岩石的可钻性

岩石的可钻性
岩石的可钻性

岩石的可钻Array

在岩土钻掘工程设计与实践中,人们常常希望能事先知道所施工岩石的破碎难易程度,

以便正确选择合理的钻(掘)进方法、钻(钎)头的结构及工艺规程参数,制定出切合实

际的岩土钻掘工程生产定额。岩石的可钻性及坚固性指标,在实际应用中占有重要地位。

岩石的可钻性是在一定钻进方法下岩石抵抗钻头破碎它的能力。它反映了钻进作业中岩石破碎的难易程度,它不仅取决于岩石自身的物理力学性质,还与钻进的工艺技术措施有

关,所以它是岩石在钻进过程中显示出来的综合性指标。由于可钻性与许多因素有关,要

找出它与诸影响因素之间的定量关系十分困难,目前国内外仍采用试验的方法来确定岩石

的可钻性。不同部门使用的钻进方法不同,其测定可钻性的试验手段,甚至可钻性指标的

量纲也不尽相同。例如,钻探界在回转钻进中以单位时间的钻头进尺(机械钻速)作为衡

量岩石可钻性的指标,分成12个级别,级别越大的岩石越难钻进;在冲击钻进中常采用单

位体积破碎功来进行可钻性分级。而在石油钻井部门则以机械钻速与钻头进尺的乘积或微

型钻头的钻时作为衡量指标,分成10个级别。

几种有代表性的划分岩石可钻性级别的方法是:

1. 力学性质指标法

采用单一的岩石力学性质来划分岩石的可钻性级别。据压入硬度值把岩石分成6类12

级(表1-4),据摆球的回弹次数把岩石分成12级(表1-5)。如果用上述两种方法确定

的可钻性级别不一致,可按包括压入硬度值Hy和摆球硬度值Hn的回归方程式(1-17)来

确定可钻性K值。

(1-17)

2. 实际钻进速度法

在规定的设备工具和技术规范条件下进行实际钻进,以所得的纯钻进速度作为岩石的可

钻性级别。这种方法随着技术的进步,必须实时修正。原地质矿产部曾制定了适合于金刚

石钻进的岩石可钻性分级表,如表1-6所列。

3. 微钻法

采用模拟的微型孕镶金刚石钻头,按一定的规程,对岩心进行钻进试验。我国原地质矿产部的规范是以微钻的平均钻速作为岩石可钻性指标,其分级情况如表1-7所列。而原石油部1987年颁布的岩石可钻性分级办法是用微钻在岩样上钻三个孔深2.4mm的孔,取三个孔钻进时间的平均值为钻时t,对式(1-18)的结果取整后作为该岩样的可钻性级别Kd,据此值可把各油田地层的可钻性分成10个等级,等级越高的岩石越难钻。

4. 破碎比功法

用圆柱形压头作压入试验时,可通过压力与侵深曲线图求出破碎功,然后计算出单位接

触面积破碎比功AS,根据破碎比功法是对岩石进行可钻性分级的方法,如表1-8所列。

岩石的坚固性系数

由俄罗斯学者于1926年提出的岩石坚固性系数(又称普氏系数)至今仍在矿山开采业和勘探掘进中得到广范应用。岩石的坚固性区别于岩石的强度,强度值必定与某种变形方式(单轴压缩、拉伸、剪切)相联系,而坚固性反映的是岩石在几种变形方式的组合作用下抵抗破坏的能力。因为在钻掘施工中往往不是采用纯压入或纯回转的方法破碎岩石,因此这种反映在组合作用下岩石破碎难易程度的指标比较贴近生产实际情况。岩石坚固性系数f 表征的是岩石抵抗破碎的相对值。因为岩石的抗压能力最强,故把岩石单轴抗压强度极限的1/10作为岩石的坚固性系数,即

(1-19)

式中: --岩石的单轴抗压强度,MPa 。

f 是个无量纲的值,它表明某种岩石的坚固性比致密的粘土坚固多少倍,因为致密粘土的抗压强度为10MPa 。岩石坚固性系数的计算公式简洁明了,f 值可用于预计岩石抵抗破碎的能力及其钻掘以后的稳定性。根据岩石的坚固性系数(f)可把岩石分成10级(表1-9),等级越高的岩石越容易破碎。为了方便使用又在第Ⅲ,Ⅳ,Ⅴ,Ⅵ,Ⅶ级的中间加了半级。考虑到生产中不会大量遇到抗压强度大于200MPa 的岩石,故把凡是抗压强度大于200MPa 的岩石都归入Ⅰ级。

这种方法比较简单,而且在一定程度上反映了岩石的客观性质。但它也还存在着一些缺点:

(1) 岩石的坚固性虽概括了岩石的各种属性(如岩石的凿岩性、爆破性,稳定性等),但在有些情况下这些属性并不是完全一致的。

(2) 普氏分级法采用实验室测定来代替现场测定,这就不可避免地带来因应力状态的改变而造成的坚固程度上的误差。

岩石可钻性的测定

岩石可钻性的测定 一、实验目的 1.了解岩石的可钻性; 2.掌握岩石可钻性的测量方法。 二、实验原理 1.实验设备 实验中使用岩石可钻性测试仪来测量岩石的可钻性,如下图 1 所示。设备的具体技术指标参见《岩石可钻性测定及分级方法-SY/T 5426-2000》。 图1 岩石可钻性测试仪 2.测量原理 使用特制微钻头(牙轮钻头或PDC 钻头),以一定的钻压(牙轮钻头为890N ±20NPDC 钻头为500N ±10N )和转速(55r/min ±1r/min )在岩样上钻三个特定深度的孔(牙轮钻头为2.4mm ,PDC 钻头为3mm ),取三个孔钻进时间的平均值为岩样的钻时(t d ),对t d 取以2 为底的对数值作为该岩样的可钻性级值K d 计算公式如下所示: K d =log 2 t 求得可钻性级值后,再查岩石可钻性分级标准对照表(如下表1 所示)进行定级。 表1 岩石可钻性分级对照表

三、实验步骤 1. 试样用石油钻井所取井下岩心或地面采的岩石,岩样制备成圆柱体(直径40-100mm,高度30-80mm)或长方体(长宽各100mm,高度20-100mm),端面平行度公差值≤0.2mm,试验前将试样放在温度设定为105-110℃的干燥箱内烘烤24 小时; 2. 将手轮上移至最上端,取下岩心支架、钻头和接屑盘并清扫干净; 3. 装上接屑盘,将所选的微型钻头安装在花键轴上端(注意:钻头上键槽应对准花键轴上端的键!),安装好钻头后,将岩心支架回归原位; 4. 关闭所有钻进模式(牙轮模式和PDC 模式),打开总电源,打开相应的钻进模式开关(牙轮模式或PDC 模式,开关如图2 所示),打开电机调速器上的电机开关,开动电机,调电机至规定转速55 转/分(注意:教师进行此项调速 操作,学生请不要调电机转速,避免产生危险!),然后关闭电机开关; 图2 钻进模式开关示意图 5. 选择好相应的钻压砝码(牙轮钻头用两个砝码,PDC 钻头只用一个下部 大砝码),放在砝码支架上; 6. 将准备好的试样放在岩心支架上,手轮下移,稍用力夹紧岩样,如果钻 头高出岩心支架,应在轻轻夹紧岩样的同时,逆时针转动小手摇泵手轮,卸掉液 压系统压力(注意:要确保岩样的钻进面一定为平面!)。 7. 转动手摇泵给活塞缸和储能器加压,先使钻头上移顶在岩样底面上,后 顶砝码至最高点(注意:该过程中应特别注意观察压力表,不能使压力表超过 0.9MPa),然后,回摇手摇泵,使砝码下行,观察压力表,停摇手摇泵后,压力 能够反弹至试验规定值后即可; 8. 待压力稳定后,按清零按钮,待位移、时间清零后,再按清零按钮复位; 9. 打开电机开关进行实验; 10. 当位移显示至规定值(牙轮钻头模式2.6mm,PDC 钻头模式4mm),电

岩石可钻性分级研究进展

岩石可钻性分级研究进展 要文内综述介绍了近三十年来的国际岩石可钻性研究概况。对一些典型的分级方法做了介绍,对于深人开展我国创造性的岩石可钻性研究应当有所裨益。 关键词岩石可钻性分级 1 石可钻性及可钻性分级研究概况 岩石可钻性是在某种规定的指标和技术下,以一定量度来表示岩石破碎的难易程度,也即是岩石对钻头破碎岩石的一种阻抗程度。岩石可钻性不仅取决于岩石自身的物理力学性质,还与钻进的工艺技术措施有关,所以它是岩石在钻进过程中显示出来的综合性指标。根据岩石本身固有抗钻能力的大小,结合不同碎岩方式,可对岩石可钻性做出定量划分。可钻性级值是指导地质分层及钻头选型工作的重要参数,也是提高机械钻速、降低钻井成本的重要途径,岩石的可钻性是决定钻进效率的基本因素。近几十年来,国内外对岩石可钻性研究的进程比较缓慢,仍然不能确切评价如何选取和设计钻头,不能充分挖掘钻头的使用潜力和提高地质钻探效率。岩石可钻性是极其复杂的,不可能单一的根据岩石的种类来确定它们的可钻性。在地质钻探过程中,岩石的可钻性评价通常方式主要分为传统法和统计法两大类,前者是在室内通过测试岩石试样的物理力学性能,此方法有滞后性、周期长、费用高等缺陷;后者是采用实际机械钻速表示,影响因素主要有地层岩石性质、钻头类型等。 2 现有的岩石可钻性分级方法 现有的岩石可钻性分级方法种类繁多,较有代表性的有下述几种。

2.1 传统法 2.1.1压入硬度法 压入硬度法是利用压入硬度计测出岩石的压入硬度值作为岩石的可钻性指标。压入硬度法是测定岩石的某点或有限点抵抗外力入侵的能力,而岩石是由大大小小不规则的矿物颗粒组成的。矿物颗粒在空间的排列是任意的,颗粒间存在很多空洞和缝隙,岩石结构上的这种特殊性决定了岩石各点的压入硬度值有很大的差异,整块岩石的可钻性不应该也不可能由某点或某几点的压入硬度值来确定。 2.1.2点载法 点载法是由点载仪测得的,用点载强度系数作为衡量岩石的可钻性指标。点载强度系数由岩石样品在三向应力状态下产生破坏时的点载决定。点载法不能从可钻性上把岩石分开。这是因为岩石在三向应力状态下,产生张性破坏,而各种岩石都存在许多缝隙,岩石破坏是由于在缝隙处产生应力集中。这样点载法的测定结果实际上是岩石裂隙发育程度的反映。2.1.3 微钻头钻进法 微钻头钻进法是在室内运用可钻性测定仪确定岩石的可钻性,利用穿孔速度和牙轮磨损情况,压痕试验中确定的压痕器指数,以及抗压强度试验结果,对岩石的可钻性进行综合评定。这是一种很直观的方法,利用取自于地层的岩心测试能够真实的反映地层的可钻性范围,为钻头的选型及地质分层提供了强有力的参数,也是检验其它计算地层可钻性级值准确性的依据。 微钻头实验,要求从软到硬岩中的钻头性能是足够的,但对必须使用硬

岩石力学试验报告

岩石力学实验指导书及实验报告 班级 姓名 山东科技大学土建学院实验中心编

目录 一、岩石比重的测定 二、岩石含水率的测定 三、岩石单轴抗压强度的测定 四、岩石单轴抗拉强度的测定 五、岩石凝聚力及内摩擦角的测定(抗剪强度 试验) 六、岩石变形参数的测定 七、煤的坚固性系数的测定

实验一、岩石比重的测定 岩石比重是指单位体积的岩石(不包括孔隙)在105~110o C 下烘至恒重的重量与同体积4o C 纯水重量的比值。 一、仪器设备 岩石粉碎机、瓷体或玛瑙体、孔径0.2或0.3毫米分样筛、天平(量0.001克)、烘箱、干燥器、沙浴、比重瓶。 二、试验步骤 1、岩样制备:取有代表性的岩样300克左右,用机械粉碎,并全部通过孔径0.2(或0.3)毫米分样筛后待用。 2、将蒸馏水煮沸并冷却至室温取瓶颈与瓶塞相符的100毫升比重瓶,用蒸馏水洗净,注入三分之一的蒸馏水,擦干瓶的外表面。 3、取15g 岩样(称准到0.001克)得g 借助漏斗小心倒入盛有三分之一蒸馏水的比重瓶中,注意勿使岩样抛撒或粘在瓶颈上。 4、将盛有蒸馏水和岩样的比重瓶放在沙浴上煮沸后再继续煮1~1.5小时。 5、将煮沸后的比重瓶自然冷却至室温,然后注入蒸馏水,使液面与瓶塞刚好接触,注意不得留有气泡,擦干瓶的外表面,在天平上称重得g 1。 6、将岩样倒出,比重瓶洗净,最后用蒸馏水刷一遍,向比重瓶内注满蒸馏水,同样使液面与瓶塞刚好接触,不得留有气泡,擦干瓶的外表面,在天平上称重得g 2。 三、结果:按下式计算: s d g g g g d 1 2-+= 式中:d ——岩石比重; g ——岩样重、克; g 1——比重瓶、岩样和蒸馏水合重、克; g 2——比重瓶和满瓶蒸馏水合重、克; d s ——室温下蒸馏水的比重、d s ≈1

岩石的力学性质及其与钻头破碎机理的关系

岩石的力学性质及其与钻头破碎机理的关系 体会: Ⅰ、钻头一般破岩过程:压入剪切 牙轮: (1)主要方式—冲击、压碎,作用来源:①静压,②冲击载荷(牙齿交替接触井底); (2)剪切作用,来源:①牙齿吃入地层,楔形面对岩石的正压力与摩擦力合力,②主要来源:牙轮滚动的同时产生牙齿相对地层的滑动。 刮刀:主要方式—剪切,辅以研磨和压碎 PDC:主要方式—剪切,辅以研磨和压碎 [1]P19:刮刀和PDC钻头破岩是压入和剪切综合作用的结果,从而是破岩所需的纵向压力大大减小。试验证明大约只相当于静压入破岩的1/6---1/4。 Ⅱ、可利用研磨性理论的一些结论解释如下现象: 相对于泥岩,砂岩表面粗糙度高,摩擦力大,所以: PDC钻头钻遇砂岩时扭矩呈现高频高幅振荡 牙轮钻头扭矩增大但仍呈钻遇泥岩是的平直状。 Ⅲ、PDC刀翼数量对扭矩的影响 刀翼数越多,扭矩越平稳;越少,扭矩波动越大。原因:刀翼数少,刀翼钻头周期性接触井底波动越大,从而导致扭矩波动大。实例: 克深202井钻吉迪克第三套砂砾岩层,采用6刀翼PDC,钻压10--12t,扭矩曲线平直;下部泥岩段,钻压10--12t,扭矩波动大11—16KN.m,扭矩曲线呈高频振荡。

地层可钻性分级、梯度规律 地层可钻性梯度规律[3] ①地层埋深越深越难钻,②年代越老越难钻 由以下实例可知:地层可钻性梯度规律受埋深压实和成岩年代两 种因素控制。 体会:浅部地层不存在特别难钻的地层。如大北202井1324~3900m井段,对纯岩性地层钻时一致,含少量的砾石即可导致钻时上升。3496.46~3783.23m 采用95/8″Power-V +16″M1665SSCR PDC 3685~3706m为褐色泥岩,钻时31~43min/m;3715~3723m为褐色含砾泥岩和含少量(5%左右)砾的褐色泥岩,钻时51~103min/m。 例:济阳凹陷 ①地层埋深越深越难钻, ②年代越老越难钻 古生界奥陶系地层,虽然由于造山运动上升至1800~2000m,但其平均可钻性为6.09,其深度与东营组相当,但其平均Kd值却比东营组高1倍多。

油页岩性能检测及其结果分析

油页岩性能检测及其结果分析 朱文鉴1王镇泉2 (1.北京探矿工程研究所,北京,100083;2.中国石油大学(北京),北京,102249) 摘要:本文介绍了吉林扶余矿区和辽宁野马套海矿区的油页岩物理特性和力学特性的检测结果,结合油页岩的物理力学特性数据,作者分析了在油页岩矿区进行钻探施工采用PDC钻头的适应性和泥浆体系的优选结果。为油页岩矿区进行地质勘探施工的钻头选型和泥浆体系优选提供一定的参考。 关键词:油页岩、适应性、试验分析 油页岩是一种高灰分(>40%)的固体可燃有机矿产,低温干馏可获得类似天然石油。它由无机物和有机物组成,常见的无机物有石英、粘土、长石碎屑物、碳酸盐等,有时还含有铜、钴、镍、钛、钒等化合物。含油率>3.5%,有机质含量较高,主要为腐泥质、腐殖质或混合型,其发热量一般大于4186.8kJ/kg,仅次于煤的发热量。油页岩是一种重要的能源,又属非常规油气资源,在提供动力燃料和热电等方面发挥着较大的作用。 我国油页岩资源丰富,居世界第4位。我国油页岩主要分布在20个省和自治区、47个盆地,共有80个含矿区。全国油页岩资源为7199.37亿T,如果将油页岩折算成页岩油,全国页岩油资源为476.44亿T,如果扣除油页岩开发和干馏过程中的损失,全国页岩油可回收资源为119.79亿T。随着我国经济社会高速的发展,能源需求日益增大,油气资源又相对缺乏,急切需要寻找和开发可替代能源,因此开发利用油页岩是重要的可行的发展之路。 1 油页岩力学特性测试 解决油页岩地层的钻探工程问题是加快油页岩勘探开发进程的必要条件。为解决油页岩钻探中存在的技术问题,采集了吉林和辽宁省油页岩矿区的油页岩(见表1、图1),进行了油页岩的物理化学性质、力学性能等指标严格测试。为油页岩钻井液优选、破岩工具研制、钻进规程优化、油页岩开采等提供基础数据。

岩石可钻性分级研究进展

岩石可钻性分级研究进展 发表时间:2017-07-24T11:46:41.000Z 来源:《基层建设》2017年第9期作者:徐泽怀 [导读] 摘要:文内综述介绍了近三十年来的国际岩石可钻性研究概况。对一些典型的分级方法做了介绍,对于深人开展我国创造性的岩石可钻性研究应当有所裨益。 身份证号码:44052519700207xxxx 广东揭阳 522000 摘要:文内综述介绍了近三十年来的国际岩石可钻性研究概况。对一些典型的分级方法做了介绍,对于深人开展我国创造性的岩石可钻性研究应当有所裨益。 关键词:岩石;可钻性;分级 1 石可钻性及可钻性分级研究概况 岩石可钻性是在某种规定的指标和技术下,以一定量度来表示岩石破碎的难易程度,也即是岩石对钻头破碎岩石的一种阻抗程度。岩石可钻性不仅取决于岩石自身的物理力学性质,还与钻进的工艺技术措施有关,所以它是岩石在钻进过程中显示出来的综合性指标。根据岩石本身固有抗钻能力的大小,结合不同碎岩方式,可对岩石可钻性做出定量划分。可钻性级值是指导地质分层及钻头选型工作的重要参数,也是提高机械钻速、降低钻井成本的重要途径,岩石的可钻性是决定钻进效率的基本因素。 2 现有的岩石可钻性分级方法 现有的岩石可钻性分级方法种类繁多,较有代表性的有下述几种。 2.1 传统法 2.1.1压入硬度法 压入硬度法是利用压入硬度计测出岩石的压入硬度值作为岩石的可钻性指标。压入硬度法是测定岩石的某点或有限点抵抗外力入侵的能力,而岩石是由大大小小不规则的矿物颗粒组成的。矿物颗粒在空间的排列是任意的,颗粒间存在很多空洞和缝隙,岩石结构上的这种特殊性决定了岩石各点的压入硬度值有很大的差异,整块岩石的可钻性不应该也不可能由某点或某几点的压入硬度值来确定。 2.1.2点载法 点载法是由点载仪测得的,用点载强度系数作为衡量岩石的可钻性指标。点载强度系数由岩石样品在三向应力状态下产生破坏时的点载决定。点载法不能从可钻性上把岩石分开。这是因为岩石在三向应力状态下,产生张性破坏,而各种岩石都存在许多缝隙,岩石破坏是由于在缝隙处产生应力集中。这样点载法的测定结果实际上是岩石裂隙发育程度的反映。 2.1.3 微钻头钻进法 微钻头钻进法是在室内运用可钻性测定仪确定岩石的可钻性,利用穿孔速度和牙轮磨损情况,压痕试验中确定的压痕器指数,以及抗压强度试验结果,对岩石的可钻性进行综合评定。这是一种很直观的方法,利用取自于地层的岩心测试能够真实的反映地层的可钻性范围,为钻头的选型及地质分层提供了强有力的参数,也是检验其它计算地层可钻性级值准确性的依据。 2.1.4 摇摆法 用摇摆硬度计测量岩石的相对硬度,曾经获得一定的成功此法又叫阻尼振荡法,实质在于将银有金刚石或硬质合金摆尖的摆,悬吊于被测岩石的光滑表面,使其运动后,由于岩石局部破碎所吸收的能量,加上空气摩擦,使系统阻尼。在六十年代中期,美国的Henis、R.W.和Street曾用精制的石灰岩及其它试块,做过检验性试验。试验中采用了比Rehinder更先进的测试仪表,试验程序也非常严密。试验后结论为用摇摆硬度法测得的岩石硬度随摆重而异。如以获得最大硬度时的摆重叫临界摆重,那末轻于临界摆重的摆,阻尼仅为空气摩擦的函数高于临界摆重的摆,阻尼才主要是岩石破碎能量的函数。只有重量等于临界摆重的摆,才能对被测岩石的硬度最为敏感。 2.2 统计法 2.2.1 钻速方程反求法 实践证明,采用通用钻速方程反求岩石可钻性的方法比室内岩心实验求岩石可钻性的方法更为科学和便利,可节省大量的人力、物力和财力。用钻速方程反求法可以精确测量岩石的可钻性,可应用于现场计算。通过测井资料对岩石可钻性进行计算,将计算结果与微可钻性试验结果比较,两者的相对误差较小,小于5%,说明利用钻速方程可以较为精确地测量岩石的可钻性,是作为实时监测岩石可钻性的有效方法,另外通过对钻井参数的数据收集,通过计算机的程序处理就可以实时显现岩石的可钻性级值。 2.2.2分形几何理论 分形几何学是一种定量研究和描述自然界中极不规则且看似无序的复杂结构、现象或行为的新方法,它的主要内容是研究一些具有自相似性的不规则曲线和形状(称为线性分形);具有自反演性的不规则图形;具有自平方性的分形变换以及具有自仿射的分形集等等。分形的基本特征是自相似性,而且自然界中的自相似性或标度不变性常常是统计意义上的。由于没有特征尺度,分形体不能用一般测度(如长、宽、高等)进行度量,描述分形的特征参数叫做分形维数,也因其可以是分数而称其为分数维,简称分维。在实际应用中,这种自相似可以是数学上的严格自相似,但更多的是考虑研究对象的自相似性。更一般地,我经常把几何上并不明显的自相似性转变成统计意义上的自相似性,也就是虑研究对象的某些指标的局部概率分布与整体概率分布之间的相似关系。分形几何理论在上世纪70 年代建立后,迅速在物理学、地理学、冶金学、材料科学和计算机图形学等领域得到应用。80 年代,分形几何学在岩石力学方面得到了广泛应用,尽管目前还没有人用分形理论研究钻井过程中的岩石破碎问题,但毫无疑问钻头破碎岩石的过程是自相似过程,可以用分形理论来描述钻井上返岩屑的分形规律,进而由此确定岩石破碎的难易程度。 3 地层可钻性研究的发展趋势 随着研究进程的深入,人们希望用实验室测量手段,也就是用物理力学性质来表示岩石可钻性。开始用单项力学性能指标来评定岩石可钻性,由于测量结果不准确,后改用多种物理力学性质来综合评定岩石可钻性,效果也不好。又改用多项物理力学性能指标与现场数据相结合的方法来评定岩石可钻性,结果仍无明显进展。现在又有人用多项力学指标、现场数据、室内模拟试验结果以及数理统计来综合评定岩石可钻性。虽然测量方法越来越复杂,但一直没有研究出精确反映岩石可钻性的测量方法。 4 结论与建议 通过以上的论述已经可以看出,常用的可钻性级值的求取各有特点,无法直接认为哪种方法最优。以上方法得到是可钻性级值的一个

岩石可钻性分级

岩石的可钻性,是指钻进时岩石抵抗压力和破碎的能力;也表示进尺效率的高低。因此,岩石的可钻性是岩石各种特性的综合,是衡量岩石钻进难易程度的主要指标。一般用单位时间的进尺数来表示可钻性的高低。按照这个分级方法,常把岩石的可钻性,划分为十二个等级。 由于各种岩石具有不同的物理力学性质,对钻进速度有不同的影响。在实际钻进过程中,在一定的技术条件下,测定出的各种岩石的钻进速度,通称为岩石的可钻性,也就是岩石被钻头破碎的难易程度。岩心钻探时岩石的可钻性分级如下: 一级:松散土 松软疏散的---代表性岩石为:次生黄土、次生红土、松软不含碎石及角砾的砂土、硅藻土、不含植物根的泥炭质腐殖层。(可钻性:7.50 m/h,一次提钻长度:2.80 m/次) 二级:较软松散岩 较松软疏散的---代表性岩石为:黄土层、红土层、松软的泥炭层、含10%-20%砾石、碎石的黏土质和砂土质、松软的高岭土类、含植物根的腐殖层。(可钻性:4.00 m/h,一次提钻长度:2.40 m/次)三级:软岩 软的---代表性岩石为:强风化页岩、板岩、千枚岩和片岩,轻微胶结的砂层,含20%砾石、碎石的砂土,含20%礓结石的黄土层,石膏质土层,泥灰岩,滑石片岩、贝壳石灰岩、褐煤、烟煤。(可钻性:2.45 m/h,一次提钻长度:2.00 m/次) 四级:稍软岩

稍软的---代表性岩石为:页岩、砂质页岩、油页岩、炭质页岩、钙质页岩、砂页岩互层,较致密的泥灰岩、泥质砂岩。块状石灰岩、白云岩、强风化的橄榄岩、纯橄榄岩、蛇纹岩和磷灰岩、中等硬度煤层、岩盐、结晶石膏、高岭土层、火山泥灰岩、冻结的含水砂层。(可钻性:1.60 m/h,一次提钻长度:1.70 m/次) 五级:稍硬岩 稍硬的---代表性岩石为:卵石、碎石及砾石层、崩级层、泥质板岩,绢云母绿泥石板岩、千枚岩和片岩、细粒结晶灰岩、大理石、较松软的砂岩、蛇纹岩、纯橄榄岩、风化的角闪石斑岩和粗面岩、硬烟煤、无烟煤、冻结的粗粒砂、砾层、冻土层。(可钻性:1.15 m/h,一次提钻长度:1.50 m/次) 六级-七级:中硬岩 中等硬度的---代表性岩石为:绿泥石、云母、绢云母板岩、千枚岩、片岩、轻微硅化的灰岩、方解石、绿帘石、钙质胶结的砾岩,长石砂岩、石英砂岩、石英粗面岩、角闪石斑岩。透辉石岩、辉长岩、冻结的砾石层。(可钻性:0.82 m/h,一次提钻长度:1.30 m/次)石英、角闪石、云母、赤铁矿化板岩、千枚岩、片岩,微硅化的板岩、千枚岩、片岩、长石石英砂岩、石英二长岩,微片岩化的钠长石斑岩,粗面岩,角闪石斑岩,砾石、碎石层,微风化的粗粒花岗岩、正长岩、斑岩、辉长岩及其他火成岩,硅质灰岩,燧石灰岩等。(可钻性:0.57 m/h,一次提钻长度:1.10 m/次) 八级--九级:硬岩

岩石可钻性

中国石油大学钻井工程实验报告 实验日期:2014.10.15 成绩: 班级:石工11-10 学号:姓名:教师: 同组者:李雪鹏、白国强、赵春平、邢志辉 岩石可钻性的测定 一、实验目的 1.了解岩石的可钻性; 2.掌握岩石可钻性的测量方法。 二、实验原理 1.实验设备 实验中使用岩石可钻性测试仪来测量岩石的可钻性,如下图1 所示。设备 的具体技术指标参见《岩石可钻性测定及分级方法-SY/T 5426-2000》。 图1 岩石可钻性测试仪 2.测量原理 使用特制微钻头(牙轮钻头或PDC 钻头),以一定的钻压(牙轮钻头为890N ±20N,PDC 钻头为500N±10N)和转速(55r/min±1r/min)在岩样上钻三个特定深度的孔(牙轮钻头为2.4mm,PDC 钻头为3mm),取三个孔钻进时间的平均值为岩样的钻时(t d),对t d取以2 为底的对数值作为该岩样的可钻性级值K d,计算公式如下所示: K d =log2t 求得可钻性级值后,再查岩石可钻性分级标准对照表(如下表1 所示)进 行定级。

表1 岩石可钻性分级对照表 三、数据处理 根据实验中测得的钻进时间,结合实验原理中岩石可钻性的计算方法及分 级标准,计算岩石可钻性并将结果填入表2 中 岩石可钻性试验记录表 平均钻进时间t=(35+46+38)/3=39.67s ,可钻性级值K d ===22log log 39.67 5.3t 查表1得,可钻性级值为5级。 四、思考题 1.实验过程中哪些步骤对测量结果精度影响较大,如何操作才能提高测量 结果的精度? 答:夹持岩样的过程中选择不同的钻进岩石面可能会使钻进时间差别较大,应该尽量选用同一个岩石面。 2.调研并简要介绍岩石可钻性是如何应用于工程实践?思考岩石可钻性的 其它应用?

岩石力学实验方案

实验方案 实验一单轴压缩试验 一、实验得目得 以白垩系软岩为研究对象,设置不同得冻结温度,分别对岩样进行一次冻融循环,并测定其冻融前后得单轴抗压强度与杨氏弹性模量,且绘出应力—应变曲线。当无侧限试样在纵向压力作用下出现压缩破坏时,单位面积上所承受得载荷称为岩石得单轴抗压强度,即式样破坏时得最大载荷与垂直与加载方向得截面积之比. 本次试验主要测定饱与状态下试样得单轴抗压强度。 二、试样制备 (1)样品可用钻孔岩芯或在坑槽中采取得岩块,在取样与试样制备过程中,不允许发生人为裂隙。 (2)试样规格:经过钻取岩芯、岩样尺寸切割、岩样打磨几道工序制备成直径5cm、高10cm得圆柱体。 (3)试样制备得精度应満足如下要求: a沿试样高度,直径得误差不超过0.03cm; b试样两端面不平行度误差,最大不超过0.005cm; c端面应垂直于轴线,最大偏差不超过0、25°; d方柱体试样得相邻两面应互相垂直,最大偏差不超过0、25°。 三、主要仪器设备 1、制样设备:钻石机、切石机及磨石机. 2、测量平台、角尺、游标卡尺、放大镜、低温箱等。

3、压力试验机。 四、实验步骤 1、取加工好得岩石试样15块,放入抽真空设备中进行饱水处理,浸泡24h; 2、a.(1)从饱水后得试样中取3块,进行冻结前常温(+20℃)条件下岩石得单轴压缩试验,并记录应力—应变曲线等信息;(2)从剩下得饱水岩样中取出6块放入低温箱中,在恒温—10℃条件下冻结48h;(3)取出冻结后得3块岩样,进行冻结-10℃条件下岩石得单轴压缩试验,并记录应力-应变曲线等信息;(4)取出冻结后另外3块岩样,在室内常温环境下自然解冻后,进行岩石冻结解冻后恢复到常温条件下岩石得单轴压缩试验,并记录应力-应变曲线等信息; b、以剩余得6块试样为对象,把冻结温度设置为—30℃,重复a中步骤(2)~(4); 3、通过试验数据分析在两种冻结温度下,岩样冻结前、冻结中与冻结解冻后三种状态下三种岩石单轴压缩下强度、应力-应变曲线及弹性模量等参数得变化情况. 五.成果整理与计算 1、按下式计算岩石得单轴抗压强度: -———-岩石单轴抗压强度,MPa; ———-最大破坏荷载,N; -—-—垂直于加载方向得试样横截面积,mm2。 2、固体材料得弹性模量就是指弹性范围内应力与应变得比值,反映材料得坚固性.计算割线弹性模量E50,即应力应变曲线零荷载点与单

不同钻井方式下的井底岩石可钻性研究

第38卷第2期石 油 钻 探 技 术Vo l 138No 122010年3月PET RO L EU M DRIL LI NG T ECHN IQ U ES M ar.,2010 收稿日期:2009-11-12;改回日期:2010-01-20 基金项目:国家重大专项/大型油气田及煤层气开发0子项目/气体钻井关键工艺理论及钻柱力学研究0(编号:2008ZX05022-005-004H Z)资助 作者简介:杨谋(1982)),男,湖北潜江人,2006年毕业于长江大学石油工程专业,油气井专业在读博士研究生,主要从事欠平衡钻井、气体钻井提速机理及工艺方面的研究。 联系方式:(028)83035450,ym 528919@https://www.360docs.net/doc/d912605341.html, #钻井与完井! 不同钻井方式下的井底岩石可钻性研究 杨 谋1 孟英峰1 李 皋1 李永杰1 王延民1,2 (11油气藏地质及开发工程国家重点实验室(西南石油大学),四川成都 610500;21中国石油塔里木油田公司博士后科研工作站,新疆库尔勒 841000) 摘 要:岩石可钻性指标是钻井工程中的一项基本数据,当前计算岩石可钻性的方法很少考虑井底围压对岩石可钻性的影响。首先,论述了围压对井底岩石强度的影响,分析了不同渗透性条件下求取井底围压的差异;其次,建立了围压下的岩石可钻性计算模型,并对液体测井数据进行了校正以获取气体钻井的岩石力学参数;最后,应用M athCAD 软件编程分析了不同钻井方式下的可钻性级值。分析表明,气体钻井与常规钻井方式相比,泥岩地层可钻性级值能减小1~2个级别,而砂岩地层可钻性级值可减小2~4个级别。理论分析与试验分析结果吻合度高,有助于钻前预测机械钻速。 关键词:岩石可钻性;渗透性;孔隙压力;封闭压力;气体钻井 中图分类号:T E21 文献标识码:A 文章编号:1001-0890(2010)02-0019-04 岩石可钻性指标在钻井工程中有重要的应用价值,如指导钻头选型、用于优选钻头参数、预测钻速、制订生产定额等[1-3]。在钻进过程中,随着井深的增加,液柱压力越来越大,井底岩石强度也会增大,这时岩石可钻性逐渐变差。目前计算岩石可钻性仅从1)用岩石的物理力学特性评价,2)用微钻速评价,3)用实钻速度评价,4)用破碎比功评价等4方面来考虑[3-9] ,还没有形成一套有效的方法来模拟井底条件下的岩石可钻性流程,而且基本上没有模拟不同钻井方式下井底岩石可钻性研究的相关报道。为此,笔者在推导渗透性岩石和非渗透性岩石井底围压计算公式的基础上,建立了围压下不同钻井方式的井底岩石可钻性模型。 1 计算井底围压 图1为Maurer 在单齿冲击试验中通过改变井筒液柱压力得到的破碎坑体积与井底压力的关系曲 线(井底压力为液柱压力与孔隙压力之差)。由图1可看出:当井筒压力增加到高于地层孔隙压力时,破碎坑体积会迅速减小;当压差保持不变、水平方向的主应力增加时,破碎坑体积大小不变。在Yang 和Gr ay 所做的试验中,破碎坑体积随水平主应力的增加而有微小增加[10]。利用Abaous 软件模拟井下岩石应力场分布发现,在钻头底部待破碎10mm 的范 围内井底岩石强度受水平应力的影响很小[11]。这些试验和理论研究证明了井底岩石强度主要受轴向 上应力的控制。 图1 井底压力和水平应力对破碎岩屑体积的影响 当钻进低渗透性岩层时,由于钻井液难以渗入到低(非)渗透性的岩层孔隙,不能及时平衡岩屑上下的压差,压差作用阻碍了井底岩屑的及时清除,影响了破岩效率[12]。但在钻进渗透性地层时,孔隙压力对井底产生向上的/推力0,即岩石受到轴向上的

岩石可钻性

岩石可钻性 岩石可钻性(drillability of rock) 钻进时岩石抵抗机械破碎能力的量化指标。岩石可钻性是工程钻探中选择钻进方法、钻头结构类型、钻进工艺参数,衡量钻进速度和实行定额管理的主要依据。 影响因素岩石可钻性不是岩石固有的性质,它不仅取决于岩石的特性,而且还取决于采用的钻进技术工艺条件:(1)岩石的特性。包括岩石的矿物组分、组织结构特征、物理性质和力学性质。其中直接影响因素是岩石的力学性质,而岩石的物理性质、矿物组分和组织结构特征等主要是通过影响其力学性质而间接影响可钻性的。在影响岩石可钻性的力学性质中,起主要作用的是岩石的硬度、弹塑性和研磨性。岩石硬度影响钻进初始的碎岩难易程度;弹塑性影响碎岩工具作用F岩石的变形和裂纹发展导致破碎的特征;研磨性决定了碎岩工具的持久性和机械钻速(纯钻进时间内的单位

时间进尺,m/h)的递减速率。一般规律是岩石可钻性随压入硬度和研磨性的增大而降低,随塑性系数的增大而提高。(2)钻进技术工艺条件。包括钻进切削研磨材料、钻头类型、钻探设备、钻探冲洗介质、钻进工艺的完善程度,以及钻孔的深度、直径、倾斜度等。 分级在一定的技术工艺条件下,岩石按被钻头破碎的难易程度的分级。根据钻进方法的不同,岩石可钻性分别有岩心钻探的岩石可钻性、手动回转钻进的岩石可钻性、螺旋钻进的岩石可钻性、钢丝绳冲击钻进的岩石可钻性、冲击振动钻进的岩石可钻性和石油钻井的岩石可钻性等。中国冶金工程钻探采用岩心钻探的岩石可钻性。岩心钻探的岩石可钻性分为12级。表1为1958年中国地质部颁布的《岩石十二级分级表》,此表是以对于在规定的设备、工具和技术规程的条件下进行实际钻进所获得的大量资料的统计分析为定级基础的。随着对岩石物理力学性质的深入研究、测试技术方法和仪器的进步、钻探设备和工艺技术的发展,为适应金刚石钻探工艺应用的需要,并使岩石可钻性分级更趋科学、准确、合理,1984年中国地质矿产部颁布了《金刚石岩心钻探岩石可钻性分级

岩石可钻性测试实验

中国石油大学(岩石可钻性的测定)实验报告 实验日期: 2014.10.21 成绩: 班级: 石工11-11 学号:11021525 姓名: 徐银亮 教师: 郭辛阳 同组者: 夏平 张栋 杜顺明 刘磊 岩石可钻性的测定 一、实验目的 1、了解岩石的可钻性; 2、掌握岩石可钻性的测量方法。 二、实验原理 1、实验设备 实验中使用岩石可钻性测试仪来测量岩石的可钻性,如下图1所示。设备的具体技术指标参见《岩石可钻性测定及分级方法-SY/T 5426-2000》。 2、测量原理 使用特制微钻头(牙轮钻头或PDC 钻头),以一定的钻压(牙轮钻头为890N±20N ,PDC 钻头为500N±10N )和转速(55r/min±1r/min )在岩样上钻三个特定深度的孔(牙轮钻头为2.4mm ,PDC 钻头为3mm ),取三个孔钻进时间的平均值为岩样的钻时(d t ),对d t 取以2为底的对数值作为该岩样的可钻性级值d K ,计算

公式如下所示: t K d 2l o g 求得可钻性级值后,再查岩石可钻性分级标准对照表(如下表1所示)进行定级。 测量原理详见《岩石可钻性测定及分级方法-SY/T 5426-2000》。 三、实验步骤 1、试样用石油钻井所取井下岩心或地面采的岩石,岩样制备成圆柱体(直径40-100mm ,高度30-80mm )或长方体(长宽各100mm ,高度20-100mm ),端面平行度公差值≦0.2mm ,试验前将试样放在温度设定为105-110℃的干燥箱内烘烤24小时; 2、将手轮上移至最上端,取下岩心支架、钻头和接屑盘并清扫干净; 3、装上接屑盘,将所选的微型钻头安装在花键轴上端(注意:钻头上键槽应对准花键轴上端的键!),安装好钻头后,将岩心支架回归原位; 4、关闭所有钻井模式(牙轮模式和PDC 模式),打开总电源 ,打开相应钻进模式开关(牙轮模式或PDC 模式,开关如图2所示),打开电机调速器上的电机开关,开动电机,调电机至规定转速55转/分(注意:教师进行此项调速操作,学生请不要调电机转速,避免产生危险!),然后关闭电机开关; 5、选择好相应的钻压砝码(牙轮钻头用两个砝码,PDC 钻头只用一个下部大砝码),放在砝码支架上; 6、将准备好的试样放在岩心支架上,手轮下移,稍用力夹紧岩样,如果钻头高出岩心支架,应在轻轻夹紧岩样的同时,逆时针转动小手摇泵手轮,卸掉液压系统压力(注意:要确保岩样的钻井面一定为平面!)。 7、转动手摇泵给活塞缸和储能器加压,先使钻头上移顶在岩样底面上,后顶砝码至最高点(注意:该过程中应特别注意观察压力表,不能使压力表超过0.9MPa !),然后,回摇手摇泵,使砝码下行,观察压力表,停摇手摇泵后,压力能够反弹至试验规定值后即可; 8、待压力稳定后,按清零按钮,待位移、时间清零后,再按清零按钮复位;

适合于金刚石钻机的岩石可钻性分级表

适合于金刚石钻机的岩石可钻性分级表 点击次数:804 发布时间:2009-4-17 11:07:35 众所周知,地质钻探工程的六项质量指标是:岩矿心的采取与整理、钻孔弯曲、校正孔深、简易水文观测、原始报表和封孔。在这六项质量指标中,岩矿心的采取排在首位,可见它在钻探工程中的重要地位。 一、岩矿心采取的基本要求 1、岩矿心采取率 岩矿心采取率即实际自孔内取上的岩矿心长度与实际进进尺之比值。对于岩矿心一般要求:岩心不低于65%,矿心不低于75%,如果不足,应进行补取。 2、完整性 要求取上的岩矿心保持原生结构和原有品位,以便划分矿石类型,观察矿物原生结构和共生关系;尽量避免人为破碎、颠倒和扰动。 3、纯洁性 要求取上的岩矿心不受外物的浸蚀、污染和渗进,以免影响矿石的品位、品级和物理性质。如煤心混入粘土将使样品的灰分增加,滑石混入泥浆将使二氧化硅含量提高等。 4、避免选择性磨损 矿心的选择性磨损,会使其内在物质成分发生变化,造成矿物人为贫化和富集,歪曲原品位和品级。 5、取心部位准确 要求取上岩矿心的位置准确,为了得到岩矿层准确的埋藏深度、厚度和产状,以准确地计算矿产储量和确定其地质构造。 二、影响岩矿心采取率与品质的因素 1、自然因素 影响取心数量和质量的自然因素是所钻岩石的物理力学性质和岩矿层的结构、构造。钻进坚硬、致密、均质完整的岩矿层时采取率高,岩矿心不怕冲刷、不怕振动,易于得到完整的能保持原生结构的岩矿心;钻进松散、破碎、节理发育、胶性差和软硬夹层的岩矿层时,取出的岩矿心多成块状、粒状、片状,不仅原生结构遭到破坏,而且采取率低,甚至取不出岩矿心。 2、人为因素 2.1钻进方法选择不合理 钢粒钻进时振动大、孔壁间隙大、钻出的岩矿心细,对岩矿心的磨损作用最大;硬质合金钻

岩石力学习题

岩石的物理力学性质习题 1、某岩样试件,测得容量3/9.1cm kg =γ,比重69.2=?,含水量0029=d ω试求该岩样的孔隙比v ε,孔隙度n ,饱和度s r 和干容量d γ。 2、某岩样测得其容量3/2厘米克=γ,天然含水量为W 0024=d ,及比重71.2=?,试计算该岩样的孔隙度n ,孔隙比v ε,水下容量/γ及饱和度S r 。 3、设岩石的容量 3/0025.0cm kg =γ,孔隙度n=2.5%,求其密度及比重。 4、在岩石力学中,测定岩石的抗拉强度,目前常用的是劈裂法,其计算公式为 S dt P t π2= 。拟请证明上式。 5、三块3555cm ?? 立方体试件,分别作倾角为48°,55°,64°的抗剪强度试验,其施加的最大载荷分别为4.5T,2.8T 和2T ,求岩石的C 、Φ值,并绘出抗剪强度的曲线图。 6、试用莫尔应力圆画出: (1)单向拉伸;(2)纯剪切;(3)单向压缩;(4)双向拉伸;(5)双向压缩 7、有一块几何尺寸为7×7×7cm 3的石英岩立方体试块。当试块承受20吨压力后,试块轴向缩短了0.003cm ,横向增长了0.000238cm.试求石英岩试块的弹性模量和泊松比。 8、推导马克斯威尔模型应变与时间的函数关系。 9、已知石灰岩的比重23/1048.2cm kg -?=?,容重33/102.2cm kg -?=γ,孔隙度005=n 。试求该岩石的孔隙比,单位体积的岩石孔隙体积,岩石颗粒体积和水的体积。 10、有三块几何尺寸()cm 555??相同的花岗岩试件,在自然状态下称的重量分别为312.5克,337.5克和325克。经过烘干后的恒重分别为290.4克,332.1克和311.25克。将烘干试件放入水中后测得孔隙的体积为0.753cm ,0.53cm 和0.6253cm .试求该花岗岩的容重γ,比重?,孔隙度n ,孔隙比v ε,含水量d W 和饱和度Sr 。 11、6块玄武岩试件,有3块几何尺寸是3555cm ??的立方体试件,破坏时施加最大受压载荷分别为t P 401=,t P 372=,t P 35 3=。另外3块试件,由于加工不准,几何尺寸变为31077cm ??,破坏时施加最大受压荷载分别为t P 704=,t P 675=,t P 586=,试求玄武岩的单向抗压强度。 12、已知大理岩单向抗压强度2/800cm kg s c =,内摩擦角 25=Φ,试计算侧压力为2/400cm kg 时,其三轴抗压强度为多少? 13、已知岩石的抗剪强度的C 和Φ值。试求应力圆与强度曲线的关系,求该岩石的单向抗压强度和

岩石可钻性和钻速预测

岩石可钻性和钻速预测 李富 摘要对井剖面地层岩石可钻性的确定直接影响到钻头选型和钻速预测,然而,现有的研究岩石可钻性的 微可钻实验存在较多问题。现有的岩石微可钻性实验一般通过取心在室内常温常压下进行,脱离了地下高温高压 环境后的岩心不仅不能代表地层的可钻性,而且这样的可钻性数据离散、随机、有限、成本高。但若能建立基于岩 石物理参数的岩石可钻性预测模型,必将能缓解可钻性评价中存在的这些矛盾。尽管利用测井资料估算岩石可钻 性时,由于岩石结构的复杂性以及不适当的参数化工作使测井估算的可钻性也存在不少问题,但利用测井资料获 取岩石可钻性的方法能够提供逐点可钻性数值,既能反映出整个钻井剖面岩石可钻性变化的趋势,又能反映出不 同地层间的变化规律,而且成本低。鉴于此,推导了利用声波测井资料预测岩石可钻性的计算模型,并结合S 油田 实际资料开展了钻速预测方法研究。 主题词岩石可钻性声波测井资料钻头钻井速度预测 测井评价岩石可钻性模型推导 在对全国各类油气田的岩石可钻性进行了大量试验研究和测定工作 的基础上, 原石油工业部于1987 年召开了全国岩石可钻性研究成果鉴定会,定出了岩石可钻性分级的标准(表1) 。根据岩石软、中、硬三大类,将岩石可钻性划分10 级,一定的岩石可钻性分级对应了一定的钻头型号。对这些数据进行处理后,作了相关分析。回归分析结果,度指数相关,即 Kd = 2. 347e- 0. 0017 x (1) 相关系数R = 0. 947 1 。 图1 岩石可钻性与岩石硬度关系曲线 由前人的实验测定结果已知,当地层不含天然气时,岩石的硬度( x) 随声波纵波速度(1/Δtc) 的增加而增加,即x = α/Δtc +γ ,将其代入(1) 式得:Kd = A eβ/Δtc (2) 钻采工艺与装备 ·61· 其中: A = 2. 347e- 0. 001 7γ ,β = - 0. 001 7α 。

岩石分类及硬度级别

岩石分类及硬度级别 岩石级别坚固程度代表性岩石 Ⅰ最坚固最坚固、致密、有韧性的石英岩、玄武岩和其他 各种特别坚固的岩石。(f=20) Ⅱ很坚固很坚固的花岗岩、石英斑岩、硅质片岩,较坚固 的石英岩,最坚固的砂岩和石灰岩.(f=15) Ⅲ坚固致密的花岗岩,很坚固的砂岩和石灰岩,石英矿 脉,坚固的砾岩,很坚固的铁矿石.(f=10) Ⅲa 坚固坚固的砂岩、石灰岩、大理岩、白云岩、黄铁 矿,不坚固的花岗岩。(f=8) Ⅳ比较坚固一般的砂岩、铁矿石(f=6) Ⅳa 比较坚固砂质页岩,页岩质砂岩。(f=5) Ⅴ中等坚固坚固的泥质页岩,不坚固的砂岩和石灰岩,软砾 石。(f=4) Ⅴa 中等坚固各种不坚固的页岩,致密的泥灰岩.(f=3) Ⅵ比较软软弱页岩,很软的石灰岩,白垩,盐岩,石膏, 无烟煤,破碎的砂岩和石质土壤.(f=2) Ⅵa 比较软碎石质土壤,破碎的页岩,粘结成块的砾石、碎 石,坚固的煤,硬化的粘土。(f=1.5) Ⅶ软软致密粘土,较软的烟煤,坚固的冲击土层,粘土质土壤。(f=1) Ⅶa 软软砂质粘土、砾石,黄土。(f=0.8) Ⅷ土状腐殖土,泥煤,软砂质土壤,湿砂。(f=0.6) Ⅸ松散状砂,山砾堆积,细砾石,松土,开采下来的煤. (f=0.5) Ⅹ流沙状流沙,沼泽土壤,含水黄土及其他含水土壤. (f=0.3) A

表示矿岩的坚固性的量化指标. 人们在长期的实践中认识到,有些岩石不容易破坏,有一些则难于破碎。难于破碎的岩石一般也难于凿岩,难于爆破,则它们的硬度也比较大,概括的说就是比较坚固。因此,人们就用岩石的坚固性这个概念来表示岩石在破碎时的难易程度。坚固性的大小用坚固性系数来表示又叫硬度系数,也叫普氏硬度系数f值)。 坚固性系数f=R/100 (R单位kg/cm2) 式中R——为岩石标准试样的单向极限抗压强度值。 通常用的普氏岩石分及法就是根据坚固性系数来进行岩石分级的。 如: ①极坚固岩石f=15~20(坚固的花岗岩,石灰岩,石英岩等) ②坚硬岩石f=8 ~10(如不坚固的花岗岩,坚固的砂岩等) ③中等坚固岩石f=4 ~6 (如普通砂岩,铁矿等) ④不坚固岩石f=0.8~3 (如黄土、仅为0.3) 矿岩的坚固性也是一种抵抗外力的性质,但它与矿岩的强度却是两种不同的概念。强度是指矿岩抵抗压缩,拉伸,弯曲及剪切等单向作用的性能。而坚固性所抵抗的外力却是一种综合的外力。(如抵抗锹,稿,机械碎破,炸药的综合作用力)。

区域三维空间岩石可钻性预测方法研究与应用

第42卷第5期 石 油 钻 探 技 术Vol畅42No畅52014年9月PETROLEUM DRILLING TECHNIQUESSep.,2014收稿日期:20131209;改回日期:20140723。作者简介:耿智(1988—),男,河北保定人,2011年毕业于中国石油大学(北京)石油工程专业,油气井工程专业在读博士研究生,主要从事石油工程岩石力学、钻井地层压力预测及钻井信息工程等方面的研究工作。联系方式:g126z@126.com。通讯作者:陈勉,chenmian@vip.163.com。基金项目:国家科技重大专项课题“钻井工程设计和工艺软件” (编号:2011ZX05021006)部分研究成果。磼钻井完井磾doi:10.11911/syztjs.201405014 区域三维空间岩石可钻性预测方法研究与应用 耿 智1,樊洪海1,陈 勉1,王金钟2,纪荣艺1,景 宁3 (1.中国石油大学(北京)石油工程学院,北京102249;2.中国石油大庆钻探工程公司钻井四公司,吉林松原138000;3.中国石油天然气勘探开发公司,北京100034) 摘 要:在已钻井资料较少的情况下,合理、高效、低成本地预测岩石可钻性在地层空间的分布对钻井工作十 分重要。分析了单一测井、录井及地震资料预测方法的不足,提出了预测三维空间岩石可钻性的新方法,即利用测井约束地震反演技术对三维地震数据进行反演,生成全频带高分辨率的岩石纵波速度体,通过室内微钻头岩心可钻性试验,建立了考虑岩石声波时差与密度属性的可钻性预测模型,并据此开发了三维岩石可钻性预测软件。在吐哈盆地某区块两口井进行的实例分析表明,可钻性平均误差约10%,研究区块牙轮钻头对应的岩石可钻性级值约2畅8~6畅3,PDC钻头对应的岩石可钻性级值约2畅0~5畅0;软件三维显示结果表明,局部地层存在异常高可钻性级值带,与钻井资料显示该地层存在砾岩层结论相符。该区块PDC钻头的三维空间地层岩石可钻性整体优于牙轮钻头对应的可钻性。研究表明:建立的岩石可钻性预测模型同时考虑了岩石声波与密度属性,能合理预测岩石可钻性,反映不同类型钻头的可钻性差异;新方法能较真实地反映出岩石可钻性的三维空间分布情况,可为制定钻井提速方案提供参考。 关键词:岩石可钻性预测岩心试验测井地震数据 中图分类号:TE21 文献标识码:A 文章编号:10010890(2014)05008005 ApplicationandResearchonMethodsfor3DSpaceRockDrillabilityPrediction GengZhi1,FanHonghai1,ChenMian1,WangJinzhong2,JiRongyi1,JingNing 3 (1.CollegeofPetroleumEngineering,ChinaUniversityofPetroleum(Beijing),Beijing,102249,China;2.No.4DrillingCompany,CNPCDaqingDrilling&ExplorationEngineeringCorp.,Songyuan,Jilin,138000;3.ChinaNationalOilandGasExplorationandDevelopmentCorporation,Bei‐jing,100034,China)Abstract:Intheinitialstagesofexploration,whendrillingdataisscarce,it’sparticularlyimportanttopredictthedrillabilityofthetargetformationinaproper,efficientandlow‐costmanner.Inthispaper,com‐mondrillabilitypredictionmethodsusinglogging,mudloggingandseismicdatawereevaluatedanddeter‐minedtobeinadequate.So,tomeettheneedforeffectivepredicabilityofformationdrillability,anew3Dpredictionmethodwaspresented,inwhichamodelconsideringbothrockacousticanddensitypropertieswasconstructedbycombiningthemicro‐bitdrillabilitytestandfull‐bandandhigh‐resolutionPwaveveloc‐itycubewhichwasgeneratedbyawelllog‐constrainedseismicinversiontechnique.Predictionsoftwarewasdevelopedtocreatea3Dvisualizationofthedistributionofdrillability.CasestudiesoftwowellsinoneblockoftheTuhaBasinwaspresented.Theaverageerrorofdrillabilitywasabout10%,anddrillabilitygradeofarollerbitwas2畅86畅3whiledrillabilitygradeofaPDCbitis2畅05畅0.The3Dvisualizationre‐sultindicatedthatanabnormallyhighdrillabilityareaexistedinthelocalformation,whichwasinaccord‐ancewiththeexistenceofconglomeratelayershownindrillingrecord.TheoveralldrillabilityperformanceofPDCbitswassuperiortothatoftherollerbits.Theresultsshowedthatthemodelconsideringbothrockacousticanddensitypropertiescouldpredictrockdrillabilityreasonablyandrevealdrillabilitydifferencesfordifferentbits.Themethodproposedcoulddescribethespatialdistributionofrockdrillabilityinanob‐jectivemanner,providingreferencestospeedingupdrilling.Keywords:rockdrillability;prediction;coretest;welllogging;seismicdata 在已钻井较少的区块,很难利用已有测录井资 料与岩心数据建立能够客观反映随地层变化的区域 岩石可钻性数据库,从而给钻头选型和制定钻井设 计方案带来了困难。此外,利用地震数据提取的层 速度资料,可以在一定程度上反映地层岩石物性变

相关文档
最新文档