一维变系数对流扩散方程的一个紧致差分格式

一维变系数对流扩散方程的一个紧致差分格式
一维变系数对流扩散方程的一个紧致差分格式

对流扩散方程

徐州工程学院 课程设计报告 课程名称偏微分方程数值解 课题名称对流扩散方程 的迎风格式的推导和求解专业信息与计算科学 班级10信计3 姓名学号 指导教师杨扬 2013年 5 月23 日

一、实验目的: 进一步巩固理论学习的结果,学习双曲型对流扩散方程的迎风格式的构造 方法,以及稳定的条件。从而进一步了解差分求解偏微分方程的一些基本概念,掌握数值求解偏微分方程的基本过程。在此基础上考虑如何使用Matlab 的软件进行上机实现,并针对具体的题目给出相应的数值计算结果。 二、实验题目: ?? ? ??-=-==<<<<+=+);2/1exp(),1();exp(),0();2/exp()0,(10,10,11t t u t t u x x u t x f u b u a u xx x t 其中a1=1,b1=2, ) 2/exp(),(t x t x f --=。 用迎风格式求解双曲型对流扩散方程,观差分解对真解的敛散性()2/exp(t x u -= 三、实验原理: 1、用迎风格式求解双曲型对流扩散方程,迎风格式为: ) 01(21 1 )01(2112 1 1112 1 11 1<++-=-+->++-=-+--+++-+-+a f h u u u b h u u a u u a f h u u u b h u u a u u n j n j n j n j n j n j n j n j n j n j n j n j n j n j n j n j τ τ 若令,/*1,/*12h b h a r τμτ== 则迎风格式可整理为: > <<++-+-+=><>++++--=-+++-+2)01()()21(1)01()()21(111111a f u u r u r u a f u u r u r u n j n j n j n j n j n j n j n j n j n j τμμμτμμμ2、稳定条件: ) () (01),*11*2/(01),*11*2/(2 2<-≤>+≤a h a b h a h a b h ττ(*) 四、数值实验的过程、相关程序及结果: 本次的实验题目所给出的边界条件是第一边界条件,直接利用所给的边界条件,我们可以给出界点处以及第0层的函数值,根据a1的正负性,使用相应的<1>或者<2>式,求出其他层的函数值。误差转化成图的形式,并输出最大值。 针对三种不同的输入对应输出结果 :

第三章 一维扩散方程

第三章 一维扩散方程 本章讨论一维扩散方程。首先,从随机过程中的一维扩散方程的讨论可直接得到扩散方程的解。然后对非齐次和各类边值问题相应的扩散方程作了讨论。讨论的方程类型 (1)直线上的齐次和非齐次扩散方程: 2,,0 (,0)() t xx u c u x t u x x ??=-∞<<∞>? =?;(利用随机过程的理论得到结论,再直接验证) (,),,0 (,0)() t xx u ku f x t x t u x x ?-=-∞<<∞>?? =?;(算子方法,与常微分方程类比) (2)半直线上的扩散方程0,0,0(,0)(),(0,)0t xx u ku x t u x x u t ?-=<<∞>?? =??=? ;(其它非齐次边界等) 对扩散方程理论方面的探讨:最大(最小)值原理。由此证明方程解的唯一性和稳定性。 §3.1全直线上的扩散方程 首先讨论随机过程中的扩散过程。设想粒子在一维直线上作连续随机游动(Brown 运动),满足性质:在t ?时间内位移转移概率为均值为0,方差为2 t σ?的正态分布。在时刻t 处于x 的概率密度记为(,)Pr(())u x t dx X t x dx ==。则 2 ()2(,)(,)x y t u x t t u y t dy σ-∞ -?-∞+?=?, 或 2 2 (,)(,)y u x t t u x y t dy ∞ -+?= +? 2222 1 [(,)(,)(,)()]2 y x xx u x t u x t y u x t ty o t dy σ∞ - = ++?+?? 21 (,)(,)()2 xx u x t u x t t o t σ=+?+? 因此, 2 2 t xx u u σ= 。 可见:一维Brown 运动的状态概率密度满足扩散方程。 从随机过程的角度,可直接写出状态概率密度: 22()2(,)(,0)y x t u x t e u y dy σ-∞ - = ?。 所以,有如下定理。 定理 扩散方程2,,0 (,0)() t xx u c u x t u x x ??=-∞<<∞>?=?的解为

一维热传导方程

一维热传导方程 一. 问题介绍 考虑一维热传导方程: (1) ,0),(22T t x f x u a t u ≤<+??=?? 其中a 是正常数,)(x f 是给定的连续函数。按照定解条件的不同给法,可将方程(1)的定解问题分为两类: 第一类、初值问题(也称Cauthy 问题):求具有所需次数偏微商的函数),(t x u ,满足方程(1)(∞<<∞-x )和初始条件: (2) ),()0,(x x u ?= ∞<<∞-x 第二类、初边值问题(也称混合问题):求具有所需次数偏微商的函数),(t x u ,满足方程(1)(l x <<0)和初始条件: (3) ),()0,(x x u ?= l x <<0 及边值条件 (4) .0),(),0(==t l u t u T t ≤≤0 假定)(x ?在相应区域光滑,并且在l x ,0=满足相容条件,使上述问题有唯一充分光滑的解。 二. 区域剖分 考虑边值问题(1),(4)的差分逼近。去空间步长N l h /=和时间步长M T /=τ,其中N,M 都是正整数。用两族平行直线: 将矩形域}0;0{T t l x G ≤≤≤≤=分割成矩形网格,网格节点为),(k j t x 。以h G 表示网格内点集合,即位于开矩形G 的网点集合;h G 表示所有位于闭矩形G 的网点集合;h Γ=h G --h G 是网格界点集合。 三. 离散格式 第k+1层值通过第k 层值明显表示出来,无需求解线性代数方程组,这样的格式称为显格式。 第k+1层值不能通过第k 层值明显表示出来,而由线性代数方程组确定,这样的格式称为隐格式。 1. 向前差分格式 (5) ,221 11j k j k j k j k j k j f h u u u a u u ++-=--++τ

变系数线性常微分方程的求解

变系数线性常微分方程的求解 张慧敏,数学计算机科学学院 摘要:众所周知,所有的常系数一阶、二阶微分方程都是可解的,而变系数 二阶线性微分方程却很难解,至今还没有一个普遍方法。幂级数解法是一个非常有效的方法,本文重点讨论二阶变系数线性常微分方程的解法,从幂级数解法、降阶法、特殊函数法等方面探究了二阶微分方程的解法,简单的介绍了几种高阶微分方程的解法,并讨论了悬链线方程等历史名题。 关键词:变系数线性常微分方程;特殊函数;悬链线方程;幂级数解法 Solving linear ordinary differential equations with variable coefficients Huimin Zhang , School of Mathematics and Computer Science Abstract:As we know, all of ordinary differential equations of first, second order differential equations with constant coefficients are solvable. However, the linear differential equations of second order with variable coefficients are very difficult to solve. So far there is not a universal method. The method of power-series solution is a very efficient method. This article focuses on solving linear ordinary differential equations of second order with variable coefficients, and exploring the solution of in terms of power-series solution, the method of reducing orders, the method of special functions. Also, this paper applies the above methods to solve several linear differential equations of higher order and especially discusses the famous catenary equation. Key words:Linear ordinary differential equations with variable coefficients; Special Functions; catenary equation; Power Series Solution.

热传导方程向后差分格式的MATLAB程序

向后差分格式MATLAB编程: c lear;clc; format short e a=input('请输入系数a的值'); l=input('请输入长度l的值'); M=input('请输入将区间[0,1]等分的个数M '); ot=input('请输入时间增量ot的值'); n=input('请输入运行次数n的值'); ox=1/M; x0=zeros(M+1,1) for ii=1:M x0(ii+1)=ii*ox; end u=sin(pi*x0/l); r=a*ot/(ox)^2; for ii=1:n %数据的输入 B=zeros(M-1,1); A=zeros(M-2,1); C=zeros(M-2,1); S=zeros(M-1,1); for ii=1:M-2 B(ii)=1+2*r;A(ii)=-r;C(ii)=-r; S(ii)=u(ii+1,1); end B(M-1,1)=1+2*r;S(M-1,1)=u(M,1);u(1,2)=0;u(M+1,2)=0; S(1,1)=S(1,1)+r*u(1,2);S(M-1,1)=S(M-1,1)+r*u(M+1,2); %追赶法 S(1)=S(1)/B(1);T=B(1);k=2; while k~=M B(k-1)=C(k-1)/T; T=B(k)-A(k-1)*B(k-1); S(k)=(S(k)-A(k-1)*S(k-1))/T; k=k+1 end k=1; while k~=M-1 S(M-1-k)=S(M-1-k)-B(M-1-k)*S(M-k); k=k+1; end u(2:M,2)=S; u(:,1)=u(:,2); end %计算精确解 for x=0:M

热传导方程向前差分格式的MATLAB程序

向前差分格式MATLAB编程: c lear;clc; format short e a=input('请输入系数a的值'); l=input('请输入长度l的值'); M=input('请输入将区间[0,1]等分的个数M '); ot=input('请输入时间增量ot的值'); n=input('请输入运行次数n的值'); ox=1/M; x0=zeros(M+1,1) for ii=1:M x0(ii+1)=ii*ox; end u=sin(pi*x0/l); r=a*ot/(ox)^2; for ii=1:n %数据的输入 B=zeros(M-1,1); A=zeros(M-2,1); C=zeros(M-2,1); S=zeros(M-1,1); for ii=1:M-2 B(ii)=1+2*r;A(ii)=-r;C(ii)=-r; S(ii)=u(ii+1,1); end B(M-1,1)=1+2*r;S(M-1,1)=u(M,1);u(1,2)=0;u(M+1,2)=0; S(1,1)=S(1,1)+r*u(1,2);S(M-1,1)=S(M-1,1)+r*u(M+1,2); %追赶法 S(1)=S(1)/B(1);T=B(1);k=2; while k~=M B(k-1)=C(k-1)/T; T=B(k)-A(k-1)*B(k-1); S(k)=(S(k)-A(k-1)*S(k-1))/T; k=k+1 end k=1; while k~=M-1 S(M-1-k)=S(M-1-k)-B(M-1-k)*S(M-k); k=k+1; end D=(1-2*r)*eye(M-1); temp=r*linspace(1,1,M-2); D=D+diag(temp,1)+diag(temp,-1); S=D*S

对流扩散方程引言

对流扩散方程的定解问题是指物质输运与分子扩散的物理过程和黏性流体流动的数学模型,它可以用来描述河流污染、大气污染、核污染中污染物质的分布,流体的流动和流体中热传导等众多物理现象。关于对流扩散方程的求解很也备受关注,因此寻找一种稳定实用的数值方法有着重要的理论与实际意义。 求解对流扩散方程的数值方法有多种,尤其是对流占优扩散方程,这些方法有迎风有限元法,有限体积法,特征有限体积法,特征有限差分法和特征有限元法,广义差分法,流线扩散法,以及这些方法与传统方法相结合的方法如迎风广义差分法,迎风有限体积法有限体积——有限元法等这些方法数值求解效果较好,及有效的避免了数值震荡,有减少了数值扩散,但是一般计算量偏大 近年,许多研究者进行了更加深入的研究,文献提出了对流扩散方程的特征混合元法,再次基础上,陈掌引入了特征间断混合元方法,还有一些学者将特征线和有限体积法相结合,提出了特征有限体积元方法(非线性和半线性),于此同时迎风有限元也得到较大的发展,胡建伟等人研究了对流扩散问题的Galerkin 部分迎风有限元方法和非线性对流扩散问题的迎风有限元,之后又有人对求解发展型对流扩散问题的迎风有限元法进行了理论分析 有限差分法和有限元是求解偏微分方程的常用数值方法,一般情况下考虑对流占优的扩散方程,当对流项其主导作用时,其解函数具有大梯度的过渡层和边界层,导致数值计算困难,采用一般的有限元或有限体积方法虽然具有形式上的高精度,不能解决数值震荡的问题,虽然我们不能简单的将对流占优扩散方程看做对流方程,但由于次方程中含有一阶不对称的导数,对流扩散方程仍会表现出“对流效应”,从而采用迎风格式逼近,尽量反应次迎风特点,此格式简单,克服了锋线前沿的数值震荡,计算结果稳定,之前的迎风格式只能达到一阶精度,我们采用高精度的广义迎风格式,此格式是守恒的,精度高,稳定性好,具有单调性,并且是特征线法的近似,有效的避免了锋线前沿的数值震荡。 有限体积是求解偏微分方程的新的离散技术,日益受到重视。有限体积与有限差分、有限元法最大的区别及优点在于有限体积将求解区域内的计算转化到控制体积边界上进行计算,而后二者均是直接(或间接)在域内计算,故有限体积有着明显的物理涵义,在很大程度上减少计算工作量又能满足计算精度要求,加快收敛速度。由于此方法讲散度的积分化为子域边界积分后子啊离散,数值解满足离散守恒,而且可以采用非结构网格,所以在计算物理特别是计算流体力学领域上有限体积有广阔的前景。 间断Galerkin(DG)方法是在1973年,Reed和Hill在求解种子迁移问题时,针对一阶双曲问题的物理特点提出的。之后C.Johnson,G.R.Richter等人对双曲问题的DG方法做了进一步的研究,并且得到了该机的误差分析结果,由于这种方法具有沿流线从“上游”到“下游”逐层逐单元计算的显示求解的特点,并且可以进行并行计算,所以被广泛应用于各类方程的求解。最近Douglas等人在{25}中处理二阶椭圆问题时,得到DG方法的有限元空间不需要满足任何连续性条件,因此空间构造简单,具有较好的局部性和并行性。DG发展的一个重要方面是对对流占优扩散方程的应用。G.R.Richter等在1992年提出利用DG方法求解定长对流扩散问题 近年DG方法有了新的发展,其中YeXiu提出间断体积元方法备受人们关注,2004年,她将有限体积法与DG相结合,提出了椭圆问题的间断有限体积法,此方法解除了逼近函数在跨越边界上连续的限制,之后更多的研究者应用到Stokes问题,抛物问题,双曲问题,并得到了较好的结果,该方法不但继承了有限体积的高精度计算简单及保持物理间局部守恒等优点,而且有限元空间无需满足任何连续性要求,空间构造简单,有较好的局部和并行性。 当对流扩散方程中的对流项占主导地位时,方程具有双曲方程的特点,这是由于对流扩散方程中的非对称的对流项所引起的迎风效应使对流扩散方程的数值求解更困难,用传统的中心差分法和标准的有限元求解会差生数值的震荡,从而使数值模拟失真,为了克服这一困难,早在20世纪50年代,就有人提出了迎风思想,由于使用迎风技巧可以有效的消除数值解不稳定性,因此吸引了众多学者的关注,从1977年,Tabata等人就针对对流扩散方程提出了三角形网格上的迎风格式{42,38},并进行了深入的研究,梁栋基于广义差分法,提出并分析了一类建立在三角网格上的广义迎风差分格式,袁益让2001年就多层渗流方程组合系统提出并分析了迎风分数步长差分方法,以上均是讨论的线性对流扩散问题,胡建伟等通过引入质量集中算子,构造并分析了一类基于三角网格的质量集中型的部分有限元方法处理线性和非线性对流扩散问

一维扩散方程的差分法matlab

一维扩散方程的差分法 m a t l a b Company number【1089WT-1898YT-1W8CB-9UUT-92108】

一维扩散方程的有限差分法 ——计算物理实验作业七 陈万 题目: 编程求解一维扩散方程的解 取1.0,1.0,1.0,10,0.1,0,1,1,0,1,1max 0222111======-=====τh D t a c b a c b a 。输出t=1,2,...,10时刻的x 和u(x),并与解析解u=exp(x+0.1t)作比较。 主程序: % 一维扩散方程的有限差分法 clear,clc; %定义初始常量 a1 = 1; b1 = 1; c1 = 0; a2 = 1;b2 = -1; c2 = 0; a0 = 1.0; t_max = 10; D = 0.1; h = 0.1; tao = 0.1; %调用扩散方程子函数求解 u = diffuse_equation(a0,t_max,h,tao,D,a1,b1,c1,a2,b2,c2); 子程序1: function output = diffuse_equation(a0,t_max,h,tao,D,a1,b1,c1,a2,b2,c2) % 一维扩散方程的有限差分法,采用隐式六点差分格式(Crank-Nicolson) % a0: x 的最大值 % t:_max: t 的最大值

% h: 空间步长 % tao: 时间步长 % D:扩散系数 % a1,b1,c1是(x=0)边界条件的系数;a2,b2,c2是(x=a0)边界条件的系数 x = 0:h:a0; n = length(x); t = 0:tao:t_max; k = length(t); P = tao * D/h^2; P1 = 1/P + 1; P2 = 1/P - 1; u = zeros(k,n); %初始条件 u(1,:) = exp(x); %求A矩阵的对角元素d d = zeros(1,n); d(1,1) = b1*P1+h*a1; d(2:(n-1),1) = 2*P1; d(n,1) = b2*P1+h*a2; %求A矩阵的对角元素下面一行元素e e = -ones(1,n-1);

【文献综述】热传导方程差分格式的收敛性和稳定性

文献综述 信息与计算科学 热传导方程差分格式的收敛性和稳定性在实际研究物理问题过程中, 往往能给出问题相应的数学表达式, 但是由于实际物理问题的复杂性, 它的解却一般不容易求出. 由此计算物理应运而生, 计算物理是以计算机为工具, 应用数学的方法解决物理问题的一门应用性学科, 是物理、数学和计算机三者结合的交叉性学科. 它产生于二战期间美国对核武器的研究, 伴随着计算机的发展而发展. 计算物理的目的不仅仅是计算, 而是要通过计算来解释和发现新的物理规律. 这一点它与传统的实验物理和理论物理并无差别, 所不同的只是使用的工具和方法. 计算物理早已与实验物理和理论物理形成三足鼎立之势, 甚至有人提出它将成为现代物理大厦的“栋梁”. 在一个物理问题中一个数值解往往比一个式子更直观, 更有价值. 在实际求解方程时, 除了一些特殊的情况下可以方便地求得其精确解外, 在一般情况下, 当方程或定解条件具有比较复杂的形式, 或求解区域具有比较复杂的形状时, 往往求不到, 或不易求到其精确解. 这就需要我们去寻找方程的近似解, 特别是数值近似解, 简称数值解. 这里主要研究的是热传导方程. 有限差分法是微分方程和积分微分方程数值解的方法. 其基本思想是把连续的定解区域用有限个离散点构成的网格来代替, 这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似, 积分用积分和来近似, 于是原微分方程和定解条件就近似地代之以代数方程组, 即有限差分方程组, 解此方程组就可以得到原问题在离散点上的近似解. 然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解. 热传导的差分法是求解热传导方程的重要方法之一. 对于差分格式的的求解, 我们首先要关注差分格式的收敛性和稳定性. 对于一个微分方程建立的各种差分格式, 为了有实用意义, 一个基本要求是它们能够任意逼近微分方程, 即相容性要求. 一个差分格式是否有用, 就要看差分方程的精确解能否任意逼近微分方程的解, 即收敛性的概念. 此外, 还有一个重要的概念必须考虑, 即差分格式的稳定性. 因为差分格式的计

几类二阶变系数常微分方程解法论文

几类二阶变系数常微分方程解法论文

二阶变系数常微分方程几种解法的探讨 胡博(111114109) (湖北工程学院数学与统计学院湖北孝感 432000) 摘要:常系数微分方程是我们目前可以完全解决的一类方程,而求变系数常微分方程的通解是比较困难的,一般的变系数常微分方程目前是还没有通用解法的。本文主要对二阶变系数常微分方程求解进行了探究,利用特解、常数变易法、变量变换等方法求出了某些二阶变系数线性微分方程的通解,并初步归纳了二阶变系数线性方程的求解基本方法及步骤。 关键词:二阶变系数线性微分方程;变换;通解;特解 To explore the solution of some ordinary differential equations of two order variable coefficient Zhang jun(111114128) (School of Mathematics and Statistics Hubei Engineering University Hubei Xiaogan 432000) Abstract:Differential equation with constant coefficients is a class of equations we can completely solve the present general solution, and change coefficient differential equations is difficult, the variable coefficient ordinary differential equation is at present there

一维热传导方程

一维热传导方程Last revision on 21 December 2020

一维热传导方程 一. 问题介绍 考虑一维热传导方程: (1) ,0),(22T t x f x u a t u ≤<+??=?? 其中a 是正常数,)(x f 是给定的连续函数。按照定解条件的不同给法,可将方程(1)的定解问题分为两类: 第一类、初值问题(也称Cauthy 问题):求具有所需次数偏微商的函数),(t x u ,满足方程(1)(∞<<∞-x )和初始条件: (2) ),()0,(x x u ?= ∞<<∞-x 第二类、初边值问题(也称混合问题):求具有所需次数偏微商的函数),(t x u ,满足方程(1)(l x <<0)和初始条件: (3) ),()0,(x x u ?= l x <<0 及边值条件 (4) .0),(),0(==t l u t u T t ≤≤0 假定)(x ?在相应区域光滑,并且在l x ,0=满足相容条件,使上述问题有唯一充分光滑的解。 二. 区域剖分 考虑边值问题(1),(4)的差分逼近。去空间步长N l h /=和时间步长M T /=τ,其中N,M 都是正整数。用两族平行直线: 将矩形域}0;0{T t l x G ≤≤≤≤=分割成矩形网格,网格节点为),(k j t x 。以h G 表示网格内点集合,即位于开矩形G 的网点集合;h G 表示所有位于闭矩形G 的网点集合;Γ=G --G 是网格界点集合。

三. 离散格式 第k+1层值通过第k 层值明显表示出来,无需求解线性代数方程组,这样的格式称为显格式。 第k+1层值不能通过第k 层值明显表示出来,而由线性代数方程组确定,这样的格式称为隐格式。 1. 向前差分格式 (5) ,22111j k j k j k j k j k j f h u u u a u u ++-=--++τ )(j j x f f =, )(0 j j j x u ??==, 00==k N k u u , 其中j = 1,2,…,N-1,k = 1,2,…,M-1。以2/h a r τ=表示网比。则方程(5)可以改写为: 易知向前差分格式是显格式。 2. 向后差分格式 (6) ,11111)21(j k j k j k j k j f u ru u u ru τ+=-++-+-+++ )(0 j j j x u ??==, 00==k N k u u , 其中j = 1,2,…,N-1,k = 1,2,…,M-1,易知向前差分格式是显格式。 3. 六点对称格式(Grank-Nicolson 格式) 将向前差分格式和向后差分格式作算术平均,即得到六点对称格式: (7) 111112)1(2+-+++-++-k j k j k j u r u r u r =j k j k j k j f u r u r u r τ++-+-+112 )1(2 利用0j u 和边值便可逐层求到k j u 。六点对称格式是隐格式,由第k 层计算第k+1层时需解线性代数方程组(因系数矩阵严格对角占优,方程组可唯一求解)。

对流扩散方程有限差分方法.

对流扩散方程有限差分方法 求解对流扩散方程的差分格式有很多种,在本节中将介绍以下3种有限差分格式:中心差分格式、Samarskii 格式、Crank-Nicolson 型隐式差分格式。 3.1 中心差分格式 时间导数用向前差商、空间导数用中心差商来逼近,那么就得到了(1)式的中心差分格式]6[ 2 1 11 1122h u u u v h u u a u u n j n j n j n j n j n j n j -+-+++-=-+-τ (3) 若令 h a τ λ=,2h v τ μ=,则(3)式可改写为 )2()(2 111111 n j n j n j n j n j n j n j u u u u u u u -+-+++-+--=μλ (4) 从上式我们看到,在新的时间层1+n 上只包含了一个未知量1 +n j u ,它可以由时间层n 上的值n j u 1-,n j u ,n j u 1+直接计算出来。因此,中心差分格式是求解对 流扩散方程的显示格式。 假定),(t x u 是定解问题的充分光滑的解,将1 +n j u ,n j u 1+,n j u 1-分别在),(n j t x 处 进行Taylor 展开: )(),(),(211ττO t u t x u t x u u n j n j n j n j +??? ?????+==++ )(2),(),(3 22211 h O x u h x u h t x u t x u u n j n j n j n j n j +????????+????????+==++ )(2),(),(3 22211 h O x u h x u h t x u t x u u n j n j n j n j n j +????????+????????-==-- 代入(4)式,有 2 111 1122),(h u u u v h u u a u u t x T n j n j n j n j n j n j n j n j -+-+++---+-= τ )()()(2222 h O v x u v h O a x u a O t u n j n j n j ?-????????-?+????????++????????=τ )()()(222h O v a O x u v x u a t u n j n j n j ?-++????????-??? ?????+????????=τ

基于Peclet数判别法的一维对流扩散方程分类研究

基于Peclet 数判别法的一维对流扩散方程分类研究 摘要:采用Peclet 数的绝对值大小来判别一维对流扩散方程为对流占优型或是扩散占优型方程,运用三种隐式差分格式—中心隐式格式、对流C-N 型格式和扩散C-N 格式,对不同Peclet 数的算例进行离散和求解。然后,将计算区域中所有节点的解析解与数值解表示成矩阵形式,并求解出它们的矩阵2范数之后作比较,两者越接近则代表差分格式精度越高。通过比较得出了当方程Peclet 数的绝对值小于等于0.5时,方程为扩散占优型方程。在离散方法选取方面,针对扩散项的离散可以采用更高精度的差分格式,如扩散C-N 格式;当Peclet 数的绝对值大于等于20时,方程为对流占优型方程。此时,针对对流项可以采用更高精度的差分格式,如对流C-N 格式;当Peclet 数的绝对值介于0.5与20之间时,无法用Peclet 数判断方程类型,不过可以选择折衷的离散格式减小误差,如中心隐式格式。 关键字:一维对流扩散方程 Peclet 数判别法 有限差分方法 数值模拟 MR(2010)主题分类号:39A14;65M06 中图分类号:O242.2 文献标识码: A 1.引言 一维对流扩散方程是描述流体流动和传热问题的一类线性化模型方程。土壤、大气等多孔介质中水、盐分、温度以及污染物质的对流扩散问题都会遇到此类方程。在一维对流扩散方程的求解过程中,反映流体对流和扩散两种物理作用的分别是对流项和扩散项。所以,根据方程中对流项还是扩散项占主导作用,通常可将方程分为对流占优型和扩散占优型两类方程。然而,要想得到精确度较高的数值结果,这两种类型方程的离散方法不能采用相同的离散格式。因此,需要有一种判别方法来判断方程的类型,关于对流占优型和扩散占优型方程的判别方法一直是近年来研究的热点问题。这对研究不同类型的方程使用合适的差分格式进行离散具有实际的意义。由于Peclet 数的绝对值表示了对流作用相对扩散作用的大小,即绝 大,扩散所起的作用就可以忽略。反之,当Peclet 数为零时,方程就为纯扩散方程。本文选用一维定解非稳态对流扩散方程为例,通过考察Peclet 数的绝对值大小来对方程进行分类,方程一般形式如下: 2(,),,0 122(1)(,0)()(,)(),(,)()12(,) u u u a f x t x x x t t x x u x g x u x t t u x t t u u x t υ?φ???? ?? ?? ????+=+≤≤≥???==== 其中a 和υ分别代表对流项系数和扩散项系数。假定求解区间长度为s , Peclet 数的绝对值

一维对流扩散方程的稳定性条件推导

一维稳态对流扩散方程稳定性条件的推导 姓名: 班级:硕5015 学号: 2015/12/15

证明: 一维稳态对流扩散方程: 22u x x φφρ??=Γ?? 采用控制容积积分法,对上图P 控制的容积作积分,取分段线性型线,对均分网格可得下列离散方程: ()()()()()()()()11112222e w e w P E W e w e w w w e e u u u u x x x x φρρφρφρδδδδ??????ΓΓΓΓ+-+=-++????????????????记:()()()()1122e w P e w w e a u u x x ρρδδΓΓ=+-+ ()()12 e E e e a u x ρδΓ=- ()()12w W w w a u x ρδΓ= + 定义通过界面的流量u ρ记为F ,界面上单位面积扩散阻力的倒数x δΓ记为D ,则原式简化为: P P E E W W a a a φφφ=+ 12 E e e a D F =- 12 W w w a D F =+ ()P E W e w a a a F F =++- 令 u x F Pe D ρδ==Γ 则 1111222 E W P Pe Pe φφφ????-++ ? ?????=

当Pe 大于2以后,数值解出现了异常;P φ小于其左右邻点之值,在无源项情 况下是不可能的。因为当2Pe >时系数12 E e e a D F =-小于零,即右边点的通过对流及扩散作用对中间点所产生的影响是负的,这会导致物理上产生不真实的解,所以2u x Pe ρδ=≤Γ 证毕。

一维扩散方程的差分法matlab

一维扩散方程的有限差分法 ——计算物理实验作业七 陈万 题目: 编程求解一维扩散方程的解 取1.0,1.0,1.0,10,0.1,0,1,1,0,1,1max 0222111======-=====τh D t a c b a c b a 。输出t=1,2,...,10时刻的x 和u(x),并与解析解u=exp(x+0.1t)作比较。 主程序: % 一维扩散方程的有限差分法 clear,clc; %定义初始常量 a1 = 1; b1 = 1; c1 = 0; a2 = 1;b2 = -1; c2 = 0; a0 = 1.0; t_max = 10; D = 0.1; h = 0.1; tao = 0.1; %调用扩散方程子函数求解 u = diffuse_equation(a0,t_max,h,tao,D,a1,b1,c1,a2,b2,c2); 子程序1:

function output = diffuse_equation(a0,t_max,h,tao,D,a1,b1,c1,a2,b2,c2) % 一维扩散方程的有限差分法,采用隐式六点差分格式 (Crank-Nicolson) % a0: x的最大值 % t:_max: t的最大值 % h: 空间步长 % tao: 时间步长 % D:扩散系数 % a1,b1,c1是(x=0)边界条件的系数;a2,b2,c2是(x=a0)边界条件的系数 x = 0:h:a0; n = length(x); t = 0:tao:t_max; k = length(t); P = tao * D/h^2; P1 = 1/P + 1; P2 = 1/P - 1;

本科毕业设计--求解热传导方程的高精度隐式差分格式

新疆大学毕业论文(设计) 题目:求解热传导方程的高精度隐式差分格式所属院系:数学与系统科学学院 专业:信息与计算科学

声明 本人郑重声明该毕业论文(设计)是本人在开依沙尔老师指导下独立完成的,本人拥有自主知识产权,没有抄袭、剽窃他人成果,由此造成的知识产权纠纷由本人负责。 声明人(签名): 年月日 亚库甫江.买买提同学在指导老师的指导下,按照任务书的内容,独立完成了该毕业论文(设计),指导教师已经详细审阅该毕业论文(设计)。 指导教师(签名): 年月日

新疆大学 毕业论文(设计)任务书 班级:信计07-2 姓名:亚库甫江.买买提论文(设计)题目:求解热传导方程的高精度隐式差分格式 专题:毕业设计 论文(设计)来源:教师自拟 要求完成的内容:学习和掌握一维热传导方程已有的各种差分 格式的基础上,扩散方程对空间变量应用紧 致格式离散,对时间变量应用梯形方法,构 造热传导方程的精度为() 24 τ+数值格式, O h 讨论格式的稳定性,最后数值例子来验证。发题日期:2012 年12月25日完成日期:2012 年5月28 日实习实训单位:数学学院地点:数学学院 论文页数:19页;图纸张数:4 指导教师:开依沙尔老师 教研室主任 院长(系主任)

摘要 本文首先对热传导方程经典差分格式进行复习和讨论,然后热传导方程对空间变量四阶紧致格式进行离散,时间变量保持不变,把一维热传导方程转化为常微分方程组的初值问题, 再利用梯形方法构造热传导方程方程的时间二阶空间四阶精度的一种差分格式,并稳定性进行分析,数值结果与Crank-Nicholson 格式进行比较,数值结果表明, 该方法是有效求解热传导方程的数值计算. 关键词: 热传导方程,高精度紧致格式; 梯形方法;两层隐格式; Crank-Nicolson格式 ABSTRACT This paper first study on some classical finite difference for the heat conduction equation, secondely secondely we apply compact finite difference approximation of fourth order for discretizing spatial derivatives but leave the time variable Continuous. This approach results in a system of ODEs, which can then be used trapezodial formula derived fourth order in space and second order in time unconditionally stable implicit scheme .the stability and local truncation error of the obtained method are analysied. Numerical experiments shows that this method Useful, efficient method for solving diffusion equation Keywords: Heat conduction eqution;Higher- oder compact scheme; Trapezodial formula ;Two- level implict scheme; Crank- Nicolson scheme

一维对流扩散方程的数值解法

一维对流扩散方程的数值解法 对流-扩散方程是守恒定律控制方程的一种模型方程,它既是能量方程的表示形式,同时也可以认为是把压力梯度项隐含到了源项中去的动量方程的代表。因此,以对流-扩散方程为例,来研究数值求解偏微分方程的相容性、收敛性和稳定性具有代表性的意义。 1 数学模型 本作业从最简单的模型方程,即一维、稳态、无源项的对流扩散方程出发,方程如下: 22, 02f f f U D x t x x ???+=≤≤??? (1) 初始条件 (),0sin(2)f x t A kx π== (2) 解析解 ()()()224,sin 2Dk t f x t e A k x Ut ππ-=- (3) 式中,1,0.05,0.5,1U D A k ==== 函数(3)描述的是一个衰减波的图像,如图1所示 t=0 t=0.5 t=1 图1 函数()()()224,sin 2Dk t f x t e k x Ut ππ-=- 的图像(U=1,D=0.05,k=1) 2 数值解法 2.1 数值误差分析 在网格点(),i n 上差分方程的数值解n i f 偏离该点上相应的偏微分方程的精确解 (),f i n 的值,称为网格节点上的数值误差。 当取定网格节点数21N =时,观察差分方程的解与微分方程的解在不同时间步长下的趋近程度,其中时间步长分别取值0.05,0.025,0.0125,0.0005t ?=。

(a )21,0.05N t =?= (b )21,0.025N t =?= (c )21,0.0125N t =?= (d )201,0.0005N t =?= 图2 数值误差随步长的变化情况 从图2的(a)~(d)可以定性的看出,数值误差与步长的大小有关。在满足稳定性条件的前提下,数值误差随着时间步长的减小而减小,同时,图(d )表示增大网格的分辨率也有助于减小网格误差。 为了对数值误差有一个定量的认识,接下来取定时间步长为0.0005t ?=,分别算出 11,21,41,61,81,101,121,161N =时,指标E =1所示。 表1 不同网格节点数下指标E 的值

物理分析课程设计---一维扩散方程求解

课程设计报告 课程名称:核反应堆物理分析题目:一维扩散方程求解院系:核科学与工程学院班级: 学号: 姓名: 指导教师: 成绩: 教师签名: 日期:2011 年6月日

目录 摘要 (1) 课程设计的目的与要求 (1) 设计正文 (1) 课程设计总结或结论 (3) 参考文献 (4)

摘要和关键词 摘要 这个设计用微分方程的差分数值求解方法,运用MATLAB编程计算出一维扩散方程中子通量密度的离散解。 关键词:一维扩散方程 一.课程设计的目的与要求 学习使用微分方程的数值解法(差分方法)来近似求解一维扩散方程,掌握差分方法的核心思想,熟练使用matlab数据处理,origin绘图软件。通过给定的微分方程及边界条件,计算平板型,圆柱形,球形反应堆中子通量密度分布。 二.设计正文 通过查找有关资料,根据二阶线性微分方程 ○1 转换为差分方程的一般公式 其中 ○2 h为给定步长, 我们把原方程化简为○3

对比方程○1和○3得出 ○4 把○4代入○2 等式右端向量 差分方程其实就是一个线性方程组,此线性方程组的系数矩阵为: 则有 这是一个三对角阵,故可用追赶法解式○3。 下面通过matlab程序来计算变换后的差分方程的解。 所编程序如下: clear; N=input('请输入参数:'); alpha=input('请输入alpha值:'); if alpha==0 rmax=input('请输入平板的厚度:'); f0=input('请输入平板中心的中子通量密度:'); elseif alpha==1 rmax=input('请输入堆芯半径:'); f0=input('请输入圆柱中心的中子通量密度:'); elseif alpha==2 rmax=input('请输入堆芯半径:'); f0=input('请输入球形中心的中子通量密度:'); end

相关文档
最新文档