电容器的接线方式

电容器的接线方式
电容器的接线方式

电容器的接线方式

(2011-07-29 17:08:10)

容量相同的三相电容器,当为星型接法和角型接法时,其额定电流是不相同的,容量的不同存在外形差异。当三相电容器的额定电压与电网额定电压相同时,三相电容器应采用角形连接,因为若采用星形连接,每相电压为线电压的1/1.732,电容器的输出容量将减少。当单相电容器的额定电压低于电网额定电压时,应采用星形连接,或几个电容器串联后,使每相电容器组的额定电压高于或等于电网的额定电压,再接成角形。

近期遇到一个用户补偿要求,其内容为“低压380V系统,要求并联电容器为三相、星型接法、中性点不引出”。可见这种补偿是可以的。其目的可能是线路补偿,工厂里可能用于短路容量较大的地方等。

容量(Q)和电容值(C)是两个概念。电容值是制造概念,当电容器制造出来后,除非损坏,C 是不变的。容量是使用概念,是当电容器使用在某电压和频率下所能输出的无功(Q=ωCU2)。所以,容量相同,电压相同,频率相同的三相电容器,无论是接星还是接角,电流都是一样的(Q=√3UI)。体积是和设计和工艺有关的,例如,我国目前1000v一下并联电容器均采用金属化电容器,由于基膜和镀膜工艺的关系,很少厂家使用4.8um的基膜,所以,690v (一般接星)产品和400v(一般接角)产品体积相差不大,而400v产品和230v(一般接角)产品体积相差较大。“低压380V系统,要求并联电容器为三相、星型接法、中性点不引出”。一般单纯补偿不采用如此接法。如果是系统电压高,可用440v甚至525v产品,如果是分相补偿,“中性点”要引出。可能是用于滤波吧。如果用于滤波,建议采用滤波电容器,虽然贵点,毕竟谐波不是降低并联电容器使用电压就能解决的

一、当单台电容器为三相时,其标注的额定电压如6.6KV/√3和6.6KV。这两种标注方式主要区别在于说明此三相电容内部接线方式分为星型Y和三角型Δ两种。而加在三相电容器三个接线端电压均为线电压6.6KV。计算其额定电流时和标注中6.6KV/√3分母上的√3无关,不管是Y接法Δ接法,U均为6.6KV。而不是6.6KV/√3。根据三相电功率P=√3IU得出I=P/√3U(不论星型Y和三角型Δ接法。不考虑COSΦ。)。P为电容器额定容量Karv ,U为电网线电压。

二、当单台电容器为单相时,其标注的额定电压如6.6KV/√3和6.6KV,这两种标注方式主要区别在于说明:

1、标称6.6KV /√3的单台电容当组成电容器组接在三相电网时只能接成Y,电网线电压为6.6KV时,此时电容两个接线柱实际电压为6.6KV/√3即3.8KV。否则当接成Δ时电容器就会过电压,当单只电容接电源时只能接在3.8KV电网中而不是6.6KV电网。这时计算单台电容器电流时I=P/U, P为电容器额定容量Karv ,U为6.6KV/√3即3.8KV也就是电网电压的相电压而不是线电压6.6KV。

2、标称6.6KV的单台电容当组成电容器组接在三相电网时只能接成Δ,如果接成Y时,由于电容器两端实际电压降成相电压6.6KV/√3即3.8KV,他就达不到它的标称Karv 值。

如果三只这样的电容器组成电容器组按Δ型可直接接在线电压为6.6KV的三相电网中。单只电容可直接接在三相6.6KV其中两相上。计算电流时I=P/U,P为电容器额定容量Karv ,U为电网线电压。

三、综上所述单台电容器计算电流时分以下三种情况:

1、电容器为三相电容时:(不论星型Y和三角型Δ接法,不考虑COSΦ)。

I=P/√3U

P为电容器额定容量Karv ,U为电网线电压KV。

2、电容器为单相时:

a、当标称电压为U/√3时

I=P/(U/√3)即I=√3(P/U)

P为电容器额定容量Karv ,U为电网线电压KV。

b、当标称电压为U时

I=P/U

P为电容器额定容量Karv ,U为电网线电压KV。

Welcome To Download !!!

欢迎您的下载,资料仅供参考!

电力电容器保护原理解释

常见电力电容器保护类型: 电容器保护 1 保护熔丝 现代电容器组的每台电容器上都装有单独的熔丝保护,这种熔丝结构简单,安装方便,只要配合得当,就能够迅速将故障电容器切除,避免电容器的油箱发生爆炸,使附近的电容器免遭波及损坏。此外,保护熔丝还有明显的标志,动作以后很容易发现,运行人员根据标志便可容易地查出故障的电容器,以便更换。 2 过电流保护(电流取自线路TA) 过电流保护的任务,主要是保护电容器引线上的相间短路故障或在电容器组过负荷运行时使开关跳闸。电容器过负荷的原因,一是运行电压高于电容器的额定电压,另一种情况是谐波引起的过电流。 为避免合闸涌流引起保护的误动作,过电流保护应有一定的时限,一般将时限整定到0.5s以上就可躲过涌流的影响。 3 不平衡电压保护(电压取自放电TV二次侧所构成的开口三角型) 电容器发生故障后,将引起电容器组三相电容不平衡。电容器组的各种主保护方式都是从这个基本点出发来确定的。 根据这个原理,国内外采用的继电保护方式很多,大致可以分为不平衡电压和不平衡电流保护两种。这两种保护,都是利用故障电容器被切除后,因电容值不平衡而产生的电压和电流不平衡来启动继电器。这些保护方式各有优缺点,我们可以根据需要选择。 单星形接线的电容器组目前国内广泛采用开口三角电压保护。 对于没有放电电阻的电容器,将放电线圈的一次侧与电容器并联,二次侧接成开口三角形,在开口处连接一只低整定值的电压继电器,在正常运行时,三相电压平衡,开口处电压为零,当电容器因故障被切除后,即出现差电压U0,保护采集到差电压后即动作掉闸。 4 不平衡电流保护 这种保护方式是利用故障相容抗变化后,电流变化与正常相电流间形成差电流,来启动过电流继电器,以达到保护电容器组的目的。常见的不平衡电流保护的方式有以下两种: 4.1 双星形中性点间不平衡电流保护 保护所用的低变比TA串接于双星型接线的两组电流器的中性线上,在正常情况下,三相阻抗平衡,中性点间电压差为零,没有电流流过中性线。如果某一台或几台电容器发生故障,故障相的电压下降,中性点出现电压,中性线有不平衡电流I0流过,保护采集到不平衡电流后即动作掉闸。

并联电容器无功补偿方案

课程设计 并联电容器无功补偿方案设计 指导老师:江宁强 1010190456 尹兆京

目录 1绪论 (2) 1.1引言 (2) 1.2无功补偿的提出 (3) 1.3本文所做的工作 (3) 2无功补偿的认识 (3) 2.1无功补偿装置 (3) 2.2无功补偿方式 (4) 2.3无功补偿装置的选择 (4) 2.4投切开关的选取 (4) 2.5无功补偿的意义 (5) 3电容器无功补偿方式 (5) 3.1串联无功补偿 (5) 3.2并联无功补偿 (6) 3.3确定电容器补偿容量 (6) 4案例分析 (6) 4.1利用并联电容器进行无功功率补偿,对变电站调压 (6) 4.2利用串联电容器,改变线路参数进行调压 (13) 4.3利用并联电容器进行无功功率补偿,提高功率因素 (15) 5总结 (21) 1绪论 1.1引言 随着现代科学技术的发展和国民经济的增长,电力系统发展迅猛,负荷日益增多,供电容量扩大,出现了大规模的联合电力系统。用电负荷的增加,必然要

求电网系统利用率的提高。但由于接入电网的用电设备绝大多数是电感性负荷,自然功率因素低,影响发电机的输出功率; 降低有功功率的输出; 影响变电、输电的供电能力; 降低有功功率的容量; 增加电力系统的电能损耗; 增加输电线路的电压降等。因此,连接到电网中的大多数电器不仅需要有功功率,还需要一定的无功功率。 1.2无功补偿的提出 电网输出的功率包括两部分:一是有功功率;二是无功功率。无功,简单的说就是用于电路内电场与磁场的交换,并用来在电气设备中建立和维持磁场的电功率。电机和变压器中的磁场靠无功电流维持,输电线中的电感也消耗无功,电抗器、荧光灯等所有感性电路全部需要一定的无功功率。为减少电力输送中的损耗,提高电力输送的容量和质量,必须进行无功功率的补偿。 1.3本文所做的工作 主要对变电站并联电容器无功补偿作了简单的分析计算,提出了目前在变电站无功补偿实际应用中计算总容量与分组的方法,本文主要作了以下几个方面的工作: 对无功补偿作了简单的介绍,尤其是电容器无功补偿,选取了相关的案例进行了简单的计算和分析。 2无功补偿的认识 2.1无功补偿装置 变电站中传统的无功补偿装置主要是调相机和静电电容器。随着电力电子技术的发展及其在电力系统中的应用,交流无触点开关SCR、GTR、GTO等相继出现,将其作为投切开关无功补偿都可以在一个周波内完成,而且可以进行单相调节。如今所指的静止无功补偿装置一般专指使用晶闸管投切的无功补偿设备,主要有以下三大类型: 1、具有饱和电抗器的静止无功补偿装置; 2、晶闸管控制电抗器、晶闸管投切电容器,这两种装置统称为SVC 3、采用自换相变流技术的静止无功补偿装置——高级静止无功发生器。

滤波电容的选型与计算(详解)

电源滤波电容的选择与计算 电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载上或将电感串联在负载上,可滤去交流纹波.。电容滤波属电压滤波,是直接储存脉动电压来平滑输出电压,输出电压高,接近交流电压峰值;适用于小电流,电流越小滤波效果越好。电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。电容和电感的很多特性是恰恰相反的。一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。 低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。因此在使用中会因电解液的频繁极化而产生较大的热量。而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。 电源滤波电容的大小,平时做设计,前级用4.7u,用于滤低频,二级用0.1u,用于滤高频,4.7uF的电容作用是减小输出脉动和低频干扰,0.1uF的电容应该是减小由于负载电流瞬时变化引起的高频干扰。一般前面那个越大越好,两个电容值相差大概100倍左右。电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好! 电容的等效模型为一电感L,一电阻R和电容C的串联, 电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C. 因而可等效为串联LC回路求其谐振频率,串联谐振的条件为WL=1/WC,W=2*PI*f,从而得到此式子f=1/(2pi*LC).,串联LC回路中心频率处电抗最小表现为纯电阻,所以中心频 率处起到滤波效果.引线电感的大小因其粗细长短而不同,接地电容的电感一般是1MM为

电容器的接线方式

电容器的接线方式 (2011-07-29 17:08:10) 容量相同的三相电容器,当为星型接法和角型接法时,其额定电流是不相同的,容量的不同存在外形差异。当三相电容器的额定电压与电网额定电压相同时,三相电容器应采用角形连接,因为若采用星形连接,每相电压为线电压的1/1.732,电容器的输出容量将减少。当单相电容器的额定电压低于电网额定电压时,应采用星形连接,或几个电容器串联后,使每相电容器组的额定电压高于或等于电网的额定电压,再接成角形。 近期遇到一个用户补偿要求,其内容为“低压380V系统,要求并联电容器为三相、星型接法、中性点不引出”。可见这种补偿是可以的。其目的可能是线路补偿,工厂里可能用于短路容量较大的地方等。 容量(Q)和电容值(C)是两个概念。电容值是制造概念,当电容器制造出来后,除非损坏,C是不变的。容量是使用概念,是当电容器使用在某电压和频率下所能输出的无功 (Q=ωCU2)。所以,容量相同,电压相同,频率相同的三相电容器,无论是接星还是接角,电流都是一样的(Q=√3UI)。体积是和设计和工艺有关的,例如,我国目前1000v一下并联电容器均采用金属化电容器,由于基膜和镀膜工艺的关系,很少厂家使用4.8um的基膜,所以,690v(一般接星)产品和400v(一般接角)产品体积相差不大,而400v产品和230v (一般接角)产品体积相差较大。“低压380V系统,要求并联电容器为三相、星型接法、中性点不引出”。一般单纯补偿不采用如此接法。如果是系统电压高,可用440v甚至525v 产品,如果是分相补偿,“中性点”要引出。可能是用于滤波吧。如果用于滤波,建议采用滤波电容器,虽然贵点,毕竟谐波不是降低并联电容器使用电压就能解决的 一、当单台电容器为三相时,其标注的额定电压如6.6KV/√3和6.6KV。这两种标注方式主要区别在于说明此三相电容内部接线方式分为星型Y和三角型Δ两种。而加在三相电容器三个接线端电压均为线电压6.6KV。计算其额定电流时和标注中6.6KV/√3分母上的√3无关,不管是Y接法Δ接法,U均为6.6KV。而不是6.6KV/√3。根据三相电功率P=√3IU 得出I=P/√3U(不论星型Y和三角型Δ接法。不考虑COSΦ。)。P为电容器额定容量Karv ,U为电网线电压。 二、当单台电容器为单相时,其标注的额定电压如6.6KV/√3和6.6KV,这两种标注方式主要区别在于说明: 1、标称6.6KV /√3的单台电容当组成电容器组接在三相电网时只能接成Y,电网线电压为6.6KV时,此时电容两个接线柱实际电压为6.6KV/√3即3.8KV。否则当接成Δ时电容器就会过电压,当单只电容接电源时只能接在3.8KV电网中而不是6.6KV电网。这时计算单台电容器电流时I=P/U, P为电容器额定容量Karv ,U为6.6KV/√3即3.8KV也就是电网电压的相电压而不是线电压6.6KV。 2、标称6.6KV的单台电容当组成电容器组接在三相电网时只能接成Δ,如果接成Y时,由于电容器两端实际电压降成相电压6.6KV/√3即3.8KV,他就达不到它的标称Karv 值。

滤波电容的计算方法

关于电压型变频器直流环节滤波电容的计算方法 作者:浙江大学王青松 关键词:整流电路,电压型变频器,纹波 摘要:电压型变频器直流环节并入电容对整流电路的输出进行滤波,理论上电容值越大,电压纹波越小,但是从空间和成本上考虑并不能如此。详细论述了三相输入和单相输入变频器滤波电容的计算方法,为电压型变频器不同功率的负载所需滤波电容的选择提供了理论依据。最后通过实验证明了该算法可行、可靠,不仅保证了产品的性能,更节约了成本。 0 引言 虽然利用整流电路可以将交流电变换成直流电,但是在三相电路中这种直流电压或电流含有频率为电源频率6倍的电压或电流纹波。此外,变频器逆变电路也将因输出和载波频率等原因而产生纹波电压或电流,并反过来影响直流电压或电流的品质。因此,为了保证逆变电路和控制电路能够得到高质量的直流电压或电流,必须对直流电压或电流进行滤波,以减少电压或电流的脉动。 直流环节是指插在直流电源和逆变电路之间的滤波电路,其结构的差异将对变换器的性能产生不同的影响:凡是采用电感式结构,其输入电流纹波较小,类似电流源性质;凡是采用电容式结构,其输入端电压纹波较小,类似电压源性质。 对电压型变频器米说,整流电路的输出为直流电压,直流中间电路则通过大电解电容对该电压进行滤波;而对于电流型变频器米说,整流电路的输出为直流电流,中间电路则通过大电感对该电流进行滤波。 l 三相变频器直流中间电路电解电容的计算 1.1 变频器及直流中间电路结构框图 变频器及直流中间电路结构图如图1所示。

1.2 三相输入及整流后的电压波形 三相输入线电压220V及整流后的电压波形如图2所示。 图2中,Ua、Ub、Uc是三相三线制的三相输入相电压;uc是电容电压,ur是整流之后未加电容时的电压。 1.3 分析过程 1.3.l 整流后电压的计算 对于三相三线制输入线电压为220V系列变频器(以下简称220V系列)来说U=220V;对于440V系列,U=440V。

高压电容器的安装与接线方法

高压电容器的安装与接线方法 一、电容器的安装 电容器所在环境温度不应超过40℃、周围空气相对湿度不应大于80%、海拔高度不应超过1000m;周围不应有腐蚀性气体或蒸气、不应有大量灰尘或纤维;所安装环境应无易燃、易爆危险或强烈震动。 电容器室应为耐火建筑,耐火等级不应低于二级;电容器室应有良好的通风。 总油量300kg以上的高压电容器应安装在单独的防爆室内;总油量300kg以下的高压电容器和低压电容器应视其油量的多少安装在有防爆墙的间隔内或有隔板的间隔内。 电容器应避免阳光直射,受阳光直射的窗玻璃应涂以白色。 电容器分层安装时一般不超过三层;层与层之间不得有隔板,以免阻碍通风;相邻电容器之间的距离不得小于50mm;上、下层之间的净距不应小于20cm;下层电容器底面对地高度不宜小 于30cm。电容器铭牌应面向通道。 电容器外壳和钢架均应采取接PE线措施。 电容器应有合格的放电装置。高压电容器可以用电压互感器的高压绕组作为放电负荷;低压电容器可以用灯泡或电动机绕组作为放电负荷。放电电阻阻值不宜太高。只要满足经过30s放电后电容器最高残留电压不超过安全电压即可。采用三角形接法时,10kV电容器每相放电电阻可按下式计算

(11-1) 式中U-线电压,kV; Q-每相电容器容量,kvar。 经常接入的放电电阻也不宜太小,以节约电能。放电电阻的比功率损耗(单位电容器容量的功率损耗)不应超过1W/kvar。 高压电容器组和总容量30kvar及以上的低压电容器组,每相应装电流表:总容量60kvar及以上的低压电容器组应装电压表。 二、电容器的接线 三相电容器内部为三角形接线。单相电容器应根据其额定电压和线路的额定电压确定接线方式。电容器额定电压与线路线电压相符时采用三角形接线。电容器额定电压与线路相电压相符时采用星形接线。 为了取得良好的补偿效果,应将电容器分成若干组分别接向电容器母线。每组电容器应能分别控制、保护和放电。电容器的三种基本接线方式为低压集中补偿、低压分散补偿和高压补偿,如图11-2所示。 图11-2 电容器接线 (a)低压集中补偿:(b)低压分散补偿;(c)高压补偿

电力电容器保护原理解释

电力电容器保护原理解 释 文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

常见电力电容器保护类型: 电容器保护 1 保护熔丝 现代电容器组的每台电容器上都装有单独的熔丝保护,这种熔丝结构简单,安装方便,只要配合得当,就能够迅速将故障电容器切除,避免电容器的油箱发生爆炸,使附近的电容器免遭波及损坏。此外,保护熔丝还有明显的标志,动作以后很容易发现,运行人员根据标志便可容易地查出故障的电容器,以便更换。 2 过电流保护 (电流取自线路TA) 过电流保护的任务,主要是保护电容器引线上的相间短路故障或在电容器组过负荷运行时使开关跳闸。电容器过负荷的原因,一是运行电压高于电容器的额定电压,另一种情况是谐波引起的过电流。 为避免合闸涌流引起保护的误动作,过电流保护应有一定的时限,一般将时限整定到0.5s以上就可躲过涌流的影响。 3 不平衡电压保护 (电压取自放电TV二次侧所构成的开口三角型) 电容器发生故障后,将引起电容器组三相电容不平衡。电容器组的各种主保护方式都是从这个基本点出发来确定的。 根据这个原理,国内外采用的继电保护方式很多,大致可以分为不平衡电压和不平衡电流保护两种。这两种保护,都是利用故障电容器被切

除后,因电容值不平衡而产生的电压和电流不平衡来启动继电器。这些保护方式各有优缺点,我们可以根据需要选择。 单星形接线的电容器组目前国内广泛采用开口三角电压保护。 对于没有放电电阻的电容器,将放电线圈的一次侧与电容器并联,二次侧接成开口三角形,在开口处连接一只低整定值的电压继电器,在正常运行时,三相电压平衡,开口处电压为零,当电容器因故障被切除后,即出现差电压U0,保护采集到差电压后即动作掉闸。 4 不平衡电流保护 这种保护方式是利用故障相容抗变化后,电流变化与正常相电流间形成差电流,来启动过电流继电器,以达到保护电容器组的目的。常见的不平衡电流保护的方式有以下两种: 4.1 双星形中性点间不平衡电流保护 保护所用的低变比TA串接于双星型接线的两组电流器的中性线上,在正常情况下,三相阻抗平衡,中性点间电压差为零,没有电流流过中性线。如果某一台或几台电容器发生故障,故障相的电压下降,中性点出现电压,中性线有不平衡电流I0流过,保护采集到不平衡电流后即动作掉闸。

并联电容器补偿装置基础知识

并联电容器补偿装置基本知识 无功补偿容量计算的基本公式: Q = P (tg φ1——tg φ2) =P( 1cos 1 1cos 12 2 12---?? ) tg φ1、tg φ2——补偿前、后的计算功率因数角的正切值 P ——有功负荷 Q ——需要补偿的无功容量 并联电容器组的组成 1.组架式并联电容器组:并联电容器、隔离开关(接地开关或隔离带接地)、放电线圈、串联电抗器、氧化锌避雷器、并联电容器专用熔断器、组架等。 2.集合式并联电容器组(无容量抽头):并联电容器、隔离开关(接地开关或隔离带接地)、放电线圈、串联电抗器、氧化锌避雷器、组架等。 并联电容器支路串接串联电抗器的原因: 变电所中只装一组电容器时,一般合闸涌流不大,当母线短路容量不大于80倍电容器组容量时,涌流将不会超过10倍电容器组额定电流。可以不装限制涌流的串联电抗器。 由于现在系统中母线的短路容量普遍较大,且变电所同时装设两组以上的并联电容器组的情况较多,并联电容器组投入运行时,所受到的合闸涌流值较大,因而,并联电容器组需串接串联电抗器。 串联电抗器的另一个主要作用是当系统中含有高次谐波时,装设并联电容器装置后,电容器回路的容性阻抗会将原有高次谐波含量放大,使其超过允许值,这时应在电容器回路中串接串联电抗器,以改变电容器回路的阻抗参数,限制谐波的过分放大。 串联电抗器电抗率的选择 对于纯粹用于限制涌流的目的,串联电抗器的电抗率可选择为(0.1~1)%即可。 对于用于限制高次谐波放大的串联电抗器。其感抗值的选择应使在可能产生的任何谐波下,均使电容器回路的总电抗为感性而不是容性,从而消除了谐振的可能。电抗器的感抗值按下列计算: X L =K X C n 2 式中 X L ——串联电抗器的感抗,Ω; X C ——补偿电容器的工频容抗, Ω;

如何选择和计算滤波电容--电容使用详述

如何选择和计算滤波电容?--电容使用详述 嵌入式非其他类中的 2009-05-31 17:32 阅读617 评论1 字号:大中小 问:在电路设计过程中,要用电容来进行滤波.有时要用电解电容,有时要陶瓷电容.有时两种均要用到.我想问一下:用电解电容的作用是什么?用普通陶瓷电容的作用是什么?如何计算其容量的???对于电解电容的耐压 又该如何选择确定? 哪些情况用电解电容,哪些情况下用陶瓷电容,哪些情况下两种均要用? ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 答: ----- 滤波电容范围太广了,这里简单说说电源旁路(去藕)电容。 滤波电容的选择要看你是用在局部电源还是全局电源。对局部电源来说就是要起到瞬态供电的作用。为什么要加电容来供电呢?是因为器件对电流的需求随着驱动的需求快速变化(比如DDR controller),而在高频的范围内讨论,电路的分布参数都要进行考虑。由于分布电感的存在,阻碍了电流的剧烈变化,使得在芯片电源脚上电压降低--也就是形成了噪声。而且,现在的反馈式电源都有一个反应时间--也就是要等到电压波动发生了一段时间(通常是ms或者us级)才会做出调整,对于ns 级的电流需求变化来说,这种延迟,也形成了实际的噪声。所以,电容的作用就是要提供一个低感抗(阻抗)的路线,满足电流需 求的快速变化。 基于以上的理论,计算电容量就要按照电容能提供电流变化的能量去计算。选择电容的种类,就需要按照它的寄生电感去考虑--也就是寄生电感要小于电源路径的分布电感。 具体的说明在很多书上都有。提供一个参考书:high speed digital design ch8.2. ------------------------------ 讨论问题必须从本质上出发。首先,可能都知道电容对直流是起隔离作用的,而电感器的作用则相反。所有的都是基于基本原理的。那这时,电容就有了最常见的两个作用。一是用于极间隔离直流,有人也叫作耦合电容,因为它隔离了直流,但要通过交流信号。直流的通路局限在几级间,这样可以简化工作点很复杂的计算,二是滤波。基本上就是这两种。作为耦合,对电容的数值要求不严,只要其阻抗不要太大,从而对信号衰减过大即可。但对于后者,就要求从滤波器的角度出发来考虑,比如输入端的电源滤波,既要求滤除低频(如有工频引起的)噪声,又要滤除高频噪声,故就需要同时使用大电容和小电容。有人会说,有了大电容,还要小的干什么?这是因为大的电容,由于极板和引脚端大,导致电感也大,故对高频不起作用。而小电容则刚好相反。巨细据此可以确定电容量。而对于耐压,任何时候都必须满足,否则,就会爆炸,即使对于非电解电容,有时不爆炸,其性能也有所下降。讲起来,太多了,先谈这么多。 --------------------- 都是滤波的作用,铝电解电容容量比较大,主要用于虑除低频干扰。容量大约为1mA电流对应2~3μf,如过要求高的时候可以1mA对应5~6μf。无极性电容用于虑除高频信号。单独使用的时候大部分是去藕用的。有时可以与电解电容并联使用。陶瓷电容的高频特性比较好,但是在某个频率(大约是6MHz记不 太清了)是容量下降的很快。 ---------- 电容的寄生电感主要包括内部结构决定的电感和引线电感。电解电容的寄生电感主要由内部结构决定。印象中铝电解电容在20~30k以上就表现除明显的电感特性。钽电容在1MHz左右。陶瓷电容的高频特性就好很多。但是陶瓷电容有压电效应,不适于音频放大电路的输入和输出。 --------------- 这是因为大的电容,由于极板和引脚端大,导致电感也大,故对高频不起作用。而小电容则刚好相反。巨

电容接线 (2)

国内运行的电容器组有两类接线:三角形类(单三角形、双三角形);星形类(单星形、双星形)。在电业部门以单星形接线最多,例如,截至1988年末东北电网局属变电所中有电容器346组,其中单星形接线259组,占74.9%,双星形接线11组,还有76组是过去遗留下来的三角形接线。在工矿企业却大量存在三角形接线电容器组。当三角形接线电容器组发生电容器全击穿短路时,即相当于相间短路,注入故障点的能量不仅有故障相健全电容器的涌放电流,还有其他两相电容器的涌放电流和系统的短路电流。这些电流的能量远远超过电容器油箱的耐爆能量,因而油箱爆炸事故较多。全国各地发生了不少三角形接线电容器组的爆炸起火事故,损失严重。而星形接线电容器组发生电容器全击穿短路时,故障电流受到健全相容抗的限制,来自系统的工频电流将大大降低,最大不超过电容器组额定电流的三倍,并且没有其他两相电容器的涌放电流,只有来自同相的健全电容器的涌放电流,这是星形接线电容器组油箱爆炸事故较低的重要原因之一。在操作过电压保护方面,三角形接线电容器组的避雷器的运行条件和保护效果,均不如星形接线电容器组好。因此,国内比较一致的意见是舍弃三角形接线,采用单星形或双星形接线。1985年以后,电业部门执行统一的部颁设计标准,新(扩)建电容器组均未采用三角形接线。工矿企业与民用部门,因受以前的影响和无统一标准,直到近期仍在设计安装三角形电容器组,所以,制订全国统一的设计标准后应纠正这种状况,除个别特殊情况而外,均要采用星形接线方式。 电容器并联补偿有星形和三角形两种接线方式。 如果电容器的额定电压与电网电压相同,应采用三角形(△)接线法。因为三角形接线时,即使电容器有一相熔断器熔断或发生单相接地短路,其他两相电容器所承受的电压不变,仍可正常工作。因此,在高压侧集中补偿时,多采用三角形接线法。如果采用星形(Y)接线法,情况就不相同。例如在三相三线制系统中,当其中一相熔断器熔断时,其他两相的电压下降,电容器不能正常工作;当发生单相接地短路时,其他两相的电压将升高到线电压,容易造成电容器击穿。无论采用哪种接线方式,都应使电容器承受的电压与本身的额定电压相符。电容器长时间过电压运行是不允许的,而且其运行电压也不能过多地低于额定电压,否则将使无功出力下降,电容器得不到充分利用。 并联电容器组接线将并联电容器连接成三相电容器组的接线方式。选择接线方式要考虑:①安全的原则,不要因电容器内部故障而引起相间短路;②电容器组的姆破能t不能过大,即并联接线的台数不能过多,以免因一台电容器故障其他完好电容器对其放电而引起爆炸,一般而言,爆破能量按12kw·s来考虑.③电容器故障的继电保护灵敏度及其是否简单可靠。④电容器组的每相或每个桥臂,由多台电容器申联组合时,应采用先并联后串联的接线方式. 并联电容器组接线通常有单星形接线、双星形接线和三角形接线三种,如图所示。上上上上土土并联电容器组接线(a)单星形;(b)双星形;(c)三角形单星形接线电容器的一端分别接向各相电源,另一端连接在一起构成三相中性点的接线,如图(a)所示。单星形接线的优点是:接线简单,投资省,有多种保护方式,并且当任一台电容器被击穿时,故障电流都将受到限制,一般不会导致电容器爆炸。缺点是:当一相中的一台电容器被击穿时,如不加以隔离,将使其他两相电容器严重过电压。单星形接线方式适用于中型电容器组。双星形接线由两个单星形接线的并联电容器组并联连接而成的接线,如图(b)所示.与单星形接线相比,双星形接线的突出优点是:可在两组电容器的中性点连线上加装简单且十分灵敏可靠的电流或电压不平衡保护。缺点是:接线复杂、占地大。双星形接线方式适用于大型高压电容器组。三角形接线任一电容器的两端分别与两相邻电容器的一端连接而成三角形的接线.如图(c)所示. 三角形接线的优点是:接线简单,投资省,每一电容器的运行电压与其它两相电容器的状况有关。缺点是:当每相只有一个串联节时,任一台电容器被击穿都会造成两相短路,故障电流很大,容易引起电容器爆炸,如果采用单台熔断器进行保

电力电容器的保护原理及技术要求

电力电容器保护原理技术要求 (1)电容器组应采用适当保护措施,如采用平衡或差动保护或采用瞬时作用过电流继电保护,对于3.15kV及以上的电容器,必须在每个电容器上装置单独的熔断器,熔断器的额定电流应按熔丝的特性和接通时的涌流来选定,一般为1.5倍电容器的额定电流为宜,以防止电容器油箱爆炸。 (2)除上述指出的保护形式外,在必要时还可以作下面的几种保护: ①如果电压升高是经常及长时间的,需采取措施使电压升高不超过1.1倍额定电压。 ②用合适的电流自动开关进行保护,使电流升高不超过1.3倍额定电流。 ③如果电容器同架空线联接时,可用合适的避雷器来进行大气过电压保护。 ④在高压网络中,短路电流超过20A时,并且短路电流的微机保护装置或熔丝不能可靠地保护对地短路时,则应采用单相短路保护装置。 (3)正确选择电容器组的保护方式,是确保电容器安全可靠运行的关键,但无论采用哪种保护方式,均应符合以下几项要求: ①保护装置应有足够的灵敏度,不论电容器组中单台电容器内部发生故障,还是部分元件损坏,电容器保护装置都能可靠地动作。

②能够有选择地切除故障电容器,或在电容器组电源全部断开后,便于检查出已损坏的电容器。 ③在电容器停送电过程中及电力系统发生接地或其它故障时,保护装置不能有误动作。 ④保护装置应便于进行安装、调整、试验和运行维护。 ⑤消耗电量要少,运行费用要低。 (4)电容器不允许装设自动重合闸装置,相反应装设无压释放自动跳闸装置。主要是因电容器放电需要一定时间,当电容器组的开关跳闸后,如果马上重合闸,电容器是来不及放电的,在电容器中就可能残存着与重合闸电压极性相反的电荷,这将使合闸瞬间产生很大的冲击电流,从而造成电容器外壳膨胀、喷油甚至爆炸。 电容器组保护: 开口三角保护,开口三角形保护标准名称为零序电压保护,多用于单星形接线 (对于没有放电电阻的电容器,将放电线圈的一次侧与电容器并联,二次侧接成开口三角形,在开口处连接一只低整定值的电压继电器,在正常运行时,三相电压平衡,开口处电压为零,当电容器因故障被切除后,即出现差电压U0,保护装置采集到差电压后即动作掉闸。 并联电容器组的保护及应用

详细解析电源滤波电容的选取与计算

电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载上或将电感串联在负载上,可滤去交流纹波.。电容滤波属电压滤波,是直接储存脉动电压来平滑输出电压,输出电压高,接近交流电压峰值;适用于小电流,电流越小滤波效果越好。电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。电容和电感的很多特性是恰恰相反的。 一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。 低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。因此在使用中会因电解液的频繁极化而产生较大的热量。而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。 电源滤波电容的大小,平时做设计,前级用4.7u,用于滤低频,二级用0.1u,用于滤高频,4.7uF的电容作用是减小输出脉动和低频干扰,0.1uF的电容应该是减小由于负载电流瞬时变化引起的高频干扰。一般前面那个越大越好,两个电容值相差大概100倍左右。电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好! 电容的等效模型为一电感L,一电阻R和电容C的串联, 电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C. 因而可等效为串联LC回路求其谐振频率,串联谐振的条件为WL=1/WC,W=2*PI*f,从而得到此式子f=1/(2pi*LC).,串联LC回路中心频率处电抗最小表现为纯电阻,所以中心频率处起到滤波效果.引线电感的大小因其粗细长短而不同,接地电容的电感一般是1MM为10nH左右,取决于需要接地的频率。 采用电容滤波设计需要考虑参数: ESR ESL 耐压值 谐振频率

单三角形接线电容器组的保护

本文要点:在集中补偿的电容器组的各种接线中,单三角形接线居多数,为提高安全运行水平,研究这种接线方式的保护,具有普遍的意义。本文阐明: 1、RN1型熔丝单台保护灵敏度底,不能可靠的防止电容器爆破及由此引起的火灾。 2、过电流保护作为电容器组外部相间短路保护,但仍不能防止电容器爆破及火灾。 3、零序保护作单台内部保护,其灵敏度和速动性比较理想,可作为主保护。 4、失压保护同过压保护一样重要,忽视失压保护,有可能引起群爆。 因此,单三角形接线的电容器组,采用上述五种保护,可有效地防止电容爆破及由此引起的火灾,提高安全运行水平。 一、RN1型熔丝单台保护及存在的问题: 1、RN1型熔丝作电容器内部保护,目前使用比较普遍。单台保护按电容器额定电流的1.5-2.5倍选择熔丝.现场使用中,RN1型熔丝一般能反映出电容器内部故障,但仍发生爆破事故,甚至引起火灾.这说明无论从理论计算,或运行实践验证, RN1熔丝灵敏度低.对近年 来所生产的YW10.5—— ——1三种电容器,用RN1型熔丝单台保护,保护效果计算,仍说明这个问题.表1是根据RN1——10/3A—5A熔丝50秒熔断电流值,使用公式 计算得出的结果 从表1看出,上述三种电容器,当内部元件击穿83—85 % ,熔丝50秒钟才熔断,速动性很差,灵敏度低,将导致电容器爆破. 从电压角度分析可进一步看清这个问题.YW10.5型电容器有十二个串联元件,当击穿系数λ为83 % 时,10个元件击穿,剩余2个元件工作.每个元件的额定电压为0.875KV,两个元

件为1.75KV.此时,剩余2个元件承受的网络电压为10KV,约为其额定电压的6倍.在6倍于额定电压作用下,这两个元件将很快击穿.加之,此时已击穿元件对工作元件放电,瞬间释放能量很大.在强电场作用下,绝缘油将迅速分解产生大量气体,气体压力剧增,外壳承受不了高压气体的压力作用,在这瞬间熔丝来不及熔断,故障电容器发展为相同短路而爆破. 南阳地区某变电站,采用RN1——10/3A熔丝保护YY10.5-12-1电容器,有2台电空器爆破后检查熔丝熔断。实例说明RN型熔丝的速动性差灵敏度低不能可靠防止爆破.但有7台由于内部元件击穿 而鼓肚,熔丝熔断,说明运行效果比较满意。 因此,单台熔丝保护是必要的,但不能作为防止爆破的主保护。 二、过电流保护: 过电流保护,作为电容器组外部相间短路保护。其保护范围在电缆终端盒 至放电PT柜引接母线间,以及电容器相与相之间。 过电流保护的整定值 式中:Idz——继电器动作值,安。 ICN——电容器组额定线电流,安。 KK——可靠系数,取2.0~2.5. Kjl——接线系数,继电器全星接,不完全星接均为1。 no——电流互感器变比。 过电流保护不能作为电容器内部故障保护,当内部元件全部击穿引塌直间短路时,过电流保护才动作,因此过电流保护也不能防止电容器爆破(南阳市某变电站电容器爆破两台,同时过电流动作) 三、零序保护: 1、零序保护的接线,如图1,2,3,所示。 三只电流LH——3LH的一次侧接三角形内部各相,二次侧星接与电流继电器线圈串联构成回路,直流回路如图3示。

并联电容器设计要求规范

并联电容器装置设计规范(GB50227-95) 第一章总则 第1.0.1条为使电力工程的并联电容器装置设计贯彻国家技术经济政策, 做到安全可靠、技术先进、经济合理和运行检修方便,制订本规范. 第1.0.2条本规范适用于220KV及以下变电所、配电所中无功补偿用三相交流高压、低压并联电容器装置的新建、扩建工程设计. 第1.0.3条并联电容器装置的设计, 应根据安装地点的电网条件、补偿要求、环境状况、运行检修要求和实践经验,确定补偿容量、选择接线、保护与控制、布置及安装方式. 第1.0.4条并联电容器装置的设备选型, 应符合国家现行的产品标准的规定. 第1.0.5条并联电容器装置的设计,除应执行本规范的规定外,尚应符合国家现行的有关标准和规范的规定. 第二章-1 术语 1.高压并联电容器装置 (installtion of high voltage shunt capacitors): 由高压并联电容器和相应的一次及二次配套设备组成, 可独立运行或并联运行的装置. 2.低压并联电容器装置 (installtion of low voltage shunt capacitors): 由低压并联电容器和相应的一次及二次配套元件组成, 可独立运行或并联运行的装置. 3.并联电容器的成套装置 (complete set of installation for shunt capacitors): 由制造厂设计组装设备向用户供货的整套并联电容器装置. 4.单台电容器(capacitor unit): 由一个或多个电容器元件组装于单个外壳中并引出端子的组装体. 5.电容器组(capacitor bank): 电气上连接在一起的一群单台电容器. 6.电抗率(reactance ratio): 串联电抗器的感抗与并联电容器组的容抗之比,以百分数表示.

如何选择和计算滤波电容

如何选择和计算滤波电容 问:在电路设计过程中,要用电容来进行滤波.有时要用电解电容,有时要陶瓷电容.有时两种均要用到.我想问一下:用电解电容的作用是什么?用普通陶瓷电容的作用是什么?如何计算其容量的???对于电解电容的耐压又该如何选择确定? 哪些情况用电解电容,哪些情况下用陶瓷电容,哪些情况下两种均要用? ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 答: ----- 滤波电容范围太广了,这里简单说说电源旁路(去藕)电容。 滤波电容的选择要看你是用在局部电源还是全局电源。对局部电源来说就是要起到瞬态供电的作用。为什么要加电容来供电呢?是因为器件对电流的需求随着驱动的需求快速变化(比如DDR controller),而在高频的范围内讨论,电路的分布参数都要进行考虑。由于分布电感的存在,阻碍了电流的剧烈变化,使得在芯片电源脚上电压降低--也就是形成了噪声。而且,现在的反馈式电源都有一个反应时间--也就是要等到电压波动发生了一段时间(通常是ms或者us级)才会做出调整,对于ns 级的电流需求变化来说,这种延迟,也形成了实际的噪声。所以,电容的作用就是要提供一个低感抗(阻抗)的路线,满足电流需求的快速变化。 基于以上的理论,计算电容量就要按照电容能提供电流变化的能量去计算。选择电容的种类,就需要按照它的寄生电感去考虑--也就是寄生电感要小于电源路径的分布电感。 具体的说明在很多书上都有。提供一个参考书:high speed digital design ch8.2. ------------------------------ 讨论问题必须从本质上出发。首先,可能都知道电容对直流是起隔离作用的,而电感器的作用则相反。所有的都是基于基本原理的。那这时,电容就有了最常见的两个作用。一是用于极间隔离直流,有人也叫作耦合电容,因为它隔离了直流,但要通过交流信号。直流的通路局限在几级间,这样可以简化工作点很复杂的计算,二是滤波。基本上就是这两种。作为耦合,对电容的数值要求不严,只要其阻抗不要太大,从而对信号衰减过大即可。但对于后者,就要求从滤波器的角度出发来考虑,比如输入端的电源滤波,既要求滤除低频(如有工频引起的)噪声,又要滤除高频噪声,故就需要同时使用大电容和小电容。有人会说,有了大电容,还要小的干什么?这是因为大的电容,由于极板和引脚端大,导致电感也大,故对高频不起作用。而小电容则刚好相反。巨细据此可以确定电容量。而对于耐压,任何时候都必须满足,否则,就会爆炸,即使对于非电解电容,有时不爆炸,其性能也有所下降。讲起来,太多了,先谈这么多。 --------------------- 都是滤波的作用,铝电解电容容量比较大,主要用于虑除低频干扰。容量大约为1mA电流对应2~3μf,如过要求高的时候可以1mA对应5~6μf。无极性电容用于虑除高频信号。单独使用的时候大部分是去藕用的。有时可以与电解电容并联使用。陶瓷电容的高频特性比较好,但是在某个频率(大约是6MHz记不太清了)是容量下降的很快。 ---------- 电容的寄生电感主要包括内部结构决定的电感和引线电感。电解电容的寄生电感主要由内部结构决定。印象中铝电解电容在20~30k以上就表现除明显的电感特性。钽电容在1MHz 左右。陶瓷电容的高频特性就好很多。但是陶瓷电容有压电效应,不适于音频放大电路的输入和输出。

用并联电容器补偿无功功率的原理及相关方法

用并联电容器补偿无功功率的原理及相关方法 无功补偿的原理:电网输出的功率包括两部分;一是有功功率;二是无功功率.直接消耗电能,把电能转变为机械能,热能,化学能或声能,利用这些能作功,这部分功率称为有功功率;不消耗电能;只是把电能转换为另一种形式的能,这种能作为电气设备能够作功的必备条件,并且,这种能是在电网中与电能进行周期性转换,这部分功率称为无功功率,如电磁元件建立磁场占用的电能,电容器建立电场所占的电能.电流在电感元件中作功时,电流超前于电压90℃.而电流在电容元件中作功时,电流滞后电压90℃.在同一电路中,电感电流与电容电流方向相反,互差180℃.如果在电磁元件电路中有比例地安装电容元件,使两者的电流相互抵消,使电流的矢量与电压矢量之间的夹角缩小,从而提高电能作功的能力,这就是无功补偿的道理. 集中补偿电容器作为补偿装置有两种方法:串联补偿和并联补偿。串联补偿是把直接串联到高压输电线路上,以改善输电线路参数,降低电压损失,提高其输送能力,降低线路损耗。这种补偿方法的电容器称作串联电容器,应用于高压远距离输电线路上,用电单位很少采用。并联补偿是把电容器直接与被补偿设备并接到同一电路上,以提高功率因数。这种补偿方法所用的电容器称作并联电容器,用电企业都是采用这种补偿方法。按电容器安装的位置不同,通常有三种方式。 1.集中补偿电容器组集中装设在企业或地方总降压变电所的6~10kV母线上,用来提高整个变电所的功率因数,使该变电所的供电范围内无功功率基本平衡。可减少高压线路的无功损耗,而且能够提高本变电所的供电电压质量。

2.分组补偿将电容器组分别装设在功率因数较低的车间或村镇终端所高压或低压母线上,也称为分散补偿。这种方式具有与集中补偿相同的优点,仅无功补偿容量和范围相对小些。但是分组补偿的效果比较明显,采用得也较普遍。 3.就地补偿将电容器或电容器组装设在异步或电感性用电设备附近,就地进行无功补偿,也称为单独补偿或个别补偿方式。这种方式既能提高为用电设备供电回路的功率因数,又能改善用电设备的电压质量,对中、小型设备十分适用。

电容器组电抗器的接线方式与滤波

电容器的接线通常分为三角形和星形两种方式。此外,还有双三角形和双星形之分。 三角形接线的电容器直接承受线间电压,任何一台电容器因故障被击穿时,就形成两相短路,故障电流很大,如果故障不能迅速切除,故障电流和电弧将使绝缘介质分解产生气体,使油箱爆炸,并波及邻近的电容器。因此这种接线已经很少在10kV系统中使用,只是在380V配电系统中有少量使用。 在高压电力网中,星形接线的电容器组目前在国内外得到广泛应用。星形接线电容器的极间电压是电网的相电压,绝缘承受的电压较低,电容器的制造设计可以选择较低的工作场强。当电容器组中有一台电容器因故障击穿短路时,由于其余两健全相的阻抗限制,故障电流将减小到一定范围,并使故障影响减轻。 星形接线的电容器组结构比较简单、清晰,建设费用经济,当应用到更高电压等级时,这种接线更为有利。 星形接线的最大优点是可以选择多种保护方式。少数电容器故障击穿短路后,单台的保护熔丝可以将故障电容器迅速切除,不致造成电容器爆炸。 由于上述优点,各电压等级的高压电容器组现已普遍采用星形接线。 高压电力系统的电容器组除广泛采用星形接线外,双星形接线也在国内外得到广泛应用。所谓双星形接线,是将电容器平均分为两个电容相等或相近的星形接线电容器组,并联到电网母线,两组电容器的中性点之间经过一台低变比的电流互感器连接起来。 这种接线可以利用其中性点连接的电流保护装置,当电容器故障击穿切除后,会产生不平衡电流,使保护装置动作将电源断开,这种保护方式简单有效,不受系统电压不平衡或接地故障的影响。 大容量的电容器组,如单台容量较小,每相并联台数较多者可以选择双星形接线。如电压等级较高,每相串联段数较多,为简化结构布局,宜采用单星形接线。 电容器一次侧接有串联电抗器和并联放电线圈。放电线圈的作用是将断开电源后的电容器上的电荷迅速、可靠地释放掉。由于电容器组需要经常进行投入、切除操作,其间隔可能很短,电容器组断开电源后,其电极间储存有大量电荷,不能自行很快消失,在短时间内,其极间有很高的直流电压,待再次合闸送电时,造成电压叠加,将会产生很高的过电压,危及电容器和系统的安全运行。因此,必须安装放电线圈,将它和电容器并联,形成感容并联谐振电路,使电能在谐振中消耗掉。放电线圈应能在电容器断开电源5s内将电容器端电压下降到50V。 对串联电抗器的作用,我们做一下重点介绍: 电容器配套设置的串联电抗器是为了限制合闸涌流和限制谐波两个目的,串联电

相关文档
最新文档