罗酶宝最新研究进展

菊粉详细介绍及功效作用

菊粉功效作用详解 一、什么是菊粉 菊粉,并不是如字面上理解那样菊花提取的粉,而是植物中的储备性多糖,主要来源于植物,已发现有36000多种,包括双子叶植物中的菊科、桔梗科、龙胆科等11 个科及单子叶植物中的百合科、禾木科。菊粉是迄今为止人类发现的最优质、纯天然、可溶性的果聚糖混合物。 菊粉是以胶体形态含于细胞的原生质中,与淀粉不同,其易溶于热水中,加乙醇便从水中析出,与碘不发生反应。而且在稀酸下菊粉极易水解成果糖,这是所有果聚糖 的特性。也可被菊粉酶(inulase)水解成果糖。人和动物体内都缺乏分解菊粉的酶类。 菊粉除淀粉外植物的另一种能量储存的形式是十分理想的功能性食品配料、同时也是生产低聚果糖、多聚果糖、高果糖浆、结晶果糖等产品的良好原料。 中文名称:菊粉 中文别名:菊糖或天然果聚糖 英文名称:Inulin 英文别名:Synanthrin CAS号:9005-80-5 EINECS号:232-684-3 分子式:C228H382O191 分子量:6179.35808000012

二、菊粉来源: 菊粉在自然界中的分布十分广泛,某些真菌和细菌中也含有菊粉,但其主要来源是植物。人们日常食用的植物如:洋葱、大蒜、香蕉、小麦等都含有菊粉。然而,菊粉在自然界主要存在于菊科植物中,菊芋(俗称洋姜,国产菊粉的主要原料)含量为14%-19%,菊苣(欧洲菊粉主要原料)含量为15%-20% 三、菊粉的功效作用 1、菊粉能降低血糖 长期食用菊粉能降低血糖值,减轻糖尿病症状。

菊粉是一种不会导致尿中葡萄糖升高的碳水化合物。它在肠道的上部不会被水解成单糖,因而不会升高血糖水平和胰岛素含量。如今研究表明,空腹血糖的降低是低聚 果糖在结肠发酵所产生的短链脂肪酸的结果。 2、消化和排便功能增强,对治疗便秘有奇效 菊粉是一种天然的水溶性膳食纤维,几乎不能被胃酸水解和消化,只有在结肠被有益微生物利用,从而改善肠道环境。有研究表明,双歧杆菌的增殖程度取决于人体大 肠中初始双歧杆菌的数量,当初始双歧杆菌数量减少时,使用菊粉后增殖效果明显, 当初始双歧杆菌的数量多时,使用菊粉后效果并不明显。其次,摄入菊粉后能增强胃 肠道蠕动能力,提高肠胃功能,增加消化和食欲,提高机体免疫力,排出嗅味气体, 从而恢复肠的健康。尤其是对一些习惯性便秘,顽固性便秘都有很好的防治效果。 3、增强新陈代谢功能 新陈代谢功能增强,全身感到热乎有劲。特别是手脚变暖和。空腹时服用菊粉在 30分钟内,既使是冬天也能明显感觉到身体变暖和。还有就是持续吃菊粉明显感觉到皮肤变的光滑,脸上的痘痘和身上的伤口消失得很快。菊粉对皮肤炎有很好的功 效。 4、美肤 菊粉能减少皮肤的色素沉淀,有美白和美化皮肤的功效,使皮肤变得光华细嫩有光泽。 大便在肠道长期留存,会产生大量有害物质(如氮、硫化氢、氨、酚、吲哚等)。有害物质进入血液造成口腔异味,毛发干枯、色素沉着、颜面生痘、黑斑、雀斑、老 年斑,还会引起痔疮、肠癌、乳腺癌等疾病,菊粉半纤维素和发酵产生的短链脂肪酸 会刺激肠道蠕动,使大便变软并快速排出,减少毒素在肠道停留时间,起到美肤作用。 5、祛除湿疹 肠胃蠕动增加了,其排除体内毒素的功能也就增加了,湿疹都没了。 6、对大肠癌有特效 据美国报道说,菊粉对大肠癌的治疗有特效。美国在10年前就有专门的机构研究 菊粉。日本有一个癌症末期患者服用菊粉粉,体力恢复很快的案例。 7、改善血管障碍 菊粉对改善血管障碍功效非常显著。有很多关于菊粉降血脂,降低胆固醇的报 告。

菊芋基因组方面的研究进展

菊芋基因组方面的研究进展 摘要:当今社会经济飞速发展,人们的生活越来越好,但同时也引起了地球上各种严重的能源问题,因此人类急需探索出新的能源来维持经济的发展及人类自身的生存。因此越来越多的能源植物被提上研究的日程,而菊芋就是其中的一种比较有发展前景的能源植物。本文主要介绍了近些年来能源植物菊芋的基本概述、特点、用途及研究价值、进展,包括凝集素基因、金属硫蛋白htMT2基因、Na+/H+逆向转运蛋白基因等,并对菊芋今后的发展进行了展望。 关键词:菊芋能源凝集素 Na+/H+逆向转运蛋白金属硫蛋白htMT2 展望 Jerusalem artichoke genome research progress Abstract:Rapid economic development in today's society,people's lives were better,but it also caused the earth with serious energy problems,so human being need to explore a new energy to sustain economic development and the survival of human beings。Thus more and more energy plants is put on the agenda,and Jerusalem artichoke is one of a more promising energy plants。This paper introduces the energy plants in recent years,a basic overview of Jerusale m artichoke’s characteristics, uses and research value,progress,including the lectin gene, metallothionein htMT2 gene,Na+/H+ antiporter genes,and the future development of the Jerusalem artichoke Prospect。 Key words:Jerusalem artichoke Energy Lectin Na+/H+ antiporter Metallothionein htMT2 Prospect。 随着世界经济持续快速的发展,各国对能源的需求日益剧增,而化石燃料资源毕竟有限,因此能源危机成为人类逐渐面临的巨大危机。据统计,以目前世界已探明的矿物能源,煤炭资源尚可开采100年,天然气50~60年,地球上石油的存量已不足2 000亿吨,在100多年后将被消耗完。科学家们预测,能源消费将在未来20年内还将以平均2%的速度增长[1]。同时因煤炭、石油、天然气等石化能源燃料燃烧时所产生的有害物质导致一系列诸多的生态问题,严重影响着国家的资源安全,社会经济持续发展和威胁着人类的生存。在巨大的能源危机和环境污染的压力下,世界各国开始将目光聚焦到洁净的可再生能源的开发上[2]。这时全世界的目光开始落在菊芋的身上:能源植物是可再生能源开发的重要资源对象,是最有前景的生物质能源之一[3]。因此,研究开发能源植物具有相当重要的意义。 1、菊芋的概述:

溶菌酶

溶菌酶 溶菌酶 溶菌酶( Lysozyme,E.C.3.2.17),全称为1,4-p -N -溶菌酶,又称为细胞壁溶解酶,是自然界普遍存在的一种酶,因其能溶解细菌细胞壁具有溶菌作用而得名。 (一)溶菌酶的结构及物理化学性质 溶菌酶易溶于水,遇碱易破坏,不溶于丙酮、乙醚,是一种白色、无臭的结晶粉末。相对分子质量为14.7ku,由129个氨基酸残基组成,碱性氨基酸残基及芳香族氨基酸如色氨酸残基的比例很高,含有4个二硫键,如图2 -24所示,其等电点为10~11。在37℃条件下溶菌酶的生物学活性可保持6h,当温度较低时保持时间更长,利于溶菌酶在体内发挥作用。禽蛋蛋清是溶菌酶的重要来源,蛋清溶菌酶的物理化学性质如表17 -1所示。溶菌酶由两个区域组成,由一个长的α螺旋所联接,其二级结构大多是α螺旋。N末端的区域( f40~80)由一些螺旋线组成,大多数是反平行的β折叠。第二个区域由fl~39和f89~129氨基酸残基组成。分子中的这两个区域被一个螺旋体(f87天冬氨酸- 114精氨酸)所分离,分子组成了内部疏水外部亲水的基本结构,对溶菌酶发挥抗菌功能起着巨大的作用。 表17 -1 蛋清溶菌酶的物理化学特性 特性数值 相对分子质量14 400 亚基数 1 氨基酸129 等电点10.7 二硫键数 4 碳水化合物所占比例0 E1%280nm 26.4 93℃时的D热值(每分钟破坏90%的活性)110 酶活力的实验通过浑浊溶壁微球菌的细胞溶解 (二)溶菌酶的来源 溶菌酶在自然界中普遍存在,在人和许多哺乳动物的组织和分泌液中,均发现有溶菌酶存在,其物化性质基本相似,溶菌酶的来源如表17 -2所示。溶菌酶主要分布于禽蛋和鸟类蛋清中,尤其是浓厚蛋白的系带膜状层中。禽蛋中异常丰富,占整个蛋清中的 3.5%,鸡蛋蛋清是溶菌酶的主要商业来源。 表17 -2溶菌酶的来源

菊粉低聚糖的水解工艺研究

文章编号:1673-2995(2011)05-0289-02·论著·菊粉低聚糖的水解工艺研究 陈昱,王丽娜,李妍,李晓光*(吉林医药学院药学院,吉林吉林132013) 摘要:目的研究确立菊粉低聚糖的最佳水解工艺条件。方法采用酸法、酶法两种方式,分别设计单因素实验对菊糖提取液进行水解。结果酸法水解最佳工艺条件为水解温度80?、水解时间30min、pH=2.0;酶法最佳工艺条件为水解温度65?、水解时间18h、底物浓缩比1?1、酶用量0.4g。结论酸法水解优于酶法,转化率高且操作条件简单易行。 关键词:菊粉低聚糖;酸水解;酶水解;优化 中图分类号:TS24文献标识码:A Study on the hydrolysis process of oligosaccharides from Inulin CHEN Yu,Wang Li-na,Li Yan,LI Xiao-guang*(College of Pharmacy,Jilin Medical College,Jilin City,Jilin Prov-ince,132013,China) Abstract:Objective To find the optimum condition of the hydrolysis process of oligosaccharides from Inulin.Methods Inulin is hydrolyzed via acid and enzymatic means respectively.Single factor experiments were set to get the best method.Results As for acid hydrolysis,the best method is undertaken under the condition of80?(pH= 2.0)for30min.With regard to the enzymatic hydrolysis approach,the best one is as follows:substrate concentration ratio is1?1,reacting at60?with0.4g enzyme for18h.Conclusion The acid hydrolysis,with higher convert rate and simpler working condition,is better than the enzymatic one. Key words:Inulin oligosaccharides;acid hydrolysis;enzymatic hydrolysis;optimization 菊粉低聚糖,又称寡糖,是由2 10个单糖分子通过糖苷键构成的聚合物[1]。它具有良好的食品加工特性及优良的生理功能,尤其是降脂净血、调节肠道菌群平衡、增强人体免疫力方面功效显著[2-4]。 本课题主要对菊芋多糖酸法、酶法两种水解制备低聚糖的工艺进行了比较,并确定了适合产业化生产的较佳工艺操作条件。 1材料与方法 1.1主要原料与仪器 采收后低温干燥并于阴凉处放置1年的菊芋(购自吉林市);菊粉酶(购自韩国);ZTC1+1天然澄清剂(天津正天成澄清技术有限公司);磷酸(北京红星化工厂)。 基金项目:吉林省教育厅“十一五”科技研究计划(2010252). 作者简介:陈昱(1990-),女(汉族),本科. 通讯作者:李晓光(1962-),女(汉族),教授,本科. DK-98-Ⅱ型电热恒温水浴锅(天津市泰斯特仪器有限公司),RE-3000型旋转蒸发仪(上海亚荣生化仪器厂),DF-I集热式磁力加热搅拌器(江苏金坛市环宇科学仪器厂)。 1.2 实验流程 2结果 2.1酸法水解工艺 酸法水解工艺向ZTC1+1天然澄清法纯化所得的菊芋多糖纯化液中加入磷酸[5]至一定pH值,于恒 — 982 — 第32卷第5期2011年10月吉林医药学院学报 Journal of Jilin Medical College Vol.32No.5 Oct.2011

溶菌酶的研究及应用简介

溶菌酶的研究及应用简介 摘要溶菌酶(lysozyme)是一种专门作用于微生物细胞壁的水解酶,又称胞壁质酶(muramidase)。人们对溶菌酶的研究始于20 世纪初,英国细菌学家Fleming在发现青霉素的前6年(1922年)发现人的唾液、眼泪中存在能溶解细菌细胞壁的酶,因其具有溶菌作用,故命名为溶菌酶,其中鸡蛋溶菌酶的研究和应用已相当深入和广泛[1]。通过对它的结构、性质、来源的研究;溶菌酶已广泛的应用于医药、生物工程和食品工业等多个方面。 关键词溶菌酶;结构;应用;研究进展 溶菌酶(Lysozymc EC3.2.1.17)又名胞壁质酶(muramidase)、乙酞胞壁酸聚糖水解酶(N-acctylmuramide glyca-nohydrolase),广泛地分布于自然界[2]。在病毒(如噬菌体T4)、细菌(如枯草杆菌)、植物(如番木瓜)、动物(如鼠、狗)及人体都含有。人体多数组织器官含有一定浓度的溶菌酶。但以脾、肾含量较高。在鼻及支气管分泌液、泪液、脑脊液、唾液、乳汁及血液中均含有一定量的溶菌酶。此酶自被发现以来,经科学家们不断地研究,使得它在酶学及临床医学中均占有一定的重要位置,也将其应用于医疗、食品、畜牧及生物工程中。 1 溶菌酶的发现 1907年Nicollc[2]猜测芽胞杆菌(Bacillus)及枯草杆菌中含有溶解细菌的酶。1909年https://www.360docs.net/doc/d916158741.html,schtchenko[3]第一个报道了鸡蛋清含有溶解细菌的酶。1922年Alexander Fleming[2]发现鼻粘液里有一种能溶解微球菌(micrococcus

lysodeikticus)及其他细菌的酶,他把这种酶命名为溶菌酶(lysozyme)。经过仔细的观察和研究,他发现此酶广泛地存在于生物组织及机体的某些分泌物中。之后Robert及Wolff 也从鸡蛋清里提取出溶菌酶。1937~1946年间Abraham[3],Robinson, Alderson及Fevold等人通过实验从而分别获得了溶菌酶的结晶。 2 溶菌酶的理化性质、空间结构 2.1溶菌酶的理化性质 溶菌酶由129个氨基酸构成的单纯碱性球蛋白,在酸性环境下,溶菌酶对热的稳定性很强。当pH值为1.2~11.3围剧烈变化时,但其结构几乎维持不变。当pH值为4~7,96℃热处理15 min仍能保持87%的酶活性;当pH值为3 时能耐100℃加热处理45min;但碱很容易破坏酶活性,当处于碱性pH 值围时,溶菌酶的热稳定性就很差[4]。在干燥条件下,溶菌酶可以长期在室温存放,其纯品为白色或微黄色。黄色的结晶体或无定形粉末,无臭,味甜。易溶于水,易遭碱破坏,不溶于丙酮和乙醚。其分子结构如下: 2.2 空间结构 溶菌酶是第一个结构弄清楚的酶,在很长一段时间中,其中有许多蛋白晶体研究及蛋白质结构与功能关系研究。这些进展都是利用溶菌酶获得的溶菌酶一直

菊粉的原生素作用研究进展

菊粉的原生素作用研究进展 张名涛 1,2 ,顾宪红1 ,杨 琳 2 (1.中国农业科学院畜牧所,北京100094;2.华南农业大学动物科技学院,广东广州510642) 摘要:本文综述了菊粉的原生素作用及机理,主要包括菊粉的微生物发酵、营养、免疫和抗癌作用等。 关键词:菊粉;双歧杆菌;微生物发酵;短链脂肪酸;营养物质代谢中图分类号:Q 539 文献标识码:A AD VANCES IN INUL IN’S P REBIOTIC FUNCTIO N ZHANG Min g -tao 1,2 ,GU Xian -hon g 1,YANG L in 2 (1.I nstit ute o f A ni m al S cience ,CA A S ,Bei j i n g 100094,Chi na ;2.Colle g e o f A ni m al S cience an d Tech nolo gy ,S out h Chi na A g ricult u re U ni versit y ,Guan g z hou 510642,Chi na ) ABSTRACT :The p a p er reviewed recent advances in inulin’s p rebiotic f unction ,which mainl y consisted of microbial fermentation ,nut rition ,res p onse to stimulate immunit y and p rohibit carcino g enesis.At last t he p ros p ect of it s a pp lication in feed indust r y was p ointed out. K e y word :inulin ;bi f i dobacteri u m s p p ;microbial fermentation ;SCFA ;nut rient metabolism 菊粉(inulin )的主要成分是一类结构相似的果聚糖,这类果聚糖是由果糖残基(F )之间以β-2,1-糖苷键连接且末端连有一个葡萄糖残基(G )的直链多糖,结构式是G -1,(2-F -1)n -1,2-F ,简写为GF n (Edelman 等,1968)。此外,菊粉还含有少量另一类果聚糖(inulonose ),即末端没有连G 的果聚糖,结构式是F -1,(2-F -1)n -2,2-F ,简写为 F m (Ernst 等,1995)。菊粉广泛存在于各种植物,菊 芋和菊苣含量最高,鲜重可高达20%(干重80%)。Gibson (1995) 首次提出菊粉是一种原生素 (p rebiotics ),随后许多学者通过对菊粉深入研究都取得了同样结构,还发现它有其它一些生理作用。现在已开发出菊粉系列保健品,但菊粉作为一种原生素应用于饲料中的报道较少。本文主要综述了国外对菊粉的益生素作用及机理方面的研究成果,为菊粉在动物饲料中开发应用提供一些必要的理论依据。 1 菊粉的微生物发酵 1.1 胃、小肠消化 Graham 等(1986)、Nilsson 等(1988)先后发现,猪、小鼠和人不能分泌水解菊粉的β—果糖苷酶,菊粉在胃、小肠里不能被自身酶消化。Nilsson 等(1988)体外试验表明,胃液或其它酸性溶液可水解菊粉,生成果糖。Knudsen 等(1995)、Elle g ard 等 (1996)进行人体内消化试验,发现菊粉能被胃酸水 解成果糖。在胃内酸性条件下菊粉可被水解成果糖,胃内酸度是影响菊粉水解程度的一个重要因素,p H 值越小,水解程度大,反之亦然,菊粉被水解程度约为1%~15%(Nilsson 等,1988)。人和动物胃、小肠里可发酵菊粉的微生物很少,菊粉在胃、小肠不能被微生物利用。可见,菊粉在人和动物胃、小肠里极少被消化。 1.2 大肠微生物发酵 上述试验表明菊粉大部分以完整形式到达大肠,Levrat 等(1991)、Hubert 等(2000)研究发现菊粉主要以完整形式到小鼠盲肠,Elle g ard 等(1996)发现菊粉主要在人的结肠发酵。Nilsson 等(1988)用 含4.7%和9.4%菊粉的日粮分别饲喂小鼠,菊粉在 收稿日期:2002-03-24 基金项目:国家自然科学基金资助项目(30170687) 作者简介:张名涛(1976),男(汉),籍贯湖北,主攻方向饲料资源开发与利用,硕士。 15卷4期动物营养学报 Vol.15,No.4,12~18 2003年12月 AC TA ZOON U TR IM EN TA SIN ICA Dec.2003 文章编号:1006-267X (2003)04-0012-07

参考文献

参考文献 [1]?ngen-Baysal G, Sukan S S, Vassilev N. Production and properties of inulinase from Aspergillus niger[J]. Biotechnology letters, 1994, 16(3): 275-280. [2]Chen H Q, Chen X M, Li Y, et al. Purification and characterisation of exo- and endo-inulinase from Aspergillus ficuum JNSP5-06[J]. Food chemistry, 2009, 115: 1206-1212. [3]Sheng J, Chi Z M, Li J, et al. Inulinase production by the marine yeast Cryptococcus aureus G7a and inulin hydrolysis by the crude inulinase[J]. Process Biochemistry, 2007, 42: 805-811. [4]苏豫梅,李清清,李秉超.不同固定化菊粉酶方法的比较及条件优化[J].现代食品科 技,2008,24(12):1296-1299. [5]邓建珍,韦红群,陈燕珍.黑曲霉(Aspergillus niger)产菊粉酶菌株的筛选及培养条件的 研究[J].生物学杂志,2007,24(6):62-65. [6]Sergio D G, Gordon G B, Sneha A P, et al. Studies on the physiochemical properties of inulin and inulin oligomers[J]. Food chemistry, 2000, 68: 179-183. [7]Catana R, Ferreira B S, Cabral J M S, et al. Immobilization of inulinase for sucrose hydrolysis[J]. Food chemistry, 2005, 91: 517-520. [8]De G S, Birch G G, Parke S A, et al. Studies on the physiochemical properties of inulin and inulin oligomers[J]. Food chemistry, 2000, 68: 179-183. [9]黄秋婷,黄慧华.酶技术在功能性低聚糖生产中的应用[J].中国食品添加剂,2005, (4):72-76. [10]包怡红,生庆海.低聚糖的种类及其应用[J].粮油食品科技,2002,10(6):14-17. [11]Skowronek M, Fiedurek J. Inulinase biosynthesis using immobilized mycelium of Aspergillus niger[J]. Enzyme and Microbial Technology, 2006, 38: 162-167. [12]曹泽虹,董玉玮,苗敬芝等.菊粉酶产酶菌株筛选与鉴定[J].徐州工程学院学报(自 然科学版),2009,24(3):6-8. [13]林晨,顾宪红.菊粉酶研究进展及应用[J].当代畜禽养殖业,2004,(1):37-39. [14]王静,金征宇.微生物菊粉酶的研究进展[J].生物技术,2002,12(2):42-45. [15]周帼萍,沙涛,程立忠等.菊粉酶的研究及应用[J].食品与发酵工业,2007,27(7): 54-58. [16]Pessoa J A, Hartmann R, Vitolo M, et al. Recovery of extracellular inulinase by expanded bed adsorption[J]. Journal of Biotechnology, 1996, 51(1) : 89-95.

溶菌酶

1922年,英国细菌学家Fleming发现人的唾液、眼泪中存在有溶解细菌细胞壁的酶,因其具有溶菌用,故命名为溶菌酶。溶菌酶广泛地分布于自然界中,在人的组织及分泌物中可以找到,动物组织中也有,以鸡蛋清中含量最多。其他植物组织及微生物细胞中也存在[1]。它是由动物特定细胞内的核糖体上合成的一种蛋白酶,分泌到细胞外杀死细菌的。它存在于卵清、唾液等生物分泌液中,催化细菌细胞壁肽聚糖N-乙酰氨基葡糖与N-乙酰胞壁酸之间的1,4-β-糖苷键水解的酶。它可以溶解掉细菌的细胞壁,杀死细菌。 由于溶菌酶能够选择性地分解微生物的细胞壁,并且自身没有毒害,因此作为一种天然、安全的杀菌剂和防腐剂,在食品工业、医药制剂、日用化工等行业被普遍重视。随着开发和应用研究的进一步深入,溶菌酶的发展前景将会十分广阔。下面主要陈述溶菌酶的一些基本情况及其在食品工业中的应用。在食品工业中,溶菌酶是无毒的蛋白质,能选择性地使目标微生物细胞壁溶解而使其失去生理活性,而食品中的其他营养成分几乎不会造成任何损失。因此,它可以安全地替代有害人体健康的化学防腐剂(如苯甲酸及其钠盐等),以达到延长食品货架期的目的,是一种很好的天然防腐剂。现已广泛应用于水产品、肉食品、蛋糕、清酒、料酒及饮料中的防腐。 1 溶菌酶的分类 溶菌酶按其所作用的微生物不同分两大类,即细菌细胞壁溶菌酶和真菌细胞壁溶菌酶。真菌细胞壁溶菌酶包括酵母菌细胞壁溶解酶和霉菌细胞壁溶解酶。 1.1 细菌溶菌酶细菌溶菌酶通常可分为三大类:N-乙酰氨基己糖苷酶,它催化水解肽聚糖中糖骨架中的β(1→4)糖苷键;N-乙酰胞壁酰-丙氨酸酰胺酶,它催化裂解肽聚糖中糖基与肽基;内肽酶,它催化裂解肽聚糖肽桥中的肽键。 1.2 真菌溶菌酶真菌溶菌酶主要包括几丁质酶和β-葡聚糖酶。 1.2.1 几丁质酶 虽然一些外几丁质酶(exochitinases;EC3.2.1.30)也表现出抗真菌的特性,但抗真菌的几丁质酶主要是内几丁质酶(endochitinases;EC3.2.1.14)。人们已经研究了许多来自于植物和微生物的几丁质酶,并对有些几丁质酶抑制真菌生长/裂解真菌细胞的作用进行了研究。科学家们首先在植物中发现了几丁质酶的抗真菌作用,这类几丁质酶可以对抗侵入植物体的真菌病原体。微生物几丁质酶主要是由链霉菌属、杆菌和大多数真菌产生的。细菌分泌几丁质酶主要用于真菌细胞壁的降解和重组,但在大多数产几丁质酶的真菌中,此酶主要用于真菌细胞壁的成型过程。只有在一些特定的寄生霉菌中,如Trichodermaharzianum、APhanocladium album和Gliocladium vixens中,胞外几丁质酶和β-葡聚糖酶用来附着和降解目的菌丝。这些抗真菌的几丁质酶与植物几丁质酶相似,多为内几丁质酶。由于肽聚糖和甲壳质的糖骨架具有相似的结构,因此,一些几丁质酶也具有溶菌酶活性。 1.2.2 β-葡聚糖酶 β-葡聚糖酶(β-glucanases;EC 3.2.1.39)具有抗真菌作用主要是因为它能水解β(1→3)糖苷键。研究表明:β(1→3)葡聚糖酶对几丁质降解真菌细胞壁具有显著的协同作用。如将纯化的几丁质酶和β-葡聚糖酶合用,抗灰色葡萄孢(Botrytis cinera)的作用提高了10倍。内葡聚糖酶与外葡聚糖酶、不同内葡聚糖酶间也具有协同抗真菌作用。因为许多植物性食品中含有β-葡聚糖成分,它对维持产品的组织性、黏度和外观都有重要作用,将β-葡聚糖酶加入这类食品,可能会引起不良影响。真菌的细胞壁主要组分为几丁质和β-葡聚糖,但一些真菌和大多数酵母细胞壁含有其他类型的多糖(甘露聚糖、α-葡聚糖和纤维素),因此,甘露聚糖酶、α-葡聚糖酶也可作为抗真菌的酶类应用于食品工业。 2 溶菌酶的结构

菊粉的分子结构具体介绍

菊粉的分子结构具体介绍

————————————————————————————————作者:————————————————————————————————日期:

菊粉是植物中储备性多糖,主要来源于植物,已发现有36000多种,包括双子叶植物中的菊科、桔梗科、龙胆科等11个科及单子叶植物中的百合科、禾木科。例如,在菊芋的块茎、天竺牡丹(大理菊)的块根、蓟的根中都含有丰富的菊粉。菊粉分子约由31个β-D-呋喃基本信息 ?中文名称 菊粉 ?英文名 Inulin、Synanthrin ?别称 菊糖或天然果聚糖 ?化学式 C228H382O191 ?分子量 6179.35808000012 ?CAS登录号 9005-80-5 ?EINECS登录号 232-684-3胶体形态 ?存在形式 胶体形态

?存在物质 细胞的原生质中 果糖和1~2个吡喃菊糖残基聚合而成,果糖残基之间能通过β-2,1-键连接 基本简介 菊粉 inulin 贮藏多糖之一。主要见于菊科植物,例如,在菊芋的块茎、天竺牡丹(大理菊)的块根、蓟的根。是以胶体形态含于细胞的原生质中。与淀粉不同,它溶于温水,不呈碘反应。可被酸或菊粉酶(inulase)水解主要生成D-果糖。其结构推断是D-呋喃果糖以β-1,2-键与蔗糖的果糖脱水缩合的聚合度为32—34的多糖。在医药上用于对肾脏的肾小球过滤能力的试验[清除率(clearance)]。 菊粉是一类天然果聚糖的混合物.果聚糖是果糖单元通过(2-1)链联接而成并以葡萄糖单元终止的碳水化合物.通常商品化菊粉中果聚糖的平均聚合度为 10-30,其中含有少量的低聚果糖.几乎所有的植物中都可以发现菊粉的存在,它是除淀粉外植物的另一种能量储存的形式.我们从菊芋植物中提取并精制得到菊粉产品,聚合度从2~60多种果聚糖的混合物,是十分理想的功能性食品配料、同时也是生产低聚果糖、高果糖浆、结晶果糖等产品的良好原料。 相关功效 1、控制血脂 近年来,已证明膳食纤维的功效,它能降低人和动物的血脂水平,使人和小白鼠的血清胆固醇和脂肪(甘油三酸脂)大幅降低,若日服菊粉5—10g,血清脂肪可降低20%以下。Hidaka 等人报道,50—90岁的老年病人,每日摄食8g 短链的膳食纤维,两周后血液中甘油三酸脂和总胆固醇的水平降低。 Yamashita 等人给18名糖尿病人进食8g菊粉两周,总胆固醇减少 7.9%,但HDL—胆固醇没变。而摄食食粮的对照组,上述参数没有变化。Brighenti 等人观察到,12名健康

提高外源基因在巴斯德毕赤酵母中表达量的研究进展

提高外源基因在巴斯德毕赤酵母中表达量的研究进展 肖生科1,2 王磊2 陈毓荃1 (1西北农林科技大学生命科学学院,杨凌 712100;2中国农业科学院生物技术研究所,北京 100081) 摘 要: 巴斯德毕赤酵母(Pichia pastoris)表达系统是基因工程研究中广泛使用的真核表达系统,与现有的其它表达系统相比,巴斯德毕赤酵母在表达产物的糖基化修饰、折叠、加工、外分泌及表达量等方面有明显的优势。外源基因在该系统中表达时,由于受基因内部的结构、分泌信号、甲醇诱导的浓度及诱导时间、培养温度、启动子、表达环境的p H值等诸多因素的影响,一些外源蛋白的表达也存在着表达不够稳定、表达量较低,甚至不表达的情况。对影响巴斯德毕赤酵母表达的各种可能因素进行了分析,结合具体实践经验,就如何提高外源基因在巴斯德毕赤酵母中表达量的问题进行了综述。 关键词: 巴斯德毕赤酵母 酵母表达系统 基因表达 The Study on Improving Expression Levels of H eterologous G ene in Pichia pastoris Xiao Shengke1,2 Wang Lei2 Chen Yuquan1 (1College of L if e Sciences,Northwest Sci2Tech U niversity of A gricult ure and Forest ry,Yangli ng 712100; 2Biotechnology Research Instit ute,Chi nese Academy of A gricult ural Sciences,Beiji ng 100081) Abstract: As a eukaryote expression system,Pichia pastoris has been widely used in genetic engineering,which has many merits in the gene expression,protein process and secretion.The gene expression is influenced by a number of factors,such as the structure of gene,secretion signal peptides,methanol concentration,induction phase,temperature, PH,and promoter etc.These factors make some heterologous genes express unstably or express a little.This article ana2 lyzes these factors and reviews how to im prove expression levels of heterologous genes in Pichia pastoris. K ey words: Pichia pastoris Y east expression system G ene expression 动物、植物、微生物作为生物反应器为外源基因的表达提供了理想的环境,是基因工程及生物制药研究和应用的重要内容,也是生命科学研究领域的热点之一[1]。大肠杆菌被誉为是外源蛋白质表达的“工厂”,其具有易操作性,生长速度快,培养条件简单等优势。但是,大肠杆菌是低等的原核生物,不具有真核生物中mRNA翻译后修饰、加工的场所———内质网和高尔基体。虽然许多真核生物基因在大肠杆菌中可以表达,但有些表达的产物缺乏天然的生物活性或结构。哺乳类细胞、昆虫细胞表达系统虽然能够表达结构复杂的真核细胞蛋白,但操作复杂,表达水平低,产业化生产造价昂贵,不易普遍推广使用[2]。酵母是单细胞低等真核生物,它既具有原核生物易于培养、繁殖快、便于基因工程操作和高密度发酵等特性,同时又具有真核生物基因产物正确折叠所需的细胞内环境和糖链加工系统,还能分泌外源蛋白到培养液中,利于纯化[3]。 1 利用巴斯德毕赤酵母表达外源基因的优缺点 酿酒酵母(S.cerevisiae)是首先被用来作为外源基因表达的宿主菌,然而其表达重组蛋白有一定的局限性,使其产业化应用受到了限制[1]。出芽酵母(Kl uyverom yces lactis)表达外源基因时与酿酒酵母相似,但表达量偏低,也不利于推广应用和规模化生产。 巴斯德毕赤酵母(Pichia pastoris)是甲基营养型酵母,其乙醇氧化酶启动子(AOX)已被分离、克隆,这种酵母已经发展成为外源蛋白表达非常成功的宿主[4]。人们已在巴斯德毕赤酵母中已成功表达了多种外源蛋白,如IGF21和人血清蛋白已通过临 生物技术通报 ?综述与专论? B IO TECHNOL O G Y BULL ETIN 2004年第2期

浅谈溶菌酶的研究进展

期 引言 英国细菌学家弗莱明最早在人体的唾 液、眼泪等分泌物中发现了溶菌酶,因为它 能溶解细菌,故称为溶菌酶,它的作用机制 是破坏细菌细胞壁肽聚糖层的N-乙酰胞 壁酸和N-乙酰氨基葡糖之间的β-1,4 糖苷键,使细胞壁破裂,使细菌溶解。溶菌 酶作为安全的抑菌剂已被应用于食品加 工、疾病治疗等方面,需求量大,所以利用 生物技术大量生产迫在眉睫。此外,关于 “淀粉样纤维”形成基于溶菌酶的研究较为 热门,因此本文将从这两方面进行叙述。 1溶菌酶的结构及其与病理学相关 的研究 溶菌酶是蛋白质,具有高级结构,依靠 疏水作用、氢键等次级键折叠形成一定的 构象,发挥特殊功能。目前,人类最了解的 溶菌酶是鸡蛋清溶菌酶(HEWL),它包含一 条肽链,129个氨基酸。4对半胱氨酸残基 间形成4个二硫键,具有大量的α螺旋结 构。HEWL在体外一定条件的诱导下可以 形成“淀粉样纤维”,研究人员发现PH值较 低时,蛋白质逐渐去折叠,随着去折叠蛋白 质浓度的增大,蛋白质之间的疏水作用加 大,逐渐出现“淀粉样纤维”,具有成核效 应。另外在蛋白质变性剂的存在下,溶菌酶 的二级结构发生变化,可能出现“淀粉样纤 维”,但是不同浓度的变性剂对“淀粉样纤 维”的作用也不同,研究还有待深入。陕西 理工大学白瑜博士利用溶菌酶与朊蛋白结 构上的相似性来研究淀粉样纤维的形成机 制,为神经退行性疾病的研究带来福音[1]。 溶菌酶是一种小分子碱性蛋白,材料 易取,一直被作为一种模型体系,用于研究 蛋白质的空间构象、酶动力学及其与分子 进化、分子免疫间的关系。为优化食品加工 过程、提高食品质量提供理论指导,并为神 经系统等疾病建立了相关蛋白质模型。 目前有研究人员利用溶菌酶为模型 研究盐浓度对蛋白质聚集的影响,对人类 疾病的研究具有重要意义。 2基因工程载体表达溶菌酶的新进展 溶菌酶的用处广泛,但直接从生物体 内提纯效率低,所以其基因的重组和表达 也成为研究热点。鸡溶菌酶的外显子及内 含子序列已经确定,人的溶菌酶基因也逐 渐被解析清楚,为重组表达载体的构建和 优化提供契机。溶菌酶的外源表达包括原 核表达和真核表达,王赞等人通过PCR获 得美洲大鲵i型溶菌酶的基因,并通过构建 原核表达栽体pET28a-pal,诱导表达了美 洲大鲵i型溶菌酶pal蛋白,并通过West- ern-blot和ELISA进行了验证,出现了特异 性条带和免疫反应[2]。李云龙等通过人工合 成奶牛LYZ基因的CDS序列,由于序列较 短,合成片段容易,且保真度较高,所以避 免了RT-PCR中可能会出现的问题,构建 重组表达载体pET32T,PCR克隆筛选出了 阳性菌株,并利用酶切验证成功地构建了 表达载体,SDS-PAGE实验分析重组蛋白 证明已成功实现了溶菌酶大肠杆菌的原核 表达。重组蛋白的表达形式以包涵体的形 式存在,避免了对大肠杆菌的毒性[3]。 考虑到原核表达系统缺少了翻译后修 饰等过程,重组蛋白表达形式为包涵体,其 变性和复性的过程较麻烦,且容易影响蛋 白质的功能,所以目前多使用真核表达系 统,溶菌酶的真核表达体系局限于酵母表 达系统,付世新等人做了牛乳溶菌酶在毕 赤酵母表达方面的分析,他实验已经涉及 了对溶菌酶的基因进行密码子优化,并且 他们进行了牛乳溶菌酶对乳房致病菌的抑 菌分析,实验证明重组牛乳溶菌酶对这些 致病菌均具有抑制作用[4]。宋增健等人利用 NCY-2型毕赤酵母发酵生产溶菌酶,以价 格低廉、营养丰富且稳定性好的麦芽汁为 发酵液,通过探究发酵温度,外加氮源以及 甲醇的添加方式等优化了毕赤酵母的发酵 条件,以期为溶菌酶的工业化生产做出贡 献[5]。黄鹏等人在前人的基础上又做了改 进,他们通过组成型启动子甘油醛三磷酸 脱氢酶(GAP)来代替诱导型醇氧化酶启动 子,获得了高纯度和高活性的rh LysG2,避 免了使用甲醇,因此可以避免碳源间的相 互转化,提高了产量和效率,其中rhLysG2 的酶学性质与普通的C型溶菌酶不同,弥 补了在高渗条件下不能发挥作用的缺陷, 其开发为新型抗耐药菌药物奠定了基础[5]。 根据表达载体的密码子偏好性,以密 码子优化的方法来加强转基因动物的外源 基因表达是新的研究热点。考虑到蛋白质 分泌的“信号假说”,信号肽的翻译和切除 对蛋白的表达也有影响,已有科研人员通 过对信号肽和人溶菌酶基因的整体优化, 在溶菌酶基因的分泌量方面也有所提升。 3结果与展望 溶菌酶是一种结构清楚、化学性质稳 定、来源广泛的酶,已成为一种模式蛋白用 于研究生理条件的变化对于蛋白质结构功 能的影响,并逐渐应用于人类疾病的研究 上。基于基因工程的溶菌酶的生产目前已 有很多报道,通过将强启动子或者增强子 等调控原件与溶菌酶重组,构建新的表达 载体,或利用乳腺等生物反应器的方法来 扩大溶菌酶的生产有待进一步深入研究。 参考文献: [1]本刊编辑部.蛋清溶菌酶作为朊蛋 白错误折叠和淀粉样纤维形成机制的蛋 白模型研究[J].陕 [2]王赟等.美洲大蠊i型溶菌酶的原 核表达及多克隆抗体制备[J].生物技术通 报,2016,32(01):138~143. [3]李云龙等.奶牛溶菌酶基因的构建、 表达及活性研究[J].家畜生态学报,2018,39. [4]付世新等.牛乳溶菌酶在毕赤酵母 中的分泌表达及活性分析[J].中国预防兽 医学报,2010,32(06):428~431+454. [5]宋增健等.基因重组毕赤酵母产蛋 清溶菌酶发酵工艺及表达条件的优化[J].中 国酿造,2018,37(10):20~24. [6]黄鹏等.利用GAP启动子在毕赤 酵母中组成型表达人鹅型溶菌酶2[J].中 国生物工程杂志,2018,38(10):55~63. 浅谈溶菌酶的研究进展 河南师范大学生命科学学院王佳雯 摘要:溶菌酶作为一种天然的抗菌剂,广泛存在于人及哺乳动物等的多种组织器官中,良好的杀菌作用使其成为医疗、食品保鲜界的宠儿,应用广泛,为了高效表达溶菌酶,有关利用基因工程技术构建其基因表达载体的研究较多;鸡卵清溶菌酶的结构研究较为清晰,所以目前将其作为一种模式蛋白研究蛋白质的变性、聚集等特性上的报道较多,具有病理学上的意义。 关键词:溶菌酶;淀粉样纤维;原核表达;真核表达 HEBEINONGJI 62 2019年第8

溶菌酶综述

溶菌酶综述 溶菌酶(Lysozyme,EC3.21.17)又称为胞壁质酶(Murami dase).化学名称为N一乙酰胞壁质聚糖水解酶(N-Acety1 muramidi Glrcanohy.dralase)。它于1922年由英国细菌学家费莱明(A,Fleming)在人类的鼻粘液(有的材料为眼泪)中发现的,随后并给它命名为溶菌酶。1963年由乔利斯和坎菲尔德研究了溶菌酶的一级结构。1965年英国菲利普及其同事门用x衍射法解析了溶菌酶,是全世界第一个完全弄清了立体结构的酶,是近代酶化学研究的最太成果之一。它广泛存于鸟类、家禽的蛋清和哺乳动物的眼泪、唾液、血液、鼻涕、尿液、乳汁及组织细胞中(如肝、肾、淋巴组织、肠道等),从术瓜、芜青、大麦、无花果和卷心菜、萝卜等植物中也分离出溶菌酶,其中,以蛋清中含量为最高.约含0.3%.而人乳、眼泪、唾液中的溶菌酶活性远高于蛋清中的溶菌酶的活力。 溶菌酶是一种碱性球蛋白,其分子由129个氨基酸组成,2200个原子,分子量 14388-18000(14388、14500、18000),等电点为10.7-11.0,分子内有4个二硫键交联,化学性质非常稳定,对热也极为稳定,Sbaharu等报告牛奶中的溶菌酶分子量为18000,一级结构尚未清楚。人乳中的溶菌酶和a-La的一级结构有74%是相同的。Ⅱ一La是人乳中含量较多的蛋白质。它对于乳腺中乳糖的合成是必不可少的.是乳糖合成酶的辅酶。溶菌酶和d-La在生物学上是同源的,但它们的三级结构有很大的区别。它可溶解许多细菌的细胞膜.使细胞膜的糖蛋白类多糖发生加水分解作用。分子中碱性氨基酸、酰氨残基及芳香族氨基酸较高,如色氨酸的比例较高。酶的活性中心是天门冬氨酸和谷氨酸,溶菌酶通过其肤键中第35位的谷氨酸和第52位的天门冬氨酸构成的活性部位水解破坏组成徽生物细胞壁的N_一乙酰葡萄糖胺与N一乙酰胞壁质酸间的B一(1,4)糖苷键,使菌体细胞壁溶解而起到杀死细菌(尤其是球菌)的目的。 因此,溶菌酶是一种无毒、无害.安全性很高的高盐基蛋白质.且具有一定的保健作用。它不仅能选择性地分解微生物,而且又不作用于其它物质。该酶对革兰氏的枯草杆菌、耐辐射微球菌有强力分解作用,对大肠杆菌、普通变球菌和副溶血性弧菌等革兰氏阴性菌也有一定程度的溶解作用.其最有效浓度为0.05%。其同植酸、聚合磷酸盐、甘氨酸等结合使用,可大大提高其防腐效果。由于溶菌酶对多种微生物有很好地抑菌作用,溶菌酶在食品保藏中的作用引起了广泛的重视,尤其是在日本、加拿大、美国等。 溶菌酶的分类: 溶菌酶的底物特异性很强,不同来源溶菌酶作用的底物不同。按溶菌酶的来源可分为蛋清溶菌酶、动物溶菌酶、植物溶菌酶、微生物溶菌酶和细菌噬菌体溶菌酶。按作用细胞壁不同分为细菌细胞壁溶菌酶和真菌细胞壁溶菌酶。细菌细胞壁溶菌酶又细分为两种,一种是作用于β-1,4糖苷键的细胞壁溶解酶,另一种是作用于肽链“尾”端和酰胺部分的细胞壁溶解酶。真菌细胞壁溶菌酶包括酵母菌细胞壁溶解酶和霉菌细胞壁溶解酶。溶菌酶大体分为5种:(1)内N-乙酰己糖胺酶,此酶同于鸡蛋清溶菌酶,破坏细菌细胞壁肽聚糖中的β-1,4糖苷键。(2)酰胺酶,切断细菌细胞壁肽聚糖中N-乙酰氨基葡萄糖胺与肽“尾”之间的N乙酰胞壁酸- L-丙氨酸键。(3)内肽酶,使肽“尾”及肽“桥”内的肽键断裂。(4)β-1,3、β-1,6葡聚糖酶和甘露聚糖酶,此酶分解酵母细胞的细胞壁。(5)壳多糖酶,这是分解霉菌细胞壁的一种溶菌酶。 溶菌酶的应用: 溶菌酶作为一种存在于人体正常体液及组织中的非特异性免疫因素,具有多种药理作用,它具有抗菌、抗病毒、抗肿瘤的功效,目前日本已生产出医用溶菌酶,其适应症为出血、血尿、血痰和鼻炎等。 溶菌酶具有破坏细菌细胞壁结构的功能,以此酶处理G+细菌得到原生质体,因此,溶菌酶是基因工程、细胞工程中细胞融合操作必不可少的工具酶。 溶菌酶是一种无毒、无副作用的蛋白质,又具有一定的溶菌作用,因此可用作食品防腐剂。现已广泛应用于水产品、肉食品、蛋糕、清酒、料酒及饮料中的防腐;还可以添入乳粉中,使牛乳人乳化,以抑制肠道中腐败微生物的生存,同时直接或间接地促进肠道中双歧杆菌的增殖。此外,还能利用溶菌酶生产酵母浸膏和核酸类调味料等。

相关文档
最新文档