------------11 10、思考题----------------------------------------------------------12

C语言 后缀表达式计算

一、设计思想 计算算数表达式并求值,采取的共有两种方法: 1.先将算数表达式转化为后缀表达式,然后对后缀表达式进行计算。 2.对算数表达式进行直接的计算。 第一种算法 这种解决方案又分为两步: 1.将表达式先转化为后缀表达式的字符串数组 2.利用后缀表达式进行计算 在转化过程中,第一,建立一个存符号的栈,和一个字符串数组,用来存放转化以后的表达式 然后,对于得到的用户输入的字符串进行逐个的扫描,如果是数组或者小数点,则直接存放到数组中,并且在后面加入一个分隔符,如果是操作符,则和栈中的已存的进行比较,如果比栈中的操作符的优先级高,则直接入栈,如果优先级低或相等,则栈中元素出栈,存到字符串中,然后再次检查栈顶,直到栈中元素的优先级低于扫描操作符,则此操作符入栈,然后扫描下一个字符,直到遇到字符串的结束符号\0,扫描结束。数组中存的就是后缀表达式。得到后缀表达式后,进行计算,要用到数值栈。首先要将字符表示的数字转化为浮点小数,然后进行扫描,遇到数值,放入栈中,遇到操作符,就从栈中取出两个数,进行计算后再放入栈中,扫描下一个,最后的计算结果就存到了栈中,直接取出栈内元素,就是计算的最后结果。 第二种算发 首先要建立两个栈,一个用来存放操作符,一个用来存放数值。开始对用户输入的字符串进行扫描,如果是数字字符或者小数点,则将字符转化为浮点数存到数栈里,如果是操作符,则观察符号栈,如果栈顶元素的优先级低于观察的操作符,则操作符入栈,如果栈顶元素的优先级高于或者等于观察的操作符,则从数值栈中取出两个浮点数,从符号栈中取出栈顶的操作符,然后进行相应的数值计算,所得的结果再存到数值栈中,重复这样的操作,直到符号栈中栈顶元素的优先级低于观察的操作符,则此操作符入栈,然后对下一个字符进行扫描。如果是左括号,则不进行优先级的比较,直接入栈,入栈后优先级为-1。如果是右括号,则从数值栈中取两个操作数,符号栈中取出一个符号,然后进行计算后得数放入数栈中,不断进行此类操作,直到从栈中取出的是左括号为止,左括号去掉,扫描下一个。扫描结束后,计算也结束了,计算的结果就存放在数值栈中,最后把数值栈中的数取出,就是所得的计算结果。 容错的算法简要: 括号匹配:当扫描到左括号是,左括号直接入栈,扫描到右括号时,则左括号出栈,如果栈为空,则右括号多,如果最后栈中还有括号,则左括号多。给出错误提示。 除数不为0:当扫描到'/'时,就判断其后面的数字是否为0,如果为0报错。 取余运算:取余运算时,操作数判断是否为整数,不为整数报错。 二、算法流程图 第一种算法:先将表达式转化为后缀表达式,然后计算 其主函数流程图为:

栈的应用表达式求值的设计

数据结构课程设计报告 栈的应用:表达式求值 专业 计算机科学与技术 学生姓名 班级 学 号 指导教师 完成日期 2014年7月4日

表达式求值的设计 目录 1设计内容 (1) 2设计分析 (1) 2.1后缀表达式设计 (1) 2.2 中缀到后缀的转换设计 (2) 3设计实践 (3) 3.1实现要求 (3) 3.2程序代码 (3) 4测试方法 (17) 4.1测试目的 (17) 4.2 测试输入 (17) 4.3 正确输出 (18) 4.4 实际输出 (18) 5程序运行效果 (18) 6设计心得 (19)

栈的应用:表达式求值的设计 1设计内容 设计一个表达式求值的程序。该程序必须可以接受包含(,),+,-,*,/,%,和^(求幂运算符,a^b=a b)的中缀表达式,并求出结果。如果表达式正确,则输出表达式的结果;如果表达式非法,则输出错误信息。 输入要求:程序从“input.txt”文件中读取信息,在这个文件中如果有多个中缀表达式,则每个表达式独占一行,程序的读取操作在文件在文件的结尾处停止。 输出要求:对于每个表达式,将其结果放在“output.txt”文件的每一行中。这些结果可能是值,也可能是错误信息“ERROR IN INFIX NOTATION”。 2 设计分析 在计算机中,算术表达式的计算往往是通过使用栈来实现的。所以,本表达式求值程序的最主要的数据结构就是栈。可以使用栈来存储输入表达式的操作符和操作数。 输入的表达式是由操作数(又称运算对象)和运算符以及改变运算次序的圆括号连接而成的式子。算术表达式有中缀表示法和后缀表示法,本程序输入的表达式采用中缀表示法,在这种表达式中,二元运算符位于两个操作数中间。 由于不同运算符之间存在优先级,同一优先级的运算间又存在着运算结合顺序的问题,所以简单的从左到右的计算是不充分的。当然凭直观判断一个中缀表达式中哪个运算符最先,哪个次之,哪个最后并不困难,但通过计算机处理就比较困难了。因为计算机只能一个字符一个字符地扫描,要想知道哪个运算符先算,就必须对整个中缀表达式扫描一遍。 而后缀表达式则很容易通过应用栈实现表达式的计算,这为实现表达式求值程序提供了一种直接的计算机制。 2.1后缀表达式设计 后缀表达式是由一系列的运算符、操作数组成的表达式,其中运算符位于两个操作数之后。后缀表达式很容易通过应用栈实现表达式的计算。其基本过程是:当输入一个操作数时,它被压入栈中,当一个运算符出现时,就从栈中弹出适当数量的操作数,对该运算进行计算,计算结果再压回栈中。对于最常见的二元运算符来说,弹出的操作数只有两个。处理完整个后缀表达式之后,栈顶上的元素就是表达式的结果值。整个计算过程不需要理解计算的优先级规则。

后缀表达式求值的算法及代码

#include #include struct node // 栈结构声明 { int data; // 数据域 struct node *next; // 指针域 }; typedef struct node stacklist; // 链表类型 typedef stacklist *link; // 链表指针类型 link operand=NULL; // 操作数栈指针 link push(link stack,int value) // 进栈 { link newnode; // 新结点指针 newnode=new stacklist; // 分配新结点 if (!newnode) { printf("分配失败!"); return NULL; } newnode->data=value; // 创建结点的内容 newnode->next=stack; stack=newnode; // 新结点成为栈的开始return stack; } link pop(link stack,int *value) // 出栈 { link top; // 指向栈顶 if (stack !=NULL) { top=stack; // 指向栈顶 stack=stack->next; // 移动栈顶指针 *value=top->data; // 取数据 delete top; // 吸收结点 return stack; // 返回栈顶指针} else *value=-1; } int empty(link stack) // 判栈空 { if (stack!=NULL)

实验2 栈和队列的应用-算术表达式求值

1.实验题目 栈和队列的应用 2.实验内容 算术表达式求值 3.实验目的 掌握栈和队列的概念及工作原理,运用其原理完成实验题目中的内容。 4.实验要求 为了更好的掌握与理解课堂上老师所讲的概念与原理,实验前要认真预习所做的实验内容及编写源程序伪码(写在纸上及盘中均可)以便在实验课中完成老师所布置的实验内容。 5.概要设计原理 6.详细程序清单及注释说明 #include #include #include #include #define NULL 0 #define OK 1 #define OVERFLOW -2 #define STACK_INIT_SIZE 100 #define STACKINCREMENT 20 /* 定义字符类型栈*/ typedef struct { int stacksize; char *base; char *top; }SqStack; /* ----------------- 全局变量--------------- */ SqStack OPTR,OPND;// 定义运算符栈和操作数栈 char expr[255]; /* 存放表达式串*/ char *ptr=expr; int InitStack(SqStack *s) //构造运算符栈 { s->base=(char *)malloc(STACK_INIT_SIZE*sizeof(char)); if(!s->base) exit(OVERFLOW);

s->top=s->base; s->stacksize=STACK_INIT_SIZE; return OK; } char In(char ch) //判断字符是否是运算符,运算符即返回1 { return(ch=='+'||ch=='-'||ch=='*'||ch=='/'||ch=='('||ch==')'||ch=='#'); } int Push(SqStack *s,char ch) //运算符栈插入ch为新的栈顶元素{ *s->top=ch; s->top++; return 0; } char Pop(SqStack *s) //删除运算符栈s的栈顶元素,用p返回其值{ char p; s->top--; p=*s->top; return p; } char GetTop(SqStack s)//用p返回运算符栈s的栈顶元素 { char p=*(s.top-1); return p; } /* 判断运算符优先权,返回优先权高的*/ char Precede(char c1,char c2) { int i=0,j=0; static char array[49]={ '>', '>', '<', '<', '<', '>', '>', '>', '>', '<', '<', '<', '>', '>', '>', '>', '>', '>', '<', '>', '>', '>', '>', '>', '>', '<', '>', '>', '<', '<', '<', '<', '<', '=', '!', '>', '>', '>', '>', '!', '>', '>', '<', '<', '<', '<', '<', '!', '='};

利用栈求表达式的值,可供小学生作业,并能给出分数 数据结构课程设计说明书格式

中北大学 数据结构 课程设计说明书 2011年12月20日

1. 设计任务概述(包括系统总体框图及功能描述) 此课题是研究表达式求值的问题,以帮助小学生完成测试。为了达到这个功能,实际我们要做的就是出题,和计算分数给出评价的工作。整体设计都是以这个要求为轴心进行的。为了直观和方便,现画出软件整体设计模块图。 整体设计模块图可以清晰的看出软件的几大模块。整个系统的操作流程图可以看出操作的整体流程,如下图 2.

根据以上功能说明,设计运算信息,堆栈的存储结构,设计程序完成功能; 3. 功能模块详细设计 在此说明每个部分的算法设计说明(可以是描述算法的流程图),每个程序中使用的存储结构设计说明(如果指定存储结构请写出该存储结构的定义)。 3.1 详细设计思想 学生要进行测试,首先要有试题。那么我们就要先建立试题库。这个试题库的试题是我们在程序运行过程中手动输入,存放在一个shujuku.txt的文件中。 首先在主函数中调用创建试题库函数,将试题存入到试题库文件shitiku.txt中,然后将该调用从主函数中删除。 创建试题库函数:创建指向xuanti类型的指针,利用循环将输入的测试题该指针的xuanti单元中,最后将该指针中的测试题写入试题库文件shitiku.txt中。 3.2 核心代码 (正文宋体小四号字,1.5倍行距) #include #include #include #include #include #define STACK_INIT_SIZE 100 #define STACKINCREMENT 10 #define ERROR 0 #define OK 1 //定义表达式

后缀表达式转化为前缀表达式并求值

#include #include #include #define STACK_INIT_SIZE 100 #define STACKINCREMENT 10 #define OK 1 #define OVERFLOW -2 #define ERROR 0 #define TRUE 1 #define FALSE 0 typedef int Selemtype; typedef int Status; #define MAX 50 char string1[MAX]; //定义两个字符串分别存放中缀表达式和后缀表达式char string2[MAX]; int result; typedef struct { Selemtype *base; //在构造之前和销毁之后,base的值为NULL Selemtype *top; //栈顶指针 int stacksize; //当前分配的存储空间,以元素为单位 }SqStack; Status InitStack(SqStack *S); Status Push(SqStack *S,Selemtype e); Status Pop(SqStack *S,Selemtype e); Status InitStack(SqStack *S) { //构造一个空栈S S->base=(Selemtype*)malloc(STACK_INIT_SIZE*sizeof(Selemtype)); if(!S->base) return OVERFLOW; //存储分配失败 S->top=S->base; S->stacksize=STACK_INIT_SIZE; return OK; } Status Push(SqStack *S,Selemtype e) { //插入元素e为新的栈顶元素 if(S->top-S->base>=S->stacksize)

数据结构之中缀表达式转后缀表达式

我们在数学中常见的计算式,例如2+(3*4)叫做中缀表达式。表达式中涉及到了多个运算符,而运算符之间是有优先级的。计算机在计算并且处理这种表达式时,需要将中缀表达式转换成后缀表达式,然后再进行计算。 中缀表达式转后缀表达式遵循以下原则: 1.遇到操作数,直接输出; 2.栈为空时,遇到运算符,入栈; 3.遇到左括号,将其入栈; 4.遇到右括号,执行出栈操作,并将出栈的元素输出,直到弹出栈的是左括号,左括号不输出; 5.遇到其他运算符'+''-''*''/'时,弹出所有优先级大于或等于该运算符的栈顶元素,然后将该运算符入栈; 6.最终将栈中的元素依次出栈,输出。 经过上面的步骤,得到的输出既是转换得到的后缀表达式。 举例:a+b*c+(d*e+f)*g ---------> abc*+de*f+g*+ 遇到a,直接输出: 遇到+,此时栈为空,入栈: 遇到b,直接输出:

遇到*,优先级大于栈顶符号优先级,入栈: 遇到c,输出: 遇到+,目前站内的*与+优先级都大于或等于它,因此将栈内的*,+依次弹出并且输出,并且将遇到的这个+入栈: 遇到(,将其入栈:

遇到d,直接输出: 遇到*,由于*的优先级高于处在栈中的(,因此*入栈: 遇到e,直接输出: 遇到+,栈顶的*优先级高于+,但是栈内的(低于+,将*出栈输出,+入栈:

遇到f,直接输出: 遇到),弹出栈顶元素并且输出,直到弹出(才结束,在这里也就是弹出+输出,弹出(不输出: 遇到*,优先级高于栈顶+,将*入栈: 遇到g,直接输出:

此时已经没有新的字符了,依次出栈并输出操作直到栈为空: 明白了这个过程,现在就需要用代码实现了。对于各种运算符的优先级,可以使用整数来表示运算符的级别。可以定义一个函数来返回各种符号的优先级数字: code.c /***************************************************************** *根据字符该字符是否在栈中,返回该字符的优先级。 *这里只处理+、-、*、/、(、)这些符号。 *需要注意的是:如果(在栈中,它的优先级是最低的,不在栈中则是最高的 *@param c:需要判断的字符 *@param flag:字符是否在栈中,0表示在栈中,1表示不在栈中 *****************************************************************/ int GetPrecedence(char c,int flag) { if(c=='+' || c=='-') { return 1; } else if(c=='*' || c=='/') { return 2; } else if(c=='(' && flag==0) { return 0;

利用栈求表达式的值

数据结构课程设计 姓名:杨颂敬 班级:软件0901班 学号:0930*******

目录: 1.需求分析 (1) 2.概要设计 (1) 3.详细设计................................. 3-6 4.调试分析................................. 6-8 5.用户使用说明 (8) 6.测试结果 (9) 7.附录 (9)

利用栈求表达式的值,可供小学生作业,并 能给出分数。 1.需求分析 任务:通过此系统可以实现如下功能: 此系统能够输入一个表达式,并计算该表达式的值。可以根据计算结果给出分数。能供小学生进行简单的四则运算,此外这里特别强调括号的匹配! 要求: 根据以上功能说明,设计运算信息,堆栈的存储结构,设计程序 完成功能; 2. 概要设计 在此说明每个部分的算法设计说明(可以是描述算法的流程图),每个程序中使用的存储结构设计说明(如果指定存储结构请写出该存储结构的定义)。 主菜单

3.详细设计 #include "string.h" #include "stdio.h" #include"conio.h" #define maxsize 100 #include "ctype.h" typedef char datatype; typedef struct { datatype stack[maxsize]; int top; } seqstack; void stackinitiate(seqstack *s) { s->top=0; } int stacknotempty(seqstack s) { if(s.top<=0) return 0; else return 1; } int stackpush(seqstack *s, datatype x) { if(s->top>=maxsize) { printf("堆栈已满无法插入!\n"); return 0; } else { s->stack[s->top]=x; s->top++; return 1; } } int stackpop(seqstack *s,datatype *d) { if(s->top<=0) {

后缀表达式的计算

#include #include #include #include using namespace std; int priority(char op) //运算符的优先级 { switch(op) { case '(': return 0; break; case '+': case '-': return 1; break; case '*': case '/': return 2; break; default: return -1; break; } } bool IsOperator(char op) //是否为运算符 { if (op == '+' || op == '-' || op == '*' || op == '/') { return true; } return false; } void inTOpost(char s[],vector &v) //转为后缀表达式{ stack stk; int i = 0,len = strlen(s); while(i < len) { if(s[i] >= '0' && s[i] <= '9') {

v.push_back(s[i]); v.push_back(' '); } else if (s[i] == '(') { stk.push(s[i]); } else if (s[i] == ')') { while(stk.top() != '(') { v.push_back(stk.top()); v.push_back(' '); stk.pop(); } stk.pop(); } else if (IsOperator(s[i])) { if (!stk.empty()) { while(!stk.empty() && priority(s[i]) <= priority(stk.top())) { v.push_back(stk.top()); v.push_back(' '); stk.pop(); } } stk.push(s[i]); } i++; } while(!stk.empty()) { v.push_back(stk.top()); v.push_back(' '); stk.pop(); } } bool compute(vector s,int &res) //计算后缀表达式的值 { int i = 0,num; int len = s.size();

基于栈结构的中缀表达式求值

实验3:栈与队列实验 ——基于栈结构的中缀表达式求值 一、问题描述 从键盘输入任意中缀表达式字符串,读字符串,利用栈结构实现表达式求值。 二、输入与输出 输入:从键盘中缀表达式如: 32+5×(6-4) 输出:计算结果42 三、需求分析 1.定义两个栈结构,数栈用于存放表达式中的数,符号栈用于存放表达式中的符号,实现栈的运算 2.在读数的时候考虑多位运算 3.实现表达式求值 四、开发工具与环境 硬件设备:微型计算机系统 软件环境:操作系统Windows 开发工具:Devc++ 五、概要设计 参考结构定义 typedef struct /* 运算符栈 */ { char *base,*top; int stacksize; }SqStack; typedef struct /* 运算数栈 */ { int *base,*top; int stacksize; }SqStack1; int priority[7][7]={{'>', '>', '<', '<', '<', '>', '>'}, // + {'>', '>', '<', '<', '<', '>', '>'}, // -

{'>', '>', '>', '>', '<', '>', '>'}, // * {'>', '>', '>', '>', '<', '>', '>'}, // / {'<', '<', '<', '<', '<', '=', ' '}, // ( {'>', '>', '>', '>', ' ', '>', '>'}, // ) {'<', '<', '<', '<', '<', ' ', '='} // # }; /*用于比较符号优先级的全局二维数组*/ 2.各函数模块 void InitStack(SqStack *s); 操作结果:初始化运算符栈 char GetTop(SqStack *s); 操作结果:得到运算符栈的栈顶元素 void Push(SqStack *s,char e); 操作结果:对运算符栈进行压栈操作 int IsNumber(char c); 操作结果:判断一个字符是否是数字 int MidExpression_Eval(char Express[]); 操作结果:计算中缀表达式的值 int Operate (int a,char x,int b); 操作结果:计算表达式axb,并返回结果 六、详细设计 #include #include using namespace std; /*定义区*/ #define STACK_INIT_SIZE 100 #define STACKINCREMENT 10 #define OVERFLOW -1 #define ERROR 0 #define OK 1 //运算符栈 typedef struct { char *base, *top; int stacksize; }SqStack; //运算数栈 typedef struct { int *base, *top; int stacksize;

数学表达式解析(前缀中缀后缀)

它们都是对表达式的记法,因此也被称为前缀记法、中缀记法和后缀记法。它们之间的区别在于运算符相对与操作数的位置不同:前缀表达式的运算符位于与其相关的操作数之前;中缀和后缀同理。 举例: (3 + 4) × 5 - 6 就是中缀表达式 - × + 3 4 5 6 前缀表达式 3 4 + 5 × 6 - 后缀表达式 中缀表达式(中缀记法) 中缀表达式是一种通用的算术或逻辑公式表示方法,操作符以中缀形式处于操作数的中间。中缀表达式是人们常用的算术表示方法。 虽然人的大脑很容易理解与分析中缀表达式,但对计算机来说中缀表达式却是很复杂的,因此计算表达式的值时,通常需要先将中缀表达式转换为前缀或后缀表达式,然后再进行求值。对计算机来说,计算前缀或后缀表达式的值非常简单。 前缀表达式(前缀记法、波兰式) 前缀表达式的运算符位于操作数之前。 前缀表达式的计算机求值: 从右至左扫描表达式,遇到数字时,将数字压入堆栈,遇到运算符时,弹出栈顶的两个数,用运算符对它们做相应的计算(栈顶元素op 次顶元素),并将结果入栈;重复上述过程直到表达式最左端,最后运算得出的值即为表达式的结果。 例如前缀表达式“- × + 3 4 5 6”: (1) 从右至左扫描,将6、5、4、3压入堆栈; (2) 遇到+运算符,因此弹出3和4(3为栈顶元素,4为次顶元素,注意与后缀表达式做比较),计算出3+4的值,得7,再将7入栈; (3) 接下来是×运算符,因此弹出7和5,计算出7×5=35,将35入栈; (4) 最后是-运算符,计算出35-6的值,即29,由此得出最终结果。 可以看出,用计算机计算前缀表达式的值是很容易的。 将中缀表达式转换为前缀表达式: 遵循以下步骤: (1) 初始化两个栈:运算符栈S1和储存中间结果的栈S2; (2) 从右至左扫描中缀表达式; (3) 遇到操作数时,将其压入S2; (4) 遇到运算符时,比较其与S1栈顶运算符的优先级: (4-1) 如果S1为空,或栈顶运算符为右括号“)”,则直接将此运算符入栈; (4-2) 否则,若优先级比栈顶运算符的较高或相等,也将运算符压入S1; (4-3) 否则,将S1栈顶的运算符弹出并压入到S2中,再次转到(4-1)与S1中新的栈顶运算符相比较; (5) 遇到括号时:

中缀表达式转逆波兰式并求值

中缀表达式转逆波兰式并求值 // 标题: 栈的应用——中缀表达式转逆波兰式 // 时间: 2015年4月14日// 所有者: Vae #include #include #include #include #include #define STACK_INIT_SIZE 100 #define STACKCREATE 10 #define OK 1 #define ERROR 0 typedef struct double_stack { int *num; int *index; }DOUBLESTACK; typedef struct SqStack { DOUBLESTACK top; DOUBLESTACK base; int stacksize; }SqStack; // 函数名: InitStack // 形参类型: SqStack * // 函数功能构造一个栈void InitStack(SqStack *S) { S->base.index = (int *)malloc(sizeof(int)*STACK_INIT_SIZE);

S->base.num = (int *)malloc(sizeof(int)*STACK_INIT_SIZE); if (!(S->base.num && S->base.index)) { printf("构造栈失败!\n"); exit(-1); } S->top.num = S->base.num; S->top.index = S->base.index; S->stacksize = STACK_INIT_SIZE; return ; } // 函数名: Push // 形参类型: SqStack *, int, int // 函数功能插入e为新的栈顶元素int Push(SqStack *S, int m, int n) { if ((S->top.num - S->base.num) >= S->stacksize) { S->base.index = (int *)realloc(S- >base.index,sizeof(int)*(STACK_INIT_SIZE+STACKCREATE)); S->base.num = (int *)realloc(S- >base.num,sizeof(int)*(STACK_INIT_SIZE+STACKCREATE)); if (!(S->base.num || S->base.index))

利用栈求表达式的值,可供小学生作业,并能给出分数

//1.h #include #include #include #include #include using namespace std; //template struct Ti //定义一个结构体,用于存储题习题库中的每一道台?题目 { char chh[30]; }; template struct Stack //定义栈,其中数据元素为字符型í { T data[50]; int top; }; template struct Stack2 //定义栈,其中数据元素为整型í { float data[50]; int top; }; template

class link { public: void Push(Stack &S,char x); char Pop(Stack &S,char x); void Push2(Stack2 &S,float x); float Pop2(Stack2 &S,float x); void pingjia(int m) ; int In(char c); int change(char x); int Precede(int a,int b); float Operate(float a,char c,float b); void toEmpty(char s[],int n); void isStay(char s1[],int n1,char s2[],int n2); int isInt(char s[],int n); void xitiku(char a[],int n); float Expression(); Stack setStack(); Stack2 setStack2(); }; //1.cpp #include #include"1.h" #include #include #include #include

中缀表达式转后缀表达式并计算结果(C语言版)

中缀表达式转后缀表达式 中缀表达式转后缀表达式的规则。 1.遇到操作数:直接输入到后缀表达式栈 2.遇到运算符,直接入操作符栈 3.遇到左括号:直接将其入栈 4.遇到右括号:执行出栈操作,并将出栈的元素输出,直到弹出栈的是左括号,左括号不输出。 5.遇到其他运算符:加减乘除:弹出所有优先级大于或者等于该运算符的栈顶元素,然后将该运算符入栈 6.最终将操作符栈中的元素依次出栈,输出到后缀表达式栈。 以下是自己写的代码。亲测没有问题。(模拟一个计算器,可以带括号,中间可以空格,只支持整数输入,但是输出结果精确到小数后6位) #include "stdio.h" #define MAX_LEN 100 typedef struct cal{ unsigned char isOper;//是否是操作数1,操作符0.操作数 double Num; //值。或者是操作符的ASCII值 }STRUCT_CAL; #define IS_NUM 0x00 #define IS_OPER 0x01 STRUCT_CAL stackCal[MAX_LEN]; STRUCT_CAL stackCalBack[MAX_LEN]; unsigned char topCal; char stackOper[MAX_LEN]; unsigned char topOper; /***************************************************************** * 堆栈初始化 *****************************************************************/ void stackInit(void)

相关文档
最新文档