2014年高考数学一轮复习精品学案(人教版A版)---函数与方程

2014年高考数学一轮复习精品学案(人教版A版)---函数与方程
2014年高考数学一轮复习精品学案(人教版A版)---函数与方程

2010年高考数学一轮复习精品学案(人教版A 版)---函数与方程

一.【课标要求】

1.结合二次函数的图像,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系;

2.根据具体函数的图像,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。

二.【命题走向】

函数与方程的理论是高中新课标教材中新增的知识点,特别是“二分法”求方程的近似解也一定会是高考的考点。从近几年高考的形势来看,十分注重对三个“二次”(即一元二次函数、一元二次方程、一元二次不等式)的考察力度,同时也研究了它的许多重要的结论,并付诸应用。高考试题中有近一半的试题与这三个“二次”问题有关

预计2010年高考对本讲的要求是:以二分法为重点、以二次函数为载体、以考察函数与方程的关系为目标来考察学生的能力

(1)题型可为选择、填空和解答;

(2)高考试题中可能出现复合了函数性质与函数零点的综合题,同时考察函数方程的思想。

三.【要点精讲】

1.方程的根与函数的零点

(1)函数零点

概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数

))((D x x f y ∈=的零点。

函数零点的意义:函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图象与x 轴交点的横坐标。即:方程0)(=x f 有实数根?函数)(x f y =的图象与x 轴有交点?函数)(x f y =有零点。

二次函数)0(2

≠++=a c bx ax y 的零点:

1)△>0,方程02=++c bx ax 有两不等实根,二次函数的图象与x 轴有两个交点,二次函数有两个零点;

2)△=0,方程02=++c bx ax 有两相等实根(二重根),二次函数的图象与x 轴有一个交点,二次函数有一个二重零点或二阶零点;

3)△<0,方程02=++c bx ax 无实根,二次函数的图象与x 轴无交点,二次函数无零点。

零点存在性定理:如果函数)(x f y =在区间],[b a 上的图象是连续不断的一条曲线,并且有0)()(

0)(=c f ,这个c 也就是方程的根。

2.二分法

二分法及步骤:

对于在区间a [,]b 上连续不断,且满足)(a f ·)(b f 0<的函数)(x f y =,通过不断地把函数)(x f 的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.

给定精度ε,用二分法求函数)(x f 的零点近似值的步骤如下: (1)确定区间a [,]b ,验证)(a f ·)(b f 0<,给定精度ε; (2)求区间a (,)b 的中点1x ; (3)计算)(1x f :

①若)(1x f =0,则1x 就是函数的零点;

②若)(a f ·)(1x f <0,则令b =1x (此时零点),(10x a x ∈); ③若)(1x f ·)(b f <0,则令a =1x (此时零点),(10b x x ∈); (4)判断是否达到精度ε;

即若ε<-||b a ,则得到零点零点值a (或b );否则重复步骤2~4。 注:函数零点的性质

从“数”的角度看:即是使0)(=x f 的实数;

从“形”的角度看:即是函数)(x f 的图象与x 轴交点的横坐标;

若函数)(x f 的图象在0x x =处与x 轴相切,则零点0x 通常称为不变号零点; 若函数)(x f 的图象在0x x =处与x 轴相交,则零点0x 通常称为变号零点。

注:用二分法求函数的变号零点:二分法的条件)(a f ·)(b f 0<表明用二分法求函数的近似零点都是指变号零点。 3.二次函数的基本性质

(1)二次函数的三种表示法:y =ax 2+bx +c ;y =a (x -x 1)(x -x 2);y =a (x -x 0)2+n 。

(2)当a >0,f (x )在区间[p ,q ]上的最大值M ,最小值m ,令x 0=2

1

(p +q )。 若-

a

b

2

若p ≤-

a b 2

2)=m ;

若-a

b 2≥q ,则f (p )=M ,f (q )=m 。

(3)二次方程f (x )=ax 2+bx +c =0的实根分布及条件。

①方程f (x )=0的两根中一根比r 大,另一根比r 小?a ·f (r )<0;

②二次方程f (x )=0的两根都大于r ???

?

????>?>->-=?0)(,2,042r f a r a b

ac b ③二次方程f (x )=0在区间(p ,q )内有两根???????

??>?>?<-

<>-=??;

0)(,0)(,2,

042p f a q f a q a

b p a

c b ④二次方程f (x )=0在区间(p ,q )内只有一根?f (p )·f (q )<0,或f (p )=0(检验)或f (q )=0(检

验)检验另一根若在(p ,q )内成立。

四.【典例解析】

题型1:方程的根与函数零点

例1.(1)方程lg x +x =3的解所在区间为( )

A .(0,1)

B .(1,2)

C .(2,3)

D .(3,+∞) (2)设a 为常数,试讨论方程)lg()3lg()1lg(x a x x -=-+-的实根的个数。 解析: (1)在同一平面直角坐标系中,画出函数y =lg x 与y =-x +3的图象(如图)。它们的交点横坐标0x ,显然在区间(1,3)内,由此可排除A ,D 至于选B 还

是选C ,由于画图精确性的限制,单凭直观就比较困难了。实际上这是要比较0x 与2的大小。当x =2时,lg x =lg2,3-x =1。由于lg2<1,因此0x >2,从而判定0x ∈(2,3),故本题应选C 。

(2)原方程等价于????

???-=-->->->-x

a x x x a x x )3)(1(00301

即???<<-+-=3

13

52

x x x a

a

构造函数)31(352

<<-+-=x x x y 和a y =,作出它们的图像,易知平行于x 轴的直线与抛物线的交点情况可得:

①当31≤

13=a 时,原方程有一解; ②当4

133<

13>

a 时,原方程无解

点评:图象法求函数零点,考查学生的数形结合思想。本题是通过构造函数用数形结合法求方程lg x +x =3解所在的区间。数形结合,要在结合方面下功夫。不仅要通过图象直观估计,而且还要计算0x 的邻近两个函数值,通过比较其大小进行判断。 例2.(2008湖南理17) 已知函数x x

x x f sin 2

sin 2cos

)(22

+-=. (I )求函数)(x f 的最小正周期;

(II )当)4

,

0(0π

∈x 且524)(0=

x f 时,求)6

(0π

+x f 的值

解:由题设有()cos sin f x x x =+=

π

)4

x +.

(I )函数()f x 的最小正周期是2π.T =

(II )由524)(0=

x f 0π)45x +=

即0π4

sin(),45

x += 因为)4,

0(0π

∈x ,所以0ππ(,).442

x π+∈

从而0π3cos().45

x +===

于是)6(0π

+

x f 00ππ))]4646x x ππ

=+

+=++

00ππ)cos cos()sin ]4646

x x ππ

=+++

题型2:零点存在性定理

例3.设函数()ln()f x x x m =-+,其中常数m 为整数。 (1)当m 为何值时,()0f x ≥;

(2)定理:若函数()g x 在[,]a b 上连续,且()g a 与()g b 异号,则至少存在一点

0(,)x a b ∈,使得0()0g x =

试用上述定理证明:当整数1m >时,方程()0f x =在2,m

m e m e m -??--??内有两个实

根。

解析:(1)函数f (x )=x -ln(x +m),x ∈(-m,+∞)连续,且

m x x f m

x x f -==+-

=1,0)(,1

1)(''得令 当x ∈(-m,1-m)时,f ’(x )<0,f (x )为减函数,f (x )>f (1-m) 当x ∈(1-m, +∞)时,f ’(x )>0,f (x )为增函数,f (x )>f (1-m) 根据函数极值判别方法,f (1-m)=1-m 为极小值,而且 对x ∈(-m, +∞)都有f (x )≥f (1-m)=1-m 故当整数m ≤1时,f (x ) ≥1-m ≥0

(2)证明:由(I )知,当整数m>1时,f (1-m)=1-m<0, 函数f (x )=x -ln(x +m),在]1,[m m e

m

--- 上为连续减函数.

,

)1()(,10)ln()(异号与时当整数m f m e

f m e m m e m e m e f m

m m m m -->>=+---=------

由所给定理知,存在唯一的0)(),1,(11=--∈-x f m m e x m

使

而当整数m>1时,

),1121(0

32

)

12(2213)11(3)(222归纳法证明上述不等式也可用数学>-?>>--+

+>-+>-=-m m m m m m m m e m e f m m m 类似地,当整数m>1时,函数f (x )=x -ln(x +m),在],1[m e m m

--- 上为连续增函数且 f (1-m)

与)(2m e

f m

-异号,由所给定理知,存在唯一的0)(],,,1[22=--∈-x f m e m x m 使

故当m>1时,方程f (x )=0在],[2m e m e

m m

---内有两个实根

点评:本题以信息给予的形式考察零点的存在性定理。解决该题的解题技巧主要在区间的放缩和不等式的应用上。

例4.若函数)(x f y =在区间[a ,b ]上的图象为连续不断的一条曲线,则下列说法正确的是( )

A .若0)()(>b f a f ,不存在实数),(b a c ∈使得0)(=c f ;

B .若0)()(

C .若0)()(>b f a f ,有可能存在实数),(b a c ∈使得0)(=c f ;

D .若0)()(

解析:由零点存在性定理可知选项D 不正确;对于选项B ,可通过反例“)1)(1()(+-=x x x x f 在区间]2,2[-上满足0)2()2(<-f f ,但其存在三个解}1,0,1{-”推翻;同时选项A 可通过反例“)1)(1()(+-=x x x f 在区间]2,2[-上满足0)2()2(>-f f ,但其存在两个解}1,1{-”;选项D 正确,见实例“1)(2

+=x x f 在区间]2,2[-上满足

0)2()2(>-f f ,但其不存在实数解”

点评:该问题详细介绍了零点存在性定理的理论基础。 题型3:二分法的概念

例5.关于“二分法”求方程的近似解,说法正确的是()

A .“二分法”求方程的近似解一定可将)(x f y =在[a ,b ]内的所有零点得到;

B .“二分法”求方程的近似解有可能得不到)(x f y =在[a ,b ]内的零点;

C .应用“二分法”求方程的近似解,)(x f y =在[a ,b ]内有可能无零点;

D .“二分法”求方程的近似解可能得到0)(=x f 在[a ,b ]内的精确解;

解析:如果函数在某区间满足二分法题设,且在区间内存在两个及以上的实根,二分法只可能求出其中的一个,只要限定了近似解的范围就可以得到函数的近似解,二分法的实施满足零点存在性定理,在区间内一定存在零点,甚至有可能得到函数的精确零点。

点评:该题深入解析了二分法的思想方法 1.(2009福建卷文)若函数()f x 的零点与()422x

g x x =+-的零点之差的绝对值不超过

0.25, 则()f x 可以是

A. ()41f x x =-

B. ()2

(1)f x x =-

C. ()1x

f x e =- D. ()12f x In x ??=-

???

答案 A

解析 ()41f x x =-的零点为x=4

1,()2(1)f x x =-的零点为x=1, ()1x

f x e =-的零点为x=0, ()12f x In x ??=- ???的零点为x=2

3.现在我们来估算()422x

g x x =+-的零点,因为g(0)= -1,g(

21)=1,所以g(x)的零点x ∈(0, 2

1),又函数()f x 的零点与()422x g x x =+-的零点之差的绝对值不超过0.25,只有()41f x x =-的零点适合,

故选A 。

题型4:应用“二分法”求函数的零点和方程的近似解

例7.借助计算器,用二分法求出x

x 32)62ln(=++在区间(1,2)内的近似解(精确到0.1)。

解析:原方程即023)62ln(=+-+x

x 。 令23)62ln()(+-+=x

x x f , 用计算器做出如下对应值表

观察上表,可知零点在(1,2)内

取区间中点1x =1.5,且00.1)5.1(-≈f ,从而,可知零点在(1,1.5)内; 再取区间中点2x =1.25,且20.0)25.1(≈f ,从而,可知零点在(1.25,1.5)内; 同理取区间中点3x =1.375,且0)375.1(

点评:该题系统的讲解了二分法求方程近似解的过程,通过本题学会借助精度终止二分法的过程。

例8.借助计算器或计算机用二分法求方程732=+x x

的近似解(精确到1.0)。 分析:本例除借助计算器或计算机确定方程解所在的大致区间和解的个数外,你是否还可以想到有什么方法确定方程的根的个数?

略解:图象在闭区间a [,]b 上连续的单调函数)(x f ,在a (,)b 上至多有一个零点。 点评:①第一步确定零点所在的大致区间a (,)b ,可利用函数性质,也可借助计算机或计算器,但尽量取端点为整数的区间,尽量缩短区间长度,通常可确定一个长度为1的区间;

如此列表的优势:计算步数明确,区间长度小于精度时,即为计算的最后一步。 题型5:一元二次方程的根与一元二次函数的零点

例9.

足a

x x 1

021<

<<.

证明:由题意可知

))(()(21x x x x a x x f --=-,

a

x x x 1021<

<<< , ∴ 0))((21>--x x x x a ,

∴ x x f >)(。

又)1)(())(()(211211+--=-+--=-ax ax x x x x x x x x a x x f , ,011,0221>->+-<-ax ax ax x x 且 ∴ 1)(x x f <,

综上可知,所给问题获证。

函数()x x f -的表达式,从而得到函数)(x f 的表达式

例10.已知二次函数)0,,(1)(2

>∈++=a R b a bx ax x f ,设方程x x f =)(的两个实数根为1x 和2x .

(1)如果4221<<x ; (2)如果21

解析:设1)1()()(2

+-+=-=x b ax x x f x g ,则0)(=x g 的二根为1x 和2x 。 (1)由0>a 及4221<<

?><0

)4(0)2(g g ,即???>-+<-+034160

124b a b a ,

即???

????

<+?--<-?+,

043224,043233a a b a a b

两式相加得

12

b

,所以,10->x ; (2)由a

a b x x 4)1()(22

21--=-, 可得 1)1(122+-=+b a 。

又01

21>=a

x x ,所以21,x x 同号

∴ 21

)1(12202

2

1b a x x

或?????+-=+<<-<1

)1(120

22

12b a x x ,

即 ???????+-=+>>1)1(120)0(0)2(2b a g g 或???

????+-=+>>-1)1(120)0(0)2(2b a g g

解之得 41<

b 或4

7

>b 。 点评:条件4221<<

题型6:一元二次函数与一元二次不等式

例11

解析:∵ ()()()c f c b a f c b a f =++=+-=-0,1,1, ∴ ()()()()0)),1()1((2

1

),0211(21f c f f b f f f a =--=--+=

, ∴ ()()()()()

2

22102121x f x x f x x f x f -+???

? ??--+???? ??+=.

∴ 当01≤≤-x 时,

()()()().

4

5

45)21(1)1(22122102

121222

222

222

22≤++-=+--=-+?

??? ??-+???? ??+-=-+-++≤-?+-?-++?≤x x x x x x x x x x

x x x x f x

x f x x f x f

当10-≤≤x 时,

()()()()222102

121x f x

x f x x f x f -?+-?-++?≤

222122x x

x x x -+-++≤

)1(222

22x x x x x -+???

? ??+-+???? ??+= .

4

545)21(122≤+--=++-=x x x

综上,问题获证。

点评:本题中,所给条件并不足以确定参数b a ,的值,但应该注意到:所要求的结论不是确定值,而是与条件相对应的“取值范围”,因此,我们可以用()()()1,1,0-f f f 来表示

c b a ,,。

例12.

求证:

解析:由题意知:c b a f c f c b a f ++==+-=-)1(,)0(,)1(, ∴ )0()),1()1((2

1

)),0(2)1()1((21f c f f b f f f a =--=--+=

, ∴

()

2

221)0(2)1(2)1(x f x x f x x f -+?

??

? ??--+???? ??+。

可得 ,

1)1(≤f (),11≤-f ()10≤f 。

∴ ()()()()7)0(3)1(1303113)2(≤+-+≤--+=f f f f f f f ,

()()()()7)0(3)1(3103131)2(≤+-+≤--+=-f f f f f f f 。

(1)若[]2,22-?-

a

b

,则()x f 在[]2,2-上单调,故当[]2,2-∈x 时, ))2(,)2(max()(m ax f f x f -=

∴ 此时问题获证. (2)若[]2,22-∈-

a

b

,则当[]2,2-∈x 时,

)2,)2(,)2(max()(max ??

?

??--=a b f f f x f

()72411214)1()1(2022422<=+?+≤--?+=?+≤-

=??

?

??-f f a b f b a b c a b c a b f , ∴ 此时问题获证。

点评:研究)(x f 的性质,最好能够得出其解析式,从这个意义上说,应该尽量用已知条件来表达参数c b a ,,. 确定三个参数,只需三个独立条件,本题可以考虑)1(f ,)1(-f ,

)0(f ,这样做的好处有两个:一是c b a ,,的表达较为简洁,二是由于01和±正好是所给条

件的区间端点和中点,这样做能够较好地利用条件来达到控制二次函数范围的目的。

要考虑()x f 在区间[]7,7-上函数值的取值范围,只需考虑其最大值,也即考虑()x f 在区间端点和顶点处的函数值。 题型7:二次函数的图像与性质

例13.(2009福建省)已知某企业原有员工2000人,每人每年可为企业创利润3.5万元.为应对国际金融危机给企业带来的不利影响,该企业实施“优化重组,分流增效”的策略,分流出一部分员工待岗.为维护生产稳定,该企业决定待岗人数不超过原有员工的5%,并且每年给每位待岗员工发放生活补贴O.5万元.据评估,当待岗员工人数x 不超过原有员工1%时,留岗员工每人每年可为企业多创利润(1-

x

10081

)万元;当待岗员工人数x 超过原有员工1%时,留岗员工每人每年可为企业多创利润O.9595万元.为使企业年利润最大,应安排多少员工待岗?

解 设重组后,该企业年利润为y 万元. ∵2000×1%=20,∴当0

x 10081)-0.5x =-5(x +x

324

)+9000.81. ∵x ≤2000×5% ∴x ≤100,∴当20

∴??

???

∈≤<+-∈≤<++

-=N).10020(,89199595.4N),200(,81.9000)324(5x x x x x x

x y 且且 当0

y =-5(x +

x 324

)+9000.81≤-5×2324+9000.81=8820.81, 当且仅当x =x

324

,即x =18时取等号,此时y 取得最大值.

当20

例14(2008陕西,理17) (本小题满分12分)

已知函数()2sin

cos 442

x x x f x =+. (Ⅰ)求函数()f x 的最小正周期及最值;

(Ⅱ)令π()3g x f x ??

=+

??

?

,判断函数()g x 的奇偶性,并说明理由. 17.解:(Ⅰ)()f x

sin

22x x =+π2sin 23x ??=+ ???

. ()f x ∴的最小正周期2π

4π12

T =

=. 当πsin 123x ??+=-

???时,()f x 取得最小值2-;当πsin 123x ??

+= ???

时,()f x 取得最大值2.

(Ⅱ)由(Ⅰ)知π()2sin 23x f x ??=+

???.又π()3g x f x ?

?=+ ??

?.

∴1ππ()2sin 233g x x ????=++ ????

???π2sin 22x ??

=+ ???2cos 2x =.

()2cos 2cos ()22x x g x g x ??

-=-== ???

∴函数()g x 是偶函数.

点评:该题考察到函数的图像与性质的综合应用,考察了分类讨论的思想

题型8:二次函数的综合问题 例15.(2008湖南文17) 17.已知函数x x

x x f sin 2

sin 2cos

)(22

+-=. (I )求函数)(x f 的最小正周期;

(II )当)4

,

0(0π

∈x 且524)(0=

x f 时,求)6

(0π

+x f 的值。

解:由题设有()cos sin f x x x =+=

π

)4

x +.

(I )函数()f x 的最小正周期是2π.T =

(II )由524)(0=

x f 0π)4x +=即0π4

sin(),45

x += 因为)4,

0(0π

∈x ,所以0ππ(,).442

x π+∈

从而0π3cos().45

x +===

于是)6(0π

+

x f 00ππ))]4646x x ππ

=+

+=++

00ππ)cos cos()sin ]4646

x x ππ

=+++

4312

().552=+?

点评:本题主要考查函数图象的对称、二次函数的基本性质与不等式的应用等基础知识,

以及综合运用所学知识分析和解决问题的能力

例16.已知函数x z

a x f 2

2)(-

=。 (1)将)(x f y =的图象向右平移两个单位,得到函数)(x g y =,求函数)(x g y =的解析式;

(2)函数)(x h y =与函数)(x g y =的图象关于直线1=y 对称,求函数)(x h y =的解析式;

(3)设)()(1

)(x h x f a

x F +=,已知)(x F 的最小值是m 且72+>m ,求实数a 的取值范围

解析:(1)()();2

2

22

2

---=-=x x a x f x g

(2)设()x h y =的图像上一点()y x P ,,点()y x P ,关于1=y 的对称点为()y x Q -2,,由点Q 在()x g y =的图像上,所以

y a x x -=-

--22

2

2

2

于是 ,2222

2--+-=x x a

y 即 ();2

2222

--+-=x x a x h (3)22)14(2411)()(1)(+-+??

? ??-=+=

x x a a x h x f a x F 。 设x

t 2=,则21

444)(+-+-=

t

a t a a x F 。 问题转化为:7221

444+>+-+-t a t a a 对0>t 恒成立. 即

()0147442

>-+--a t t a a 对0>t 恒成立. (*)

故必有044>-a a .(否则,若044<-a a

,则关于t 的二次函数

()14744)(2-+--=a t t a a t u 开口向下,当t 充分大时,必有()0

a

时,

显然不能保证(*)成立.),此时,由于二次函数()14744)(2

-+--=a t t a

a t u 的对称轴

0847>-=a a t ,所以,问题等价于0

????<-?-?->-0

144447044a a a a

a

解之得:

22

1

<

014,044>->-a a a ,故21

444)(+-+-=t a t a a x F 在a

a a t --=4)

14(4取得

最小值()214442

+-?-=a a

a

m 满足条件

点评:紧扣二次函数的顶点式,44222

a b ac a b x a y -+

??

? ??

+=对称轴、最值、判别式显合力。

五.【思维总结】

1.函数零点的求法:

①(代数法)求方程0)(=x f 的实数根;

②(几何法)对于不能用求根公式的方程,可以将它与函数)(x f y =的图象联系起来,

并利用函数的性质找出零点。

2.学习二次函数,可以从两个方面入手:一是解析式,二是图像特征. 从解析式出发,可以进行纯粹的代数推理,这种代数推理、论证的能力反映出一个人的基本数学素养;从图

像特征出发,可以实现数与形的自然结合,这正是中学数学中一种非常重要的思想方法. 本文将从这两个方面研究涉及二次函数的一些综合问题。

由于二次函数的解析式简捷明了,易于变形(一般式、顶点式、零点式等),所以,在解决二次函数的问题时,常常借助其解析式,通过纯代数推理,进而导出二次函数的有关性质

(1)二次函数的一般式c bx ax y ++=2

)0(≠c 中有三个参数c b a ,,. 解题的关键在于:通过三个独立条件“确定”这三个参数

(2)数形结合:二次函数()0)(2

≠++=a c

bx ax x f 的图像为抛物线,具有许多优

美的性质,如对称性、单调性、凹凸性等。结合这些图像特征解决有关二次函数的问题,可以化难为易,形象直观。因为二次函数()0)(2

≠++=a c bx ax x f 在区间]2,(a

b -

-∞和区间),2[+∞-

a

b

上分别单调,所以函数()x f 在闭区间上的最大值、最小值必在区间端点或顶点处取得;函数)(x f 在闭区间上的最大值必在区间端点或顶点处取得

高中数学函数知识点总结

高中数学函数知识点总结 (1)高中函数公式的变量:因变量,自变量。 在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。 (2)一次函数:①若两个变量 ,间的关系式可以表示成(为常数,不等于0)的形式,则称是的一次函数。②当 =0时,称是的正比例函数。(3)高中函数的一次函数的图象及性质 ①把一个函数的自变量与对应的因变量的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。 ②正比例函数 =的图象是经过原点的一条直线。 ③在一次函数中,当 0, O,则经2、3、4象限;当 0, 0时,则经1、 2、4象限;当 0, 0时,则经1、 3、4象限;当 0, 0时,则经1、2、3象限。 ④当 0时,的值随值的增大而增大,当 0时,的值随值的增大而减少。(4)高中函数的二次函数: ①一般式: ( ),对称轴是 顶点是; ②顶点式: ( ),对称轴是顶点是; ③交点式: ( ),其中(),()是抛物线与x轴的交点 (5)高中函数的二次函数的性质 ①函数的图象关于直线对称。 ②时,在对称轴()左侧,值随值的增大而减少;在对称轴()右侧;的值随值的增大而增大。当时,取得最小值

③时,在对称轴()左侧,值随值的增大而增大;在对称轴()右侧;的值随值的增大而减少。当时,取得最大值 9 高中函数的图形的对称 (1)轴对称图形:①如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。②轴对称图形上关于对称轴对称的两点确定的线段被对称轴垂直平分。 (2)中心对称图形:①在平面内,一个图形绕某个点旋转180度,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做他的对称中心。②中心对称图形上的每一对对应点所连成的线段都被对称中心平分。

全国高考数学直线与圆的方程试题汇编

全国高考数学直线与圆的方程试题汇编 一、选择题: 1.(全国Ⅱ卷文科3)原点到直线052=-+y x 的距离为 ( D ) A .1 B .3 C .2 D .5 2.(福建文科2)“a =1”是“直线x +y =0和直线x -ay =0互相垂直”的 ( C ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件 3.(四川理科4文科6)将直线3y x =绕原点逆时针旋转90?,再向右平移1个单位,所得到的直线 为 ( A ) A .1133 y x =- + B .1 13 y x =- + C .33y x =- D .1 13 y x = + 解析:本题有新意,审题是关键.旋转90?则与原直线垂直,故旋转后斜率为13 -.再右移1得 1 (1)3 y x =--. 选A .本题一考两直线垂直的充要条件,二考平移法则.辅以平几背景之旋转变换. 4.(全国I 卷理科10)若直线 1x y a b +=通过点(cos sin )M αα,,则 ( B ) A .2 2 1a b +≤ B .22 1a b +≥ C .22111a b +≤ D . 2 211 1a b +≥ 5.(重庆理科7)若过两点P 1(-1,2),P 2(5,6)的直线与x 轴相交于点P ,则点P 分有向线段12PP 所成的 比λ的值为 ( A ) A .- 13 B .- 15 C . 15 D . 13 (重庆文科4)若点P 分有向线段AB 所成的比为- 1 3,则点B 分有向线段PA 所成的比是( A ) A .- 32 B .- 12 C .12 D .3 6.(安徽理科8文科10)若过点(4,0)A 的直线l 与曲线2 2 (2)1x y -+=有公共点,则直线l 的斜率 的取值范畴为 ( C ) A .[ B .( C .[ D .( 7.(辽宁文、理科3)圆2 2 1x y +=与直线2y kx =+没有.. 公共点的充要条件是 ( C )

高三数学精品教案:专题1:函数专题(理科)

专题1 函数(理科) 一、考点回顾 1.理解函数的概念,了解映射的概念. 2.了解函数的单调性的概念,掌握判断一些简单函数的单调性的方法. 3.了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数. 4.理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质. 5.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质. 6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 二、经典例题剖析 考点一:函数的性质与图象 函数的性质是研究初等函数的基石,也是高考考查的重点内容.在复习中要肯于在对定义的深入理解上下功夫. 复习函数的性质,可以从“数”和“形”两个方面,从理解函数的单调性和奇偶性的定义入手,在判断和证明函数的性质的问题中得以巩固,在求复合函数的单调区间、函数的最值及应用问题的过程中得以深化.具体要求是: 1.正确理解函数单调性和奇偶性的定义,能准确判断函数的奇偶性,以及函数在某一区间的单调性,能熟练运用定义证明函数的单调性和奇偶性. 2.从数形结合的角度认识函数的单调性和奇偶性,深化对函数性质几何特征的理解和运用,归纳总结求函数最大值和最小值的常用方法. 3.培养学生用运动变化的观点分析问题,提高学生用换元、转化、数形结合等数学思想方法解决问题的能力. 这部分内容的重点是对函数单调性和奇偶性定义的深入理解. 函数的单调性只能在函数的定义域内来讨论.函数y=f(x)在给定区间上的单调性,反映了函数在区间上函数值的变化趋势,是函数在区间上的整体性质,但不一定是函数在定义域上的整体性质.函数的单调性是对某个区间而言的,所以要受到区间的限制.对函数奇偶性定义的理解,不能只停留在f(-x)=f(x)和f(-x)=-f(x)这两个等式上,要明确对定义域内任意一个x,都有f(-x)=f(x),f(-x)=-f(x)的实质是:函数的定义域关

高中数学圆的方程典型例题及详细解答

新课标高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2= ++==AC r . 故所求圆的方程为20)1(2 2 =++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?

2011年高考理科数学函数、导函数试题汇编

2011年高考理科数学函数、导函数试题汇编 一、选择题: 1. 【2011安徽理】(3)设)(x f 是定义在R 上的奇函数,当0≤x 时,x x x f -=22)(,则=)1(f (A)-3 (B)-1 (C) 1 (D)3 2.【2011安徽理】(10)函数n m x ax x f )1()(-=在区间[0,1]上的图像如图所示,则m,n 的值可能是 (A) m=1,n=1 (B) m=1,n=2 (C) m=2,n=1 (D) m=3,n=1 3. 【2011北京理】6.根据统计,一名工作组装第x 件某产品所用的时间(单位:分钟)为 ??? ??? ?≥<=A x A c A x x c x f ,, ,)((A ,C 为常数)。已知工人组装第4件产品用时30分钟,组装第A 件 产品用时15分钟,那么C 和A 的值分别是 A .75,25 B .75,16 C .60,25 D .60,16 4.【2011广东理】4. 设函数()f x 和()g x 分别是R上的偶函数和奇函数,则下列 结论恒成立的是 A.()()f x g x +是偶函数 B.()()f x g x -是奇函数 C.()()f x g x +是偶函数 D.()()f x g x -是奇函数 5.【2011湖北理】6.已知定义在R 上的奇函数()f x 和偶函数()g x 满足()()222f x g x a a -+=-+(a >0,且0a ≠).若()2g a =,则()2f = A .2 B . 15 4 C . 17 4 D .2 a

6.【2011湖南理】8.设直线x t =与函数2(),()ln f x x g x x ==的图像分别交于点,M N ,则当||MN 达到最小时t 的值为( ) A .1 B . 12 C D 7.【2011江西理】3 .若()f x = ,则()f x 的定义域为 A .(,)1-02 B .(,]1-02 C .(,)1 - +∞2 D .(,)0+∞ 8.【2011江西理】4.若()ln f x x x x 2=-2-4,则'()f x >0的解集为 A .(,)0+∞ B .-+10?2∞(,)(,) C .(,)2+∞ D .(,)-10 9.【2011辽宁理】9.设函数? ??>-≤=-1,log 11 ,2)(21x x x x f x ,则满足2)(≤x f 的x 的取值范围是 A .1[-,2] B .[0,2] C .[1,+∞] D .[0,+∞] 10.【2011辽宁理】11.函数)(x f 的定义域为R ,2)1(=-f ,对任意R ∈x ,2)(>'x f ,则42)(+>x x f 的解集为 A .(1-,1) B .(1-,+∞) C .(∞-,1-) D .(∞-,+∞) 11.【2011全国理】2 .函数0)y x =≥的反函数为 A .2()4x y x R =∈ B .2 (0)4 x y x =≥ C .24y x =()x R ∈ D .24(0)y x x =≥ 12. 【2011全国理】9.设()f x 是周期为2的奇函数,当0≤x≤1时,()f x =2(1)x x -,则 5()2f -= A .-1 2 B .1 4 - C . 14 D . 12

高考数学必修一函数知识点总结

高考数学必修一函数知识点总结 设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数fx和它对应,那么就称f:A→B为从集合A到集合B 的一个函数.记作:y=fx,x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{fx|x∈A}叫做函数的值域. 注意:2如果只给出解析式y=fx,而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;3函数的定义域、值域要写成集合或区间的形式. 能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:1分式的分母不等于零;2偶次方根的被开方数不小于零;3对数式的真数必须大于零;4指数、对数式的底必须大于零且不等于1.5如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.6指数为零底不可以等于零6实际问题中的函数的定义域还要保证实际问题有意义. 又注意:求出不等式组的解集即为函数的定义域。 构成函数的三要素:定义域、对应关系和值域 再注意:1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等或为同一函数2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致两点必须同时具备 见课本21页相关例2 1、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域.2.应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础。 4.函数图象知识归纳 1定义:在平面直角坐标系中,以函数y=fx,x∈A中的x为横坐标,函数值y为纵坐标的点Px,y的集合C,叫做函数y=fx,x∈A的图象. C上每一点的坐标x,y均满足函数关系y=fx,反过来,以满足y=fx的每一组有序实数对x、y为坐标的点x,y,均在C上.即记为C={Px,y|y=fx,x∈A} 图象C一般的是一条光滑的连续曲线或直线,也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成。 2画法

高考理科数学常用公式大全

高考理科常用数学公式总结 1.德摩根公式 ();()U U U U U U C A B C A C B C A B C A C B ==. 2.U U A B A A B B A B C B C A =?=????U A C B ?=ΦU C A B R ?= 3.()()card A B cardA cardB card A B =+- ()()card A B C cardA cardB cardC card A B =++- ()()()()card A B card B C card C A card A B C ---+. 4.二次函数的解析式的三种形式 ①一般式2()(0)f x ax bx c a =++≠;② 顶点式 2()()(0)f x a x h k a =-+≠;③零点式12()()()(0)f x a x x x x a =--≠. 5.设[]2121,,x x b a x x ≠∈?那么 []1212()()()0x x f x f x -->?[]1212()() 0(),f x f x f x a b x x ->?-在上是增函数; []1212()()()0x x f x f x --'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数. 6.函数()y f x =的图象的对称性:①函数()y f x =的图象关于直线x a =对称 ()()f a x f a x ?+=-(2)()f a x f x ?-=.②函数()y f x =的图象关于直线 2 a b x +=对称()()f a mx f b mx ?+=-()()f a b mx f mx ?+-=. 7.两个函数图象的对称性:①函数()y f x =与函数()y f x =-的图象关于直线 0x =(即y 轴)对称.②函数()y f mx a =-与函数()y f b mx =-的图象关于直线 2a b x m +=对称.③函数)(x f y =和)(1x f y -=的图象关于直线y=x 对称. 8.分数指数幂 m n a =(0,,a m n N *>∈,且1n >). 1 m n m n a a -=(0,,a m n N *>∈,且1n >). 9. log (0,1,0)b a N b a N a a N =?=>≠>. 10.对数的换底公式 log log log m a m N N a =.推论 log log m n a a n b b m =. 11.11, 1,2 n n n s n a s s n -=?=?-≥?( 数列{}n a 的前n 项的和为12n n s a a a =+++). 12.等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈; 其前n 项和公式 1()2n n n a a s += 1(1)2n n na d -=+211 ()22 d n a d n =+-. 13.等比数列的通项公式1*11()n n n a a a q q n N q -==?∈;

高中数学圆的方程典型例题

高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为222)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 22)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(22=++= =AC r . 故所求圆的方程为20)1(2 2 =++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?

(word完整版)高三数学专题复习(函数与方程练习题)

高三数学专题复习(函数与方程练习题) 一、选择题 1、定义域为R 的函数y =f (x)的值域为[a ,b ],则函数y =f (x +a )的值域为( ) A 、[2a ,a +b ] B 、[a ,b ] C 、[0,b -a ] D 、[-a ,a +b ] 2、若y =f (x)的定义域为D ,且为单调函数,[a ,b ]D ,(a -b )·f (a)·f (b)>0,则下列命题正确为( ) A 、若f (x)=0,则x ∈(a ,b ) B 、若f (x)>0,则x ? (a ,b) C 、若x ∈(a ,b ),则f (x)=0 D 、若f (x)<0,则x ? (a ,b ) 3、设点P 为曲线y =x 3-3 x +3 2 上的任意一点,P 点处切线倾斜角为α,则α的取值范围为( ) A 、[32π,π] B 、(2π,π) C 、[0,2 π]∪(65π,π) D 、[0,2 π ]∪[32π,π) 4、设函数f (x)是定义R 上的奇函数,若f (x)的最小正周期为3,且f (1)>1,f (2)=1 3 2+-m m ,则m 的取 值范围为( ) A 、m < 32 B 、m <32且m ≠-1 C 、-1<m <32 D 、m >3 2 或m <-1 5、定义在R 上的函数f (x)在(-∞,2)上是增函数,且f (x +2)的图象关于x =0对称,则( ) A 、f (-1)<f (3) B 、f (0)>f (3) C 、f (-1)=f (3) D 、f (0)=f (3) 6、已知对一切x ∈R ,都有f (x)=f (2-x )且方程f (x)=0有5个不同的根,则这5个不同根的和为( ) A 、10 B 、15 C 、5 D 、无法确定 7、函数y =log 2 1 (x 2+kx +2)的值域为R ,则k 的范围为( ) A 、[22 ,+∞] B 、(-∞,-22)∪[22,+∞]

全国高考理科数学试题分类汇编:函数

2013年全国高考理科数学试题分类汇编2:函数 一、选择题 1 .(2013年高考江西卷(理))函数 的定义域为 A.(0,1) B.[0,1) C.(0,1] D.[0,1] 【答案】D 2 .(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))若 a b c <<,则函数 ()()()()()()()f x x a x b x b x c x c x a =--+--+--的两个零点分别位于区间( ) A.(),a b 和(),b c 内 B.(),a -∞和(),a b 内 C.(),b c 和(),c +∞内 D.(),a -∞和(),c +∞内 【答案】A 3 .(2013年上海市春季高考数学试卷(含答案))函数 1 2 ()f x x - =的大致图像是( ) 【答案】A 4 .(2013年高考四川卷(理)) 设函数 ()f x =(a R ∈,e 为自然对数的底数).若曲线sin y x =上存在00(,)x y 使得00(())f f y y =,则a 的取值范围是( ) (A)[1,]e (B)1 [,-11]e -, (C)[1,1]e + (D)1 [-1,1]e e -+ 【答案】A 5 .(2013年高考新课标1(理))已知函数()f x =22,0ln(1),0x x x x x ?-+≤?+>? ,若|()f x |≥ax ,则a 的取值范围是 A.(,0]-∞ B.(,1]-∞ C.[2,1]- D.[2,0]- 【答案】D 6 .(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))函数 ()()21=log 10f x x x ?? +> ??? 的反函数()1=f x -

高一数学 高中数学圆的方程专题(四个课时)

高一数学 高中数学圆的方程专题(四个课时) 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-.∵圆心在0=y 上,故0=b .∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点.∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r .所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2=++==AC r . 故所求圆的方程为20)1(2 2 =++y x .又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22.∴点P 在圆外. 例2 求半径为4,与圆04242 2 =---+y x y x 相切,且和直线0=y 相切的圆的方程. 分析:根据问题的特征,宜用圆的标准方程求解. 解:则题意,设所求圆的方程为圆2 22)()(r b y a x C =-+-: . 圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C . 又已知圆04242 2=---+y x y x 的圆心A 的坐标为)1,2(,半径为3. 若两圆相切,则734=+=CA 或134=-=CA . (1)当)4,(1a C 时,2227)14()2(=-+-a ,或2 221)14()2(=-+-a (无解),故可得1022±=a . ∴所求圆方程为2224)4()1022(=-+--y x ,或2 224)4()1022(=-++-y x . (2)当)4,(2-a C 时,2227)14()2(=--+-a ,或2 221)14()2(=--+-a (无解),故622±=a . ∴所求圆的方程为2224)4()622(=++--y x ,或2 224)4()622(=+++-y x . 例3 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程.

高三数学一轮复习必备精品6:函数与方程 【高三数学一轮复习必备精品共42讲 全部免费 欢迎下载】

第6讲 函数与方程 备注:【高三数学一轮复习必备精品共42讲 全部免费 欢迎下载】 一.【课标要求】 1.结合二次函数的图像,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系; 2.根据具体函数的图像,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。 二.【命题走向】 函数与方程的理论是高中新课标教材中新增的知识点,特别是“二分法”求方程的近似解也一定会是高考的考点。从近几年高考的形势来看,十分注重对三个“二次”(即一元二次函数、一元二次方程、一元二次不等式)的考察力度,同时也研究了它的许多重要的结论,并付诸应用。高考试题中有近一半的试题与这三个“二次”问题有关 预计2010年高考对本讲的要求是:以二分法为重点、以二次函数为载体、以考察函数与方程的关系为目标来考察学生的能力 (1)题型可为选择、填空和解答; (2)高考试题中可能出现复合了函数性质与函数零点的综合题,同时考察函数方程的思想。 三.【要点精讲】 1.方程的根与函数的零点 (1)函数零点 概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。 函数零点的意义:函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图象与x 轴交点的横坐标。即:方程0)(=x f 有实数根?函数)(x f y =的图象与x 轴有交点?函数)(x f y =有零点。 二次函数)0(2 ≠++=a c bx ax y 的零点: 1)△>0,方程02 =++c bx ax 有两不等实根,二次函数的图象与x 轴有两个交点,二次函数有两个零点; 2)△=0,方程02=++c bx ax 有两相等实根(二重根),二次函数的图象与x 轴有一个交点,二次函数有一个二重零点或二阶零点; 3)△<0,方程02=++c bx ax 无实根,二次函数的图象与x 轴无交点,二次函数无零点。 零点存在性定理:如果函数)(x f y =在区间],[b a 上的图象是连续不断的一条曲线,并且有 0)()(

高考数学函数知识点汇总2020

高考数学函数知识点汇总2020 高中数学的知识点有很多,高考数学要想那高分就对知识点进行总结,下面就是小编给大家带来的高考数学知识点汇总2020,希望大家喜欢! 集合 一、集合概念 (1)集合中元素的特征:确定性,互异性,无序性。 (2)集合与元素的关系用符号=表示。 (3)常用数集的符号表示:自然数集;正整数集;整数集;有理数集、实数集。 (4)集合的表示法:列举法,描述法,韦恩图。 (5)空集是指不含任何元素的集合。 空集是任何集合的子集,是任何非空集合的真子集。 函数 一、映射与函数: (1)映射的概念:(2)一一映射:(3)函数的概念: 二、函数的三要素: 相同函数的判断方法:①对应法则;②定义域(两点必须同时具备) (1)函数解析式的求法: ①定义法(拼凑):②换元法:③待定系数法:④赋值法: (2)函数定义域的求法: ①含参问题的定义域要分类讨论; ②对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。 (3)函数值域的求法: ①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如:的形式; ②逆求法(反求法):通过反解,用来表示,再由的取值范围,通过解不等式,得出的取值范围;常用来解,型如:; ④换元法:通过变量代换转化为能求值域的函数,化归思想; ⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域; ⑥基本不等式法:转化成型如:,利用平均值不等式公式来求值域;

⑦单调性法:函数为单调函数,可根据函数的单调性求值域。 五、反函数: (1)定义: (2)函数存在反函数的条件: (3)互为反函数的定义域与值域的关系: (4)求反函数的步骤:①将看成关于的方程,解出,若有两解,要注意解的选择;②将互换,得;③写出反函数的定义域(即的值域)。 (5)互为反函数的图象间的关系: (6)原函数与反函数具有相同的单调性; (7)原函数为奇函数,则其反函数仍为奇函数;原函数为偶函数,它一定不存在反函数。 七、常用的初等函数: (1)一元一次函数: (2)一元二次函数: 一般式 两点式 顶点式 二次函数求最值问题:首先要采用配方法,化为一般式, 有三个类型题型: (1)顶点固定,区间也固定。如: (2)顶点含参数(即顶点变动),区间固定,这时要讨论顶点横坐标何时在区间之内,何时在区间之外。 (3)顶点固定,区间变动,这时要讨论区间中的参数. 等价命题在区间上有两根在区间上有两根在区间或上有一根 注意:若在闭区间讨论方程有实数解的情况,可先利用在开区间上实根分布的情况,得出结果,在令和检查端点的情况。 (3)反比例函数: (4)指数函数: 指数函数:y=(a>o,a≠1),图象恒过点(0,1),单调性与a的值有关,在解题中,往往要对a分a>1和0 (5)对数函数:

高考文科数学函数专题讲解及高考真题精选(含答案) (1)

函 数 【1.2.1】函数的概念 (1)函数的概念 ①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →. ②函数的三要素:定义域、值域和对应法则. ③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法 ①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数 x 的集合分别记做 [,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <. (3)求函数的定义域时,一般遵循以下原则: ①()f x 是整式时,定义域是全体实数. ②()f x 是分式函数时,定义域是使分母不为零的一切实数. ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合. ④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2 x k k Z π π≠+ ∈. ⑥零(负)指数幂的底数不能为零. ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集. ⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出. ⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值 求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:

高考数学必考之圆的方程

高考数学必考之圆的方程 考点一 圆的方程 1.圆心为()3,1,半径为5的圆的标准方程是 【答案】()()2 2 3125x y -+-= 【解析】∵所求圆的圆心为()3,1,半径为5,∴所求圆的标准方程为:()()2 2 3125x y -+-=, 2.已知点()3,6A ,()1,4B ,()1,0C ,则ABC ?外接圆的圆心坐标为 【答案】()5,2 【解析】线段AB 中点坐标为()2,5,线段AB 斜率为 64 131 -=-,所以线段AB 垂直平分线的斜率为1-,故线段AB 的垂直平分线方程为()52y x -=--,即7y x =-+. 线段AC 中点坐标为()2,3,线段AC 斜率为 60331-=-,所以线段AC 垂直平分线的斜率为1 3 -,故线段AC 的垂直平分线方程为()1 323y x -=--,即11133 y x =-+. 由7 5111233y x x y y x =-+?=?? ??? ==-+??? .所以ABC ?外接圆的圆心坐标为()5,2. 3.方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,则a 的范围是 【答案】-2解得223a -<<. 考点二 点与圆的位置关系

1.点()1,1在圆()2 211x y +-=的( ) A .圆上 B .圆内 C .圆外 D .无法判定 【答案】A 【解析】将点()1,1的坐标代入圆()2 211x y +-=的方程即()2 21111+-=,∴点()1,1在圆()2 211x y +-=上, 2.经过点(1,2)A 可做圆2 2 240x y mx y ++-+=的两条切线,则m 的范围是( ) A .(,(23,)-∞-+∞ B .(5,(23,)--+∞ C .(,)-∞-?+∞ D .(5,(22,)--+∞ 【答案】B 【解析】圆2 2 240x y mx y ++-+=,即为222 ()(1)324 m m x y -+-= -, 2 304 m ∴->?m <-m > 由题意知点A 在圆外,14440m ∴++-+>,解得5m >-. 所以5m -<<-m >故选B 3.若坐标原点在圆2 2 2 22240x y mx my m +-++-=的内部,则实数m 的取值范围是( ) A .()1,1- B .,22?- ?? C .( D .( 【答案】D 【解析】把原点坐标代入圆的方程得:222002020240m m m +-?+?+-< 解得:m <本题正确选项:D

高考数学重点难点3函数与方程思想大全

重点难点36 函数方程思想 函数与方程思想是最重要的一种数学思想,高考中所占比重较大,综合知识多、题型多、应用技巧多.函数思想简单,即将所研究的问题借助建立函数关系式亦或构造中间函数,结合初等函数的图象与性质,加以分析、转化、解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;方程思想即将问题中的数量关系运用数学语言转化为方程模型加以解决. ●重点难点磁场 1.(★★★★★)关于x的不等式2?32x–3x+a2–a–3>0,当0≤x≤1时恒成立,则实数a的取值范围为. 2.(★★★★★)对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.已知函数f(x)=ax2+(b+1)x+(b–1)(a≠0) (1)若a=1,b=–2时,求f(x)的不动点; (2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围; (3)在(2)的条件下,若y=f(x)图象上A、B两点的横坐标是函数f(x)的不动点,且A、B关于直线y=kx+ 对称,求b的最小值. ●案例探究 [例1]已知函数f(x)=logm (1)若f(x)的定义域为[α,β],(β>α>0),判断f(x)在定义域上的增减性,并加以说明; (2)当0<m<1时,使f(x)的值域为[logm[m(β–1)],logm[m(α–1)]]的定义域区间为[α,β](β>α>0)是否存在?请说明理由. 命题意图:本题重在考查函数的性质,方程思想的应用.属★★★★级题目. 知识依托:函数单调性的定义判断法;单调性的应用;方程根的分布;解不等式组. 错解分析:第(1)问中考生易忽视“α>3”这一关键隐性条件;第(2)问中转化出的方程,不能认清其根的实质特点,为两大于3的根. 技巧与方法:本题巧就巧在采用了等价转化的方法,借助函数方程思想,巧妙解题. 解:(1)x<–3或x>3. ∵f(x)定义域为[α,β],∴α>3 设β≥x1>x2≥α,有 当0<m<1时,f(x)为减函数,当m>1时,f(x)为增函数. (2)若f(x)在[α,β]上的值域为[logmm(β–1),logmm(α–1)] ∵0<m<1, f(x)为减函数. ∴ 即 即α,β为方程mx2+(2m–1)x–3(m–1)=0的大于3的两个根 ∴∴0<m< 故当0<m<时,满足题意条件的m存在. [例2]已知函数f(x)=x2–(m+1)x+m(m∈R) (1)若tanA,tanB是方程f(x)+4=0的两个实根,A、B是锐角三角形ABC的两个内角.求证:m≥5; (2)对任意实数α,恒有f(2+cosα)≤0,证明m≥3; (3)在(2)的条件下,若函数f(sinα)的最大值是8,求m. 命题意图:本题考查函数、方程与三角函数的相互应用;不等式法求参数的范围.属

绝对精选!高考数学函数最后一题练习+答案

精华练习答案 函数三性,两域部分 1、【06江苏1】已知R a ∈,函数R x a x x f ∈-=|,|sin )(为奇函数,则a = (A ) (A )0 (B )1 (C )-1 (D )±1 2、【08全国II 9】. 设奇函数)(x f 在),0(+∞上为增函数,且0)1(=f ,则不等式 0) ()(<--x x f x f 的解集为(D ) (A) ),1()0,1(+∞?- (B) )1,0()1,(?--∞ (C) ),1()1,(+∞?--∞ (D) )1,0()0,1(?- 3、【06北京理5】已知(31)4,1 ()log ,1 a a x a x f x x x -+0)的单调递增区间是)∞+???,1e . 解析:用求导法:.10ln 0)(1ln 1ln )('' e x x x f x x x x x f ≥?≥≥=? +=,,令+ 5、【05江苏15】 答案:?? ? ?????????- 1,430,41 6、【08上海理8】:设函数f (x )是定义在R 上的奇函数,若当x ∈(0,+∞)时,f (x )=lg x ,则满足f (x )>0的x 的取值范围是()()+∞?-,10,1 7、【08广东理19】设A ∈R ,函数 试讨论函数F(x)的单调性. 【解析】1 ,1,1()(),1, kx x x F x f x kx kx x ?-

2021届高考数学(理)考点复习:圆的方程(含解析)

2021届高考数学(理)考点复习 圆的方程 圆的定义与方程 定义 平面内到定点的距离等于定长的点的轨迹叫做圆 方 程 标准 式 (x -a )2+(y -b )2=r 2(r >0) 圆心为(a ,b ) 半径为r 一 般 式 x 2+y 2+Dx +Ey +F =0 充要条件:D 2+E 2-4F >0 圆心坐标:????-D 2,-E 2 半径r =1 2 D 2+ E 2-4F 概念方法微思考 1.二元二次方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的条件是什么? 提示 ???? ? A =C ≠0, B =0, D 2+ E 2-4A F >0. 2.点与圆的位置关系有几种?如何判断? 提示 点和圆的位置关系有三种. 已知圆的标准方程(x -a )2+(y -b )2=r 2,点M (x 0,y 0), (1)点在圆上:(x 0-a )2+(y 0-b )2=r 2; (2)点在圆外:(x 0-a )2+(y 0-b )2>r 2; (3)点在圆内:(x 0-a )2+(y 0-b )2

, 半径为1的圆经过点(3,4),可得该圆的圆心轨迹为(3,4)为圆心,1为半径的圆, 故当圆心到原点的距离的最小时, 连结OB ,A 在OB 上且1AB =,此时距离最小, 由5OB =,得4OA =, 即圆心到原点的距离的最小值是4, 故选A . 2.(2018?天津)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为__________. 【答案】22(1)1x y -+=(或2220)x y x +-= 【解析】【方法一】根据题意画出图形如图所示, 结合图形知经过三点(0,0),(1,1),(2,0)的圆, 其圆心为(1,0),半径为1, 则该圆的方程为22(1)1x y -+=. 【方法二】设该圆的方程为220x y Dx Ey F ++++=, 则0 42020F D F D E F =?? ++=??+++=? , 解得2D =-,0E F ==; ∴所求圆的方程为2220x y x +-=. 故答案为:22(1)1x y -+=(或2220)x y x +-=.

相关文档
最新文档